dsRNA as insect control agent

Abstract
The present invention relates to methods for controlling pest infestation using double stranded RNA molecules. The invention provides methods for making transgenic plants that express the double stranded RNA molecules, as well as pesticidal agents and commodity products produced by the inventive plants.
Description
SEQUENCE LISTING

A Sequence Listing in ASCII text format, submitted under 37 CFR §1.821, entitled “80388.txt”, 736 kilobytes in size, generated on Aug. 26, 2014 and filed via EFS-Web is provided in lieu of a paper copy. This sequence listing is hereby incorporated by reference into the specification for its disclosures.


FIELD OF THE INVENTION

The present invention relates to the field of double-stranded RNA (dsRNA)-mediated gene silencing in insect species. More particularly, the present invention relates to genetic constructs designed for the expression of dsRNA corresponding to novel target genes. These constructs are particularly useful in RNAi-mediated plant pest control. The invention further relates to methods for controlling insects, methods for preventing insect infestation and methods for down-regulating gene expression in insects using RNAi. The invention also relates to transgenic plants resistant to insect infestation.


BACKGROUND TO THE INVENTION

The environment is replete with pests and numerous methods have attempted to control pests infestations of plants. Commercial crops are often the targets of insect attack. Substantial progress has been made in the last few decades towards developing more efficient methods and compositions for controlling insect infestation in plants.


Chemical pesticides have been very effective in eradicating pest infestation. However, there are several disadvantages to using chemical pesticidal agents. Not only are they potentially detrimental to the environment, but they are not selective and are harmful to various crops and non-target fauna. Chemical pesticides persist in the environment and generally are slow to be metabolized, if at all. They accumulate in the food chain, and particularly in the higher predator species where they can act as mutagens and/or carcinogens to cause irreversible and deleterious genetic modifications. There has thus been continued controversy in the use of chemical insecticides to combat crop pests. They can rapidly develop resistance against these insecticides because of repetitive usage of the same insecticide or of insecticides having the same mode of action, and because accumulation also results in the development of resistance to the agents in species higher up the evolutionary ladder.


Control of insect pests on agronomically important crops is important, particularly insect pests which damage plants belonging to the Solanaceae family, especially potato (Solanum tuberosum), but also tomato (Solanum lycopersicum), eggplant (Solanum melongena), capsicums (Solanum capsicum), and nightshade (for example, Solanum aculeastrum, S. bulbocastanum, S. cardiophyllum, S. douglasii, S. dulcamara, S. lanceolatum, S. robustum, and S. triquetrum), particularly the control of coleopteran pests.


Biological control using extract from neem seed has been shown to work against coleopteran pests of vegetables. Commercially available neem-based insecticides have azadirachtin as the primary active ingredient. These insecticides are applicable to a broad spectrum of insects. They act as insect growth regulator; azadirachtin prevents insects from molting by inhibiting production of an insect hormone, ecdysone.


Biological control using protein Cry3A from Bacillus thuringiensis varieties tenebrionis and san diego, and derived insecticidal proteins are alternatives to chemical control. The Bt toxin protein is effective in controlling Colorado potato beetle larvae either as formulations sprayed onto the foliage or expressed in the leaves of potatoes.


An alternative biological agent is dsRNA. Over the last few years, down-regulation of genes (also referred to as “gene silencing”) in multicellular organisms by means of RNA interference or “RNAi” has become a well-established technique.


RNA interference or “RNAi” is a process of sequence-specific down-regulation of gene expression (also referred to as “gene silencing” or “RNA-mediated gene silencing”) initiated by double-stranded RNA (dsRNA) that is complementary in sequence to a region of the target gene to be down-regulated (Fire, A. Trends Genet. Vol. 15, 358-363, 1999; Sharp, P. A. Genes Dev. Vol. 15, 485-490, 2001).


Over the last few years, down-regulation of target genes in multicellular organisms by means of RNA interference (RNAi) has become a well established technique. Reference may be made to International Applications WO 99/32619 (Carnegie Institution) and WO 00/01846 (by Applicant).


DsRNA gene silencing finds application in many different areas, such as for example dsRNA mediated gene silencing in clinical applications (WO2004/001013) and in plants. In plants, dsRNA constructs useful for gene silencing have also been designed to be cleaved and to be processed into short interfering RNAs (siRNAs).


RNAi has also been proposed as a means of protecting plants against plant parasitic nematodes, i.e. by expressing in the plant (e.g. in the entire plant, or in a part, tissue or cell of a plant) one or more nucleotide sequences that form a dsRNA fragment that corresponds to a target gene in the plant parasitic nematode that is essential for its growth, reproduction and/or survival. Reference may be made to the International Application WO 00/01846 (by Applicant) and U.S. Pat. No. 6,506,559 (based on WO 99/32619).


Although the technique of RNAi has been generally known in the art in plants, C. elegans and mammalian cells for some years, to date little is known about the use of RNAi to down-regulate gene expression in insects. Since the filing and publication of the WO 00/01846 and WO 99/32619 applications, only few other applications have been published that relate to the use of RNAi to protect plants against insects. These include the International Applications WO 01/37654 (DNA Plant Technologies), WO 2005/019408 (Bar Ilan University), WO 2005/049841 (CSIRO, Bayer Cropscience), WO 05/047300 (University of Utah Research foundation), and the US application 2003/00150017 (Mesa et al.).


The present invention provides target genes and constructs useful in the RNAi-mediated insect pest control, especially the control of insect plant pathogens. The present invention also provides methods for controlling insect pest infestation by repressing, delaying, or otherwise reducing target gene expression within a particular insect pest.


DESCRIPTION OF THE INVENTION

The present invention describes a novel non-compound, non-protein based approach for the control of insect crop pests. The active ingredient is a nucleic acid, a double-stranded RNA (dsRNA), which can be used as an insecticidal formulation. In another embodiment, the dsRNA can be expressed constitutively in the host plant, plant part, plant cell or seed to protect the plant against chewing insects especially coleopterans such as beetles. The sequence of the dsRNA corresponds to part or whole of an essential insect gene and causes downregulation of the insect target via RNA interference (RNAi). As a result of the downregulation of mRNA, the dsRNA prevents expression of the target insect protein and hence causes death, growth arrest or sterility of the insect.


The methods of the invention can find practical application in any area of technology where it is desirable to inhibit viability, growth, development or reproduction of the insect, or to decrease pathogenicity or infectivity of the insect. The methods of the invention further find practical application where it is desirable to specifically down-regulate expression of one or more target genes in an insect. Particularly useful practical applications include, but are not limited to, protecting plants against insect pest infestation.


In accordance with one embodiment the invention relates to a method for controlling insect growth on a cell or an organism, or for preventing insect infestation of a cell or an organism susceptible to insect infection, comprising contacting insects with a double-stranded RNA, wherein the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of the nucleotide sequence of an insect target gene, whereby the double-stranded RNA is taken up by the insect and thereby controls growth or prevents infestation.


The present invention therefore provides isolated novel nucleotide sequences of insect target genes, said isolated nucleotide sequences comprising at least one nucleic acid sequence selected from the group comprising:


(i) sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof,


(ii) sequences which are at least 70%, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof, and


(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof,


or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or a complement thereof,


said nucleic acid sequences being useful for preparing the double stranded RNAs of the invention for controlling insect growth.


“Controlling pests” as used in the present invention means killing pests, or preventing pests to develop, or to grow or preventing pests to infect or infest. Controlling pests as used herein also encompasses controlling pest progeny (development of eggs). Controlling pests as used herein also encompasses inhibiting viability, growth, development or reproduction of the pest, or to decrease pathogenicity or infectivity of the pest. The compounds and/or compositions described herein, may be used to keep an organism healthy and may be used curatively, preventively or systematically to control pests or to avoid pest growth or development or infection or infestation. Particular pests envisaged in the present invention are plant pathogenic insect pests. “Controlling insects” as used herein thus also encompasses controlling insect progeny (such as development of eggs). Controlling insects as used herein also encompasses inhibiting viability, growth, development or reproduction of the insect, or decreasing pathogenicity or infectivity of the insect. In the present invention, controlling insects may inhibit a biological activity in a insect, resulting in one or more of the following attributes: reduction in feeding by the insect, reduction in viability of the insect, death of the insect, inhibition of differentiation and development of the insect, absence of or reduced capacity for sexual reproduction by the insect, muscle formation, juvenile hormone formation, juvenile hormone regulation, ion regulation and transport, maintenance of cell membrane potential, amino acid biosynthesis, amino acid degradation, sperm formation, pheromone synthesis, pheromone sensing, antennae formation, wing formation, leg formation, development and differentiation, egg formation, larval maturation, digestive enzyme formation, haemolymph synthesis, haemolymph maintenance, neurotransmission, cell division, energy metabolism, respiration, apoptosis, and any component of a eukaryotic cells' cytoskeletal structure, such as, for example, actins and tubulins. The compounds and/or compositions described herein, may be used to keep an organism healthy and may be used curatively, preventively or systematically to control a insect or to avoid insect growth or development or infection or infestation. Thus, the invention may allow previously susceptible organisms to develop resistance against infestation by the insect organism.


The expression “complementary to at least part of” as used herein means that the nucleotide sequence is fully complementary to the nucleotide sequence of the target over more than two nucleotides, for instance over at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or more contiguous nucleotides.


According to a further embodiment, the invention relates to a method for down-regulating expression of a target gene in an insect, comprising contacting said insect with a double-stranded RNA, wherein the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of the nucleotide sequence of the insect target gene to be down-regulated, whereby the double-stranded RNA is taken up into the insect and thereby down-regulates expression of the insect target gene.


Whenever the term “a” is used within the context of “a target gene”, this means “at least one” target gene. The same applies for “a” target organism meaning “at least one” target organism, and “a” RNA molecule or host cell meaning “at least one” RNA molecule or host cell. This is also detailed further below.


According to one embodiment, the methods of the invention rely on uptake by the insect of double-stranded RNA present outside of the insect (e. g. by feeding) and does not require expression of double-stranded RNA within cells of the insect. In addition, the present invention also encompasses methods as described above wherein the insect is contacted with a composition comprising the double-stranded RNA.


The invention further provides a method for down-regulating expression of at least one target gene in a target organism (which is capable of ingesting a plant, plant part, plant cell or seeds) comprising feeding a plant, plant part, plant cell or seed to the target organism which plant, plant part, plant cell or seed expresses double-stranded RNA.


In a more preferred aspect, the invention provides a method for down-regulating expression of at least one target gene in a target organism (which is capable of ingesting a host cell, or extracts thereof) comprising feeding a hostplant, plant part, plant cell or seed to the target organism which hostplant, plant part, plant cell or seed expresses a double-stranded RNA molecule comprising a nucleotide sequence complementary to or representing the RNA equivalent of at least part of the nucleotide sequence of the at least one target gene, whereby the ingestion of the host cell, host plant, plant part, plant cell or seed by the target organism causes and/or leads to down-regulation of expression of the at least one target gene.


The invention provides for use of a plant, plant part, plant cell or seed as defined herein for down regulation of expression of an insect target gene. In more detailed terms, the invention provides for use of a host cell as defined herein and/or an RNA molecule comprising a nucleotide sequence that is the RNA complement of or that represents the RNA equivalent of at least part of the nucleotide sequence of a target gene from a target organism, as produced by transcription of a nucleic acid molecule in a plant, plant part, plant cell or seed, for instance in the manufacture of a commodity product, for down regulation of expression of a target gene. Suitable target genes and target organisms in respect of the invention are discussed below in further detail.


According to one embodiment, the methods of the invention rely on a GMO approach wherein the double-stranded RNA is expressed by a cell or an organism infested with or susceptible to infestation by insects. Preferably, said cell is a plant cell or said organism is a plant.


The present invention thus also relates to a method for producing a plant resistant to a plant pathogenic insect, comprising:

    • transforming a plant cell with a recombinant construct comprising at least one regulatory sequence operably linked to a sequence complementary to at least part of (a) a nucleotide sequence of a target insect gene selected from the group consisting of:
      • (i) sequences which are at least 75% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,
      • (ii) sequences comprising at least 17 contiguous nucleotides of any of SEQ ID Nos 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof, and
      • (iii) sequences comprising a sense strand comprising a nucleotide sequence of (i) and an antisense strand comprising the complement of said nucleotide sequence of (i), wherein the transcript encoded by said nucleotide sequence is capable of forming a double-stranded RNA,
    • or (b) a nucleotide sequence which is an insect orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID Nos 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or the complement thereof;
    • regenerating a plant from the transformed plant cell; and
    • growing the transformed plant under conditions suitable for the expression of the recombinant construct, said grown transformed plant resistant to plant pathogenic insects compared to an untransformed plant.


The insect can be any insect, meaning any organism belonging to the Kingdom Animals, more specific to the Phylum Arthropoda, and to the Class Insecta or the Class Arachnida. The methods of the invention are applicable to all insects and that are susceptible to gene silencing by RNA interference and that are capable of internalising double-stranded RNA from their immediate environment. The invention is also applicable to the insect at any stage in its development. Because insects have a non-living exoskeleton, they cannot grow at a uniform rate and rather grow in stages by periodically shedding their exoskeleton. This process is referred to as moulting or ecdysis. The stages between moults are referred to as “instars” and these stages may be targeted according to the invention. Also, insect eggs or live young may also be targeted according to the present invention. All stages in the developmental cycle, which includes metamorphosis in the pterygotes, may be targeted according to the present invention. Thus, individual stages such as larvae, pupae, nymph etc stages of development may all be targeted.


In one embodiment of the invention, the insect may belong to the following orders: Acari, Araneae, Anoplura, Coleoptera, Collembola, Dermaptera, Dictyoptera, Diplura, Diptera, Embioptera, Ephemeroptera, Grylloblatodea, Hemiptera, Homoptera, Hymenoptera, Isoptera, Lepidoptera, Mallophaga, Mecoptera, Neuroptera, Odonata, Orthoptera, Phasmida, Plecoptera, Protura, Psocoptera, Siphonaptera, Siphunculata, Thysanura, Strepsiptera, Thysanoptera, Trichoptera, and Zoraptera.


In preferred, but non-limiting, embodiments and methods of the invention the insect is chosen from the group consisting of an insect which is a plant pest, such as but not limited to Nilaparvata spp. (e.g. N. lugens (brown planthopper)); Laodelphax spp. (e.g. L. striatellus (small brown planthopper)); Nephotettix spp. (e.g. N. virescens or N. cincticeps (green leafhopper), or N. nigropictus (rice leafhopper)); Sogatella spp. (e.g. S. furcifera (white-backed planthopper)); Blissus spp. (e.g. B. leucopterus leucopterus (chinch bug)); Scotinophora spp. (e.g. S. vermidulate (rice blackbug)); Acrosternum spp. (e.g. A. hilare (green stink bug)); Parnara spp. (e.g. P. guttata (rice skipper)); Chilo spp. (e.g. C. suppressalis (rice striped stem borer), C. auricilius (gold-fringed stem borer), or C. polychlysus (dark-headed stem borer)); Chilotraea spp. (e.g. C. polychrysa (rice stalk borer)); Sesamia spp. (e.g. S. inferens (pink rice borer)); Tryporyza spp. (e.g. T. innotata (white rice borer), or T. incertulas (yellow rice borer)); Cnaphalocrocis spp. (e.g. C. medinalis (rice leafroller)); Agromyza spp. (e.g. A. oryzae (leafminer), or A. parvicornis (corn blot leafminer)); Diatraea spp. (e.g. D. saccharalis (sugarcane borer), or D. grandiosella (southwestern corn borer)); Narnaga spp. (e.g. N. aenescens (green rice caterpillar)); Xanthodes spp. (e.g. X. transverse (green caterpillar)); Spodoptera spp. (e.g. S. frugiperda (fall armyworm), S. exigua (beet armyworm), S. littoralis (climbing cutworm) or S. praefica (western yellowstriped armyworm)); Mythimna spp. (e.g. Mythmna (Pseudaletia) seperata (armyworm)); Helicoverpa spp. (e.g. H. zea (corn earworm)); Colaspis spp. (e.g. C. brunnea (grape colaspis)); Lissorhoptrus spp. (e.g. L. oryzophilus (rice water weevil)); Echinocnemus spp. (e.g. E. squamos (rice plant weevil)); Diclodispa spp. (e.g. D. armigera (rice hispa)); Oulema spp. (e.g. O. oryzae (leaf beetle); Sitophilus spp. (e.g. S. oryzae (rice weevil)); Pachydiplosis spp. (e.g. P. oryzae (rice gall midge)); Hydrellia spp. (e.g. H. griseola (small rice leafminer), or H. sasakii (rice stem maggot)); Chlorops spp. (e.g. C. oryzae (stem maggot)); Diabrotica spp. (e.g. D. virgifera virgifera (western corn rootworm), D. barberi (northern corn rootworm), D. undecimpunctata howardi (southern corn rootworm), D. virgifera zeae (Mexican corn rootworm); D. balteata (banded cucumber beetle)); Ostrinia spp. (e.g. O. nubilalis (European corn borer)); Agrotis spp. (e.g. A. ipsilon (black cutworm)); Elasmopalpus spp. (e.g. E. lignosellus (lesser cornstalk borer)); Melanotus spp. (wireworms); Cyclocephala spp. (e.g. C. borealis (northern masked chafer), or C. immaculate (southern masked chafer)); Popillia spp. (e.g. P. japonica (Japanese beetle)); Chaetocnema spp. (e.g. C. pulicaria (corn flea beetle)); Sphenophorus spp. (e.g. S. maidis (maize billbug)); Rhopalosiphum spp. (e.g. R. maidis (corn leaf aphid)); Anuraphis spp. (e.g. A. maidiradicis (corn root aphid)); Melanoplus spp. (e.g. M. femurrubrum (redlegged grasshopper) M. differentialis (differential grasshopper) or M. sanguinipes (migratory grasshopper)); Hylemya spp. (e.g. H. platura (seedcorn maggot)); Anaphothrips spp. (e.g. A. obscrurus (grass thrips)); Solenopsis spp. (e.g. S. milesta (thief ant)); or spp. (e.g. T. urticae (twospotted spider mite), T. cinnabarinus (carmine spider mite); Helicoverpa spp. (e.g. H. zea (cotton bollworm), or H. armigera (American bollworm)); Pectinophora spp. (e.g. P. gossypiella (pink bollworm)); Earias spp. (e.g. E. vittella (spotted bollworm)); Heliothis spp. (e.g. H. virescens (tobacco budworm)); Anthonomus spp. (e.g. A. grandis (boll weevil)); Pseudatomoscelis spp. (e.g. P. seriatus (cotton fleahopper)); Trialeurodes spp. (e.g. T. abutiloneus (banded-winged whitefly) T. vaporariorum (greenhouse whitefly)); Bemisia spp. (e.g. B. argentifolii (silverleaf whitefly)); Aphis spp. (e.g. A. gossypii (cotton aphid)); Lygus spp. (e.g. L. lineolaris (tarnished plant bug) or L. hesperus (western tarnished plant bug)); Euschistus spp. (e.g. E. conspersus (consperse stink bug)); Chlorochroa spp. (e.g. C. sayi (Say stinkbug)); Nezara spp. (e.g. N. viridula (southern green stinkbug)); Thrips spp. (e.g. T. tabaci (onion thrips)); Frankliniella spp. (e.g. F. fusca (tobacco thrips), or F. occidentalis (western flower thrips)); Leptinotarsa spp. (e.g. L. decemlineata (Colorado potato beetle), L. juncta (false potato beetle), or L. texana (Texan false potato beetle)); Lema spp. (e.g. L. trilineata (three-lined potato beetle)); Epitrix spp. (e.g. E. cucumeris (potato flea beetle), E. hirtipennis (flea beetle), or E. tuberis (tuber flea beetle)); Epicauta spp. (e.g. E. vittata (striped blister beetle)); Phaedon spp. (e.g. P. cochleariae (mustard leaf beetle)); Epilachna spp. (e.g. E. varivetis (mexican bean beetle)); Acheta spp. (e.g. A. domesticus (house cricket)); Empoasca spp. (e.g. E. fabae (potato leafhopper)); Myzus spp. (e.g. M. persicae (green peach aphid)); Paratrioza spp. (e.g. P. cockerelli (psyllid)); Conoderus spp. (e.g. C. falli (southern potato wireworm), or C. vespertinus (tobacco wireworm)); Phthorimaea spp. (e.g. P. operculella (potato tuberworm)); Macrosiphum spp. (e.g. M. euphorbiae (potato aphid)); Thyanta spp. (e.g. T. pallidovirens (redshouldered stinkbug)); Phthorimaea spp. (e.g. P. operculella (potato tuberworm)); Helicoverpa spp. (e.g. H. zea (tomato fruitworm); Keiferia spp. (e.g. K. lycopersicella (tomato pinworm)); Limonius spp. (wireworms); Manduca spp. (e.g. M. sexta (tobacco hornworm), or M. quinquemaculata (tomato hornworm)); Liriomyza spp. (e.g. L. sativae, L. trifolli or L. huidobrensis (leafminer)); Drosophila spp. (e.g. D. melanogaster, D. yakuba, D. pseudoobscura or D. simulans); Carabus spp. (e.g. C. granulatus); Chironomus spp. (e.g. C. tentanus); Ctenocephalides spp. (e.g. C. felis (cat flea)); Diaprepes spp. (e.g. D. abbreviatus (root weevil)); Ips spp. (e.g. I. pini (pine engraver)); Tribolium spp. (e.g. T. castaneum (red floor beetle)); Glossina spp. (e.g. G. morsitans (tsetse fly)); Anopheles spp. (e.g. A. gambiae (malaria mosquito)); Helicoverpa spp. (e.g. H. armigera (African Bollworm)); Acyrthosiphon spp. (e.g. A. pisum (pea aphid)); Apis spp. (e.g. A. melifera (honey bee)); Homalodisca spp. (e.g. H. coagulate (glassy-winged sharpshooter)); Aedes spp. (e.g. Ae. aegypti (yellow fever mosquito)); Bombyx spp. (e.g. B. mori (silkworm)); Locusta spp. (e.g. L. migratoria (migratory locust)); Boophilus spp. (e.g. B. microplus (cattle tick)); Acanthoscurria spp. (e.g. A. gomesiana (red-haired chololate bird eater)); Diploptera spp. (e.g. D. punctata (pacific beetle cockroach)); Heliconius spp. (e.g. H. erato (red passion flower butterfly) or H. melpomene (postman butterfly)); Curculio spp. (e.g. C. glandium (acorn weevil)); Plutella spp. (e.g. P. xylostella (diamondback moth)); Amblyomma spp. (e.g. A. variegatum (cattle tick)); Anteraea spp. (e.g. A. yamamai (silkmoth)); and Armigeres spp. (e.g. A. subalbatus);


Preferred plant pathogenic insects according to the invention are plant pest are selected from the group consisting of Leptinotarsa spp. (e.g. L. decemlineata (Colorado potato beetle), L. juncta (false potato beetle), or L. texana (Texan false potato beetle)); Nilaparvata spp. (e.g. N. lugens (brown planthopper)); Laodelphax spp. (e.g. L. striatellus (small brown planthopper)); Nephotettix spp. (e.g. N. virescens or N. cincticeps (green leafhopper), or N. nigropictus (rice leafhopper)); Sogatella spp. (e.g. S. furcifera (white-backed planthopper)); Chilo spp. (e.g. C. suppressalis (rice striped stem borer), C. auricilius (gold-fringed stem borer), or C. polychrysus (dark-headed stem borer)); Sesamia spp. (e.g. S. inferens (pink rice borer)); Tryporyza spp. (e.g. T. innotata (white rice borer), or T. incertulas (yellow rice borer)); Anthonomus spp. (e.g. A. grandis (boll weevil)); Phaedon spp. (e.g. P. cochleariae (mustard leaf beetle)); Epilachna spp. (e.g. E. varivetis (mexican bean beetle)); Tribolium spp. (e.g. T. castaneum (red floor beetle)); Diabrotica spp. (e.g. D. virgifera virgifera (western corn rootworm), D. barberi (northern corn rootworm), D. undecimpunctata howardi (southern corn rootworm), D. virgifera zeae (Mexican corn rootworm); Ostrinia spp. (e.g. O. nubilalis (European corn borer)); Anaphothrips spp. (e.g. A. obscrurus (grass thrips)); Pectinophora spp. (e.g. P. gossypiella (pink bollworm)); Heliothis spp. (e.g. H. virescens (tobacco budworm)); Trialeurodes spp. (e.g. T. abutiloneus (banded-winged whitefly) T. vaporariorum (greenhouse whitefly)); Bemisia spp. (e.g. B. argentifolii (silverleaf whitefly)); Aphis spp. (e.g. A. gossypii (cotton aphid)); Lygus spp. (e.g. L. lineolaris (tarnished plant bug) or L. hesperus (western tarnished plant bug)); Euschistus spp. (e.g. E. conspersus (consperse stink bug)); Chlorochroa spp. (e.g. C. sayi (Say stinkbug)); Nezara spp. (e.g. N. viridula (southern green stinkbug)); Thrips spp. (e.g. T. tabaci (onion thrips)); Frankliniella spp. (e.g. F. fusca (tobacco thrips), or F. occidentalis (western flower thrips)); Acheta spp. (e.g. A. domesticus (house cricket)); Myzus spp. (e.g. M. persicae (green peach aphid)); Macrosiphum spp. (e.g. M. euphorbiae (potato aphid)); Blissus spp. (e.g. B. leucopterus leucopterus (chinch bug)); Acrosternum spp. (e.g. A. hilare (green stink bug)); Chilotraea spp. (e.g. C. polychrysa (rice stalk borer)); Lissorhoptrus spp. (e.g. L. oryzophilus (rice water weevil)); Rhopalosiphum spp. (e.g. R. maidis (corn leaf aphid)); and Anuraphis spp. (e.g. A. maidiradicis (corn root aphid)).


According to a more specific embodiment, the methods of the invention are applicable for Leptinotarsa species. Leptinotarsa belong to the family of Chrysomelidae or leaf beetles. Chrysomelid beetles such as Flea Beetles and Corn Rootworms and Curculionids such as Alfalfa Weevils are particularly important pests. Flea Beetles include a large number of small leaf feeding beetles that feed on the leaves of a number of grasses, cereals and herbs. Flea Beetles include a large number of genera (e.g., Attica, Apphthona, Argopistes, Disonycha, Epitrix, Longitarsus, Prodagricomela, Systena, and Phyllotreta). The Flea Beetle, Phyllotreta cruciferae, also known as the Rape Flea Beetle, is a particularly important pest. Corn rootworms include species found in the genus Diabrotica (e.g., D. undecimpunctata undecimpunctata, D. undecimpunctata howardii, D. longicornis, D. virgifera and D. balteata). Corn rootworms cause extensive damage to corn and curcubits. The Western Spotted Cucumber Beetle, D. undecimpunctata undecimpunctata, is a pest of curcubits in the western U.S. Alfalfa weevils (also known as clover weevils) belong to the genus, Hypera (H. postica, H. brunneipennis, H. nigrirostris, H. punctata and H. meles), and are considered an important pest of legumes. The Egyptian alfalfa weevil, H. brunneipennis, is an important pest of alfalfa in the western U.S.


There are more than 30 Leptinotarsa species. The present invention thus encompasses methods for controlling Leptinotarsa species, more specific methods for killing insects, or preventing Leptinotarsa insects to develop or to grow, or preventing insects to infect or infest. Specific Leptinotarsa species to control according to the invention include Colorado Potato Beetle (Leptinotarsa decemlineata (Say) and False Potato Beetle (Leptinotarsa juncta (Say).


CPB is a (serious) pest on our domestic potato (Solanum tuberosum), other cultivated and wild tuber bearing and non-tuber bearing potato species (e.g. S. demissum, S. phureja a.o.) and other Solanaceous (nightshades) plant species including:


(a) the crop species tomato (several Lycopersicon species), eggplant (Solanum melongena), peppers (several Capsicum species), tobacco (several Nicotiana species including ornamentals) and ground cherry (Physalis species);


(b) the weed/herb species, horse nettle (S. carolinense), common nightshade (S. dulcamara), belladonna (Atropa species), thorn apple (datura species), henbane (Hyoscyamus species) and buffalo burr (S. rostratum).


FPB is primarily found on horse nettle, but also occurs on common nightshade, ground cherry, and husk tomato (Physalis species).


The term “insect” encompasses insects of all types and at all stages of development, including egg, larval or nymphal, pupal and adult stages.


The present invention extends to methods as described herein, wherein the insect is Leptinotarsa decemlineata (Colorado potato beetle) and the plant is potato, eggplant, tomato, pepper, tobacco, ground cherry or rice, corn or cotton.


The present invention extends to methods as described herein, wherein the insect is Phaedon cochleariae (mustard leaf beetle) and the plant is mustard, chinese cabbage, turnip greens, collard greens or bok choy.


The present invention extends to methods as described herein, wherein the insect is Epilachna varivetis (Mexican bean beetle) and the plants are beans, field beans, garden beans, snap beans, lima beans, mung beans, string beans, black-eyed beans, velvet beans, soybeans, cowpeas, pigeon peas, clover or alfalfa.


The present invention extends to methods as described herein, wherein the insect is Anthonomus grandis (cotton boll weevil) and the plant is cotton.


The present invention extends to methods as described herein, wherein the insect is Tribolium castaneum (red flour beetle) and the plant is in the form of stored grain products such as flour, cereals, meal, crackers, beans, spices, pasta, cake mix, dried pet food, dried flowers, chocolate, nuts, seeds, and even dried museum specimens.


The present invention extends to methods as described herein, wherein the insect is Myzus persicae (green peach aphid) and the plant is a tree such as Prunus, particularly peach, apricot and plum; a vegetable crop of the families Solanaceae, Chenopodiaceae, Compositae, Cruciferae, and Cucurbitaceae, including but not limited to, artichoke, asparagus, bean, beets, broccoli, Brussels sprouts, cabbage, carrot, cauliflower, cantaloupe, celery, corn, cucumber, fennel, kale, kohlrabi, turnip, eggplant, lettuce, mustard, okra, parsley, parsnip, pea, pepper, potato, radish, spinach, squash, tomato, turnip, watercress, and watermelon; a field crops such as, but not limited to, tobacco, sugar beet, and sunflower; a flower crop or other ornamental plant.


The present invention extends to methods as described herein, wherein the insect is Nilaparvata lugens and the plant is a rice plant.


The present invention extends to methods as described herein, wherein the insect is Chilo suppressalis (rice striped stem borer) and the plant is a rice plant, bareley, sorghum, maize, wheat or a grass.


The present invention extends to methods as described herein, wherein the insect is Plutella xylostella (Diamondback moth) and the plant is a Brassica species such as, but not limited to cabbage, chinese cabbage, Brussels sprouts, kale, rapeseed, broccoli, cauliflower, turnip, mustard or radish.


The present invention extends to methods as described herein, wherein the insect is Acheta domesticus (house cricket) and the plant is any plant as described herein or any organic matter.


In terms of “susceptible organisms”, which benefit from the present invention, any organism which is susceptible to pest infestation is included. Preferably plants may benefit from the present invention by protection from infestation by plant pest organisms.


In a preferred embodiment the susceptible organism is a plant and the pest is a plant pathogenic insect. In this embodiment the insect is contacted with the RNA molecule by expressing the dsRNA molecule in a plant, plant part, plant cell or plant seed that is infested with or susceptible to infestation with the plant pathogenic pest.


In this context the term “plant” encompasses any plant material that it is desired to treat to prevent or reduce insect growth and/or insect infestation. This includes, inter alia, whole plants, seedlings, propagation or reproductive material such as seeds, cuttings, grafts, explants, etc. and also plant cell and tissue cultures. The plant material should express, or have the capability to express, the RNA molecule comprising at least one nucleotide sequence that is the RNA complement of or that represents the RNA equivalent of at least part of the nucleotide sequence of the sense strand of at least one target gene of the pest organism, such that the RNA molecule is taken up by a pest upon plant-pest interaction, said RNA molecule being capable of inhibiting the target gene or down-regulating expression of the target gene by RNA interference.


The target gene may be any of the target genes herein described, for instance a target gene that is essential for the viability, growth, development or reproduction of the pest. The present invention relates to any gene of interest in the insect (which may be referred to herein as the “target gene”) that can be down-regulated.


The terms “down-regulation of gene expression” and “inhibition of gene expression” are used interchangeably and refer to a measurable or observable reduction in gene expression or a complete abolition of detectable gene expression, at the level of protein product and/or mRNA product from the target gene. Preferably the down-regulation does not substantially directly inhibit the expression of other genes of the insect. The down-regulation effect of the dsRNA on gene expression may be calculated as being at least 30%, 40%, 50%, 60%, preferably 70%, 80% or even more preferably 90% or 95% when compared with normal gene expression. Depending on the nature of the target gene, down-regulation or inhibition of gene expression in cells of an insect can be confirmed by phenotypic analysis of the cell or the whole insect or by measurement of mRNA or protein expression using molecular techniques such as RNA solution hybridization, PCR, nuclease protection, Northern hybridization, reverse transcription, gene expression monitoring with a microarray, antibody binding, enzyme-linked immunosorbent assay (ELISA), Western blotting, radioimmunoassay (RIA), other immunoassays, or fluorescence-activated cell analysis (FACS).


The “target gene” may be essentially any gene that is desirable to be inhibited because it interferes with growth or pathogenicity or infectivity of the insect. For instance, if the method of the invention is to be used to prevent insect growth and/or infestation then it is preferred to select a target gene which is essential for viability, growth, development or reproduction of the insect, or any gene that is involved with pathogenicity or infectivity of the insect, such that specific inhibition of the target gene leads to a lethal phenotype or decreases or stops insect infestation.


According to one non-limiting embodiment, the target gene is such that when its expression is down-regulated or inhibited using the method of the invention, the insect is killed, or the reproduction or growth of the insect is stopped or retarded. This type of target genes is considered to be essential for the viability of the insect and is referred to as essential genes. Therefore, the present invention encompasses a method as described herein, wherein the target gene is an essential gene.


According to a further non-limiting embodiment, the target gene is such that when it is down-regulated using the method of the invention, the infestation or infection by the insect, the damage caused by the insect, and/or the ability of the insect to infest or infect host organisms and/or cause such damage, is reduced. The terms “infest” and “infect” or “infestation” and “infection” are generally used interchangeably throughout. This type of target genes is considered to be involved in the pathogenicity or infectivity of the insect. Therefore, the present invention extends to methods as described herein, wherein the target gene is involved in the pathogenicity or infectivity of the insect. The advantage of choosing the latter type of target gene is that the insect is blocked to infect further plants or plant parts and is inhibited to form further generations.


According to one embodiment, target genes are conserved genes or insect-specific genes.


In addition, any suitable double-stranded RNA fragment capable of directing RNAi or RNA-mediated gene silencing or inhibition of an insect target gene may be used in the methods of the invention.


In another embodiment, a gene is selected that is essentially involved in the growth, development, and reproduction of a pest, (such as an insect). Exemplary genes include but are not limited to the structural subunits of ribosomal proteins and a beta-coatamer gene, such as the CHD3 gene. Ribosomal proteins such as S4 (RpS4) and S9 (RpS9) are structural constituents of the ribosome involved in protein biosynthesis and which are components of the cytosolic small ribosomal subunit, the ribosomal proteins such as L9 and L19 are structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome. The beta coatamer gene in C. elegans encodes a protein which is a subunit of a multimeric complex that forms a membrane vesicle coat. Similar sequences have been found in diverse organisms such as Arabidopsis thaliana, Drosophila melanogaster, and Saccharomyces cerevisiae. Related sequences are found in diverse organisms such as Leptinotarsa decemlineata, Phaedon cochleariae, Epilachna varivestis, Anthonomus grandis, Tribolium castaneum, Myzus persicae, Nilaparvata lugens, Chilo suppressalis, Plutella xylostella and Acheta domesticus.


Other target genes for use in the present invention may include, for example, those that play important roles in viability, growth, development, reproduction, and infectivity. These target genes include, for example, house keeping genes, transcription factors, and pest specific genes or lethal knockout mutations in Caenorhabditis or Drosophila. The target genes for use in the present invention may also be those that are from other organisms, e.g., from insects or arachnidae (e.g. Leptinotarsa spp., Phaedon spp., Epilachna spp., Anthonomus spp., Tribolium spp., Myzus spp., Nilaparvata spp., Chilo spp., Plutella spp., or Acheta spp.).


Preferred target genes include those specified in Table 1A and orthologous genes from other target organisms, such as from other pest organisms.


In the methods of the present invention, dsRNA is used to inhibit growth or to interfere with the pathogenicity or infectivity of the insect.


The invention thus relates to isolated double-stranded RNA comprising annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of a target nucleotide sequence of a target gene of an insect. The target gene may be any of the target genes described herein, or a part thereof that exerts the same function.


According to one embodiment of the present invention, an isolated double-stranded RNA is provided comprising annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of a nucleotide sequence of an insect target gene, wherein said target gene comprises a sequence which is selected from the group comprising:

    • (i) sequences which are at least 75% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof, and
    • (ii) sequences comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,


      or wherein said insect target gene is an insect orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or the complement thereof.


Depending on the assay used to measure gene silencing, the growth inhibition can be quantified as being greater than about 5%, 10%, more preferably about 20%, 25%, 33%, 50%, 60%, 75%, 80%, most preferably about 90%, 95%, or about 99% as compared to a pest organism that has been treated with control dsRNA.


According to another embodiment of the present invention, an isolated double-stranded RNA is provided, wherein at least one of said annealed complementary strands comprises the RNA equivalent of at least one of the nucleotide sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or wherein at least one of said annealed complementary strands comprises the RNA equivalent of a fragment of at least 17 basepairs in length thereof, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 basepairs in length thereof.


If the method of the invention is used for specifically controlling growth or infestation of a specific insect in or on a host cell or host organism, it is preferred that the double-stranded RNA does not share any significant homology with any host gene, or at least not with any essential gene of the host. In this context, it is preferred that the double-stranded RNA shows less than 30%, more preferably less that 20%, more preferably less than 10%, and even more preferably less than 5% nucleic acid sequence identity with any gene of the host cell. % sequence identity should be calculated across the full length of the double-stranded RNA region. If genomic sequence data is available for the host organism one may cross-check sequence identity with the double-stranded RNA using standard bioinformatics tools. In one embodiment, there is no sequence identity between the dsRNA and a host sequences over 21 contiguous nucleotides, meaning that in this context, it is preferred that 21 contiguous base pairs of the dsRNA do not occur in the genome of the host organism. In another embodiment, there is less than about 10% or less than about 12.5% sequence identity over 24 contiguous nucleotides of the dsRNA with any nucleotide sequence from a host species.


The double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which corresponds to a target nucleotide sequence of the target gene to be down-regulated. The other strand of the double-stranded RNA is able to base-pair with the first strand.


The expression “target region” or “target nucleotide sequence” of the target insect gene may be any suitable region or nucleotide sequence of the gene. The target region should comprise at least 17, at least 18 or at least 19 consecutive nucleotides of the target gene, more preferably at least 20 or at least 21 nucleotide and still more preferably at least 22, 23 or 24 nucleotides of the target gene.


It is preferred that (at least part of) the double-stranded RNA will share 100% sequence identity with the target region of the insect target gene. However, it will be appreciated that 100% sequence identity over the whole length of the double stranded region is not essential for functional RNA inhibition. RNA sequences with insertions, deletions, and single point mutations relative to the target sequence have also been found to be effective for RNA inhibition. The terms “corresponding to” or “complementary to” are used herein interchangeable, and when these terms are used to refer to sequence correspondence between the double-stranded RNA and the target region of the target gene, they are to be interpreted accordingly, i.e. as not absolutely requiring 100% sequence identity. However, the % sequence identity between the double-stranded RNA and the target region will generally be at least 80% or 85% identical, preferably at least 90%, 95%, 96%, or more preferably at least 97%, 98% and still more preferably at least 99%. Two nucleic acid strands are “substantially complementary” when at least 85% of their bases pair.


The term “complementary” as used herein relates to both DNA-DNA complementarity as to DNA-RNA complementarity. In analogy herewith, the term “RNA equivalent” substantially means that in the DNA sequence(s), the base “T” may be replaced by the corresponding base “U” normally present in ribonucleic acids.


Although the dsRNA contains a sequence which corresponds to the target region of the target gene it is not absolutely essential for the whole of the dsRNA to correspond to the sequence of the target region. For example, the dsRNA may contain short non-target regions flanking the target-specific sequence, provided that such sequences do not affect performance of the dsRNA in RNA inhibition to a material extent.


The dsRNA may contain one or more substitute bases in order to optimise performance in RNAi. It will be apparent to the skilled reader how to vary each of the bases of the dsRNA in turn and test the activity of the resulting dsRNAs (e.g. in a suitable in vitro test system) in order to optimise the performance of a given dsRNA.


The dsRNA may further contain DNA bases, non-natural bases or non-natural backbone linkages or modifications of the sugar-phosphate backbone, for example to enhance stability during storage or enhance resistance to degradation by nucleases.


It has been previously reported that the formation of short interfering RNAs (siRNAs) of about 21 bp is desirable for effective gene silencing. However, in applications of applicant it has been shown that the minimum length of dsRNA preferably is at least about 80-100 bp in order to be efficiently taken up by certain pest organisms. There are indications that in invertebrates such as the free living nematode C. elegans or the plant parasitic nematode Meloidogyne incognita, these longer fragments are more effective in gene silencing, possibly due to a more efficient uptake of these long dsRNA by the invertebrate.


It has also recently been suggested that synthetic RNA duplexes consisting of either 27-mer blunt or short hairpin (sh) RNAs with 29 bp stems and 2-nt 3′ overhangs are more potent inducers of RNA interference than conventional 21-mer siRNAs. Thus, molecules based upon the targets identified above and being either 27-mer blunt or short hairpin (sh) RNA's with 29-bp stems and 2-nt 3′ overhangs are also included within the scope of the invention.


Therefore, in one embodiment, the double-stranded RNA fragment (or region) will itself preferably be at least 17 bp in length, preferably 18 or 19 bp in length, more preferably at least 20 bp, more preferably at least 21 bp, or at least 22 bp, or at least 23 bp, or at least 24 bp, 25 bp, 26 bp or at least 27 bp in length. The expressions “double-stranded RNA fragment” or “double-stranded RNA region” refer to a small entity of the double-stranded RNA corresponding with (part of) the target gene.


Generally, the double stranded RNA is preferably between about 17-1500 bp, even more preferably between about 80-1000 bp and most preferably between about 17-27 bp or between about 80-250 bp; such as double stranded RNA regions of about 17 bp, 18 bp, 19 bp, 20 bp, 21 bp, 22 bp, 23 bp, 24 bp, 25 bp, 27 bp, 50 bp, 80 bp, 100 bp, 150 bp, 200 bp, 250 bp, 300 bp, 350 bp, 400 bp, 450 bp, 500 bp, 550 bp, 600 bp, 650 bp, 700 bp, 900 bp, 100 bp, 1100 bp, 1200 bp, 1300 bp, 1400 bp or 1500 bp.


The upper limit on the length of the double-stranded RNA may be dependent on i) the requirement for the dsRNA to be taken up by the insect and ii) the requirement for the dsRNA to be processed within the cell into fragments that direct RNAi. The chosen length may also be influenced by the method of synthesis of the RNA and the mode of delivery of the RNA to the cell. Preferably the double-stranded RNA to be used in the methods of the invention will be less than 10,000 bp in length, more preferably 1000 bp or less, more preferably 500 bp or less, more preferably 300 bp or less, more preferably 100 bp or less. For any given target gene and insect, the optimum length of the dsRNA for effective inhibition may be determined by experiment.


The double-stranded RNA may be fully or partially double-stranded. Partially double-stranded RNAs may include short single-stranded overhangs at one or both ends of the double-stranded portion, provided that the RNA is still capable of being taken up by insects and directing RNAi. The double-stranded RNA may also contain internal non-complementary regions.


The methods of the invention encompass the simultaneous or sequential provision of two or more different double-stranded RNAs or RNA constructs to the same insect, so as to achieve down-regulation or inhibition of multiple target genes or to achieve a more potent inhibition of a single target gene.


Alternatively, multiple targets are hit by the provision of one double-stranded RNA that hits multiple target sequences, and a single target is more efficiently inhibited by the presence of more than one copy of the double stranded RNA fragment corresponding to the target gene. Thus, in one embodiment of the invention, the double-stranded RNA construct comprises multiple dsRNA regions, at least one strand of each dsRNA region comprising a nucleotide sequence that is complementary to at least part of a target nucleotide sequence of an insect target gene. According to the invention, the dsRNA regions in the RNA construct may be complementary to the same or to different target genes and/or the dsRNA regions may be complementary to targets from the same or from different insect species.


The terms “hit”, “hits” and “hitting” are alternative wordings to indicate that at least one of the strands of the dsRNA is complementary to, and as such may bind to, the target gene or nucleotide sequence.


In one embodiment, the double stranded RNA region comprises multiple copies of the nucleotide sequence that is complementary to the target gene. Alternatively, the dsRNA hits more than one target sequence of the same target gene. The invention thus encompasses isolated double stranded RNA constructs comprising at least two copies of said nucleotide sequence complementary to at least part of a nucleotide sequence of an insect target.


The term “multiple” in the context of the present invention means at least two, at least three, at least four, at least five, at least six, etc.


The expressions “a further target gene” or “at least one other target gene” mean for instance a second, a third or a fourth, etc. target gene.


DsRNA that hits more than one of the above-mentioned targets, or a combination of different dsRNA against different of the above mentioned targets are developed and used in the methods of the present invention.


Accordingly the invention relates to an isolated double stranded RNA construct comprising at least two copies of the RNA equivalent of at least one of the nucleotide sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or at least two copies of the RNA equivalent of a fragment of at least 17 basepairs in length thereof, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 basepairs in length thereof. Preferably, said double-stranded RNA comprises the RNA equivalent of the nucleotide sequence as represented in SEQ ID NO 159 or 160, or a fragment of at least 17, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 basepairs in length thereof. In a further embodiment, the invention relates to an isolated double stranded RNA construct comprising at least two copies of the RNA equivalent of the nucleotide sequence as represented by SEQ ID NO 159 or 160.


Accordingly, the present invention extends to methods as described herein, wherein the dsRNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of a target nucleotide sequence of an insect target gene, and which comprises the RNA equivalents of at least wo nucleotide sequences independently chosen from each other. In one embodiment, the dsRNA comprises the RNA equivalents of at least two, preferably at least three, four or five, nucleotide sequences independently chosen from the sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or fragments thereof of at least 17 basepairs in length, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 basepairs in length thereof.


The at least two nucleotide sequences may be derived from the target genes herein described. According to one preferred embodiment the dsRNA hits at least one target gene that is essential for viability, growth, development or reproduction of the insect and hits at least one gene involved in pathogenicity or infectivity as described hereinabove. Alternatively, the dsRNA hits multiple genes of the same category, for example, the dsRNA hits at least 2 essential genes or at least 2 genes involved in the same cellular function. According to a further embodiment, the dsRNA hits at least 2 target genes, which target genes are involved in a different cellular function. For example the dsRNA hits two or more genes involved in protein synthesis (e.g. ribosome subunits), intracellular protein transport, nuclear mRNA splicing, or involved in one of the functions described in Table 1A.


Preferably, the present invention extends to methods as described herein, wherein said insect target gene comprises a sequence which is which is selected from the group comprising:

    • (i) sequences which are at least 75% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof, and
    • (ii) sequences comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,


or wherein said insect target gene is an insect orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or the complement thereof.


The dsRNA regions (or fragments) in the double stranded RNA may be combined as follows:

    • a) when multiple dsRNA regions targeting a single target gene are combined, they may be combined in the original order (ie the order in which the regions appear in the target gene) in the RNA construct,
    • b) alternatively, the original order of the fragments may be ignored so that they are scrambled and combined randomly or deliberately in any order into the double stranded RNA construct,
    • c) alternatively, one single fragment may be repeated several times, for example from 1 to 10 times, e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 times, in the ds RNA construct, or
    • d) the dsRNA regions (targeting a single or different target genes) may be combined in the sense or antisense orientation.


In addition, the target gene(s) to be combined may be chosen from one or more of the following categories of genes:

    • e) “essential” genes or “pathogenicity genes” as described above encompass genes that are vital for one or more target insects and result in a lethal or severe (e.g. feeding, reproduction, growth) phenotype when silenced. The choice of a strong lethal target gene results in a potent RNAi effect. In the RNA constructs of the invention, multiple dsRNA regions targeting the same or different (very effective) lethal genes can be combined to further increase the potency, efficacy or speed of the RNAi effect in insect control.
    • f) “weak” genes encompass target genes with a particularly interesting function in one of the cellular pathways described herein, but which result in a weak phenotypic effect when silenced independently. In the RNA constructs of the invention, multiple dsRNA regions targeting a single or different weak gene(s) may be combined to obtain a stronger RNAi effect.
    • g) “insect specific” genes encompass genes that have no substantial homologous counterpart in non-insect organisms as can be determined by bioinformatics homology searches, for example by BLAST searches. The choice of an insect specific target gene results in a species specific RNAi effect, with no effect or no substantial (adverse) effect in non-target organisms.
    • h)“conserved genes” encompass genes that are conserved (at the amino acid level) between the target organism and non-target organism(s). To reduce possible effects on non-target species, such effective but conserved genes are analysed and target sequences from the variable regions of these conserved genes are chosen to be targeted by the dsRNA regions in the RNA construct. Here, conservation is assessed at the level of the nucleic acid sequence. Such variable regions thus encompass the least conserved sections, at the level of the nucleic acid sequence, of the conserved target gene(s).
    • i) “conserved pathway” genes encompass genes that are involved in the same biological pathway or cellular process, or encompass genes that have the same functionality in different insect species resulting in a specific and potent RNAi effect and more efficient insect control;
    • j) alternatively, the RNA constructs according to the present invention target multiple genes from different biological pathways, resulting in a broad cellular RNAi effect and more efficient insect control.


According to the invention, all double stranded RNA regions comprise at least one strand that is complementary to at least part or a portion of the nucleotide sequence of any of the target genes herein described. However, provided one of the double stranded RNA regions comprises at least one strand that is complementary to a portion of the nucleotide sequence of any one of the target genes herein described, the other double stranded RNA regions may comprise at least one strand that is complementary to a portion of any other insect target gene (including known target genes).


According to yet another embodiment of the present invention there is provided an isolated double stranded RNA or RNA construct as herein described, further comprising at least one additional sequence and optionally a linker. In one embodiment, the additional sequence is chosen from the group comprising (i) a sequence facilitating large-scale production of the dsRNA construct; (ii) a sequence effecting an increase or decrease in the stability of the dsRNA; (iii) a sequence allowing the binding of proteins or other molecules to facilitate uptake of the RNA construct by insects; (iv) a sequence which is an aptamer that binds to a receptor or to a molecule on the surface or in the cytoplasm of an insect to facilitate uptake, endocytosis and/or transcytosis by the insect; or (v) additional sequences to catalyze processing of dsRNA regions. In one embodiment, the linker is a conditionally self-cleaving RNA sequence, preferably a pH sensitive linker or a hydrophobic sensitive linker. In one embodiment, the linker is an intron.


In one embodiment, the multiple dsRNA regions of the double-stranded RNA construct are connected by one or more linkers. In another embodiment, the linker is present at a site in the RNA construct, separating the dsRNA regions from another region of interest. Different linker types for the dsRNA constructs are provided by the present invention.


In another embodiment, the multiple dsRNA regions of the double-stranded RNA construct are connected without linkers.


In a particular embodiment of the invention, the linkers may be used to disconnect smaller dsRNA regions in the pest organism. Advantageously, in this situation the linker sequence may promote division of a long dsRNA into smaller dsRNA regions under particular circumstances, resulting in the release of separate dsRNA regions under these circumstances and leading to more efficient gene silencing by these smaller dsRNA regions. Examples of suitable conditionally self-cleaving linkers are RNA sequences that are self-cleaving at high pH conditions. Suitable examples of such RNA sequences are described by Borda et al. (Nucleic Acids Res. 2003 May 15; 31(10):2595-600), which document is incorporated herein by reference. This sequence originates from the catalytic core of the hammerhead ribozyme HH16.


In another aspect of the invention, a linker is located at a site in the RNA construct, separating the dsRNA regions from another, e.g. the additional, sequence of interest, which preferably provides some additional function to the RNA construct.


In one particular embodiment of the invention, the dsRNA constructs of the present invention are provided with an aptamer to facilitate uptake of the dsRNA by the insect. The aptamer is designed to bind a substance which is taken up by the insect. Such substances may be from an insect or plant origin. One specific example of an aptamer, is an aptamer that binds to a transmembrane protein, for example a transmembrane protein of an insect. Alternatively, the aptamer may bind a (plant) metabolite or nutrient which is taken up by the insect.


Alternatively, the linkers are self-cleaving in the endosomes. This may be advantageous when the constructs of the present invention are taken up by the insect via endocytosis or transcytosis, and are therefore compartmentalized in the endosomes of the insect species. The endosomes may have a low pH environment, leading to cleavage of the linker.


The above mentioned linkers that are self-cleaving in hydrophobic conditions are particularly useful in dsRNA constructs of the present invention when used to be transferred from one cell to another via the transit in a cell wall, for example when crossing the cell wall of an insect pest organism.


An intron may also be used as a linker. An “intron” as used herein may be any non-coding RNA sequence of a messenger RNA. Particular suitable intron sequences for the constructs of the present invention are (1) U-rich (35-45%); (2) have an average length of 100 bp (varying between about 50 and about 500 bp) which base pairs may be randomly chosen or may be based on known intron sequences; (3) start at the 5′ end with -AG:GT- or -CG:GT- and/or (4) have at their 3′ end -AG:GC- or -AG:AA.


A non-complementary RNA sequence, ranging from about 1 base pair to about 10,000 base pairs, may also be used as a linker.


Without wishing to be bound by any particular theory or mechanism, it is thought that long double-stranded RNAs are taken up by the insect from their immediate environment. Double-stranded RNAs taken up into the gut and transferred to the gut epithelial cells are then processed within the cell into short double-stranded RNAs, called small interfering RNAs (siRNAs), by the action of an endogenous endonuclease. The resulting siRNAs then mediate RNAi via formation of a multi-component RNase complex termed the RISC or RNA interfering silencing complex.


In order to achieve down-regulation of a target gene within an insect cell the double-stranded RNA added to the exterior of the cell wall may be any dsRNA or dsRNA construct that can be taken up into the cell and then processed within the cell into siRNAs, which then mediate RNAi, or the RNA added to the exterior of the cell could itself be an siRNA that can be taken up into the cell and thereby direct RNAi.


siRNAs are generally short double-stranded RNAs having a length in the range of from 19 to 25 base pairs, or from 20 to 24 base pairs. In preferred embodiments siRNAs having 19, 20, 21, 22, 23, 24 or 25 base pairs, and in particular 21 or 22 base pairs, corresponding to the target gene to be down-regulated may be used. However, the invention is not intended to be limited to the use of such siRNAs.


siRNAs may include single-stranded overhangs at one or both ends, flanking the double-stranded portion. In a particularly preferred embodiment the siRNA may contain 3′ overhanging nucleotides, preferably two 3′ overhanging thymidines (dTdT) or uridines (UU). 3′ TT or UU overhangs may be included in the siRNA if the sequence of the target gene immediately upstream of the sequence included in double-stranded part of the dsRNA is AA. This allows the TT or UU overhang in the siRNA to hybridise to the target gene. Although a 3′ TT or UU overhang may also be included at the other end of the siRNA it is not essential for the target sequence downstream of the sequence included in double-stranded part of the siRNA to have AA. In this context, siRNAs which are RNA/DNA chimeras are also contemplated. These chimeras include, for example, the siRNAs comprising a double-stranded RNA with 3′ overhangs of DNA bases (e.g. dTdT), as discussed above, and also double-stranded RNAs which are polynucleotides in which one or more of the RNA bases or ribonucleotides, or even all of the ribonucleotides on an entire strand, are replaced with DNA bases or deoxynucleotides.


The dsRNA may be formed from two separate (sense and antisense) RNA strands that are annealed together by (non-covalent) basepairing. Alternatively, the dsRNA may have a foldback stem-loop or hairpin structure, wherein the two annealed strands of the dsRNA are covalently linked. In this embodiment the sense and antisense stands of the dsRNA are formed from different regions of single polynucleotide molecule that is partially self-complementary. RNAs having this structure are convenient if the dsRNA is to be synthesised by expression in vivo, for example in a host cell or organism as discussed below, or by in vitro transcription. The precise nature and sequence of the “loop” linking the two RNA strands is generally not material to the invention, except that it should not impair the ability of the double-stranded part of the molecule to mediate RNAi. The features of “hairpin” or “stem-loop” RNAs for use in RNAi are generally known in the art (see for example WO 99/53050, in the name of CSIRO, the contents of which are incorporated herein by reference). In other embodiments of the invention, the loop structure may comprise linker sequences or additional sequences as described above.


Another aspect of the present invention are target nucleotide sequences of the insect target genes herein disclosed. Such target nucleotide sequences are particularly important to design the dsRNA constructs according to the present invention. Such target nucleotide sequences are preferably at least 17, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 nucleotides in length. Non-limiting examples of preferred target nucleotide sequences are given in the examples.


According to one embodiment, the present invention provides an isolated nucleotide sequence encoding a double stranded RNA or double stranded RNA construct as described herein.


According to a more specific embodiment, the present invention relates to an isolated nucleic acid sequence consisting of a sequence represented by any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or a fragment of at least 17 preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 nucleotides thereof.


A person skilled in the art will recognize that homologues of these target genes can be found and that these homologues are also useful in the methods of the present invention.


Protein, or nucleotide sequences are likely to be homologous if they show a “significant” level of sequence similarity or more preferably sequence identity. Truely homologous sequences are related by divergence from a common ancestor gene. Sequence homologues can be of two types: (i) where homologues exist in different species they are known as orthologues. e.g. the α-globin genes in mouse and human are orthologues. (ii) paralogues are homologous genes in within a single species. e.g. the α- and β-globin genes in mouse are paralogues


Preferred homologues are genes comprising a sequence which is at least about 85% or 87.5%, still more preferably about 90%, still more preferably at least about 95% and most preferably at least about 99% identical to a sequence selected from the group of sequences represented by SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof. Methods for determining sequence identity are routine in the art and include use of the Blast software and EMBOSS software (The European Molecular Biology Open Software Suite (2000), Rice, P. Longden, I. and Bleasby, A. Trends in Genetics 16, (6) pp 276-277). The term “identity” as used herein refers to the relationship between sequences at the nucleotide level. The expression “% identical” is determined by comparing optimally aligned sequences, e.g. two or more, over a comparison window wherein the portion of the sequence in the comparison window may comprise insertions or deletions as compared to the reference sequence for optimal alignment of the sequences. The reference sequence does not comprise insertions or deletions. The reference window is chosen from between at least 10 contiguous nucleotides to about 50, about 100 or to about 150 nucleotides, preferably between about 50 and 150 nucleotides. “% identity” is then calculated by determining the number of nucleotides that are identical between the sequences in the window, dividing the number of identical nucleotides by the number of nucleotides in the window and multiplying by 100.


Other homologues are genes which are alleles of a gene comprising a sequence as represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481. Further preferred homologues are genes comprising at least one single nucleotide polymorphism (SNIP) compared to a gene comprising a sequence as represented by any of SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481.


According to another embodiment, the invention encompasses target genes which are insect orthologues of a gene comprising a nucleotide sequence as represented in any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481. By way of example, orthologues may comprise a nucleotide sequence as represented in any of SEQ ID NOs 49 to 123, 275 to 434, 533 to 562, 621 to 738, 813 to 852, 908 to 1010, 1161 to 1437, 1730 to 1987, 2120 to 2290, and 2384 to 2438, or a fragment thereof of at least 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 or 27 nucleotides. A non-limiting list of insect or arachnida orthologues genes or sequences comprising at least a fragment of 17 bp of one of the sequences of the invention, is given in Tables 4.


According to another embodiment, the invention encompasses target genes which are nematode orthologues of a gene comprising a nucleotide sequence as represented in any of 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 248. By way of example, nematode orthologues may comprise a nucleotide sequence as represented in any of SEQ ID NOs 124 to 135, 435 to 446, 563 to 564, 739 to 751, 853, 854, 1011 to 1025, 1438 to 1473, 1988 to 2001, 2291 to 2298, 2439 or 2440, or a fragment of at least 17, 18, 19, 20 or 21 nucleotides thereof. According to another aspect, the invention thus encompasses any of the methods described herein for controlling nematode growth in an organism, or for preventing nematode infestation of an organism susceptible to nemataode infection, comprising contacting nematode cells with a double-stranded RNA, wherein the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of the nucleotide sequence of a target gene comprising a fragment of at least 17, 18, 19, 20 or 21 nucleotides of any of the sequences as represented in SEQ ID NOs 124 to 135, 435 to 446, 563 to 564, 739 to 751, 853, 854, 1011 to 1025, 1438 to 1473, 1988 to 2001, 2291 to 2298, 2439 or 2440, whereby the double-stranded RNA is taken up by the nematode and thereby controls growth or prevents infestation. The invention also relates to nematode-resistant transgenic plants comprising a fragment of at least 17, 18, 19, 20 or 21 nucleotides of any of the sequences as represented in SEQ ID NOs 124 to 135, 435 to 446, 563 to 564, 739 to 751, 853, 854, 1011 to 1025, 1438 to 1473, 1988 to 2001, 2291 to 2298, 2439 or 2440. A non-limiting list of nematode orthologues genes or sequences comprising at least a fragment of 17 bp of one of the sequences of the invention, is given in Tables 5.


According to another embodiment, the invention encompasses target genes which are fungal orthologues of a gene comprising a nucleotide sequence as represented in any of 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481. By way of example, fungal orthologues may comprise a nucleotide sequence as represented in any of SEQ ID NOs 136 to 158, 447 to 472, 565 to 575, 752 to 767, 855 to 862, 1026 to 1040, 1475 to 1571, 2002 to 2039, 2299 to 2338, 2441 to 2460, or a fragment of at least 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 or 27 nucleotides thereof. According to another aspect, the invention thus encompasses any of the methods described herein for controlling fungal growth on a cell or an organism, or for preventing fungal infestation of a cell or an organism susceptible to fungal infection, comprising contacting fungal cells with a double-stranded RNA, wherein the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of the nucleotide sequence of a target gene comprising a fragment of at least 17, 18, 19, 20 or 21 nucleotides of any of the sequences as represented in SEQ ID NOs 136 to 158, 447 to 472, 565 to 575, 752 to 767, 855 to 862, 1026 to 1040, 1475 to 1571, 2002 to 2039, 2299 to 2338, 2441 to 2460, whereby the double-stranded RNA is taken up by the fungus and thereby controls growth or prevents infestation. The invention also relates to fungal-resistant transgenic plants comprising a fragment of at least 17, 18, 19, 20 or 21 of any of the sequences as represented in SEQ ID NOs 136 to 158, 447 to 472, 565 to 575, 752 to 767, 855 to 862, 1026 to 1040, 1475 to 1571, 2002 to 2039, 2299 to 2338, 2441 to 2460. A non-limiting list of fungal orthologues genes or sequences comprising at least a fragment of 17 bp of one of the sequences of the invention, is given in Tables 6.


In one preferred embodiment of the invention the dsRNA may be expressed by (e.g. transcribed within) a host cell or host organism, the host cell or organism being an organism susceptible or vulnerable to infestation by an insect. In this embodiment RNAi-mediated gene silencing of one or more target genes in the insect may be used as a mechanism to control growth of the insect in or on the host organism and/or to prevent or reduce insect infestation of the host organism. Thus, expression of the double-stranded RNA within cells of the host organism may confer resistance to a particular insect or to a class of insects. In case the dsRNA hits more than one insect target gene, expression of the double-stranded RNA within cells of the host organism may confer resistance to more than one insect or more than one class of insects.


In a preferred embodiment the host organism is a plant and the insect is a plant pathogenic insect. In this embodiment the insect is contacted with the double-stranded RNA by expressing the double-stranded RNA in a plant or plant cell that is infested with or susceptible to infestation with the plant pathogenic insect.


In this context the term “plant” encompasses any plant material that it is desired to treat to prevent or reduce insect growth and/or insect infestation. This includes, inter alia, whole plants, seedlings, propagation or reproductive material such as seeds, cuttings, grafts, explants, etc. and also plant cell and tissue cultures. The plant material should express, or have the capability to express, dsRNA corresponding to one or more target genes of the insect.


Therefore, in a further aspect the invention provides a plant, preferably a transgenic plant, or propagation or reproductive material for a (transgenic) plant, or a plant cell culture expressing or capable of expressing at least one double-stranded RNA, wherein the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of a target nucleotide sequence of a target gene of an insect, such that the double-stranded RNA is taken up by an insect upon plant-insect interaction, said double stranded RNA being capable of inhibiting the target gene or down-regulating expression of the target gene by RNA interference. The target gene may be any of the target genes herein described, for instance a target gene that is essential for the viability, growth, development or reproduction of the insect.


In this embodiment the insect can be any insect, but is preferably plant pathogenic insect. Preferred plant pathogenic insects include, but are not limited to, those listed above.


A plant to be used in the methods of the invention, or a transgenic plant according to the invention encompasses any plant, but is preferably a plant that is susceptible to infestation by a plant pathogenic insect.


Accordingly, the present invention extends to methods as described herein wherein the plant is chosen from the following group of plants (or crops): alfalfa, apple, apricot, artichoke, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussel sprouts, cabbage, canola, carrot, cassava, cauliflower, a cereal, celery, cherry, citrus, clemintine, coffee, corn, cotton, cucumber, eggplant, endive, eucalyptus, figes, grape, grapefruit, groundnuts, ground cherry, kiwifruit, lettuce, leek, lemon, lime, pine, maize, mango, melon, millet, mushroom, nut aot, okra, onion, orange, an ornamental plant or flower or tree, papaya, parsley, pea, peach, peanut, peat, pepper, persimmon, pineapple, plantain, plum, pomegranate, potato, pumpkin, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, soy, soybean, spinach, strawberry, sugarbeet, sugargcane, sunflower, sweet potato, tangerine, tea, tobacco, tomato, a vine, watermelon, wheat, yams and zucchini.


In one embodiment the present invention extends to methods as described herein, wherein the plant is potato and the target gene is a gene from an insect selected from the group consisting of Leptinotarsa spp. (e.g. L. decemlineata (Colorado potato beetle), L. juncta (false potato beetle), or L. texana (Texan false potato beetle)); Lema spp. (e.g. L. trilineata (three-lined potato beetle)); Epitrix spp. (e.g. E. cucumeris (potato flea beetle) or E. tuberis (tuber flea beetle)); Epicauta spp. (e.g. E. vittata (striped blister beetle)); Phaedon spp. (e.g. P. cochleariae (mustard leaf beetle)); Empoasca spp. (e.g. E. fabae (potato leafhopper)); Myzus spp. (e.g. M. persicae (green peach aphid)); Paratrioza spp. (e.g. P. cockerelli (potato psyllid)); Ostrinia spp. (e.g. O. nubilalis (European corn borer)); Conoderus spp. (e.g. C. falli (southern potato wireworm), or C. vespertinus (tobacco wireworm)); and Phthorimaea spp. (e.g. P. operculella (potato tuberworm)); in another embodiment the present invention extends to methods as described herein, wherein the plant is tomato and the target gene is a gene from an insect selected from the group consisting of: Macrosiphum spp. (e.g. M. euphorbiae (potato aphid)); Myzus spp. (e.g. M. persicae (green peach aphid)); Trialeurodes spp. (e.g. T. vaporariorum (greenhouse whitefly), or T. abutilonia (banded-winged whitefly)); Bemisia spp. (e.g. B. argentifolii (silverleaf whitefly)); Frankliniella spp. (e.g. F. occidentalis (western flower thrips)); Leptinotarsa spp. (e.g. L. decemlineata (Colorado potato beetle), L. juncta (false potato beetle), or L. texana (Texan false potato beetle)); Epitrix spp. (e.g. E. hirtipennis (flea beetle)); Lygus spp. (e.g. L. lineolaris (tarnished plant bug), or L. hesperus (western tarnished plant bug)); Euschistus spp. (e.g. E. conspresus (consperse stinkbug)); Nezara spp. (e.g. N. viridula (southern green stinkbug)); Thyanta spp. (e.g. T. pallidovirens (redshouldered stinkbug)); Phthorimaea spp. (e.g. P. operculella (potato tuberworm)); Helicoverpa spp. (e.g. H. zea (tomato fruitworm); Keiferia spp. (e.g. K. lycopersicella (tomato pinworm)); Spodoptera spp. (e.g. S. exigua (beet armyworm), or S. praefica (western yellowstriped armyworm)); Limonius spp. (wireworms); Agrotis spp. (e.g. A. ipsilon (black cutworm)); Manduca spp. (e.g. M. sexta (tobacco hornworm), or M. quinquemaculata (tomato hornworm)); Liriomyza spp. (e.g. L. sativae, L. trifolli or L. huidobrensis (leafminer)); and Paratrioza spp. (e.g. P. cockerelli (tomato psyllid)); In another embodiment the present invention extends to methods as described herein, wherein the plant is corn and the target gene is a gene from an insect selected from the group consisting of: Diabrotica spp. (e.g. D. virgifera virgifera (western corn rootworm), D. barberi (northern corn rootworm), D. undecimpunctata howardi (southern corn rootworm), D. virgifera zeae (Mexican corn rootworm); D. balteata (banded cucumber beetle)); Ostrinia spp. (e.g. O. nubilalis (European corn borer)); Agrotis spp. (e.g. A. ipsilon (black cutworm)); Helicoverpa spp. (e.g. H. zea (corn earworm)); Spodoptera spp. (e.g. S. frugiperda (fall armyworm)); Diatraea spp. (e.g. D. grandiosella (southwestern corn borer), or D. saccharalis (sugarcane borer)); Elasmopalpus spp. (e.g. E. lignosellus (lesser cornstalk borer)); Melanotus spp. (wireworms); Cyclocephala spp. (e.g. C. borealis (northern masked chafer)); Cyclocephala spp. (e.g. C. immaculate (southern masked chafer)); Popillia spp. (e.g. P. japonica (Japanese beetle)); Chaetocnema spp. (e.g. C. pulicaria (corn flea beetle)); Sphenophorus spp. (e.g. S. maidis (maize billbug)); Rhopalosiphum spp. (e.g. R. maidis (corn leaf aphid)); Anuraphis spp. (e.g. A. maidiradicis (corn root aphid)); Blissus spp. (e.g. B. leucopterus leucopterus (chinch bug)); Melanoplus spp. (e.g. M. femurrubrum (redlegged grasshopper), M. sanguinipes (migratory grasshopper)); Hylemya spp. (e.g. H. platura (seedcorn maggot)); Agromyza spp. (e.g. A. parvicornis (corn blot leafminer)); Anaphothrips spp. (e.g. A. obscrurus (grass thrips)); Solenopsis spp. (e.g. S. milesta (thief ant)); and Tetranychus spp. (e.g. T. urticae (twospotted spider mite)); in another embodiment the present invention extends to methods as described herein, wherein the plant is cotton and the target gene is a gene from an insect selected from the group consisting of: Helicoverpa spp. (e.g. H. zea (cotton bollworm)); Pectinophora spp. (e.g. P. gossypiella (pink bollworm)); Helicoverpa spp. (e.g. H. armigera (American bollworm)); Earias spp. (e.g. E. vittella (spotted bollworm)); Heliothis spp. (e.g. H. virescens (tobacco budworm)); Spodoptera spp. (e.g. S. exigua (beet armyworm)); Anthonomus spp. (e.g. A. grandis (boll weevil)); Pseudatomoscelis spp. (e.g. P. seriatus (cotton fleahopper)); Trialeurodes spp. (e.g. T. abutiloneus (banded-winged whitefly) T. vaporariorum (greenhouse whitefly)); Bemisia spp. (e.g. B. argentifolii (silverleaf whitefly)); Aphis spp. (e.g. A. gossypii (cotton aphid)); Lygus spp. (e.g. L. lineolaris (tarnished plant bug) or L. hesperus (western tarnished plant bug)); Euschistus spp. (e.g. E. conspersus (consperse stink bug)); Chlorochroa spp. (e.g. C. sayi (Say stinkbug)); Nezara spp. (e.g. N. viridula (green stinkbug)); Thrips spp. (e.g. T. tabaci (onion thrips)); Franklinkiella spp. (e.g. F. fusca (tobacco thrips), or F. occidentalis (western flower thrips)); Melanoplus spp. (e.g. M. femurrubrum (redlegged grasshopper), or M. differentialis (differential grasshopper)); and Tetranychus spp. (e.g. T. cinnabarinus (carmine spider mite), or T. urticae (twospotted spider mite)); in another embodiment the present invention extends to methods as described herein, wherein the plant is rice and the target gene is a gene from an insect selected from the group consisting of: Nilaparvata spp. (e.g. N. lugens (brown planthopper)); Laodelphax spp. (e.g. L. striatellus (small brown planthopper)); Nephotettix spp. (e.g. N. virescens or N. cincticeps (green leafhopper), or N. nigropictus (rice leafhopper)); Sogatella spp. (e.g. S. furcifera (white-backed planthopper)); Blissus spp. (e.g. B. leucopterus leucopterus (chinch bug)); Scotinophora spp. (e.g. S. vermidulate (rice blackbug)); Acrosternum spp. (e.g. A. hilare (green stink bug)); Parnara spp. (e.g. P. guttata (rice skipper)); Chilo spp. (e.g. C. suppressalis (rice striped stem borer), C. auricilius (gold-fringed stem borer), or C. polychrysus (dark-headed stem borer)); Chilotraea spp. (e.g. C. polychrysa (rice stalk borer)); Sesamia spp. (e.g. S. inferens (pink rice borer)); Tryporyza spp. (e.g. T. innotata (white rice borer)); Tryporyza spp. (e.g T. incertulas (yellow rice borer)); Cnaphalocrocis spp. (e.g. C. medinalis (rice leafroller)); Agromyza spp. (e.g. A. oryzae (leafminer)); Diatraea spp. (e.g. D. saccharalis (sugarcane borer)); Narnaga spp. (e.g. N. aenescens (green rice caterpillar)); Xanthodes spp. (e.g. X. transverse (green caterpillar)); Spodoptera spp. (e.g. S. frugiperda (fall armyworm)); Mythimna spp. (e.g. Mythmna (Pseudaletia) seperata (armyworm)); Helicoverpa spp. (e.g. H. zea (corn earworm)); Colaspis spp. (e.g. C. brunnea (grape colaspis)); Lissorhoptrus spp. (e.g. L. oryzophilus (rice water weevil)); Echinocnemus spp. (e.g. E. squamos (rice plant weevil)); Diclodispa spp. (e.g. D. armigera (rice hispa)); Oulema spp. (e.g. O. oryzae (leaf beetle); Sitophilus spp. (e.g. S. oryzae (rice weevil)); Pachydiplosis spp. (e.g. P. oryzae (rice gall midge)); Hydrellia spp. (e.g. H. griseola (small rice leafminer)); Chlorops spp. (e.g. C. oryzae (stem maggot)); and Hydrellia spp. (e.g. H. sasakii (rice stem maggot));


Transgenic plants according to the invention extend to all plant species specifically described above being resistant to the respective insect species as specifically described above. Preferred transgenic plants (or reproductive or propagation material for a transgenic plant, or a cultured transgenic plant cell) are plants (or reproductive or propagation material for a transgenic plant, or a cultured transgenic plant cell) wherein said plant comprises a nucleic acid sequence which is selected from the group comprising:

    • (i) sequences which are at least 75% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof, and
    • (ii) sequences comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,
    • or wherein said nucleic acid is an insect orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or the complement thereof.


The present invention also encompasses plants (or reproductive or propagation material for a transgenic plant, or a cultured transgenic plant cell) which express or are capable of expressing at least one of the nucleotides of the invention, for instance at least one of the nucleotide sequences represented in any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof, or comprising a fragment thereof comprising at least 17, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 nucleotides.


The plant may be provided in a form wherein it is actively expressing (transcribing) the double-stranded RNA in one or more cells, cell types or tissues. Alternatively, the plant may be “capable of expressing”, meaning that it is transformed with a transgene which encodes the desired dsRNA but that the transgene is not active in the plant when (and in the form in which) the plant is supplied.


Therefore, according to another embodiment, a recombinant DNA construct is provided comprising the nucleotide sequence encoding the dsRNA or dsRNA construct according to the present invention operably linked to at least one regulatory sequence. Preferably, the regulatory sequence is selected from the group comprising constitutive promoters or tissue specific promoters as described below.


The target gene may be any target gene herein described. Preferably the regulatory element is a regulatory element that is active in a plant cell. More preferably, the regulatory element is originating from a plant. The term “regulatory sequence” is to be taken in a broad context and refers to a regulatory nucleic acid capable of effecting expression of the sequences to which it is operably linked.


Encompassed by the aforementioned term are promoters and nucleic acids or synthetic fusion molecules or derivatives thereof which activate or enhance expression of a nucleic acid, so called activators or enhancers. The term “operably linked” as used herein refers to a functional linkage between the promoter sequence and the gene of interest, such that the promoter sequence is able to initiate transcription of the gene of interest.


By way of example, the transgene nucleotide sequence encoding the double-stranded RNA could be placed under the control of an inducible or growth or developmental stage-specific promoter which permits transcription of the dsRNA to be turned on, by the addition of the inducer for an inducible promoter or when the particular stage of growth or development is reached.


Alternatively, the transgene encoding the double-stranded RNA is placed under the control of a strong constitutive promoter such as any selected from the group comprising the CaMV35S promoter, doubled CaMV35S promoter, ubiquitin promoter, actin promoter, rubisco promoter, GOS2 promoter, Figwort mosaic viruse (FMV) 34S promoter, cassava vein mosaic virus (CsVMV) promoter (Verdaguer B. et al, Plant Mol Biol. 1998 37(6):1055-67).


Alternatively, the transgene encoding the double-stranded RNA is placed under the control of a tissue specific promoter such as any selected from the group comprising root specific promoters of genes encoding PsMTA Class III chitinase, photosynthetic tissue-specific promoters such as promoters of cab1 and cab2, rbcS, gapA, gapB and ST-LS1 proteins, JAS promoters, chalcone synthase promoter and promoter of RJ39 from strawberry.


In another embodiment, the transgene encoding the double-stranded RNA is placed under the control of an insect-induced promoter, for instance the potato proteinase inhibitor II (PinII) promoter (Duan X et al, Nat Biotechnol. 1996, 14(4):494-8)); or a wounding, induced promoter, for instance the jasmonates and ethylene induced promoters, PDF1.2 promoter (Manners J M et al., Plant Mol Biol. 1998, 38(6):1071-80); or under a defense related promoter, for instance the salicylic acid induced promoters and plant-pathogenesis related protein (PR protein) promoters (PR1 promoter (Cornelissen B J et al., Nucleic Acids Res. 1987, 15(17):6799-811; COMT promoter (Toquin V et al, Plant Mol Biol. 2003, 52(3):495-509).


Furthermore, when using the methods of the present invention for developing transgenic plants resistant against insects, it might be beneficial to place the nucleic acid encoding the double-stranded RNA according to the present invention under the control of a tissue-specific promoter. In order to improve the transfer of the dsRNA from the plant cell to the pest, the plants could preferably express the dsRNA in a plant part that is first accessed or damaged by the plant pest. In case of plant pathogenic insects, preferred tissues to express the dsRNA are the leaves, stems, roots, and seeds. Therefore, in the methods of the present invention, a plant tissue-preferred promoter may be used, such as a leaf-specific promoter, a stem-specific promoter, a phloem-specific promoter, a xylem-specific promoter, a root-specific promoter, or a seed-specific promoter (sucrose transporter gene AtSUC promoter (Baud S et al., Plant J. 2005, 43(6):824-36), wheat high molecular weight glutenin gene promoter (Robert L S et al., Plant Cell. 1989, 1(6):569-78.)). Suitable examples of a root specific promoter are PsMTA (Fordam-Skelton, A. P., et al., 1997 Plant Molecular Biology 34: 659-668.) and the Class III Chitinase promoter. Examples of leaf- and stem-specific or photosynthetic tissue-specific promoters that are also photoactivated are promoters of two chlorophyll binding proteins (cab1 and cab2) from sugar beet (Stahl D. J., et al., 2004 BMC Biotechnology 2004 4:31), ribulose-bisphosphate carboxylase (Rubisco), encoded by rbcS (Nomura M. et al., 2000 Plant Mol. Biol. 44: 99-106), A (gapA) and B (gapB) subunits of chloroplast glyceraldehyde-3-phosphate dehydrogenase (Conley T. R. et al. 1994 Mol. Cell Biol. 19: 2525-33; Kwon H. B. et al. 1994 Plant Physiol. 105: 357-67), promoter of the Solanum tuberosum gene encoding the leaf and stem specific (ST-LS1) protein (Zaidi M. A. et al., 2005 Transgenic Res. 14:289-98), stem-regulated, defense-inducible genes, such as JAS promoters (patent publication no. 20050034192/US-A1). An example of a flower-specific promoter is for instance, the chalcone synthase promoter (Faktor O. et al. 1996 Plant Mol. Biol. 32: 849) and an example of a fruit-specific promoter is for instance RJ39 from strawberry (WO 98 31812).


In yet other embodiments of the present invention, other promoters useful for the expression of dsRNA are used and include, but are not limited to, promoters from an RNA PolI, an RNA PolII, an RNA PolIII, T7 RNA polymerase or SP6 RNA polymerase. These promoters are typically used for in vitro-production of dsRNA, which dsRNA is then included in an antiinsecticidal agent, for example, in an anti-insecticidal liquid, spray or powder.


Therefore, the present invention also encompasses a method for generating any of the double-stranded RNA or RNA constructs of the invention. This method comprises the steps of

    • a. contacting an isolated nucleic acid or a recombinant DNA construct of the invention with cell-free components; or
    • b. introducing (e.g. by transformation, transfection or injection) an isolated nucleic acid or a recombinant DNA construct of the invention in a cell,


under conditions that allow transcription of said nucleic acid or recombinant DNA construct to produce the dsRNA or RNA construct.


Optionally, one or more transcription termination sequences may also be incorporated in the recombinant construct of the invention. The term “transcription termination sequence” encompasses a control sequence at the end of a transcriptional unit, which signals 3′ processing and poly-adenylation of a primary transcript and termination of transcription. Additional regulatory elements, such as transcriptional or translational enhancers, may be incorporated in the expression construct.


The recombinant constructs of the invention may further include an origin of replication which is required for maintenance and/or replication in a specific cell type. One example is when an expression construct is required to be maintained in a bacterial cell as an episomal genetic element (e.g. plasmid or cosmid molecule) in a cell. Preferred origins of replication include, but are not limited to, f1-ori and colE1 ori.


The recombinant construct may optionally comprise a selectable marker gene. As used herein, the term “selectable marker gene” includes any gene, which confers a phenotype on a cell in which it is expressed to facilitate the identification and/or selection of cells, which are transfected or transformed, with an expression construct of the invention. Examples of suitable selectable markers include resistance genes against ampicillin (Ampr), tetracycline (Tcr), kanamycin (Kanr), phosphinothricin, and chloramphenicol (CAT) gene. Other suitable marker genes provide a metabolic trait, for example manA. Visual marker genes may also be used and include for example beta-glucuronidase (GUS), luciferase and Green Fluorescent Protein (GFP).


Plants that have been stably transformed with a transgene encoding the dsRNA may be supplied as seed, reproductive material, propagation material or cell culture material which does not actively express the dsRNA but has the capability to do so.


Accordingly, the present invention encompasses a plant (e.g. a rice plant), or a seed (e.g. a rice seed), or a cell (e.g. a bacterial or plant cell), comprising at least one double-stranded RNA or at least one double-stranded RNA construct as described herein: or at least one nucleotide sequence or at least one recombinant DNA construct as descrobed herein; or at least one plant cell as described herein. The present invention also encompasses a plant (e.g. an alfalfa, apple, apricot, artichoke, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussel sprouts, cabbage, canola, carrot, cassava, cauliflower, a cereal, celery, cherry, citrus, clemintine, coffee, corn, cotton, cucumber, eggplant, endive, eucalyptus, figes, grape, grapefruit, groundnuts, ground cherry, kiwifruit, lettuce, leek, lemon, lime, pine, maize, mango, melon, millet, mushroom, nut aot, okra, onion, orange, an ornamental plant or flower or tree, papaya, parsley, pea, peach, peanut, peat, pepper, persimmon, pineapple, plantain, plum, pomegranate, potato, pumpkin, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, soy, soybean, spinach, strawberry, sugarbeet, sugargcane, sunflower, sweet potato, tangerine, tea, tobacco, tomato, a vine, watermelon, wheat, yams or zucchini plant; preferably a potato, eggplant, tomato, pepper, tobacco, ground cherry, rice corn or cotton plant), or a seed or tuber (e.g. an alfalfa, apple, apricot, artichoke, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussel sprouts, cabbage, canola, carrot, cassava, cauliflower, a cereal, celery, cherry, citrus, clemintine, coffee, corn, cotton, cucumber, eggplant, endive, eucalyptus, figes, grape, grapefruit, groundnuts, ground cherry, kiwifruit, lettuce, leek, lemon, lime, pine, maize, mango, melon, millet, mushroom, nut aot, okra, onion, orange, an ornamental plant or flower or tree, papaya, parsley, pea, peach, peanut, peat, pepper, persimmon, pineapple, plantain, plum, pomegranate, potato, pumpkin, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, soy, soybean, spinach, strawberry, sugarbeet, sugargcane, sunflower, sweet potato, tangerine, tea, tobacco, tomato, a vine, watermelon, wheat, yams or zucchini plant; preferably a potato, eggplant, tomato, pepper, tobacco, ground cherry, rice, corn or cotton seed or tuber), or a cell (e.g. a bacterial or plant cell), comprising at least one double-stranded RNA or at least one double-stranded RNA construct as described herein: or at least one nucleotide sequence or at least one recombinant DNA construct as descrobed herein. Preferably, these plants or seeds or cells comprise a recombinant construct wherein the nucleotide sequence encoding the dsRNA or dsRNA construct according to the present invention is operably linked to at least one regulatory element as described above.


The plant may be provided in a form wherein it is actively expressing (transcribing) the RNA molecule in one or more cells, cell types or tissues. Alternatively, the plant may be “capable of expressing”, meaning that it is transformed with a transgene which encodes the desired RNA molecule but that the transgene is not active in the plant when (and in the form in which) the plant is supplied.


In one particular embodiment, there is provided a recombinant (expression) construct for expression of an RNA molecule in a plant or in a plant cell comprising at least one regulatory sequence operably linked to a nucleic acid molecule comprising at least 14, 15, 16, 17, 18, 19, 20, 21, 22 etc. nucleotides, up to all of the nucleotides of the sequence set forth as SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or comprising at least 14, 15, 16, 17, 18, 19, 20, 21, 22 etc. up to all nucleotides of the sequence of an orthologous nucleic acid molecule from a different target species. Many vectors are available for this purpose, and selection of the appropriate vector will depend mainly on the size of the nucleic acid to be inserted into the vector and the particular host cell to be transformed with the vector.


General techniques for expression of exogenous double-stranded RNA in plants for the purposes of RNAi are known in the art (see Baulcombe D, 2004, Nature. 431(7006):356-63. RNA silencing in plants, the contents of which are incorporated herein by reference). More particularly, methods for expression of double-stranded RNA in plants for the purposes of down-regulating gene expression in plant pests such as nematodes or insects are also known in the art. Similar methods can be applied in an analogous manner in order to express double-stranded RNA in plants for the purposes of down-regulating expression of a target gene in a plant pathogenic insect. In order to achieve this effect it is necessary only for the plant to express (transcribe) the double-stranded RNA in a part of the plant which will come into direct contact with the insect, such that the double-stranded RNA can be taken up by the insect. Depending on the nature of the insect and its relationship with the host plant, expression of the dsRNA could occur within a cell or tissue of a plant within which the insect is also present during its life cycle, or the RNA may be secreted into a space between cells, such as the apoplast, that is occupied by the insect during its life cycle. Furthermore, the dsRNA may be located in the plant cell, for example in the cytosol, or in the plant cell organelles such as a chloroplast, mitochondrion, vacuole or endoplastic reticulum.


Alternatively, the dsRNA may be secreted by the plant cell and by the plant to the exterior of the plant. As such, the dsRNA may form a protective layer on the surface of the plant.


In a further aspect, the invention also provides combinations of methods and compositions for preventing or protecting plants from pest infestation. For instance, one means provides using the plant transgenic approach combining methods using expression of dsRNA molecules and methods using expression of such Bt insecticidal proteins.


Therefore the invention also relates to a method or a plant cell or plant described herein, wherein said plant cell or plant expressing said RNA molecule comprises or expresses a pesticidal agent selected from the group consisting of a patatin, a Bacillus thuringiensis insecticidal protein, a Xenorhabdus insecticidal protein, a Photorhabdus insecticidal protein, a Bacillus laterosporous insecticidal protein, and a Bacillus sphearicus insecticidal protein. Preferably said Bacillus thuringiensis insecticidal protein is selected from the group consisting of a Cry1, a Cry3, a TIC851, a CryET170, a Cry22, a binary insecticidal protein CryET33 and CryET34, a binary insecticidal protein CryET80 and CryET76, a binary insecticidal protein TIC100 and TIC101, and a binary insecticidal protein PS149B1.


In a further embodiment, the invention rela

    • tes to a composition for controlling insect growth and/or preventing or reducing insect infestation, comprising at least a plant part, plant cell, plant tissue or seed comprising at least one double-stranded RNA, wherein said double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of a nucleotide sequence of an insect target gene. Optionally, the composition further comprises at least one suitable carrier, excipient or diluent. The target gene may be any target gene described herein. Preferably the insect target gene is essential for the viability, growth, development or reproduction of the insect.


In another aspect the invention relates to a composition as described above, wherein the insect target gene comprises a sequence which is at least 75%, preferably at least 80%, 85%, 90%, more preferably at least 95%, 98% or 99% identical to a sequence selected from the group of sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof, or wherein said insect target gene is an insect orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof.


According to a still further embodiment, the present invention extends to a method for increasing plant yield comprising introducing in a plant any of the nucleotide sequences or recombinant DNA constructs as herein described in an expressible format. Plants encompassed by this method are as described earlier.


The invention will be further understood with reference to the following non-limiting examples.





BRIEF DESCRIPTION OF FIGURES AND TABLES


FIG. 1-LD: Survival of L. decemlineata on artificial diet treated with dsRNA. Insects of the second larval stage were fed diet treated with 50 μl of topically-applied solution of dsRNA (targets or gfp control). Diet was replaced with fresh diet containing topically-applied dsRNA after 7 days. The number of surviving insects were assessed at days 2, 5, 7, 8, 9, & 13. The percentage of surviving larvae was calculated relative to day 0 (start of assay). Target LD006: (SEQ ID NO 178); Target LD007 (SEQ ID NO 183); Target LD010 (SEQ ID NO 188); Target LD011 (SEQ ID NO 193); Target LD014 (SEQ ID NO 198); gfp dsRNA (SEQ ID NO 235).



FIG. 2-LD: Survival of L. decemlineata on artificial diet treated with dsRNA. Insects of the second larval stage were fed diet treated with 50 μl of topically-applied solution of dsRNA (targets or gfp control). Diet was replaced with fresh diet only after 7 days. The number of surviving insects was assessed at days 2, 5, 6, 7, 8, 9, 12, & 14. The percentage of surviving larvae was calculated relative to day 0 (start of assay). Target LD001 (SEQ ID NO 163); Target LD002 (SEQ ID NO 168); Target LD003 (SEQ ID NO 173); Target LD015 (SEQ ID NO 215); Target LD016 (SEQ ID NO 220); gfp dsRNA (SEQ ID NO 235).



FIG. 3-LD: Average weight of L. decemlineata larvae on potato leaf discs treated with dsRNA. Insects of the second larval stage were fed leaf discs treated with 20 μl of a topically-applied solution (10 ng/μl) of dsRNA (target LD002 or gfp). After two days the insects were transferred on to untreated leaves every day.



FIG. 4-LD: Survival of L. decemlineata on artificial diet treated with shorter versions of target LD014 dsRNA and concatemer dsRNA. Insects of the second larval stage were fed diet treated with 50 μl of topically-applied solution of dsRNA (gfp or targets). The number of surviving insects were assessed at days 3, 4, 5, 6, & 7. The percentage of surviving larvae were calculated relative to day 0 (start of assay).



FIG. 5-LD: Survival of L. decemlineata larvae on artificial diet treated with different concentrations of dsRNA of target LD002 (a), target LD007 (b), target LD010 (c), target LD011 (d), target LD014 (e), target LD015 (f), LD016 (g) and target LD027 (h). Insects of the second larval stage were fed diet treated with 50 μl of topically-applied solution of dsRNA. Diet was replaced with fresh diet containing topically-applied dsRNA after 7 days. The number of surviving insects were assessed at regular intervals. The percentage of surviving larvae were calculated relative to day 0 (start of assay).



FIG. 6-LD. Survival of L. decemlineata adults on potato leaf discs treated with dsRNA. Young adult insects were fed double-stranded-RNA-treated leaf discs for the first two days and were then placed on untreated potato foliage. The number of surviving insects were assessed regularly; mobile insects were recorded as insects which were alive and appeared to move normally; moribund insects were recorded as insects which were alive but appeared sick and slow moving—these insects were not able to right themselves once placed on their backs. Target LD002 (SEQ ID NO 168); Target LD010 (SEQ ID NO 188); Target LD014 (SEQ ID NO 198); Target LD016 (SEQ ID NO 220); gfp dsRNA (SEQ ID NO 235).



FIG. 7-LD. Mortality and growth/developmental delay of larval survivors of the Colorado potato beetle, Leptinotarsa decemlineata, on transgenic potato plants. Seven CPB L1 larvae were fed on transgenic potato siblings harbouring LD002 construct (●), empty vector (▴), or wild type line V plants (▪) for seven days. Mortality is expressed in percentage and average larval weight in mg.



FIG. 1-PC: Effects of ingested target dsRNAs on survival and growth of P. cochleariae larvae. Neonate larvae were fed oilseed rape leaf discs treated with 25 μl of topically-applied solution of 0.1 μg/μl dsRNA (targets or gfp control). After 2 days, the insects were transferred onto fresh dsRNA-treated leaf discs. At day 4, larvae from one replicate for every treatment were collected and placed in a Petri dish containing fresh untreated oilseed rape foliage. The insects were assessed at days 2, 4, 7, 9 & 11. (a) Survival of E. varivestis larvae on oilseed rape leaf discs treated with dsRNA. The percentage of surviving larvae was calculated relative to day 0 (start of assay). (b) Average weights of P. cochleariae larvae on oilseed rape leaf discs treated with dsRNA. Insects from each replicate were weighed together and the average weight per larva determined. Error bars represent standard deviations. Target 1: SEQ ID NO 473; target 3: SEQ ID NO 478; target 5: SEQ ID NO 483; target 10: SEQ ID NO 488; target 14: SEQ ID NO 493; target 16: SEQ ID NO 498; target 27: SEQ ID NO 503; gfp dsRNA: SEQ ID NO 235.



FIG. 2-PC: Survival of P. cochleariae on oilseed rape leaf discs treated with different concentrations of dsRNA of (a) target PC010 and (b) target PC027. Neonate larvae were placed on leaf discs treated with 25 μl of topically-applied solution of dsRNA. Insects were transferred to fresh treated leaf discs at day 2. At day 4 for target PC010 and day 5 for target PC027, the insects were transferred to untreated leaves. The number of surviving insects were assessed at days 2, 4, 7, 8, 9 & 11 for PC010 and 2, 5, 8, 9 & 12 for PC027. The percentage of surviving larvae was calculated relative to day 0 (start of assay).



FIG. 1-EV: Survival of E. varivestis larvae on bean leaf discs treated with dsRNA. Neonate larvae were fed bean leaf discs treated with 25 μl of topically-applied solution of 1 μg/μl dsRNA (targets or gfp control). After 2 days, the insects were transferred onto fresh dsRNA-treated leaf discs. At day 4, larvae from one treatment were collected and placed in a plastic box containing fresh untreated bean foliage. The insects were assessed for mortality at days 2, 4, 6, 8 & 10. The percentage of surviving larvae was calculated relative to day 0 (start of assay). Target 5: SEQ ID NO 576; target 10: SEQ ID NO 586; target 15: SEQ ID NO 591; target 16: SEQ ID NO 596; gfp dsRNA: SEQ ID NO 235.



FIG. 2-EV: Effects of ingested target dsRNAs on survival of E. varivestis adults and resistance to snap bean foliar insect damage. (a) Survival of E. varivestis adults on bean leaf treated with dsRNA. Adults were fed bean leaf discs treated with 75 μl of topically-applied solution of 0.1 μg/μl dsRNA (targets or gfp control). After 24 hours, the insects were transferred onto fresh dsRNA-treated leaf discs. After a further 24 hours, adults from one treatment were collected and placed in a plastic box containing potted fresh untreated whole bean plants. The insects were assessed for mortality at days 4, 5, 6, 7, 8, & 11. The percentage of surviving adults was calculated relative to day 0 (start of assay). Target 10: SEQ ID NO 586; target 15: SEQ ID NO 591; target 16: SEQ ID NO 596; gfp dsRNA: SEQ ID NO 235. (b) Resistance to bean foliar damage caused by adults of the E. varivestis by dsRNA. Whole plants containing insects from one treatment (see (a)) were checked visually for foliar damage on day 9. (i) target 10; (ii) target 15; (iii) target 16; (iv) gfp dsRNA; (v) untreated.



FIG. 1-TC: Survival of T. castaneum larvae on artificial diet treated with dsRNA of target 14. Neonate larvae were fed diet based on a flour/milk mix with 1 mg dsRNA target 14. Control was water (without dsRNA) in diet. Four replicates of 10 first instar larvae per replicate were performed for each treatment. The insects were assessed for survival as average percentage means at days 6, 17, 31, 45 and 60. The percentage of surviving larvae was calculated relative to day 0 (start of assay). Error bars represent standard deviations. Target TC014: SEQ ID NO 878.



FIG. 1-MP: Effect of ingested target 27 dsRNA on the survival of Myzus persicae nymphs. First instars were placed in feeding chambers containing 50 μl of liquid diet with 2 μg/μl dsRNA (target 27 or gfp dsRNA control). Per treatment, 5 feeding chambers were set up with 10 instars in each feeding chamber. Number of survivors were assessed at 8 days post start of bioassay. Error bars represent standard deviations. Target MP027: SEQ ID NO 1061; gfp dsRNA: SEQ ID NO 235.



FIG. 1-NL: Survival of Nilaparvata lugens on liquid artificial diet treated with dsRNA. Nymphs of the first to second larval stage were fed diet supplemented with 2 mg/ml solution of dsRNA targets in separate bioassays: (a) NL002, NL003, NL005, NL010; (b) NL009, NL016; (c) NL014, NL018; (d) NL013, NL015, NL021. Insect survival on targets were compared to diet only and diet with gfp dsRNA control at same concentration. Diet was replaced with fresh diet containing dsRNA every two days. The number of surviving insects were assessed every day



FIG. 2-NL: Survival of Nilaparvata lugens on liquid artificial diet treated with different concentrations of target dsRNA NL002. Nymphs of the first to second larval stage were fed diet supplemented with 1, 0.2, 0.08, and 0.04 mg/ml (final concentration) of NL002. Diet was replaced with fresh diet containing dsRNA every two days. The numbers of surviving insects were assessed every day.





EXAMPLES
Example 1
Silencing C. elegans Target Genes in C. elegans in High Throughput Screening

A C. elegans genome wide library was prepared in the pGN9A vector (WO 01/88121) between two identical T7-promoters and terminators, driving its expression in the sense and antisense direction upon expression of the T7 polymerase, which was induced by IPTG.


This library was transformed into the bacterial strain A13301-105 (DE3) in 96 well plate format. For the genome wide screening, these bacterial cells were fed to the nuclease deficient C. elegans nuc-1 (e1392) strain.


Feeding the dsRNA produced in the bacterial strain A13301-105 (DE3), to C. elegans nuc-1 (e1392) worms, was performed in a 96 well plate format as follows: nuc-1 eggs were transferred to a separate plate and allowed to hatch simultaneously at 20° C. for synchronization of the L1 generation. 96 well plates were filled with 100 μL liquid growth medium comprising IPTG and with 10 μL bacterial cell culture of OD6001 A13301-105 (DE3) of the C. elegans dsRNA library carrying each a vector with a C. elegans genomic fragment for expression of the dsRNA. To each well, 4 of the synchronized L1 worms were added and were incubated at 25° C. for at least 4 to 5 days. These experiments were performed in quadruplicate. In the screen 6 controls were used:

    • pGN29=negative control, wild type
    • pGZ1=unc-22=twitcher phenotype
    • pGZ18=chitin synthase=embryonic lethal
    • pGZ25=pos-1=embryonic lethal
    • pGZ59=bli-4D=acute lethal
    • ACC=acetyl co-enzym A carboxylase=acute lethal


After 5 days, the phenotype of the C. elegans nuc-1 (e1392) worms fed with the bacteria producing dsRNA were compared to the phenotype of worms fed with the empty vector (pGN29) and the other controls. The worms that were fed with the dsRNA were screened for lethality (acute or larval) lethality for the parent (Po) generation, (embryonic) lethality for the first filial (F1) generation, or for growth retardation of Po as follows: (i) Acute lethality of Po: L1's have not developed and are dead, this phenotype never gives progeny and the well looks quite empty; (ii) (Larval) lethality of Po: Po died in a later stage than L1, this phenotype also never gives progeny. Dead larvae or dead adult worms are found in the wells; (iii) Lethality for F1: L1's have developed until adult stage and are still alive. This phenotype has no progeny. This can be due to sterility, embryonic lethality (dead eggs on the bottom of well), embryonic arrest or larval arrest (eventually ends up being lethal): (iv) Arrested in growth and growth retardation/delay: Compared to a well with normal development and normal # of progeny.


For the target sequences presented in Table 1A, it was concluded that dsRNA mediated silencing of the C. elegans target gene in nematodes, such as C. elegans, had a fatal effect on the growth and viability of the worm.


Subsequent to the above dsRNA silencing experiment, a more detailed phenotyping experiment was conducted in C. elegans in a high throughput format on 24 well plates. The dsRNA library produced in bacterial strain AB301-105 (DE3), as described above, was fed to C. elegans nuc-1 (e1392) worms on 24 well plates as follows: nuc-1 eggs were transferred to a separate plate and allowed to hatch simultaneously at 20 C for synchronization of the L1 generation. Subsequently 100 of the synchronized L1 worms were soaked in a mixture of 500 μL S-complete fed medium, comprising 5 μg/mL cholesterol, 4 μL/mL PEG and 1 mM IPTG, and 500 μL of bacterial cell culture of OD6001 AB301-105 (DE3) of the C. elegans dsRNA library carrying each a vector with a C. elegans genomic fragment for expression of the dsRNA. The soaked L1 worms were rolled for 2 hours at 25 C.


After centrifugation and removal of 950 μL of the supernatant, 5 μL of the remaining and resuspended pellet (comprising about 10 to 15 worms) was transferred in the middle of each well of a 24 well plate, filled with a layer of agar LB broth. The inoculated plate was incubated at 25° C. for 2 days. At the adult stage, 1 adult worm was singled and incubated at 25° C. for 2 days for inspection of its progeny. The other adult worms are inspected in situ on the original 24 well plate. These experiments were performed in quadruplicate.


This detailed phenotypic screen was repeated with a second batch of worms, the only difference being that the worms of the second batch were incubated at 20 C for 3 days.


The phenotype of the worms fed with C. elegans dsRNA was compared to the phenotype of C. elegans nuc-1 (e1392) worms fed with the empty vector.


Based on this experiment, it was concluded that silencing the C. elegans target genes as represented in Table 1A had a fatal effect on the growth and viability of the worm and that the target gene is essential to the viability of nematodes. Therefore these genes are good target genes to control (kill or prevent from growing) nematodes via dsRNA mediated gene silencing. Accordingly, the present invention encompasses the use of nematode orthologues of the above C. elegans target gene, to control nematode infestation, such as nematode infestation of plants.


Example 2
Identification of D. melanogaster Ortholoques

As described above in Example 1, numerous C. elegans lethal sequences were identified and can be used for identifying orthologues in other species and genera. For example, the C. elegans lethal sequences can be used to identify orthologous D. melanogasters sequences. That is, each C. elegans sequence can be queried against a public database, such as GenBank, for orthologous sequences in D. melanogaster. Potential D. melanogaster orthologues were selected that share a high degree of sequence homology (E value preferably less than or equal to 1E-30) and the sequences are blast reciprocal best hits, the latter means that the sequences from different organisms (e.g. C. elegans and D. melanogaster) are each other's top blast hits. For example, sequence C from C. elegans is compared against sequences in D. melanogaster using BLAST. If sequence C has the D. melanogaster sequence D as best hit and when D is compared to all the sequences of C. elegans, also turns out to be sequence C, then D and C are reciprocal best hits. This criterium is often used to define orthology, meaning similar sequences of different species, having similar function. The D. melanogaster sequence identifiers are represented in Table 1A.


Example 3

Leptinotarsa decemlineata (Colorado Potato Beetle)

A. Cloning Partial Gene Sequences from Leptinotarsa decemlineata


High quality, intact RNA was isolated from 4 different larval stages of Leptinotarsa decemlineata (Colorado potato beetle; source: Jeroen van Schaik, Entocare CV Biologische Gewasbescherming, Postbus 162, 6700 AD Wageningen, the Netherlands) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manufacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions.


To isolate cDNA sequences comprising a portion of the LD001, LD002, LD003, LD006, LD007, LD010, LD011, LD014, LD015, LD016, LC018 and LD027 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions.


The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-LD, which displays Leptintarsa decemlineata target genes including primer sequences and cDNA sequences obtained. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 55° C. and 1 minute at 72° C., followed by 10 minutes at 72° C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/topo vector (Cat. Nr. K2500 20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-LD and are referred to as the partial sequences. The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in Table 3-LD, where the start of the reading frame is indicated in brackets.


B. dsRNA Production of the Leptinotarsa decemlineata Genes


dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5′ T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.


For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-LD. The conditions in the PCR reactions were as follows: 4 minutes at 95° C., followed by 35 cycles of 30 seconds at 95° C., 30 seconds at 55° C. and 1 minute at 72° C., followed by 10 minutes at 72° C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-LD. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO4 precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-LD. Table 8-LD displays sequences for preparing ds RNA fragments of Leptinotarsa decemlineata target sequences and concatemer sequences, including primer sequences.


C. Cloning Leptinotarsa decemlineata Genes into Plant Vector pK7GWIWG2D(II)


Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, were cloned in anti-sense and sense orientation, separated by the intron—CmR-intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs were generated using the LR recombination reaction between an attL-containing entry clone (see Example 1) and an attR-containing destination vector (=pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) was obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction was performed by using LR Clonase™ II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments resulted in a hairpin construct for each of the LD002, LD006, LD007, LD010, LD011, LD014 and LD016 genes, having either the promoter—sense-intron-CmR-intron-antisense orientation, or promoter—antisense-intron-CmR-intron-sense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into A. tumefaciens.


For LD002 and LD010, a double digest with restriction enzymes BsoBI & PvuI was done on LD002 cloned into pCR8/GW/topo (see Example 3A). For LD006, LD007, LD011, LD014, LD016 and LD027, a digest with restriction enzyme BsoBI was done on LD006 cloned into pCR8/GW/topo (see Example 3A). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) was purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) was added together with the LR clonase II enzyme and incubated for at least 1 h at 25° C. After proteinase K solution treatment (10 min at 37° C.), the whole recombination mix was transformed into Top 10 chemically competent cells. Positive clones were selected by restriction digest analysis. The complete sequence of the hairpin construct for:

    • LD002 (antisense-intron-CmR-intron-sense) is set forth in SEQ ID NO 240;
    • LD006 (sense-intron-CmR-intron-antisense) is set forth in SEQ ID NO 241;
    • LD007 sense-intron-CmR-intron-antisense) is set forth in SEQ ID NO 242;
    • LD010 (antisense-intron-CmR-intron-sense) is set forth in SEQ ID NO 243;
    • LD011 (sense-intron-CmR-intron-antisense) is set forth in SEQ ID NO 244;
    • LD014 (sense-intron-CmR-intron-antisense) is set forth in SEQ ID NO 245;
    • LD016 (antisense-intron-CmR-intron-sense) is set forth in SEQ ID NO 246;
    • LD027 (sense-intron-CmR-intron-antisense) is set forth in SEQ ID NO 2486.


Table 9-LD provides complete sequences for each hairpin construct.


D. Screening dsRNA Targets Using Artificial Diet for Activity Against Leptinotarsa decemlineata


Artificial diet for the Colorado potato beetle was prepared as follows (adapted from Gelman et al., 2001, J. Ins. Sc., vol. 1, no. 7, 1-10): water and agar were autoclaved, and the remaining ingredients (shown in Table A below) were added when the temperature dropped to 55° C. At this temperature, the ingredients were mixed well before the diet was aliquoted into 24-well plates (Nunc) with a quantity of 1 ml of diet per well. The artificial diet was allowed to solidify by cooling at room temperature. Diet was stored at 4° C. for up to three weeks.









TABLE A







Ingredients for Artificial diet










Ingredients
Volume for 1 L















water
768
ml



agar
14
g



rolled oats
40
g



Torula yeast
60
g



lactalbumin hydrolysate
30
g



casein
10
g



fructose
20
g



Wesson salt mixture
4
g



tomato fruit powder
12.5
g



potato leaf powder
25
g



b-sitosterol
1
g



sorbic acid
0.8
g



methyl paraben
0.8
g



Vanderzant vitamin mix
12
g



neomycin sulfate
0.2
g



aureomycin
0.130
g



rifampicin
0.130
g



chloramphenicol
0.130
g



nystatin
0.050
g



soybean oil
2
ml



wheat germ oil
2
ml










Fifty μl of a solution of dsRNA at a concentration of 1 mg/ml was applied topically onto the solid artificial diet in the wells of the multiwell plate. The diet was dried in a laminair flow cabin. Per treatment, twenty-four Colorado potato beetle larvae (2nd stage), with two insects per well, were tested. The plates were stored in the insect rearing chamber at 25±2° C., 60% relative humidity, with a 16:8 hours light:dark photoperiod. The beetles were assessed as live or dead every 1, 2 or 3 days. After seven days, for targets LD006, LD007, LD010, LD011, and LD014, the diet was replaced with fresh diet with topically applied dsRNA at the same concentration (1 mg/ml); for targets LD001, LD002, LD003, LD015, and LD016, the diet was replaced with fresh diet only. The dsRNA targets were compared to diet only or diet with topically applied dsRNA corresponding to a fragment of the GFP (green fluorescent protein) coding sequence (SEQ ID NO 235).


Feeding artificial diet containing intact naked dsRNAs to L. decemlineata larvae resulted in significant increases in larval mortalities as indicated in two separate bioassays (FIGS. 1LD-2LD).


All dsRNAs tested resulted ultimately in 100% mortality after 7 to 14 days. Diet with or without GFP dsRNA sustained the insects throughout the bioassays with very little or no mortality.


Typically, in all assays observed, CPB second-stage larvae fed normally on diet with or without dsRNA for 2 days and molted to the third larval stage. At this new larval stage the CPB were observed to reduce significantly or stop altogether their feeding, with an increase in mortality as a result.


E. Bioassay of dsRNA Targets Using Potato Leaf Discs for Activity Against the Leptinotarsa decemlineata


An alternative bioassay method was employed using potato leaf material rather than artificial diet as food source for CPB. Discs of approximately 1.1 cm in diameter (or 0.95 cm2) were cut out off leaves of 2 to 3-week old potato plants using a suitably-sized cork borer. Treated leaf discs were prepared by applying 20 μl of a 10 ng/μl solution of target LD002 dsRNA or control gfp dsRNA on the adaxial leaf surface. The leaf discs were allowed to dry and placed individually in 24 wells of a 24-well multiplate (Nunc). A single second-larval stage CPB was placed into each well, which was then covered with tissue paper and a multiwell plastic lid. The plate containing the insects and leaf discs were kept in an insect chamber at 28° C. with a photoperiod of 16 h light/8 h dark. The insects were allowed to feed on the leaf discs for 2 days after which the insects were transferred to a new plate containing fresh treated leaf discs. Thereafter, the insects were transferred to a plate containing untreated leaf discs every day until day 7. Insect mortality and weight scores were recorded.


Feeding potato leaf discs with surface-applied intact naked dsRNA of target LD002 to L. decemlineata larvae resulted in a significant increase in larval mortalities (i.e. at day 7 all insects were dead; 100% mortality) whereas control gfp dsRNA had no effect on CPB survival. Target LD002 dsRNA severely affected the growth of the larvae after 2 to 3 days whereas the larvae fed with gfp dsRNA at the same concentration developed as normal (FIG. 3-LD).


F. Screening Shorter Versions of dsRNAs Using Artificial Diet for Activity Against Leptinotarsa decemlineata


This example exemplifies the finding that shorter (60 or 100 bp) dsRNA fragments on their own or as concatemer constructs are sufficient in causing toxicity towards the Colorado potato beetle.


LD014, a target known to induce lethality in Colorado potato beetle, was selected for this example. This gene encodes a V-ATPase subunit E (SEQ ID NO 15).


A 100 base pair fragment, LD014_F1, at position 195-294 on SEQ ID NO 15 (SEQ ID NO 159) and a 60 base pair fragment, LD014_F2, at position 235-294 on SEQ ID NO 15 (SEQ ID NO 160) were further selected. See also Table 7-LD.


Two concatemers of 300 base pairs, LD014_C1 and LD014_C2, were designed (SEQ ID NO 161 and SEQ ID NO 162). LD014_C1 contained 3 repeats of the 100 base pair fragment described above (SEQ ID NO 159) and LD014_C2 contained 5 repeats of the 60 base pair fragment described above (SEQ ID NO 160). See also Table 7-LD.


The fragments LD014_F1 and LD014_F2 were synthesized as sense and antisense primers. These primers were annealed to create the double strands DNA molecules prior to cloning. XbaI and XmaI restrictions sites were included at the 5′ and 3′ ends of the primers, respectively, to facilitate the cloning.


The concatemers were made as 300 base pairs synthetic genes. XbaI and XmaI restrictions sites were included at the 5′ and 3′ ends of the synthetic DNA fragments, respectively, to facilite the cloning.


The 4 DNA molecules, i.e. the 2 single units (LD014_F1 & LD014_F2) and the 2 concatemers (LD014_C1 & LD014_C2), were digested with XbaI and XmaI and subcloned in pBluescriptII SK+ linearised by XbaI and XmaI digests, resulting in recombinant plasmids p1, p2, p3, & p4, respectively.


Double-stranded RNA production: dsRNA was synthesized using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5′ T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter. For LD014_F1, the sense T7 template was generated using the specific T7 forward primer oGBM159 and the specific reverse primer oGBM164 (represented herein as SEQ ID NO 204 and SEQ ID NO 205, respectively) in a PCR reaction with the following conditions: 4 minutes at 95° C., followed by 35 cycles of 30 seconds at 95° C., 30 seconds at 55° C. and 1 minute at 72° C., followed by 10 minutes at 72° C. The anti-sense T7 template was generated using the specific forward primer oGBM163 and the specific T7 reverse primer oGBM160 (represented herein as SEQ ID NO 206 and SEQ ID NO 207, respectively) in a PCR reaction with the same conditions as described above. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO4 precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, Dnase and Rnase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA is herein represented by SEQ ID NO 203.


For LD014_F2, the sense T7 template was generated using the specific T7 forward primer oGBM161 and the specific reverse primer oGBM166 (represented herein as SEQ ID NO 209 and SEQ ID NO 210, respectively) in a PCR reaction with the following conditions: 4 minutes at 95° C., followed by 35 cycles of 30 seconds at 95° C., 30 seconds at 55° C. and 1 minute at 72° C., followed by 10 minutes at 72° C. The anti-sense T7 template was generated using the specific forward primer oGBM165 and the specific T7 reverse primer oGBM162 (represented herein as SEQ ID NO 211 and SEQ ID NO 212, respectively) in a PCR reaction with the same conditions as described above. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO4 precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, Dnase and Rnase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA is herein represented by SEQ ID NO 208.


Also for the concatemers, separate single 5′ T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter. The recombinant plasmids p3 and p4 containing LD014_C1 & LD014_02 were linearised with XbaI or XmaI, the two linear fragments for each construct purified and used as template for the in vitro transcription assay, using the T7 promoters flanking the cloning sites. Double-stranded RNA was prepared by in vitro transcription using the T7 RiboMAX™ Express RNAi System (Promega). The sense strands of the resulting dsRNA for LD014_C1 and LD014_C2 are herein represented by SEQ ID NO 213 and 2114, respectively.


Shorter sequences of target LD014 and concatemers were able to induce lethality in Leptinotarsa decemlineata, as shown in FIG. 4-LD.


G. Screening dsRNAs at Different Concentrations Using Artificial Diet for Activity Against Leptinotarsa decemlineata


Fifty μl of a solution of dsRNA at serial ten-fold concentrations from 1 μg/μl (for target LD027 from 0.1 μg/μl) down to 0.01 ng/μl was applied topically onto the solid artificial diet in the wells of a 24-well plate (Nunc). The diet was dried in a laminair flow cabin. Per treatment, twenty-four Colorado potato beetle larvae (2nd stage), with two insects per well, were tested. The plates were stored in the insect rearing chamber at 25±2° C., 60% relative humidity, with a 16:8 hours light:dark photoperiod. The beetles were assessed as live or dead at regular intervals up to day 14. After seven days, the diet was replaced with fresh diet with topically applied dsRNA at the same concentrations. The dsRNA targets were compared to diet only.


Feeding artificial diet containing intact naked dsRNAs of different targets to L. decemlineata larvae resulted in high larval mortalities at concentrations as low as between 0.1 and 10 ng dsRNA/μl as shown in FIG. 5-LD.


H. Adults are Extremely Susceptible to Orally Ingested dsRNA Corresponding to Target Genes.


The example provided below highlights the finding that adult insects (and not only insects of the larval stage) are extremely susceptible to orally ingested dsRNA corresponding to target genes.


Four targets were chosen for this experiment: targets 2, 10, 14 and 16 (SEQ ID NO 168, 188, 198 and 220, respectively). GFP fragment dsRNA (SEQ ID NO 235) was used as a control. Young adults (2 to 3 days old) were picked at random from our laboratory-reared culture with no bias towards insect gender. Ten adults were chosen per treatment. The adults were prestarved for at least 6 hours before the onset of the treatment. On the first day of treatment, each adult was fed four potato leaf discs (diameter 1.5 cm2) which were pretreated with a topical application of 25 μl of 0.1 μg/μl target dsRNA (synthesized as described in Example 3A; topical application as described in Example 3E) per disc. Each adult was confined to a small petridish (diameter 3 cm) in order to make sure that all insects have ingested equal amounts of food and thus received equal doses of dsRNA. The following day, each adult was again fed four treated leaf discs as described above. On the third day, all ten adults per treatment were collected and placed together in a cage consisting of a plastic box (dimensions 30 cm×20 cm×15 cm) with a fine nylon mesh built into the lid to provide good aeration. Inside the box, some moistened filter paper was placed in the base. Some (untreated) potato foliage was placed on top of the paper to maintain the adults during the experiment. From day 5, regular assessments were carried out to count the number of dead, alive (mobile) and moribund insects. For insect moribundity, adults were laid on their backs to check whether they could right themselves within several minutes; an insect was considered moribund only if it was not able to turn onto its front.


Clear specific toxic effects of double-stranded RNA corresponding to different targets towards adults of the Colorado potato beetle, Leptinotarsa decemlineata, were demonstrated in this experiment (FIG. 6-LD). Double-stranded RNA corresponding to a gfp fragment showed no toxicity towards CPB adults on the day of the final assessment (day 19). This experiment clearly showed that the survival of CPB adults was severely reduced only after a few days of exposure to dsRNA when delivered orally. For example, for target 10, on day 5, 5 out of 10 adults were moribund (sick and slow moving); on day 6, 4 out of 10 adults were dead with three of the survivors moribund; on day 9 all adults were observed dead.


As a consequence of this experiment, the application of target double-stranded RNAs against insect pests may be broadened to include the two life stages of an insect pest (i.e. larvae and adults) which could cause extensive crop damage, as is the case with the Colorado potato beetle.


I. Laboratory Trials to Test Transgenic Potato Plants Against Larvae of the Colorado Potato Beetle, Leptinotarsa decemlineata


The example provided below is an exemplification of the finding that transgenic potato plants expressing CPB-gene-specific hairpin RNAs adversely affected Colorado potato beetles.


Potato Transformation


Stably transformed potato plants were obtained using an adapted protocol received through Julie Gilbert at the NSF Potato Genome Project. Stem intemode explants of potato ‘Line V’ (obtained from the Laboratory of Plant Breeding at PRI Wageningen, the Netherlands) which was derived from the susceptible diploid Solanum tuberosum 6487-9 were used as starting material for transformation.


In vitro derived explants were inoculated with Agrobacterium tumifaciens C58C1RifR containing the hairpin constructs. After three days co-cultivation the explants were put onto a selective medium containing 100 mg/l Kanamycin and 300 mg/l Timentin. After 6 weeks post-transformation the first putative shoots were removed and rooted on selective medium. Shoots originating from different explants were treated as independent events, shoots originating from the same callus were termed ‘siblings’ until their clonal status can be verified by Southerns, and nodal cuttings of a shoot were referred to as ‘clones’.


The transgenic status of the rooting shoots was checked either by GFP fluorescence or by plus/minus PCR for the target sequence. Positive shoots were then clonally propagated in tissue culture to ensure enough replicates were available for the Colorado potato beetle assay with the first plants being available to test fourteen weeks post transformation.


Bioassay


Transgenic potato plants were grown to the 8-12 unfolded leaf stage in a plant growth room chamber with the following conditions: 23±2° C., 60% relative humidity, 16:8 hour light:dark photoperiod. The plants were caged by placing a 500 ml bottle upside down over the plant with the neck of the bottle firmly placed in the soil in a pot and base cut open and covered with a fine nylon mesh to permit aeration, reduce condensation inside and prevent larval escape.


In this bioassay, seven neonate CPB larvae were placed on the foliage of each transgenic potato plant. Six transgenic potato siblings per transformation event (i.e. plants derived from one callus) of the hairpin construct LD002 (comprising SEQ ID NO 240) (labeled as pGBNB001/28A to F) and empty vector (labeled as pK7GWIWG2D(II)/11A to F), and two wild type plants were tested. Temperature, humidity and lighting conditions were the same as described above. At day 7 (7 days after the start of the bioassay), the number of survivors were counted and the average weight of larval survivors from each plant recorded. Data was analysed using the Spotfire® DecisionSite® 9.0 software (Version 17.1.779) from Spotfire Inc.


In this experiment, all larvae of the Colorado potato beetle on two sibling plants (labeled as pGBNB001/28A and pGBNB001/28F), harbouring hairpin construct LD002, generated from a single transformation event, were dead on day 7 (FIG. 7-LD). Feeding damage by CPB larvae on these two plants was very low when compared to the empty vector transgenic plants or wild type line V plants.


Example 4

Phaedon cochleariae (Mustard Leaf Beetle)

A. Cloning of a Partial Sequence of the Phaedon cochleariae (Mustard Leaf Beetle) PC001, PC003, PC005, PC010, PC014, PC016 and PC027 Genes Via Family PCR


High quality, intact RNA was isolated from the third larval stage of Phaedon cochleariae (mustard leaf beetle; source: Dr. Caroline Muller, Julius-von-Sachs-Institute for Biosciences, Chemical Ecology Group, University of Wuerzburg, Julius-von-Sachs-Platz 3, D-97082 Wuerzburg, Germany) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase (Cat. Nr. 1700, Promega) treatment following the manufacturers instructions. cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions.


To isolate cDNA sequences comprising a portion of the PC001, PC003, PC005, PC010, PC014, PC016 and PC027 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manafacturer's instructions.


The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-PC. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 55° C. and 1 minute at 72° C., followed by 10 minutes at 72° C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR4/TOPO vector (Cat. Nr. K4530-20, Invitrogen) and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-PC and are referred to as the partial sequences.


The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in Table 3-PC. Table 3-PC provides amino acid sequences of cDNA clones, and the start of the reading frame is indicated in brackets.


B. dsRNA Production of the Phaedon cochleariae Genes


dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5′ T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.


For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-PC. Table 8-PC provides details for preparing ds RNA fragments of Phaedon cochleariae target sequences, including primer sequences.


The conditions in the PCR reactions were as follows: 1 minute at 95° C., followed by 20 cycles of 30 seconds at 95° C., 30 seconds at 60° C. and 1 minute at 72° C., followed by 15 cycles of 30 seconds at 95° C., 30 seconds at 50° C. and 1 minute at 72° C. followed by 10 minutes at 72° C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-PC. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO4 precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-PC.


C. Recombination of the Phaedon cochleariae (Mustard Leaf Beetle) Genes into the Plant Vector pK7GWIWG2D(II)


Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, were cloned in anti-sense and sense orientation, separated by the intron—CmR-intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs were generated using the LR recombination reaction between an attL-containing entry clone (see Example 4A) and an attR-containing destination vector (=pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) was obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction was performed by using LR Clonase™ II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments resulted in a hairpin construct for each of the PC001, PC010, PC014, PC016 and PC027 genes, having the promoter—sense-intron-CmR-intron-antisense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into A. tumefaciens.


Restriction enzyme digests were carried out on pCR8/GW/TOPO plasmids containing the different targets (see Example 4B): for PC001, a double digest with BsoBI & PvuI; for PC010, a double digest with PvuI & PvuII; for PC014, a triple digest with HincII, PvuI & XhoI; for PC016, a single digest with ApaLI; for PC027, a double digest with AvaI & DrdI. The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) was purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) was added together with the LR clonase II enzyme and incubated for at least 1 h at 25° C. After proteinase K solution treatment (10 min at 37° C.), the whole recombination mix was transformed into Top 10 chemically competent cells. Positive clones were selected by restriction digest analyses. The complete sequence of the hairpin construct for:

    • PC001 (sense-intron-CmR-intron-antisense) is represented in SEQ ID NO 508;
    • PC010 (sense-intron-CmR-intron-antisense) is represented in SEQ ID NO 509;
    • PC014 (sense-intron-CmR-intron-antisense) is represented in SEQ ID NO 510;
    • PC016 (sense-intron-CmR-intron-antisense) is represented in SEQ ID NO 511;
    • PC027 (sense-intron-CmR-intron-antisense) is represented in SEQ ID NO 512;


      Table 9-PC provides sequences for each hairpin construct.


D. Laboratory Trials to Test dsRNA Targets, Using Oilseed Rape Leaf Discs for Activity Against Phaedon cochleariae Larvae


The example provided below is an exemplification of the finding that the mustard leaf beetle (MLB) larvae are susceptible to orally ingested dsRNA corresponding to own target genes.


To test the different double-stranded RNA samples against MLB larvae, a leaf disc assay was employed using oilseed rape (Brassica napus variety SW Oban; source: Nick Balaam, Sw Seed Ltd., 49 North Road, Abington, Cambridge, CB1 6AS, UK) leaf material as food source. The insect cultures were maintained on the same variety of oilseed rape in the insect chamber at 25±2° C. and 60±5% relative humidity with a photoperiod of 16 h light/8 h dark. Discs of approximately 1.1 cm in diameter (or 0.95 cm2) were cut out off leaves of 4- to 6-week old rape plants using a suitably-sized cork borer. Double-stranded RNA samples were diluted to 0.1 μg/μl in Milli-Q water containing 0.05% Triton X-100. Treated leaf discs were prepared by applying 25 μl of the diluted solution of target PC001, PC003, PC005, PC010, PC014, PC016, PC027 dsRNA and control gfp dsRNA or 0.05% Triton X-100 on the adaxial leaf surface. The leaf discs were left to dry and placed individually in each of the 24 wells of a 24-well multiplate containing 1 ml of gellified 2% agar which helps to prevent the leaf disc from drying out. Two neonate MLB larvae were placed into each well of the plate, which was then covered with a multiwell plastic lid. The plate (one treatment containing 48 insects) was divided into 4 replicates of 12 insects per replicate (each row). The plate containing the insects and leaf discs were kept in an insect chamber at 25±2° C. and 60±5% relative humidity with a photoperiod of 16 h light/8 h dark. The insects were fed leaf discs for 2 days after which they were transferred to a new plate containing freshly treated leaf discs. Thereafter, 4 days after the start of the bioassay, the insects from each replicate were collected and transferred to a Petri dish containing untreated fresh oilseed rape leaves. Larval mortality and average weight were recorded at days 2, 4 7, 9 and 11.



P. cochleariae larvae fed on intact naked target dsRNA-treated oilseed rape leaves resulted in significant increases in larval mortalities for all targets tested, as indicated in FIG. 1(a). Tested double-stranded RNA for target PC010 led to 100% larval mortality at day 9 and for target PC027 at day 11. For all other targets, significantly high mortality values were reached at day 11 when compared to control gfp dsRNA, 0.05% Trition X-100 alone or untreated leaf only: (average value in percentage±confidence interval with alpha 0.05) PC001 (94.4±8.2); PC003 (86.1±4.1); PC005 (83.3±7.8); PC014 (63.9±20.6); PC016 (75.0±16.8); gfp dsRNA (11.1±8.2); 0.05% Triton X-100 (19.4±10.5); leaf only (8.3±10.5).


Larval survivors were assessed based on their average weight. For all targets tested, the mustard leaf beetle larvae had significantly reduced average weights after day 4 of the bioassay; insects fed control gfp dsRNA or 0.05% Triton X-100 alone developed normally, as for the larvae on leaf only (FIG. 1(b)-PC).


E. Laboratory Trials to Screen dsRNAs at Different Concentrations Using Oilseed Rape Leaf Discs for Activity Against Phaedon cochleariae Larvae


Twenty-five μl of a solution of dsRNA from target PC010 or PC027 at serial ten-fold concentrations from 0.1 μg/μl down to 0.1 ng/μl was applied topically onto the oilseed rape leaf disc, as described in Example 4D above. As a negative control, 0.05% Triton X-100 only was administered to the leaf disc. Per treatment, twenty-four mustard leaf beetle neonate larvae, with two insects per well, were tested. The plates were stored in the insect rearing chamber at 25±2° C., 60±5% relative humidity, with a 16:8 hours light:dark photoperiod. At day 2, the larvae were transferred on to a new plate containing fresh dsRNA-treated leaf discs. At day 4 for target PC010 and day 5 for target PC027, insects from each replicate were transferred to a Petri dish containing abundant untreated leaf material. The beetles were assessed as live or dead on days 2, 4, 7, 8, 9, and 11 for target PC010, and 2, 5, 8, 9 and 12 for target PC027.


Feeding oilseed rape leaf discs containing intact naked dsRNAs of the two different targets, PC010 and PC027, to P. cochleariae larvae resulted in high mortalities at concentrations down to as low as 1 ng dsRNA/μl solution, as shown in FIGS. 2 (a) and (b). Average mortality values in percentage±confidence interval with alpha 0.05 for different concentrations of dsRNA for target PC010 at day 11, 0 μg/μl: 8.3±9.4; 0.1 μg/μl: 100; 0.01 μg/μl: 79.2±20.6; 0.001 μg/μl: 58.3±9.4; 0.0001 μg/μl: 12.5±15.6; and for target PC027 at day 12, 0 μg/μl: 8.3±9.4; 0.1 μg/μl: 95.8±8.2; 0.01 μg/μl: 95.8±8.2; 0.001 μg/μl: 83.3±13.3; 0.0001 μg/μl: 12.5±8.2.


F. Laboratory Trials of Myzus periscae (Green Peach Aphid) Infestation on Transgenic Arabidopsis thaliana Plants


Generation of Transgenic Plants



Arabidopsis thaliana plants were transformed using the floral dip method (Clough and Bent (1998) Plant Journal 16:735-743). Aerial parts of the plants were incubated for a few seconds in a solution containing 5% sucrose, resuspended Agrobacterium tumefaciens strain C58C1 Rif cells from an overnight culture and 0.03% of the surfactant Silwet L-77. After inoculation, plants were covered for 16 hours with a transparent plastic to maintain humidity. To increase the transformation efficiency, the procedure was repeated after one week. Watering was stopped as seeds matured and dry seeds were harvested and cold-treated for two days. After sterilization, seeds were plated on a kanamycin-containing growth medium for selection of transformed plants.


The selected plants are transferred to soil for optimal T2 seed production.


Bioassay


Transgenic Arabidopsis thaliana plants are selected by allowing the segregating T2 seeds to germinate on appropriate selection medium. When the roots of these transgenics are well-established they are then transferred to fresh artificial growth medium or soil and allowed to grow under optimal conditions. Whole transgenic plants are tested against nymphs of the green peach aphid (Myzus persicae) to show (1) a significant resistance to plant damage by the feeding nymph, (2) increased nymphal mortality, and/or (3) decreased weight of nymphal survivors (or any other aberrant insect development).


Example 5

Epilachna varivetis (Mexican Bean Beetle)

A. Cloning Epilachna varivetis Partial Gene Sequences


High quality, intact RNA was isolated from 4 different larval stages of Epilachna varivetis (Mexican bean beetle; source: Thomas Dorsey, Supervising Entomologist, New Jersey Department of Agriculture, Division of Plant Industry, Bureau of Biological Pest Control, Phillip Alampi Beneficial Insect Laboratory, PO Box 330, Trenton, N.J. 08625-0330, USA) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manafacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions.


To isolate cDNA sequences comprising a portion of the EV005, EV009, EV010, EV015 and EV016 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions.


The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-EV, which displays Epilachna varivetis target genes including primer sequences and cDNA sequences obtained. These primers were used in respective PCR reactions with the following conditions: for EV005 and EV009, 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 50° C. and 1 minute 30 seconds at 72° C., followed by 7 minutes at 72° C.; for EV014, 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 53° C. and 1 minute at 72° C., followed by 7 minutes at 72° C.; for EV010 and EV016, 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 54° C. and 1 minute 40 seconds at 72° C., followed by 7 minutes at 72° C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR4/TOPO vector (Cat. Nr. K4530-20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-EV and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in Table 3-EV, where the start of the reading frame is indicated in brackets.


B. dsRNA Production of the Epilachna varivetis Genes


dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5′ T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.


For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-EV.


The conditions in the PCR reactions were as follows: 1 minute at 95° C., followed by 20 cycles of 30 seconds at 95° C., 30 seconds at 60° C. and 1 minute at 72° C., followed by 15 cycles of 30 seconds at 95° C., 30 seconds at 50° C. and 1 minute at 72° C. followed by 10 minutes at 72° C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-EV. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO4 precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-EV.


C. Recombination of the Epilachna varivetis Genes into the Plant Vector pK7GWIWG2D(II)


Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, are cloned in anti-sense and sense orientation, separated by the intron—CmR-intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs are generated using the LR recombination reaction between an attL-containing entry clone (see Example 5A) and an attR-containing destination vector (=pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) is obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction is performed by using LR Clonase™ II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments result in a hairpin construct for each of the target genes, having the promoter—sense-intron-CmR-intron-antisense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into A. tumefaciens.


Restriction enzyme digests were carried out on pCR8/GW/TOPO plasmids containing the different targets (see Example B). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) is purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) is added together with the LR clonase II enzyme and incubated for at least 1 h at 25° C. After proteinase K solution treatment (10 min at 37° C.), the whole recombination mix is transformed into Top 10 chemically competent cells. Positive clones are selected by restriction digest analyses.


D. Laboratory Trials to Test dsRNA Targets Using Bean Leaf Discs for Activity Against Epilachna varivetis Larvae


The example provided below is an exemplification of the finding that the Mexican bean beetle (MBB) larvae are susceptible to orally ingested dsRNA corresponding to own target genes.


To test the different double-stranded RNA samples against MBB larvae, a leaf disc assay was employed using snap bean (Phaseolus vulgaris variety Montano; source: Aveve N V, Belgium) leaf material as food source. The same variety of beans was used to maintain insect cultures in the insect chamber at 25±2° C. and 60±5% relative humidity with a photoperiod of 16 h light/8 h dark. Discs of approximately 1.1 cm in diameter (or 0.95 cm2) were cut out off leaves of 1- to 2-week old bean plants using a suitably-sized cork borer. Double-stranded RNA samples were diluted to 1 μg/μl in Milli-Q water containing 0.05% Triton X-100. Treated leaf discs were prepared by applying 25 μl of the diluted solution of target Ev005, Ev010, Ev015, Ev016 dsRNA and control gfp dsRNA or 0.05% Triton X-100 on the adaxial leaf surface. The leaf discs were left to dry and placed individually in each of the 24 wells of a 24-well multiplate containing 1 ml of gellified 2% agar which helps to prevent the leaf disc from drying out. A single neonate MBB larva was placed into each well of a plate, which was then covered with a multiwell plastic lid. The plate was divided into 3 replicates of 8 insects per replicate (row). The plate containing the insects and leaf discs were kept in an insect chamber at 25±2° C. and 60±5% relative humidity with a photoperiod of 16 h light/8 h dark. The insects were fed on the leaf discs for 2 days after which the insects were transferred to a new plate containing freshly treated leaf discs. Thereafter, 4 days after the start of the bioassay, the insects were transferred to a petriplate containing untreated fresh bean leaves every day until day 10. Insect mortality was recorded at day 2 and every other day thereafter.


Feeding snap bean leaves containing surface-applied intact naked target dsRNAs to E. varivestis larvae resulted in significant increases in larval mortalities, as indicated in FIG. 1. Tested double-stranded RNAs of targets Ev010, Ev015, & Ev016 led to 100% mortality after 8 days, whereas dsRNA of target Ev005 took 10 days to kill all larvae. The majority of the insects fed on treated leaf discs containing control gfp dsRNA or only the surfactant Triton X-100 were sustained throughout the bioassay (FIG. 1-EV).


E. Laboratory Trials to Test dsRNA Targets Using Bean Leaf Discs for Activity Against Epilachna varivestis Adults


The example provided below is an exemplification of the finding that the Mexican bean beetle adults are susceptible to orally ingested dsRNA corresponding to own target genes.


In a similar bioassay set-up as for Mexican bean beetle larvae, adult MBBs were tested against double-stranded RNAs topically-applied to bean leaf discs. Test dsRNA from each target Ev010, Ev015 and Ev016 was diluted in 0.05% Triton X-100 to a final concentration of 0.1 μg/μl. Bean leaf discs were treated by topical application of 30 μl of the test solution onto each disc. The discs were allowed to dry completely before placing each on a slice of gellified 2% agar in each well of a 24-well multiwell plate. Three-day-old adults were collected from the culture cages and fed nothing for 7-8 hours prior to placing one adult to each well of the bioassay plate (thus 24 adults per treatment). The plates were kept in the insect rearing chamber (under the same conditions as for MBB larvae for 24 hours) after which the adults were transferred to a new plate containing fresh dsRNA-treated leaf discs. After a further 24 hours, the adults from each treatment were collected and placed in a plastic box with dimensions 30 cm×15 cm×10 cm containing two potted and untreated 3-week-old bean plants. Insect mortality was assessed from day 4 until day 11.


All three target dsRNAs (Ev010, Ev015 and Ev016) ingested by adults of Epilachna varivestis resulted in significant increases in mortality from day 4 (4 days post bioassay start), as shown in FIG. 2-EV(a). From day 5, dramatic changes in feeding patterns were observed between insects fed initially with target-dsRNA-treated bean leaf discs and those that were fed discs containing control gfp dsRNA or surfactant Triton X-100. Reductions in foliar damage by MBB adults of untreated bean plants were clearly visible for all three targets when compared to gfp dsRNA and surfactant only controls, albeit at varying levels; insects fed target 15 caused the least damage to bean foliage (FIG. 2-EV(b)).


Example 6

Anthonomus grandis (Cotton Boll Weevil)

A. Cloning Anthonomus grandis Partial Sequences


High quality, intact RNA was isolated from the 3 instars of Anthonomus grandis (cotton boll weevil; source: Dr. Gary Benzon, Benzon Research Inc., 7 Kuhn Drive, Carlisle, Pa. 17013, USA) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manafacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III


Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions.


To isolate cDNA sequences comprising a portion of the AG001, AG005, AG010, AG014 and AG016 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manafacturer's instructions.


The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-AG. These primers were used in respective PCR reactions with the following conditions: for AG001, AG005 and AG016, 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 50° C. and 1 minute and 30 seconds at 72° C., followed by 7 minutes at 72° C.; for AG010, 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 54° C. and 2 minutes and 30 seconds at 72° C., followed by 7 minutes at 72° C.; for AG014, 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 55° C. and 1 minute at 72° C., followed by 7 minutes at 72° C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/TOPO vector (Cat. Nr. K2500-20, Invitrogen) and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-AG and are referred to as the partial sequences. The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in Table 3-AG.


B. dsRNA Production of the Anthonomus grandis (Cotton Boll Weevil) Genes


dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5′ T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.


For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-AG. A touchdown PCR was performed as follows: 1 minute at 95° C., followed by 20 cycles of 30 seconds at 95° C., 30 seconds at 60° C. with a decrease in temperature of 0.5° C. per cycle and 1 minute at 72° C., followed by 15 cycles of 30 seconds at 95° C., 30 seconds at 50° C. and 1 minute at 72° C., followed by 10 minutes at 72° C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-AG. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO4 precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-AG.


C. Recombination of Anthonomus grandis Genes into the Plant Vector pK7GWIWG2D(II)


Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, are cloned in anti-sense and sense orientation, separated by the intron—CmR-intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs are generated using the LR recombination reaction between an attL-containing entry clone (see Example 6A) and an attR-containing destination vector (=pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) is obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction is performed by using LR Clonase™ II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments result in a hairpin construct for each of the target genes, having the promoter—sense-intron-CmR-intron-antisense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into A. tumefaciens.


Restriction enzyme digests were carried out on pCR8/GW/TOPO plasmids containing the different targets (see Example 6B). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) is purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) is added together with the LR clonase II enzyme and incubated for at least 1 h at 25° C. After proteinase K solution treatment (10 min at 37° C.), the whole recombination mix is transformed into Top 10 chemically competent cells. Positive clones are selected by restriction digest analyses.


D. Laboratory Trials to Test Escherichia coli Expressing dsRNA Targets Against Anthonomus grandis


Plant-Based Bioassays


Whole plants are sprayed with suspensions of chemically induced bacteria expressing dsRNA prior to feeding the plants to CBW. The are grown from in a plant growth room chamber. The plants are caged by placing a 500 ml plastic bottle upside down over the plant with the neck of the bottle firmly placed in the soil in a pot and the base cut open and covered with a fine nylon mesh to permit aeration, reduce condensation inside and prevent insect escape. CBW are placed on each treated plant in the cage. Plants are treated with a suspension of E. coli AB301-105(DE3) harboring the pGXXX0XX plasmids or pGN29 plasmid. Different quantities of bacteria are applied to the plants: for instance 66, 22, and 7 units, where one unit is defined as 109 bacterial cells in 1 ml of a bacterial suspension at optical density value of 1 at 600 nm wavelength. In each case, a total volume of between 1 and 10 ml s sprayed on the plant with the aid of a vaporizer. One plant is used per treatment in this trial. The number of survivors are counted and the weight of each survivor recorded.


Spraying plants with a suspension of E. coli bacterial strain AB301-105(DE3) expressing target dsRNA from pGXXX0XX lead to a dramatic increase in insect mortality when compared to pGN29 control. These experiments show that double-stranded RNA corresponding to an insect gene target sequence produced in either wild-type or RNaseIII-deficient bacterial expression systems is toxic towards the insect in terms of substantial increases in insect mortality and growth/development delay for larval survivors. It is also clear from these experiments that an exemplification is provided for the effective protection of plants/crops from insect damage by the use of a spray of a formulation consisting of bacteria expressing double-stranded RNA corresponding to an insect gene target.


Example 7

Tribolium castaneum (Red Flour Beetle)

A. Cloning Tribolium castaneum Partial Sequences


High quality, intact RNA was isolated from all the different insect stages of Tribolium castaneum (red flour beetle; source: Dr. Lara Senior, Insect Investigations Ltd., Capital Business Park, Wentloog, Cardiff, CF3 2PX, Wales, UK) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manafacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions.


To isolate cDNA sequences comprising a portion of the TC001, TC002, TC010, TC014 and TC015 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manafacturer's instructions.


The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-TC. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 50° C. and 1 minute and 30 seconds at 72° C., followed by 7 minutes at 72° C. (TC001, TC014, TC015); 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 54° C. and 2 minutes and 30 seconds at 72° C., followed by 7 minutes at 72° C. (TC010); 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 53° C. and 1 minute at 72° C., followed by 7 minutes at 72° C. (TC002). The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/TOPO vector (Cat. Nr. K2500-20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-TC and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in Table 3-TC.


B. dsRNA Production of the Tribolium castaneum Genes


dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5′ T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.


For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-TC. The conditions in the PCR reactions were as follows: 1 minute at 95° C., followed by 20 cycles of 30 seconds at 95° C., 30 seconds at 60° C. (−0.5° C./cycle) and 1 minute at 72° C., followed by 15 cycles of 30 seconds at 95° C., 30 seconds at 50° C. and 1 minute at 72° C., followed by 10 minutes at 72° C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-TC. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO4 precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-TC.


C. Recombination of Tribolium castaneum Genes into the Plant Vector pK7GWIWG2D(II)


Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, are cloned in anti-sense and sense orientation, separated by the intron—CmR-intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs are generated using the LR recombination reaction between an attL-containing entry clone (see Example 7A) and an attR-containing destination vector (=pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) is obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction is performed by using LR Clonase™ II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments result in a hairpin construct for each of the target genes, having the promoter—sense-intron-CmR-intron-antisense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into A. tumefaciens.


Restriction enzyme digests were carried out on pCR8/GW/TOPO plasmids containing the different targets (see Example 7B). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) is purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) is added together with the LR clonase II enzyme and incubated for at least 1 h at 25° C. After proteinase K solution treatment (10 min at 37° C.), the whole recombination mix is transformed into Top 10 chemically competent cells. Positive clones are selected by restriction digest analyses.


D. Laboratory Trials to Test dsRNA Targets, Using Artificial Diet for Activity Against Tribolium castaneum Larvae


The example provided below is an exemplification of the finding that the red flour beetle (RFB) larvae are susceptible to orally ingested dsRNA corresponding to own target genes.


Red flour beetles, Tribolium castaneum, were maintained at Insect Investigations Ltd. (origin: Imperial College of Science, Technology and Medicine, Silwood Park, Berkshire, UK). Insects were cultured according to company SOP/251/01. Briefly, the beetles were housed in plastic jars or tanks. These have an open top to allow ventilation. A piece of netting was fitted over the top and secured with an elastic band to prevent escape. The larval rearing medium (flour) was placed in the container where the beetles can breed. The stored product beetle colonies were maintained in a controlled temperature room at 25±3° C. with a 16:8 hour light:dark cycle.


Double-stranded RNA from target TC014 (with sequence corresponding to SEQ ID NO—799) was incorporated into a mixture of flour and milk powder (wholemeal flour:powdered milk in the ratio 4:1) and left to dry overnight. Each replicate was prepared separately: 100 μl of a 10 μg/μl dsRNA solution (1 mg dsRNA) was added to 0.1 g flour/milk mixture. The dried mixture was ground to a fine powder. Insects were maintained within Petri dishes (55 mm diameter), lined with a double layer of filter paper. The treated diet was placed between the two filter paper layers. Ten first instar, mixed sex larvae were placed in each dish (replicate). Four replicates were performed for each treatment. Control was Milli-Q water. Assessments (number of survivors) were made on a regular basis. During the trial, the test conditions were 25-33° C. and 20-25% relative humidity, with a 12:12 hour light:dark photoperiod.


Survival of larvae of T. castaneum over time on artificial diet treated with target TC014 dsRNA was significantly reduced when compared to diet only control, as shown in FIG. 1-TC.


Example 8

Myzus persicae (Green Peach Aphid)

A. Cloning Myzus persicae Partial Sequences


High quality, intact RNA was isolated from nymphs of Myzus persicae (green peach aphid; source: Dr. Rachel Down, Insect & Pathogen Interactions, Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manafacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions.


To isolate cDNA sequences comprising a portion of the MP001, MP002, MP010, MP016 and MP027 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manafacturer's instructions.


The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-MP. These primers were used in respective PCR reactions with the following conditions: for MP001, MP002 and MP016, 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 50° C. and 1 minute 30 seconds at 72° C., followed by 7 minutes at 72° C.; for MP027, a touchdown program was used: 10 minutes at 95° C., followed by 10 cycles of 30 seconds at 95° C., 40 seconds at 60° C. with a decrease in temperature of 1° C. per cycle and 1 minute 10 seconds at 72° C., followed by 30 cycles of 30 seconds at 95° C., 40 seconds at 50° C. and 1 minute 10 seconds at 72° C., followed by 7 minutes at 72° C.; for MP010, 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 54° C. and 3 minutes at 72° C., followed by 7 minutes at 72° C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/TOPO vector (Cat. Nr. K2500-20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-MP and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in Table 3-MP.


B. dsRNA Production of Myzus persicae Genes


dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5′ T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.


For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-MP. A touchdown PCR was performed as follows: 1 minute at 95° C., followed by 20 cycles of 30 seconds at 95° C., 30 seconds at 55° C. (for MP001, MP002, MP016, MP027 and gfp) or 30 seconds at 50° C. (for MP010) with a decrease in temperature of 0.5° C. per cycle and 1 minute at 72° C., followed by 15 cycles of 30 seconds at 95° C., 30 seconds at 45° C. and 1 minute at 72° C. followed by 10 minutes at 72° C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-MP. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO4 precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-MP.


C. Recombination of Myzus persicae Genes into the Plant Vector pK7GWIWG2D(II)


Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, were cloned in anti-sense and sense orientation, separated by the intron—CmR-intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs were generated using the LR recombination reaction between an attL-containing entry clone (see Example 8A) and an attR-containing destination vector (=pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) was obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction was performed by using LR Clonase™ II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments resulted in a hairpin construct for each of the MP001, MP002, MP010, MP016 and MP026 genes, having the promoter—sense-intron-CmR-intron-antisense orientation and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into A. tumefaciens.


A digest with restriction enzyme Alw441 was done for all the targets cloned into pCR8/GW/topo (see Example 8B). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) was purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) was added together with the LR clonase II enzyme and incubated for at least 1 h at 25° C. After proteinase K solution treatment (10 min at 37° C.), the whole recombination mix was transformed into Top 10 chemically competent cells. Positive clones were selected by restriction digest analysis. The complete sequence of the hairpin construct for:

    • MP001 (sense-intron-CmR-intron-antisense) is represented in SEQ ID NO 1066;
    • MP002 (sense-intron-CmR-intron-antisense) is represented in SEQ ID NO 1067;
    • MP010 (sense-intron-CmR-intron-antisense) is represented in SEQ ID NO 1068;
    • MP016 (sense-intron-CmR-intron-antisense) is represented in SEQ ID NO 1069;
    • MP027 (sense-intron-CmR-intron-antisense) is represented in SEQ ID NO 1070.


Table 9-MP provides complete sequences for each hairpin construct.


D. Laboratory Trials to Test dsRNA Targets Using Liquid Artificial Diet for Activity Against Myzus persicae


Liquid artificial diet for the green peach aphid, Myzus persicae, was prepared based on the diet suitable for pea aphids (Acyrthosiphon pisum), as described by Febvay et al. (1988) [Influence of the amino acid balance on the improvement of an artificial diet for a biotype of Acyrthosiphon pisum (Homoptera: Aphididae). Can. J. Zool. 66: 2449-2453], but with some modifications. The amino acids component of the diet was prepared as follows: in mg/100 ml, alanine 178.71, beta-alanine 6.22, arginine 244.9, asparagine 298.55, aspartic acid 88.25, cysteine 29.59, glutamic acid 149.36, glutamine 445.61, glycine 166.56, histidine 136.02, isoleucine 164.75, leucine 231.56, lysine hydrochloride 351.09, methionine 72.35, ornithine (HCl) 9.41, phenylalanine 293, proline 129.33, serine 124.28, threonine 127.16, tryptophane 42.75, tyrosine 38.63, L-valine 190.85. The amino acids were dissolved in 30 ml Milli-Q H2O except for tyrosine which was first dissolved in a few drops of 1 M HCl before adding to the amino acid mix. The vitamin mix component of the diet was prepared as a 5× concentrate stock as follows: in mg/L, amino benzoic acid 100, ascorbic acid 1000, biotin 1, calcium panthothenate 50, choline chloride 500, folic acid 10, myoinositol 420, nicotinic acid 100, pyridoxine hydrochloride 25, riboflavin 5, thiamine hydrochloride 25. The riboflavin was dissolved in 1 ml H2O at 50° C. and then added to the vitamin mix stock. The vitamin mix was aliquoted in 20 ml per aliquot and stored at −20° C. One aliquot of vitamin mix was added to the amino acid solution. Sucrose and MgSO4.7H2O was added with the following amounts to the mix: 20 g and 242 mg, respectively. Trace metal stock solution was prepared as follows: in mg/100 ml, CuSO4.5H2O 4.7, FeCl3.6H2O 44.5, MnCl2.4H2O 6.5, NaCl 25.4, ZnCl2 8.3. Ten ml of the trace metal solution and 250 mg KH2PO4 was added to the diet and Milli-Q water was added to a final liquid diet volume of 100 ml. The pH of the diet was adjusted to 7 with 1 M KOH solution. The liquid diet was filter-sterilised through an 0.22 μm filter disc (Millipore).


Green peach aphids (Myzus persicae; source: Dr. Rachel Down, Insect & Pathogen Interactions, Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK) were reared on 4- to 6-week-old oilseed rape (Brassica napus variety SW Oban; source: Nick Balaam, Sw Seed Ltd., 49 North Road, Abington, Cambridge, CB1 6AS, UK) in aluminium-framed cages containing 70 μm mesh in a controlled environment chamber with the following conditions: 23±2° C. and 60±5% relative humidity, with a 16:8 hours light:dark photoperiod.


One day prior to the start of the bioassay, adults were collected from the rearing cages and placed on fresh detached oilseed rape leaves in a Petri dish and left overnight in the insect chamber. The following day, first-instar nymphs were picked and transferred to feeding chambers. A feeding chamber comprised of 10 first instar nymphs placed in a small Petri dish (with diameter 3 cm) covered with a single layer of thinly stretched parafilm M onto which 50 μl of diet was added. The chamber was sealed with a second layer of parafilm and incubated under the same conditions as the adult cultures. Diet with dsRNA was refreshed every other day and the insects' survival assessed on day 8 i.e. 8th day post bioassay start. Per treatment, 5 bioassay feeding chambers (replicates) were set up simultaneously. Test and control (gfp) dsRNA solutions were incorporated into the diet to a final concentration of 2 μg/μl. The feeding chambers were kept at 23±2° C. and 60±5% relative humidity, with a 16:8 hours light:dark photoperiod. A Mann-Whitney test was determined by GraphPad Prism version 4 to establish whether the medians do differ significantly between target 27 (MP027) and gfp dsRNA.


In the bioassay, feeding liquid artificial diet supplemented with intact naked dsRNA from target 27 (SEQ ID NO 1061) to nymphs of Myzus persicae using a feeding chamber, resulted in a significant increase in mortality, as shown in FIG. 1. Average percentage survivors for target 27, gfp dsRNA and diet only treatment were 2, 34 and 82, respectively. Comparison of target 027 with gfp dsRNA groups using the Mann-Whitney test resulted in an one-tailed P-value of 0.004 which indicates that the median of target 027 is significantly different (P<0.05) from the expected larger median of gfp dsRNA. The green peach aphids on the liquid diet with incorporated target 27 dsRNA were noticeably smaller than those that were fed on diet only or with gfp dsRNA control (data not presented).


E. Laboratory Trials of Myzus periscae (Green Peach Aphid) Infestation on Transgenic Arabidopsis thaliana Plants


Generation of Transgenic Plants



Arabidopsis thaliana plants were transformed using the floral dip method (Clough and Bent (1998) Plant Journal 16:735-743). Aerial parts of the plants were incubated for a few seconds in a solution containing 5% sucrose, resuspended Agrobacterium tumefaciens strain C58C1 Rif cells from an overnight culture and 0.03% of the surfactant Silwet L-77. After inoculation, plants were covered for 16 hours with a transparent plastic to maintain humidity. To increase the transformation efficiency, the procedure was repeated after one week. Watering was stopped as seeds matured and dry seeds were harvested and cold-treated for two days. After sterilization, seeds were plated on a kanamycin-containing growth medium for selection of transformed plants.


The selected plants are transferred to soil for optimal T2 seed production.


Bioassay


Transgenic Arabidopsis thaliana plants are selected by allowing the segregating T2 seeds to germinate on appropriate selection medium. When the roots of these transgenics are well-established they are then transferred to fresh artificial growth medium or soil and allowed to grow under optimal conditions. Whole transgenic plants are tested against nymphs of the green peach aphid (Myzus persicae) to show (1) a significant resistance to plant damage by the feeding nymph, (2) increased nymphal mortality, and/or (3) decreased weight of nymphal survivors (or any other aberrant insect development).


Example 9

Nilaparvata lugens (Brown Plant Hopper)

A. Cloning Nilaparvata lugens Partial Sequences


From high quality total RNA of Nilaparvata lugens (source: Dr. J. A. Gatehouse, Dept. Biological Sciences, Durham University, UK) cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat N°. 18080044, Invitrogen, Rockville, Md., USA) following the manufacturer's protocol.


To isolate cDNA sequences comprising a portion of the Nilaparvata lugens NL001, NL002, NL003, NL004, NL005, NL006, NL007, NL008, NL009, NL010, NL011, NL012, NL013, NL014, NL015, NL016, NL018, NL019, NL021, NL022, and NL027 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat N°. N8080240; Applied Biosystems) following the manufacturer's protocol.


The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-NL. These primers were used in respective PCR reactions with the following conditions: for NL001: 5 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 55° C. and 1 minute at 72° C., followed by 10 minutes at 72° C.: for NL002: 3 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 55° C. and 1 minute at 72° C., followed by 10 minutes at 72° C.; for NL003: 3 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 61° C. and 1 minute at 72° C., followed by 10 minutes at 72° C.; for NL004: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 51° C. and 1 minute at 72° C.; for NL005: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 54° C. and 1 minute at 72° C., followed by 10 minutes at 72° C.; for NL006: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 55° C. and 3 minute 30 seconds at 72° C., followed by 10 minutes at 72° C.; for NL007: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 54° C. and 1 minute 15 seconds at 72° C., followed by 10 minutes at 72° C.; for NL008 & NL014: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 53° C. and 1 minute at 72° C., followed by 10 minutes at 72° C.; for NL009, NL011, NL012 & NL019: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 55° C. and 1 minute at 72° C., followed by 10 minutes at 72° C.; for NL010: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 54° C. and 2 minute 30 seconds at 72° C., followed by 10 minutes at 72° C.; for NL013: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 54° C. and 1 minute 10 seconds at 72° C., followed by 10 minutes at 72° C.; for NL015 & NL016: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 54° C. and 1 minute 40 seconds at 72° C., followed by 10 minutes at 72° C.; for NL018: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 54° C. and 1 minute 35 seconds at 72° C., followed by 10 minutes at 72° C.; for NL021, NL022 & NL027: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 54° C. and 1 minute 45 seconds at 72° C., followed by 10 minutes at 72° C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/topo vector (Cat. Nr. K2500 20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-NL and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in Table 3-NL.


B. Cloning of a Partial Sequence of the Nilaparvata lugens NL023 Gene Via EST Sequence


From high quality total RNA of Nilaparvata lugens (source: Dr. J. A. Gatehouse, Dept. Biological Sciences, Durham University, UK) cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat N°. 18080044, Invitrogen, Rockville, Md., USA) following the manufacturer's protocol.


A partial cDNA sequence, NL023, was amplified from Nilaparvata lugens cDNA which corresponded to a Nilaparvata lugens EST sequence in the public database Genbank with accession number CAH65679.2. To isolate cDNA sequences comprising a portion of the NL023 gene, a series of PCR reactions with EST based specific primers were performed using PerfectShot™ ExTaq (Cat N°. RR005A, Takara Bio Inc.) following the manafacturer's protocol.


For NL023, the specific primers oGBKW002 and oGBKW003 (represented herein as SEQ ID NO 1157 and SEQ ID NO 1158, respectively) were used in two independent PCR reactions with the following conditions: 3 minutes at 95° C., followed by 30 cycles of 30 seconds at 95° C., 30 seconds at 56° C. and 2 minutes at 72° C., followed by 10 minutes at 72° C. The resulting PCR products were analyzed on agarose gel, purified (QIAquick® Gel Extraction Kit; Cat. N°. 28706, Qiagen), cloned into the pCR4-TOPO vector (Cat N°. K4575-40, Invitrogen) and sequenced. The consensus sequence resulting from the sequencing of both PCR products is herein represented by SEQ ID NO 1111 and is referred to as the partial sequence of the NL023 gene. The corresponding partial amino acid sequence is herein represented as SEQ ID NO 1112.


C. dsRNA Production of Nilaparvata lugens Genes


dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5′ T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.


For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-NL. The conditions in the PCR reactions were as follows: for NL001 & NL002: 4 minutes at 94° C., followed by 35 cycles of 30 seconds at 94° C., 30 seconds at 60° C. and 1 minute at 72° C., followed by 10 minutes at 72° C.; for NL003: 4 minutes at 94° C., followed by 35 cycles of 30 seconds at 94° C., 30 seconds at 66° C. and 1 minute at 72° C., followed by 10 minutes at 72° C.; for NL004, NL006, NL008, NL009, NL010 & NL019: 4 minutes at 95° C., followed by 35 cycles of 30 seconds at 95° C., 30 seconds at 54° C. and 1 minute at 72° C., followed by 10 minutes at 72° C.; for NL005 & NL016: 4 minutes at 95° C., followed by 35 cycles of 30 seconds at 95° C., 30 seconds at 57° C. and 1 minute at 72° C., followed by 10 minutes at 72° C.; for NL007 & NL014: 4 minutes at 95° C., followed by 35 cycles of 30 seconds at 95° C., 30 seconds at 51° C. and 1 minute at 72° C., followed by 10 minutes at 72° C.; for NL011, NL012 & NL022: 4 minutes at 95° C., followed by 35 cycles of 30 seconds at 95° C., 30 seconds at 53° C. and 1 minute at 72° C., followed by 10 minutes at 72° C.; for NL013, NL015, NL018 & NL021: 4 minutes at 95° C., followed by 35 cycles of 30 seconds at 95° C., 30 seconds at 55° C. and 1 minute at 72° C., followed by 10 minutes at 72° C.; for NL023 & NL027: 4 minutes at 95° C., followed by 35 cycles of 30 seconds at 95° C., 30 seconds at 52° C. and 1 minute at 72° C., followed by 10 minutes at 72° C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-NL. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen). The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions, but with the following modification: RNA peppet is washed twice in 70% ethanol. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-NL.


The template DNA used for the PCR reactions with T7 primers on the green fluorescent protein (gfp) control was the plasmid pPD96.12 (courtesy of the Andrew Fire Lab, Standford Unversity), which contains the wild-type gfp coding sequence interspersed by 3 synthetic introns. Double stranded RNA was synthesized using the commercially available kit T7 RiboMAX™ Express RNAi System (Cat. No. P1 700, Promega). First two separate single 5′ T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter. For gfp, the sense T7 template was generated using the specific T7 FW primer oGAU183 and the specific RV primer oGAU182 (represented herein as SEQ ID NO 236 and SEQ ID NO 237, respectively) in a PCR reaction with the following conditions: 4 minutes at 95° C., followed by 35 cycles of 30 seconds at 95° C., 30 seconds at 55° C. and 1 minute at 72° C., followed by 10 minutes at 72° C. The anti-sense T7 template was generated using the specific FW primer oGAU181 and the specific T7 RV primer oGAU184 (represented herein as SEQ ID NO 238 and SEQ ID NO 239, respectively) in a PCR reaction with the same conditions as described above. The resulting PCR products were analyzed on agarose gel and purified (QIAquick® PCR Purification Kit; Cat. N°. 28106, Qiagen). The generated T7 FW and RV templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by precipitation with sodium acetate and isopropanol, following the manufacturer's protocol, but with the following modification: RNA peppet is washed twice in 70% ethanol. The sense strands of the resulting dsRNA is herein represented by SEQ ID NO 235.


D. Laboratory Trials to Screen dsRNA Targets Using Liquid Artificial Diet for Activity Against Nilaparvata lugens


Liquid artificial diet (MMD-1) for the rice brown planthopper, Nilaparvata lugens, was prepared as described by Koyama (1988) [Artificial rearing and nutritional physiology of the planthoppers and leafhoppers (Homoptera: Delphacidae and Deltocephalidae) on a holidic diet. JARQ 22: 20-27], but with a modification in final concentration of diet component sucrose: 14.4% (weight over volume) was used. Diet components were prepared as separate concentrates: 10× mineral stock (stored at 4° C.), 2× amino acid stock (stored at −20° C.) and 10× vitamin stock (stored at −20° C.). The stock components were mixed immediately prior to the start of a bioassay to 4/3× concentration to allow dilution with the test dsRNA solution (4× concentration), pH adjusted to 6.5, and filter-sterilised into approximately 500 μl aliquots.


Rice brown planthopper (Nilaparvata lugens) was reared on two-to-three month old rice (Oryza sativa cv Taichung Native 1) plants in a controlled environment chamber: 27±2° C., 80% relative humidity, with a 16:8 hours light:dark photoperiod. A feeding chamber comprised 10 first or second instar nymphs placed in a small petri dish (with diameter 3 cm) covered with a single layer of thinly stretched parafilm M onto which 50 μl of diet was added. The chamber was sealed with a second layer of parafilm and incubated under the same conditions as the adult cultures but with no direct light exposure. Diet with dsRNA was refreshed every other day and the insects' survival assessed daily. Per treatment, 5 bioassay feeding chambers (replicates) were set up simultaneously. Test and control (gfp) dsRNA solutions were incorporated into the diet to a final concentration of 2 mg/ml. The feeding chambers were kept at 27±2° C., 80% relative humidity, with a 16:8 hours light:dark photoperiod. Insect survival data were analysed using the Kaplan-Meier survival curve model and the survival between groups were compared using the logrank test (Prism version 4.0).


Feeding liquid artificial diet supplemented with intact naked dsRNAs to Nilaparvata lugens in vitro using a feeding chamber resulted in significant increases in nymphal mortalities as shown in four separate bioassays (FIGS. 1(a)-(d)-NL; Tables 10-NL(a)-(d)) (Durham University). These results demonstrate that dsRNAs corresponding to different essential BPH genes showed significant toxicity towards the rice brown planthopper.


Effect of gfp dsRNA on BPH survival in these bioassays is not significantly different to survival on diet only


Tables 10-NL(a)-(d) show a summary of the survival of Nilaparvata lugens on artificial diet supplemented with 2 mg/ml (final concentration) of the following targets; in Table 10-NL(a): NL002, NL003, NL005, NL010; in Table 10-NL(b): NL009, NL016; in Table 10-NL(c): NL014, NL018; and in Table 10-NL(d): NL013, NL015, NL021. In the survival analysis column, the effect of RNAi is indicated as follows: +=significantly decreased survival compared to gfp dsRNA control (alpha<0.05); −=no significant difference in survival compared to gfp dsRNA control. Survival curves were compared (between diet only and diet supplemented with test dsRNA, gfp dsRNA and test dsRNA, and diet only and gfp dsRNA) using the logrank test.


E. Laboratory Trials to Screen dsRNAs at Different Concentrations Using Artificial Diet for Activity Against Nilaparvata lugens


Fifty μl of liquid artificial diet supplemented with different concentrations of target NL002 dsRNA, namely 1, 0.2, 0.08, and 0.04 mg/ml (final concentration), was applied to the brown planthopper feeding chambers. Diet with dsRNA was refreshed every other day and the insects' survival assessed daily. Per treatment, 5 bioassay feeding chambers (replicates) were set up simultaneously. The feeding chambers were kept at 27±2° C., 80% relative humidity, with a 16:8 hours light:dark photoperiod. Insect survival data were analysed using the Kaplan-Meier survival curve model and the survival between groups were compared using the logrank test (Prism version 4.0).


Feeding liquid artificial diet supplemented with intact naked dsRNAs of target NL002 at different concentrations resulted in significantly higher BPH mortalities at final concentrations of as low as 0.04 mg dsRNA per ml diet when compared with survival on diet only, as shown in FIG. 2-NL and Table 11-NL. Table 11-NL summarizes the survival of Nilaparvata lugens artificial diet feeding trial supplemented with 1, 0.2, 0.08, & 0.04 mg/ml (final concentration) of target NL002. In the survival analysis column the effect of RNAi is indicated as follows: +=significantly decreases survival compared to diet only control (alpha<0.05); −=no significant differences in survival compared to diet only control. Survival curves were compared using the logrank test.


Example 10

Chilo suppressalis (Rice Striped Stem Borer)

A. Cloning of Partial Sequence of the Chilo suppressalis Genes Via Family PCR


High quality, intact RNA was isolated from the 4 different larval stages of Chilo suppressalis (rice striped stem borer) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manafacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions.


To isolate cDNA sequences comprising a portion of the CS001, CS002, CS003, CS006, CS007, CS009, CS011, CS013, CS014, CS015, CS016 and CS018 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manafacturer's instructions.


The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-CS. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 55° C. and 1 minute at 72° C., followed by 10 minutes at 72° C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR4/TOPO vector (Cat. Nr. K2500-20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-CS and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in Table 3-CS.


B. dsRNA Production of the Chilo suppressalis Genes


dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5′ T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.


For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-CS. The conditions in the PCR reactions were as follows: 4 minutes at 95° C., followed by 35 cycles of 30 seconds at 95° C., 30 seconds at 55° C. and 1 minute at 72° C., followed by 10 minutes at 72° C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-CS. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO4 precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-CS.


C. Recombination of the Chilo suppressalis Genes into the Plant Vector pK7GWIWG2D(II)


Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, are cloned in anti-sense and sense orientation, separated by the intron—CmR-intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs are generated using the LR recombination reaction between an attL-containing entry clone (see Example 10A) and an attR-containing destination vector (=pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) is obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction is performed by using LR Clonase™ II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments result in a hairpin construct for each of the target genes, having the promoter—sense-intron-CmR-intron-antisense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into A. tumefaciens.


Restriction enzyme digests were carried out on pCR8/GW/TOPO plasmids containing the different targets (see Example 10B). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) is purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) is added together with the LR clonase II enzyme and incubated for at least 1 h at 25° C. After proteinase K solution treatment (10 min at 37° C.), the whole recombination mix is transformed into Top 10 chemically competent cells. Positive clones are selected by restriction digest analyses.


D. Laboratory Trials to Test dsRNA Targets, Using Artificial Diet for Activity Against Chilo suppressalis Larvae


Rice striped stem borers, Chilo suppressalis, (origin: Syngenta, Stein, Switzerland) were maintained on a modified artificial diet based on that described by Kamano and Sato, 1985 (in: Handbook of Insect Rearing. Volumes I & II. P Singh and RF Moore, eds., Elsevier Science Publishers, Amsterdam and New York, 1985, pp 448). Briefly, a litre diet was made up as follows: 20 g of agar added to 980 ml of Milli-Q water and autoclaved; the agar solution was cooled down to approximately 55° C. and the remaining ingredients were added and mixed thoroughly: 40 g corn flour (Polenta), 20 g cellulose, 30 g sucrose, 30 g casein, 20 g wheat germ (toasted), 8 g Wesson salt mixture, 12 g Vanderzant vitamin mix, 1.8 g sorbic acid, 1.6 g nipagin (methylparaben), 0.3 g aureomycin, 0.4 g cholesterol and 0.6 g L-cysteine. The diet was cooled down to approx. 45° C. and poured into rearing trays or cups. The diet was left to set in a horizontal laminair flow cabin. Rice leaf sections with oviposited eggs were removed from a cage housing adult moths and pinned to the solid diet in the rearing cup or tray. Eggs were left to hatch and neonate larvae were available for bioassays and the maintenance of the insect cultures. During the trials and rearings, the conditions were 28±2° C. and 80±5% relative humidity, with a 16:8 hour light:dark photoperiod.


The same artificial diet is used for the bioassays but in this case the diet is poured equally in 24 multiwell plates, with each well containing 1 ml diet. Once the diet is set, the test formulations are applied to the diet's surface (2 cm2), at the rate of 50 μl of 1 μg/μl dsRNA of target. The dsRNA solutions are left to dry and two first instar moth larvae are placed in each well. After 7 days, the larvae are transferred to fresh treated diet in multiwell plates. At day 14 (i.e. 14 days post bioassay start) the number of live and dead insects is recorded and examined for abnormalities. Twenty-four larvae in total are tested per treatment.


An alternative bioassay is performed in which treated rice leaves are fed to neonate larvae of the rice striped stem borer. Small leaf sections of Indica rice variety Taichung native 1 are dipped in 0.05% Triton X-100 solution containing 1 μg/μl of target dsRNA, left to dry and each section placed in a well of a 24 multiwell plate containing gellified 2% agar. Two neonates are transferred from the rearing tray to each dsRNA treated leaf section (24 larvae per treatment). After 4 and 8 days, the larvae are transferred to fresh treated rice leaf sections. The number of live and dead larvae are assessed on days 4, 8 and 12; any abnormalities are also recorded.


Example 11

Plutella xylostella (Diamondback Moth)

A. Cloning of a Partial Sequence of the Plutella xylostella


High quality, intact RNA was isolated from all the different larval stages of Plutella xylostella (Diamondback moth; source: Dr. Lara Senior, Insect Investigations Ltd., Capital Business Park, Wentloog, Cardiff, CF3 2PX, Wales, UK) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manufacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions.


To isolate cDNA sequences comprising a portion of the PX001, PX009, PX010, PX015, PX016 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions. The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-PX. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 50° C. and 1 minute and 30 seconds at 72° C., followed by 7 minutes at 72° C. (for PX001, PX009, PX015, PX016); 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 54° C. and 2 minute and 30 seconds at 72° C., followed by 7 minutes at 72° C. (for PX010). The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/TOPO vector (Cat. Nr. K2500-20, Invitrogen) and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-PX and are referred to as the partial sequences. The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in Table 3-PX.


B. dsRNA Production of the Plutella xylostella Genes


dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5′ T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.


For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-PX. The conditions in the PCR reactions were as follows: 1 minute at 95° C., followed by 20 cycles of 30 seconds at 95° C., 30 seconds at 60° C. (−0.5° C./cycle) and 1 minute at 72° C., followed by 15 cycles of 30 seconds at 95° C., 30 seconds at 50° C. and 1 minute at 72° C., followed by 10 minutes at 72° C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-PX. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO4 precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-PX.


C. Recombination of the Plutella xylostella Genes into the Plant Vector pK7GWIWG2D(II)


Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, are cloned in anti-sense and sense orientation, separated by the intron—CmR-intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs are generated using the LR recombination reaction between an attL-containing entry clone (see Example 11A) and an attR-containing destination vector (=pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) is obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction is performed by using LR Clonase™ II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments result in a hairpin construct for each of the target genes, having the promoter—sense-intron-CmR-intron-antisense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into A. tumefaciens.


Restriction enzyme digests were carried out on pCR8/GW/TOPO plasmids containing the different targets (see Example 11B). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) is purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) is added together with the LR clonase II enzyme and incubated for at least 1 h at 25° C. After proteinase K solution treatment (10 min at 37° C.), the whole recombination mix is transformed into Top 10 chemically competent cells. Positive clones are selected by restriction digest analyses.


D. Laboratory Trials to Test dsRNA Targets, Using Artificial Diet for Activity Against Plutella xylostella Larvae


Diamond-back moths, Plutella xylostella, were maintained at Insect Investigations Ltd. (origin: Newcastle University, Newcastle-upon-Tyne, UK). The insects were reared on cabbage leaves. First instar, mixed sex larvae (approximately 1 day old) were selected for use in the trial. Insects were maintained in Eppendorf tubes (1.5 ml capacity). Commercially available Diamond-back moth diet (Bio-Serv, NJ, USA), prepared following the manafacturer's instructions, was placed in the lid of each tube (0.25 ml capacity, 8 mm diameter). While still liquid, the diet was smoother over to remove excess and produce an even surface.


Once the diet has set the test formulations are applied to the diet's surface, at the rate of 25 μl undiluted formulation (1 μg/μl dsRNA of targets) per replicate. The test formulations are allowed to dry and one first instar moth larva is placed in each tube. The larva is placed on the surface of the diet in the lid and the tube carefully closed. The tubes are stored upside down, on their lids such that each larva remains on the surface of the diet. Twice weekly the larvae are transferred to new Eppendorf tubes with fresh diet. The insects are provided with treated diet for the first two weeks of the trial and thereafter with untreated diet.


Assessments are made twice weekly for a total of 38 days at which point all larvae are dead. At each assessment the insects are assessed as live or dead and examined for abnormalities. Forty single larva replicates are performed for each of the treatments. During the trial the test conditions are 23 to 26° C. and 50 to 65% relative humidity, with a 16:8 hour light:dark photoperiod.


Example 12

Acheta domesticus (House Cricket)

A. Cloning Acheta domesticus Partial Sequences


High quality, intact RNA was isolated from all the different insect stages of Acheta domesticus (house cricket; source: Dr. Lara Senior, Insect Investigations Ltd., Capital Business Park, Wentloog, Cardiff, CF3 2PX, Wales, UK) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manafacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript™ III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Md., USA) following the manufacturer's instructions.


To isolate cDNA sequences comprising a portion of the AD001, AD002, AD009, AD015 and AD016 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manafacturer's instructions.


The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-AD. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95° C., followed by 40 cycles of 30 seconds at 95° C., 1 minute at 50° C. and 1 minute and 30 seconds at 72° C., followed by 7 minutes at 72° C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/topo vector (Cat. Nr. K2500 20, Invitrogen) and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-AD and are referred to as the partial sequences. The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in Table 3-AD.


B. dsRNA Production of the Acheta domesticus Genes


dsRNA was synthesized in milligram amounts using the commercially available kit T7 Ribomax™ Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5′ T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.


For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-AD. The conditions in the PCR reactions were as follows: 1 minute at 95° C., followed by 20 cycles of 30 seconds at 95° C., 30 seconds at 60° C. (−0.5° C./cycle) and 1 minute at 72° C., followed by 15 cycles of 30 seconds at 95° C., 30 seconds at 50° C. and 1 minute at 72° C., followed by 10 minutes at 72° C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-AD. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO4 precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-AD.


C. Recombination of the Acheta domesticus Genes into the Plant Vector pK7GWIWG2D(II)


Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, are cloned in anti-sense and sense orientation, separated by the intron—CmR-intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs are generated using the LR recombination reaction between an attL-containing entry clone (see Example 12A) and an attR-containing destination vector (=pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) is obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction is performed by using LR Clonase™ II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments result in a hairpin construct for each of the target genes, having the promoter—sense-intron-CmR-intron-antisense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into A. tumefaciens.


Restriction enzyme digests were carried out on pCR8/GW/TOPO plasmids containing the different targets (see Example 12B). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) is purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) is added together with the LR clonase II enzyme and incubated for at least 1 h at 25° C. After proteinase K solution treatment (10 min at 37° C.), the whole recombination mix is transformed into Top 10 chemically competent cells. Positive clones are selected by restriction digest analyses.


D. Laboratory Trials to Test dsRNA Targets, Using Artificial Diet for Activity Against Acheta domesticus Larvae


House crickets, Acheta domesticus, were maintained at Insect Investigations Ltd. (origin: Blades Biological Ltd., Kent, UK). The insects were reared on bran pellets and cabbage leaves. Mixed sex nymphs of equal size and no more than 5 days old were selected for use in the trial. Double-stranded RNA is mixed with a wheat-based pelleted rodent diet (rat and mouse standard diet, B & K Universal Ltd., Grimston, Aldbrough, Hull, UK). The diet, BK001P, contains the following ingredients in descending order by weight: wheat, soya, wheatfeed, barley, pellet binder, rodent 5 vit min, fat blend, dicalcium phosphate, mould carb. The pelleted rodent diet is finely ground and heat-treated in a microwave oven prior to mixing, in order to inactivate any enzyme components. All rodent diet is taken from the same batch in order to ensure consistency. The ground diet and dsRNA are mixed thoroughly and formed into small pellets of equal weight, which are allowed to dry overnight at room temperature.


Double-stranded RNA samples from targets and gfp control at concentrations 10 μg/μl were applied in the ratio 1 g ground diet plus 1 ml dsRNA solution, thereby resulting in an application rate of 10 mg dsRNA per g pellet. Pellets are replaced weekly. The insects are provided with treated pellets for the first three weeks of the trial. Thereafter untreated pellets are provided. Insects are maintained within lidded plastic containers (9 cm diameter, 4.5 cm deep), ten per container. Each arena contains one treated bait pellet and one water source (damp cotton wool ball), each placed in a separate small weigh boat. The water is replenished ad lib throughout the experiment.


Assessments are made at twice weekly intervals, with no more than four days between assessments, until all the control insects had either died or moulted to the adult stage (84 days). At each assessment the insects are assessed as live or dead, and examined for abnormalities. From day 46 onwards, once moulting to adult has commenced, all insects (live and dead) are assessed as nymph or adult. Surviving insects are weighed on day 55 of the trial. Four replicates are performed for each of the treatments. During the trial the test conditions are 25 to 33° C. and 20 to 25% relative humidity, with a 12:12 hour light:dark photoperiod.












TABLE 1A






C. elegans id


D. melanogaster id

description
devgen RNAi screen







B0250.1
CG1263
large ribosomal subunit L8 protein.
Acute lethal or lethal


B0336.10
CG3661
large ribosomal subunit L23 protein.
Acute lethal or lethal


B0336.2
CG8385
ADP-ribosylation factor
Acute lethal or lethal


B0464.1
CG3821
Putative aspartyl(D) tRNA synthetase.
Acute lethal or lethal


C01G8.5
CG10701
Ortholog of the ERM family of cytoskeletal linkers
Acute lethal or lethal


C01H6.5
CG33183
Nuclear hormone receptor that is required in all larval molts
Acute lethal or lethal


C02C6.1
CG18102
Member of the DYNamin related gene class
Acute lethal or lethal


C03D6.8
CG6764
Large ribosomal subunit L24 protein (Rlp24p)
Acute lethal or lethal


C04F12.4
CG6253
rpl-14 encodes a large ribosomal subunit L14 protein.
Acute lethal or lethal


C04H5.6
CG10689
Product with RNA helicase activity (EC: 2.7.7.—) involved in nuclear
Embryonic lethal or sterile




mRNA splicing, via spliceosome which is a component of the




spliceosome complex


C13B9.3
CG14813
Delta subunit of the coatomer (COPI) complex
Acute lethal or lethal


C17H12.14
CG1088
Member of the Vacuolar H ATPase gene class
Acute lethal or lethal


C26E6.4
CG3180
DNA-directed RNA polymerase II
Acute lethal or lethal


F23F12.6
CG16916
Triple A ATPase subunit of the 26S proteasome's 19S regulatory particle
Acute lethal or lethal




(RP) base subcomplex


F57B9.10
CG10149
Member of the proteasome Regulatory Particle, Non-ATPase-like gene
Acute lethal or lethal




class


K11D9.2
CG3725
sarco-endoplasmic reticulum Ca[2+] ATPase homolog
Embryonic lethal or sterile


T20G5.1
CG9012
Clathrin heavy chain
Acute lethal or lethal


T20H4.3
CG5394
Predicted cytoplasmic prolyl-tRNA synthetase (ProRS)
Acute lethal or lethal


T21E12.4
CG7507
Cytoplasmic dynein heavy chain homolog
Acute lethal or lethal


C05C10.3
CG1140
0rthologue to the human gene 3-OXOACID COA TRANSFERASE
Acute lethal or lethal


C09D4.5
CG2746
Ribosomal protein L19, structural constituent of ribosome involved in
Acute lethal or lethal




protein biosynthesis which is localised to the ribosome


C09E10.2
CG31140
Orthologue of diacylglyerol kinase involved in movement, egg laying, and
Acute lethal or lethal




synaptic transmission, and is expressed in neurons.


C13B9.3
CG14813
Delta subunit of the coatomer (COPI)
Acute lethal or lethal


C14B9.7
CG12775
Large ribosomal subunit L21 protein (RPL-21) involved in protein
Acute lethal or lethal




biosynthesis


C15H11.7
CG30382
Type 6 alpha subunit of the 26S proteasome's 20S protease core particle
Acute lethal or lethal




(CP)


C17E4.9
CG9261
Protein involved with Na+/K+-exchanging ATPase complex
Embryonic lethal or sterile


C17H12.14
CG1088
V-ATPase E subunit
Acute lethal or lethal


C23G10.4
CG11888
Non-ATPase subunit of the 26S proteasome's 19S regulatory paritcle
Acute lethal or lethal




base subcomplex (RPN-2)


C26D10.2
CG7269
Product with helicase activity involved in nuclear mRNA splicing, via
Acute lethal or lethal




spliceosome which is localized to the nucleus


C26E6.4
CG3180
RNA polymerase II 140 kD subunit (RpII140), DNA-directed RNA
Acute lethal or lethal




polymerase activity (EC: 2.7.7.6) involved in transcription from Pol II




promoter which is a component of the DNA-directed RNA polymerase II,




core complex


C26F1.4
CG15697
Product with function in protein biosynthesis and ubiquitin in protein
Acute lethal or lethal




degradation.


C30C11.1
CG12220
Unknown function
Acute lethal or lethal


C30C11.2
CG10484
Member of the proteasome Regulatory Particle, Non-ATPase-like gene
Acute lethal or lethal




class


C36A4.2
CG13977
cytochrome P450
Acute lethal or lethal


C37C3.6
CG33103
Orthologous to thrombospondin, papilin and lacunin
Acute lethal or lethal


C37H5.8
CG8542
Member of the Heat Shock Protein gene class
Acute lethal or lethal


C39F7.4
CG3320
Rab-protein 1 involved in cell adhesion
Acute lethal or lethal


C41C4.8
CG2331
Transitional endoplasmic reticulum ATPase TER94, Golgi organization
Growth delay or arrested in




and biogenesis
growth


C42D8.5
CG8827
ACE-like protein
Acute lethal or lethal


C47E12.5
CG1782
Ubiquitin-activating enzyme, function in an ATP-dependent reaction that
Acute lethal or lethal




activates ubiquitin prior to its conjugation to proteins that will




subsequently be degraded by the 26S proteasome.


C47E8.5
CG1242
Member of the abnormal DAuer Formation gene class
Acute lethal or lethal


C49H3.11
CG5920
Small ribosomal subunit S2 protein.
Acute lethal or lethal


C52E4.4
CG1341
Member of the proteasome Regulatory Particle, ATPase-like gene class
Acute lethal or lethal


C56C10.3
CG8055
Carrier protein with putatively involved in intracellular protein transport
Growth delay or arrested in





growth


CD4.6
CG4904
Type 1 alpha subunit of the 26S proteasome's 20S protease core particle
Acute lethal or lethal




(CP).


D1007.12
CG9282
Large ribosomal subunit L24 protein.
Acute lethal or lethal


D1054.2
CG5266
Member of the Proteasome Alpha Subunit gene class
Acute lethal or lethal


D1081.8
CG6905
MYB transforming protein
Acute lethal or lethal


F07D10.1
CG7726
Large ribosomal subunit L11 protein (RPL-11.2) involved in protein
Acute lethal or lethal




biosynthesis.


F11C3.3
CG17927
Muscle myosin heavy chain (MHC B)
Acute lethal or lethal


F13B10.2
CG4863
Large ribosomal subunit L3 protein (rpl-3)
Acute lethal or lethal


F16A11.2
CG9987
Methanococcus hypothetical protein 0682 like
Acute lethal or lethal


F20B6.2
CG17369
V-ATPase B subunit
Growth delay or arrested in





growth


F23F12.6
CG16916
Triple A ATPase subunit of the 26S proteasome's 19S regulatory particle
Acute lethal or lethal




(RP) base subcomplex (RPT-3)


F25H5.4
CG2238
Translation elongation factor 2 (EF-2), a GTP-binding protein involved in
Growth delay or arrested in




protein synthesis
growth


F26D10.3
CG4264
Member of the Heat Shock Protein gene class
Acute lethal or lethal


F28C6.7
CG6846
Large ribosomal subunit L26 protein (RPL-26) involved in protein
Embryonic lethal or sterile




biosynthesis


F28D1.7
CG8415
Small ribosomal subunit S23 protein (RPS-23) involved in protein
Acute lethal or lethal




biosynthesis


F29G9.5
CG5289
Member of the proteasome Regulatory Particle, ATPase-like gene class
Acute lethal or lethal


F32H2.5
CG3523
Mitochondrial protein
Acute lethal or lethal


F37C12.11
CG2986
Small ribosomal subunit S21 protein (RPS-21) involved in protein
Acute lethal or lethal




biosynthesis


F37C12.4
CG7622
Large ribosomal subunit L36 protein (RPL-36) involved in protein
Acute lethal or lethal




biosynthesis


F37C12.9
CG1527
Small ribosomal subunit S14 protein (RPS-14) involved in protein
Acute lethal or lethal




biosynthesis


F38E11.5
CG6699
beta′ (beta-prime) subunit of the coatomer (COPI) complex
Acute lethal or lethal


F39B2.6
CG10305
Small ribosomal subunit S26 protein (RPS-26) involved in protein
Acute lethal or lethal




biosynthesis


F39H11.5
CG12000
Member of the Proteasome Beta Subunit gene class
Acute lethal or lethal


F40F8.10
CG3395
Ribosomal protein S9 (RpS9), structural constituent of ribosome involved
Acute lethal or lethal




in protein biosynthesis which is a component of the cytosolic small




ribosomal subunit


F42C5.8
CG7808
Small ribosomal subunit S8 protein (RPS-8) involved in protein
Acute lethal or lethal




biosynthesis


F49C12.8
CG5378
Member of the proteasome Regulatory Particle, Non-ATPase-like gene
Acute lethal or lethal




class


F53A3.3
CG2033
Small ribosomal subunit S15a protein.
Acute lethal or lethal


F53G12.10
CG4897
large ribosomal subunit L7 protein (rpl-7)
Acute lethal or lethal


F54A3.3
CG8977
Unknown function
Acute lethal or lethal


F54E2.3
CG1915
Product with sallimus (sls), myosin-light-chain kinase activity




(EC: 2.7.1.117) involved in mitotic chromosome condensation which is




localized to the nucleus


F54E7.2
CG11271
Small ribosomal subunit S12 protein (RPS-12) involved in protein
Acute lethal or lethal




biosynthesis


F55A11.2
CG4214
Member of the SYNtaxin gene class
Acute lethal or lethal


F55A3.3
CG1828
transcritpion factor
Acute lethal or lethal


F55C10.1
CG11217
Ortholog of calcineurin B, the regulatory subunit of the protein
Acute lethal or lethal




phosphatase 2B


F56F3.5
CG2168
rps-1 encodes a small ribosomal subunit S3A protein.
Acute lethal or lethal


F57B9.10
CG10149
Member of the proteasome Regulatory Particle, Non-ATPase-like gene
Acute lethal or lethal




class


F58F12.1
CG2968
ATP synthase
Acute lethal or lethal


F59E10.3
CG3948
Zeta subunit of the coatomer (COPI) complex
Acute lethal or lethal


JC8.3
CG3195
Large ribosomal subunit L12 protein (rpl-12)
Acute lethal or lethal


K01G5.4
CG1404
Putative RAN small monomeric GTPase (cell adhesion)
Acute lethal or lethal


K04F10.4
CG18734
Subtilase
Acute lethal or lethal


K05C4.1
CG12323
Member of the Proteasome Beta Subunit gene class
Acute lethal or lethal


K07D4.3
CG18174
Putative proteasome regulatory particle, lid subcomplex, rpn11
Acute lethal or lethal


K11D9.2
CG3725
Sarco-endoplasmic reticulum Ca[2+] ATPase
Embryonic lethal or sterile;





Acute lethal or lethal


M03F4.2
CG4027
An actin that is expressed in body wall and vulval muscles and the
Acute lethal or lethal




spermatheca.


R06A4.9
CG1109
six WD40 repeats
Acute lethal or lethal


R10E11.1
CG15319
Putative transcriptional cofactor
Acute lethal or lethal


R12E2.3
CG3416
Protein with endopeptidase activity involved in proteolysis and
Acute lethal or lethal




peptidolysis


F10C1.2
CG10119
Member of the Intermediate Filament, B gene class
Embryonic lethal or sterile


F35G12.8
CG11397
Homolog of the SMC4 subunit of mitotic condensin
Embryonic lethal or sterile


F53G12.1
CG5771
GTPase homologue
Embryonic lethal or sterile


F54E7.3
CG5055
PDZ domain-containing protein
Embryonic lethal or sterile


H28O16.1
CG3612
ATP synthase
Growth delay or arrested in





growth


K12C11.2
CG4494
Member of the SUMO (ubiquitin-related) homolog gene class
Embryonic lethal or sterile


R12E2.3
CG3416
Member of the proteasome Regulatory Particle, Non-ATPase-like gene
Acute lethal or lethal




class


R13A5.8
CG6141
Ribosomal protein L9, structural constituent of ribosome involved in
Acute lethal or lethal




protein biosynthesis which is localised to the ribosome


T01C3.6
CG4046
rps-16 encodes a small ribosomal subunit S16 protein.
Acute lethal or lethal


T01H3.1
CG7007
proteolipid protein PPA1 like protein
Acute lethal or lethal


T05C12.7
CG5374
Cytosolic chaperonin
Acute lethal or lethal


T05H4.6
CG5605
eukaryotic peptide chain release factor subunit 1
Acute lethal or lethal


T10H9.4
CG17248
N-synaptobrevin; v-SNARE, vesicle-mediated transport, synaptic vesicle


T14F9.1
CG17332
ATPase subunit
Growth delay or arrested in





growth


T20G5.1
CG9012
Clathrin heavy chain
Acute lethal or lethal


T21B10.7
CG7033
t-complex protein 1
Embryonic lethal or sterile


W09B12.1
CG17907
Acetylcholineesterase


T27F2.1
CG8264
Member of the mammalian SKIP (Ski interacting protein) homolog gene
Acute lethal or lethal




class


ZC434.5
CG5394
predicted mitochondrial glutamyl-tRNA synthetase (GluRS)
Acute lethal or lethal


B0511.6
CG6375
helicase
Embryonic lethal or sterile


DY3.2
CG10119
Nuclear lamin; LMN-1 protein
Growth delay or arrested in





growth


R13G10.1
CG11397
homolog of the SMC4 subunit of mitotic condensin
Wild Type


T26E3.7
CG3612
Predicted mitochondrial protein.
Growth delay or arrested in





growth


Y113G7A.3
CG1250
GTPase activator, ER to Golgi prot transport, component of the Golgi
Acute lethal or lethal




stack


Y43B11AR.4
CG11276
Ribosomal protein S4 (RpS4), structural constituent of ribosome involved
Acute lethal or lethal




in protein biosynthesis which is a component of the cytosolic small




ribosomal subunit


Y46G5A.4
CG5931
Y46G5A.4 gene
Acute lethal or lethal


Y71F9AL.17
CG7961
Alpha subunit of the coatomer (COPI) complex
Acute lethal or lethal


Y76B12C.7
CG10110
Gene cleavage and polyadenylation specificity factor
Embryonic lethal or sterile


Y37D8A.10
CG1751
Unknown function
Embryonic lethal or sterile


CG7765
C06G3.2
Member of the Kinesin-Like Protein gene class


CG10922
C44E4.4
RNA-binding protein
Embryonic lethal or sterile


CG4145
F01G12.5
alpha-2 type IV collagen
Embryonic lethal or sterile


CG13391
F28H1.3
apredicted cytoplasmic alanyl-tRNA synthetase (AlaRS)
Growth delay or arrested in





growth


CG7765
R05D3.7
Member of the UNCoordinated gene class
Embryonic lethal or sterile


CG7398
R06A4.4
Member of the IMportin Beta family gene class
Embryonic lethal or sterile


CG7436
T17E9.2
Unknown function
Embryonic lethal or sterile


CG2666
T25G3.2
putative chitin synthase
Embryonic lethal or sterile


CG17603
W04A8.7
TATA-binding protein associated factor TAF1L (TAFII250)
Embryonic lethal or sterile




















TABLE 1-LD






Dm
SEQ ID
SEQ ID



Target ID
identifier
NO NA
NO AA
Function (based on Flybase)



















LD001
CG11276
1
2
Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis






which is a component of the cytosolic small ribosomal subunit


LD002
CG8055
3
4
Carrier protein with putatively involved in intracellular protein transport


LD003
CG3395
5
6
Ribosomal protein S9 (RpS9), structural constituent of ribosome involved in protein biosynthesis






which is a component of the cytosolic small ribosomal subunit


LD006
CG3180
7
8
RNA polymerase II 140 kD subunit (RpII140), DNA-directed RNA polymerase activity (EC: 2.7.7.6)






involved in transcription from Pol II promoter which is a component of the DNA-directed RNA






polymerase II, core complex


LD007
CG7269
9
10
Helicase at 25E (Hel25E), also known in FlyBase as Dbp25F, Hel, I(2)25Eb and I(2)k11511, pre-






mRNA splicing factor activity involved in nuclear mRNA splicing, via spliceosome which is localized






to the nucleus


LD010
CG1250
11
12
GTPase activator, ER to Golgi prot transport, component of the Golgi stack


LD011
CG1404
13
14
Tutative RAN small monomeric GTPase (cell adhesion)


LD014
CG1088
15
16
V-ATPase E subunit


LD015
CG2331
17
18
Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis


LD016
CG17369
19
20
V-ATPase B subunit


LD018
CG1915
21
22
Sallimus (sls), myosin-light-chain kinase activity (EC: 2.7.1.117) involved in mitotic chromosome






condensation which is localized to the nucleus


LD027
CG6699
23
24
Beta-coatamer protein, subunit of a multimeric complex that forms a membrane vesicle coat




















TABLE 1-PC





Target
Dm
SEQ ID
SEQ ID



ID
identifier
NO NA
NO AA
Function (based on Flybase)







PC001
CG11276
247
248
Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis






which is a component of the cytosolic small ribosomal subunit


PC003
CG3395
249
250
Ribosomal protein S9 (RpS9), structural constituent of ribosome involved in protein biosynthesis






which is a component of the cytosolic small ribosomal subunit


PC005
CG2746
251
252
Ribosomal protein L19, structural constituent of ribosome involved in protein biosynthesis which is






localised to the ribosome


PC010
CG1250
253
254
GTPase activator, ER to Golgi prot transport, component of the Golgi stack


PC014
CG1088
255
256
V-ATPase E subunit


PC016
CG17369
257
258
V-ATPase B subunit


PC027
CG6699
259
260
Beta-coatamer protein, subunit of a multimeric complex that forms a membrane vesicle coat




















TABLE 1-EV





Target
Dm
SEQ ID
SEQ ID



ID
identifier
NO NA
NO AA
Function (based on Flybase)







EV005
CG2746
513
514
Ribosomal protein L19, structural constituent of ribosome involved in protein biosynthesis which is






localised to the ribosome


EV009
CG9261
515
516
Protein involved with Na+/K+-exchanging ATPase complex


EV010
CG1250
517
518
GTPase activator, ER to Golgi prot transport, component of the Golgi stack


EV015
CG2331
519
520
Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis


EV016
CG17369
521
522
V-ATPase B subunit




















TABLE 1-AG





Target
Dm
SEQ ID
SEQ ID



ID
identifier
NO NA
NO AA
Function (based on Flybase)



















AG001
CG11276
601
602
Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis






which is a component of the cytosolic small ribosomal subunit


AG005
CG2746
603
604
Ribosomal protein L19, structural constituent of ribosome involved in protein biosynthesis which is






localised to the ribosome


AG010
CG1250
605
606
GTPase activator, ER to Golgi prot transport, component of the Golgi stack


AG014
CG1088
607
608
V-ATPase E subunit


AG016
CG17369
609
610
V-ATPase B subunit




















TABLE 1-TC





Target
Dm
SEQ ID
SEQ ID



ID
identifier
NO NA
NO AA
Function (based on Flybase)







TC001
CG11276
793
794
Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis






which is a component of the cytosolic small ribosomal subunit


TC002
CG8055
795
796
Protein with putatively involved in intracellular protein transport


TC010
CG1250
797
798
GTPase activator, ER to Golgi prot transport, component of the Golgi stack


TC014
CG1088
799
800
V-ATPase E subunit


TC015
CG2331
801
802
Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis




















TABLE 1-MP





Target
Dm
SEQ ID
SEQ ID



ID
identifier
NO NA
NO AA
Function (based on Flybase)







MP001
CG11276
888
889
Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis






which is a component of the cytosolic small ribosomal subunit


MP002
CG8055
890
891
Carrier protein with putatively involved in intracellular protein transport


MP010
CG1250
892
893
GTPase activator, ER to Golgi prot transport, component of the Golgi stack


MP016
CG17369
894
895
V-ATPase B subunit


MP027
CG6699
896
897
Beta-coatamer protein, subunit of a multimeric complex that forms a membrane vesicle coat




















TABLE 1-NL






Dm
SEQ ID
SEQ ID



Target ID
identifier
NO NA
NO AA
Function (based on Flybase)







NL001
CG11276
1071
1072
Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which






is a component of the cytosolic small ribosomal subunit


NL002
CG8055
1073
1074
Protein with putatively involved in intracellular protein transport


NL003
CG3395
1075
1076
Ribosomal protein S9 (RpS9), structural constituent of ribosome involved in protein biosynthesis which






is a component of the cytosolic small ribosomal subunit


NL004
CG6141
1077
1078
Ribosomal protein L9, structural constituent of ribosome involved in protein biosynthesis which is






localised to the ribosome


NL005
CG2746
1079
1080
Ribosomal protein L19, structural constituent of ribosome involved in protein biosynthesis which is






localised to the ribosome


NL006
CG3180
1081
1082
RNA polymerase II 140 kD subunit (RpII140), DNA-directed RNA polymerase activity (EC: 2.7.7.6)






involved in transcription from Pol II promoter which is a component of the DNA-directed RNA






polymerase II, core complex


NL007
CG7269
1083
1084
Helicase at 25E (Hel25E), also known in FlyBase as Dbp25F, Hel, I(2)25Eb and I(2)k11511, pre-






mRNA splicing factor activity involved in nuclear mRNA splicing, via spliceosome which is localized to






the nucleus


NL008
CG3416
1085
1086
Protein with endopeptidase activity involved in proteolysis and peptidolysis which is a component of






the proteasome regulatory particle, lid subcomplex (sensu Eukarya)


NL009
CG9261
1087
1088
Protein involved with Na+/K+-exchanging ATPase complex


NL010
CG1250
1089
1090
GTPase activator, ER to Golgi prot transport, component of the Golgi stack


NL011
CG1404
1091
1092
Putative RAN small monomeric GTPase (cell adhesion)


NL012
CG17248
1093
1094
N-synaptobrevin; v-SNARE, vesicle-mediated transport, synaptic vesicle


NL013
CG18174
1095
1096
Putative proteasome regulatory particle, lid subcomplex, rpn11


NL014
CG1088
1097
1098
V-ATPase E subunit


NL015
CG2331
1099
1100
Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis


NL016
CG17369
1101
1102
V-ATPase B subunit


NL018
CG1915
1103
1104
Sallimus (sls), myosin-light-chain kinase activity (EC: 2.7.1.117) involved in mitotic chromosome






condensation which is localized to the nucleus


NL019
CG3320
1105
1106
Rab-protein 1 involved in cell adhesion


NL021
CG10110
1107
1108
Gene cleavage and polyadenylation specificity factor


NL022
CG10689
1109
1110
Product with RNA helicase activity (EC: 2.7.7.—) involved in nuclear mRNA splicing, via spliceosome






which is a component of the spliceosome complex


NL023
CG17907
1111
1112
Acetylcholineesterase


NL027
CG6699
1113
1114
Beta-coatomer protein




















TABLE 1-CS






Dm
SEQ ID
SEQ ID



Target ID
identifier
NO NA
NO AA
Function (based on Flybase)







CS001
CG11276
1682
1683
Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis






which is a component of the cytosolic small ribosomal subunit


CS002
CG8055
1684
1685
Carrier protein with putatively involved in intracellular protein transport


CS003
CG3395
1686
1687
Ribosomal protein S9 (RpS9), structural constituent of ribosome involved in protein biosynthesis






which is a component of the cytosolic small ribosomal subunit


CS006
CG3180
1688
1689
RNA polymerase II 140 kD subunit (RpII140), DNA-directed RNA polymerase activity (EC: 2.7.7.6)






involved in transcription from Pol II promoter which is a component of the DNA-directed RNA






polymerase II, core complex


CS007
CG7269
1690
1691
Helicase at 25E (Hel25E), also known in FlyBase as Dbp25F, Hel, I(2)25Eb and I(2)k11511, pre-






mRNA splicing factor activity involved in nuclear mRNA splicing, via spliceosome which is localized






to the nucleus


CS009
CG9261
1692
1693
Protein involved with Na+/K+-exchanging ATPase complex


CS011
CG1404
1694
1695
Tutative RAN small monomeric GTPase (cell adhesion)


CS013
CG18174
1696
1697
Putative proteasome regulatory particle, lid subcomplex, rpn11


CS014
CG1088
1698
1699
V-ATPase E subunit


CS015
CG2331
1700
1701
Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis


CS016
CG17369
1702
1703
V-ATPase B subunit


CS018
CG1915
1704
1705
Sallimus (sls), myosin-light-chain kinase activity (EC: 2.7.1.117) involved in mitotic chromosome






condensation which is localized to the nucleus




















TABLE 1-PX






Dm
SEQ ID
SEQ ID



Target ID
identifier
NO NA
NO AA
Function (based on Flybase)







PX001
CG11276
2100
2101
Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis






which is a component of the cytosolic small ribosomal subunit


PX009
CG9261
2102
2103
Protein involved with Na+/K+-exchanging ATPase complex


PX010
CG1250
2104
2105
GTPase activator, ER to Golgi prot transport, component of the Golgi stack


PX015
CG2331
2106
2107
Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis


PX016
CG17369
2108
2109
V-ATPase B subunit




















TABLE 1-AD






Dm
SEQ ID
SEQ ID



Target ID
identifier
NO NA
NO AA
Function (based on Flybase)







AD001
CG11276
2364
2365
Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis






which is a component of the cytosolic small ribosomal subunit


AD002
CG8055
2366
2367
Carrier protein with putatively involved in intracellular protein transport


AD009
CG9261
2368
2369
Protein involved with Na+/K+-exchanging ATPase complex


AD015
CG2331
2370
2371
Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis


AD016
CG17369
2372
2373
V-ATPase B subunit



















TABLE 2-LD





Target
Primer Forward
Primer Reverse
cDNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







LD001
SEQ ID NO: 25
SEQ ID NO: 26
SEQ ID NO: 1



GGCCCCAAGAA
TAGCGGATGGT
GGCCCCAAGAAGCATTTGAAGCGTTTGAATGCCCCAAAAGCATGGATGTTGGATAAATTGG



GCATTTGAAGC
GCGDCCRTCRT
GAGGTGTTTTCGCACCTCGCCCATCTACAGGACCTCACAAATTGCGAGAGTCTTTGCCCTT



G
G
GGTGATCTTCCTACGTAACCGATTGAAGTATGCTTTGACTAACAGCGAAGTTACTAAGATTG





TTATGCAAAGGTTAATCAAAGTAGATGGAAAAGTGAGGACCGACTCCAATTACCCTGCTGG





GTTTATGGATGTTATTACCATTGAAAAAACTGGTGAATTTTTCCGACTCATCTATGATGTTAA





AGGACGATTTGCAGTGCATCGTATTACTGCTGAGGAAGCAAAGTACAAACTATGCAAAGTC





AGGAGGATGCAAACTGGCCCCAAAGGAATTCCCTTCATAGTGACACACGACGGCCGCACC





ATCCGCTA





LD002
SEQ ID NO: 27
SEQ ID NO: 28
SEQ ID NO: 3



GAGCGGCCAT
GCAATGTCATC
GCAATGTCATCCATCATGTCGTGTACATTGTCCACGTCCAAGTTTTTATGGGCTTTCTTAAG



GCAAGCVCTBA
CATCAKRTCRT
AGCTTCAGCTGCATTTTTCATAGATTCCAATACTGTGGTGTTCGTACTAGCTCCCTCCAGAG



ARMRRAAG
GCAC
CTTCTCGTTGAAGTTCAATAGTAGTTAAAGTGCCATCTATTTGCAACTGATTTTTTTCTAATC





GCTTCTTCCGCTTCAGCGCTTGCATGGCCGCTC





LD003
SEQ ID NO: 29
SEQ ID NO: 30
SEQ ID NO: 5



TCGGTCTTCTC
CAGGTTCTTCC
CAGGTTCTTCCTCTTGACGCGTCCAGGGCGACCACCACCGAATGGAGATTTGAGCGAGAA



GAAGACNTAYG
TCTTKACRCGD
GTCAATATGCTTCTGGGAATCAAGTCTCACAATGAAGCTTGGAATATTCACGACCTGCTTAC



TKAC
CC
GAACCCTGATATGTCTTTGACGGACCAGCACACGAGCATGATGGATTGATTTTGCAAGCCC





CAACTTGAAAACTTGTGTTTGGAGACGTCGTTCCAAGAAATCTTCAATCTTCAAACCCAAGA





CGTAATCAAGCTTCATACGGGTTTCATCCAACACTCCAATACGCACCAACCGACGAAGAAG





AGCATTGCCTTCAAACAACCTGCGCTGATCTTTCTCTTCCAAAGTCAGAAGTTCTCTGGCAG





CTTTACGGATTTTTGCCAAGGTATACTTGACTCGCCACACTTCACGTTTGTTCCTAAGACCA





TATTCTCCTATGATTTTCAACTCCTGATCAAGACGTGCCTTTTCATAAGGTCGCCTGGGA





LD006
SEQ ID NO: 31
SEQ ID NO: 32
SEQ ID NO: 7



GGAGCGAGAC
CTCGAACTGCT
GGAGCGAGACTACACAACTATGGCTGGCAGGTGTTGGTTGCTTCTGGTGTGGTGGAATAC



TACAACAAYKA
CYTCYTGATCR
ATCGACACTCTTGAAGAAGAAACTGTCATGATTGCGATGAATCCTGAGGATCTTCGGCAGG



YRGYTGGC
CC
ACAAAGAATATGCTTATTGTACGACCTACACCCACTGCGAAATCCACCCGGCCATGATCTT





GGGCGTTTGCGCGTCTATTATACCTTTCCCCGATCATAACCAGAGCCCAAGGAACACCTAC





CAGAGCGCTATGGGTAAGCAAGCTATGGGGGTCTACATTACGAATTTCCACGTGCGGATG





GACACCCTGGCCCACGTGCTATACTACCCGCACAAACCTCTGGTCACTACCAGGTCTATG





GAGTATCTGCGGTTCAGAGAATTACCAGCCGGGATCAACAGTATAGTTGCTATTGCTTGTT





ATACTGGTTATAATCAAGAAGATTCTGTTATTCTGAACGCGTCTGCTGTGGAAAGAGGATTT





TTCCGATCCGTGTTTTATCGTTCCTATAAAGATGCCGAATCGAAGCGAATTGGCGATCAAG





AAGAGCAGTTCGAG





LD007
SEQ ID NO: 33
SEQ ID NO: 34
SEQ ID NO: 9



CCGAAGAAGGA
CGATGCAAGTA
CCGAAGAAGGATGTGAAGGGTACTTACGTATCCATACACAGTTCAGGCTTCAGAGATTTTT



YGTSAAGGGYA
GGTGTCKGART
TATTGAAACCAGAAATTCTAAGAGCTATAGTTGACTGCGGTTTTGAACACCCTTCAGAAGTT



C
CYTC
CAGCACGAATGTATTCCTCAAGCTGTCATTGGCATGGACATTTTATGTCAAGCCAAATCTGG





TATGGGCAAAACGGCAGTGTTTGTTCTGGCGACACTGCAACAATTGGAACCAGCGGACAAT





GTTGTTTACGTTTTGGTGATGTGTCACACTCGTGAACTGGCTTTCCAAATCAGCAAAGAGTA





CGAGAGGTTCAGTAAATATATGCCCAGTGTCAAGGTGGGCGTCTTTTTCGGAGGAATGCCT





ATTGCTAACGATGAAGAAGTATTGAAAAACAAATGTCCACACATTGTTGTGGGGACGCCTG





GGCGTATTTTGGCGCTTGTCAAGTCTAGGAAGCTAGTCCTCAAGAACCTGAAACACTTCAT





TCTTGATGAGTGCGATAAAATGTTAGAACTGTTGGATATGAGGAGAGACGTCCAGGAAATC





TACAGAAACACCCCTCACACCAAGCAAGTGATGATGTTCAGTGCCACACTCAGCAAAGAAA





TCAGGCCGGTGTGCAAGAAATTCATGCAAGATCCAATGGAGGTGTATGTAGACGATGAAG





CCAAATTGACGTTGCACGGATTACAACAGCATTACGTTAAACTCAAAGAAAATGAAAAGAAT





AAAAAATTATTTGAGTTGCTCGATGTTCTCGAATTTAATCAGGTGGTCATTTTTGTGAAGTCC





GTTCAAAGGTGTGTGGCTTTGGCACAGTTGCTGACTGAACAGAATTTCCCAGCCATAGGAA





TTCACAGAGGAATGGACCAGAAAGAGAGGTTGTCTCGGTATGAGCAGTTCAAAGATTTCCA





GAAGAGAATATTGGTAGCTACGAATCTCTTTGGGCGTGGCATGGACATTGAAAGGGTCAAC





ATTGTCTTCAACTATGATATGCCAGAGGACTCCGACACCTACTTGCATCG





LD010
SEQ ID NO: 35
SEQ ID NO: 36
SEQ ID NO: 11



CTCTCAAGGAT
CGCCATTGGGC
CTCTCAAGGATTCGTTGCAGATGTCTTTGAGCTTGTTGCCCCCGAATGCCTTGATAGGGTT



TCKYTRCARAT
RATGGTYTCKC
GATTACCTTTGGGAAGATGGTCCAAGTGCACGAACTAGGTACCGAGGGCTGCAGCAAATC



GTC
C
TTACGTTTTCCGAGGGACGAAAGACCTCACAGCTAAGCAAGTTCAAGAGATGTTGGAAGTG





GGCAGAGCCGCAGTAAGTGCTCAACCTGCTCCTCAACAACCAGGACAACCCATGAGGCCT





GGAGCACTCCAGCAAGCTCCTACGCCACCAGGAAGCAGGTTCCTTCAACCCATCTCGAAA





TGCGACATGAACCTCACTGATCTTATTGGAGAGTTGCAAAGAGACCCATGGCCTGTCCACC





AAGGCAAATGCGCCCTTAGATCGACCGGGACAGCTTTATCGATAGCCATTGGGTTGTTGGA





GTGCACATACGCCAATACTGGTGCCAGGGTCATGCTATTCGTTGGAGGACCTTGCTCTCAA





GGCCCTGGTCAAGTCTTGAATGATGATCTGAAGCAACCTATCAGATCTCACCACGACATCC





AAAAAGACAATGCCAAATACATGAAGAAAGCAATCAAGCACTATGATAATTTAGCGATGAGA





GCAGCAACGAATGGCCACTGCGTTGACATATATTCATGCGCTTTGGATCAGACAGGATTGA





TGGAGATGAAACAGTGTTGTAATTCAACAGGGGGACATATGGTCATGGGCGACTCGTTCAA





TTCTTCCCTGTTCAAGCAAACGTTCCAGCGCATATTTTCGAAAGATCAGAAAAACGAGCTGA





AGATGGCATTTAATGGTACTCTGGAGGGTCAAGTGTTCCAGGGAGTTGAAAATTCAAGGCG





GTATTGGATCTTGTGTTTCGTTGAATGTGAAGAATCCTTTGGTTTCCGACACCGAAATAGGA





ATGGGTAACACGGTCCAGTGGAAAATGTGTACGGTAACTCCAAGTACTACCATGGCCTTGT





TCTTCGAGGTCGTCAACCAACATTCCGCTCCCATACCTCAAGGGGGAAGGGGCTGCATAC





AGTTCATCACGCAATATCAGCATGCTAGTGGCCAGAAGAGGATCCGAGTAACGACAGTTGC





TAGAAACTGGGCCGATGCTTCCGCTAATATACATCATGTCAGTGCTGGATTCGATCAGGAG





GCAGCCGCAGTGATAATGGCGAGGATGGCAGTTTACAGAGCGGAATCAGACGATAGCCCT





GATGTTTTGAGATGGGTCGATAGGATGTTGATACGTCTGTGCCAGAAATTCGGCGAATATA





ACAAGGACGACCCGAATTCGTTCCGCTTGGGCGAAAACTTCAGCCTCTACCCGCAGTTCAT





GTACCATTTGAGAAGGTCACAGTTCCTGCAGGTGTTTAACAATTCTCCCGACGAAACGTCC





TTCTACAGGCACATGCTTATGCGCGAAGACCTCACGCAGTCGCTGATCATGATCCAGCCGA





TACTCTACAGCTACAGTTTCAATGGACCACCAGAACCTGTGCTTTTGGATACGAGTTCCATC





CAACCCGATAGAATTCTGCTCATGGACACGTTCTTCCAGATTCTGATATTCCATGGCGAAAC





CATCGCCCAATGGCG





LD011
SEQ ID NO: 37
SEQ ID NO: 38
SEQ ID NO: 13



CCCACTTTCAA
GTGGAAGCAG
GTGGAAGCAGGGCTGGCATGGCGACAAATTCTAGATTGGGATCACCAATAAGCTTCCTAG



GTGYGTRYTRG
GGCWGGCATK
CTAGCCATAGGAAAGGCTTCTCAAAGTTGTAGTTAGATTTGGCAGAGATATCATAGTACTGC



TCGG
GCRAC
AAATTCTTCTTCCTATGAAAGACAATACTTTTCGCTTTTACTTTTCTGTCTTTGATGTCAACCT





TGTTCCCGCAAAGTACTATCGGGATATTTTCACAGACTCTGACAAGATCTCTGTGCCAATTT





GGTACATTCTTGTATGTAACTCTGGAAGTTACATCAAACATGATAATAGCACACTGTCCCTG





AATGTAATATCCATCACGGAGACCACCAAACTTCTCCTGACCGGCAGTGTCCCATACATTG





AACCGAATAGGGCCCCTGTTTGTATGGAAGACCAGAGGATGGACTTCAACTCCCAAAGTAG





CTACATATCTTTTTTCAAATTCACCAGTCATATGACGTTTCACAAATGTCGTTTTTCCAGTAC





CTCCATCTCCGACCAACACACACTTGAAAGTGGG





LD014
SEQ ID NO: 39
SEQ ID NO: 40
SEQ ID NO: 15



CGCAGATCAAR
CGGATCTCGG
CGCAGATCAAGCATATGATGGCTTTCATTGAACAAGAGGCAAACGAAAAGGCAGAAGAAAT



CAYATGATGGC
GCASMARYTGC
CGATGCCAAGGCCGAGGAAGAATTTAATATTGAAAAGGGGCGCCTTGTTCAGCAACAACGT





CTCAAGATTATGGAATATTATGAGAAGAAAGAGAAACAGGTCGAACTCCAGAAAAAAATCCA





ATCGTCTAACATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTT





CGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGACCAGGGAAAA





TATTCCCAAATCCTGGAAAGCCTCATTTTGCAGGGATTATATCAGCTTTTTGAGAAAGATGT





TACCATTCGAGTTCGGCCCCAGGACCGAGAACTGGTCAAATCCATCATTCCCACCGTCACG





AACAAGTATAAAGATGCCACCGGTAAGGACATCCATCTGAAAATTGATGACGAAATCCATCT





GTCCCAAGAAACCACCGGGGGAATCGACCTGCTGGCGCAGAAAAACAAAATCAAGATCAG





CAATACTATGGAGGCTCGTCTGGAGCTGATTTCGCAGCAACTTCTGCCCGAGATCCG





LD014_


SEQ ID NO: 159


F1


TCTAGAATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTA





CCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGCCCGGG





LD014_


SEQ ID NO: 160


F2


TCTAGAAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCA





CAAACGCCCGGG





LD014_


SEQ ID NO: 161


C1


TCTAGAATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTA





CCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGATGTTGAATCAGGCT





CGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGT





AAACGACTTGGTCAGGTCACAAACGATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTT





AGGGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACA





AACGCCCGGG





LD014_


SEQ ID NO: 162


C2


TCTAGAAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCA





CAAACGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCA





CAAACGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCA





CAAACGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCA





CAAACGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCA





CAAACGCCCGGG





LD015
SEQ ID NO: 41
SEQ ID NO: 42
SEQ ID NO: 17



CGCCATCCRTC
GCAATGGCATC
GCAATGGCATCAAGTTCATCGATGAAGATGATCGCCGGAGAGTTTTTGTCAGCTTCTTCAA



GCTSTTCAAGG
AAKYTCRTCRA
AAGCTTTGCGCAAGTTACTCTCAGACTCGCCAGCGAGTTTGCTCATGATCTCCGGCCCGTT



C
TG
TATCAAGAAGAAGAACGCCCCAGTCTCATTAGCCACGGCGCGAGCAATCAGGGTCTTACC





CGTACCAGGGGGACCATACAGCAGTATACCCCTAGGGGGCTTCACGCCGATAGCCTTGAA





GAGCGATGGATGGCG





LD016
SEQ ID NO: 43
SEQ ID NO: 44
SEQ ID NO: 19



GACTGTGTCTG
GGAATAGGATG
GGAATAGGATGGGTAATGTCGTCGTTGGGCATAGTCAATATAGGAATCTGGGTGATGGATC



GTGTRAACGG
GGTRATRTCGT
CGTTACGTCCTTCAACACGGCCGGCACGTTCATAGATGGTAGCTAAATCGGTGTACATGTA



WCC
CG
ACCTGGGAAACCACGACGACCAGGCACCTCTTCTCTGGCAGCAGATACCTCACGCAAAGC





TTCTGCATACGAAGACATATCTGTCAAGATGACCAAGACGTGCTTCTCACATTGGTAAGCC





AAGAATTCGGCAGCTGTCAAAGCCAGACGAGGTGTAATAATTCTTTCAATGGTAGGATCGT





TGGCCAAATTCAAGAACAGGCAGACATTCTCCATAGAACCGTTCTCTTCGAAATCCTGTTTG





AAGAACCTAGCTGTTTCCATGTTAACACCCATAGCAGCGAAAACAATAGCAAAGTTATCTTC





ATGATCATCAAGTACAGATTTACCAGGAATCTTGACTAAACCAGCCTGTCTACAGATCTGGG





CAGCAATTTCATTGTGAGGCAGACCAGCTGCAGAGAAAATGGGGATCTTCTGACCACGAG





CAATGGAGTTCATCACGTCAATAGCTGTAATACCCGTCTGGATCATTTCCTCAGGATAGATA





CGGGACCACGGATTGATTGGTTGACCCTGGATGTCCAAGAAGTCTTCAGCCAAAATTGGG





GGACCTTTGTCGATGGGTTTTCCTGATCCATTGAAAACACGTCCCAACATATCTTCAGAAAC





AGGAGTCCTCAAAATATCTCCTGTGAATTCACAAGCGGTGTTTTTGGCGTCGATTCCTGAT





GTGCCCTCGAACACTTGAACCACAGCTTTTGACCCACTGACTTCCAGAACTTGTCCCGAAC





GTATAGTGCCATCAGCCAGTTTGAGTTGTACGATTTCATTGTACTTGGGGAACTTAACATCT





TCGAGGATTACCAGAGGACCGTTCACACCAGACACAGTC





LD018
SEQ ID NO: 45
SEQ ID NO: 46
SEQ ID NO: 21



CACCTGGTTCA
GTGCATCGGTA
CACCTGGTTCAAGGATGGGCAGCGGATAACGGAGTCGCAGAAATACGAGAGCACCTTCTC



AGRATGGVCAR
CCAHSCHGCRT
GAACAACCAAGCCTCCTTGAGGGTAAAACAAGCCCAGTCTGAGGACTCGGGACACTACAC



MG
C
TTTGTTGGCGGAGAACCCTCAAGGCTGCATAGTGTCATCTGCTTACTTAGCCATAGAACCG





GTAACCACCCAGGAAGGGTTGATCCACGAGTCCACCTTCAAGCAGCAACAGACCGAAATG





GAGCAAATCGACACCAGCAAGACCTTGGCGCCTAACTTCGTCAGGGTTTGCGGGGATAGA





GACGTGACCGAGGGCAAGATGACCCGCTTCGACTGTCGCGTCACTGGTCGTCCTTATCCA





GACGTGACATGGTACATAAACGGTCGACAAGTCACCGACGACCACAACCACAAGATTTTGG





TTAACGAATCCGGAAACCATGCCCTGATGATCACCACCGTGAGCAGGAACGACTCAGGAG





TAGTGACCTGCGTCGCCAGGAACAAGACGGGAGAAACCTCCTTCCAGTGCAACCTTAACG





TCATCGAAAAGGAACAGGTAGTCGCGCCCAAGTTCGTGGAGAGATTTACCACAGTCAACGT





GGCAGAAGGAGAACCAGTGTCTCTGCGCGCTAGAGCTGTTGGCACGCCGGTGCCGCGAA





TCACTTGGCAGAGGGACGGGGCGCCCCTAGCCAGCGGGCCCGACGTTCGCATCGCGATT





GACGGTGGAGCCTCTACTTTGAATATCTCGAGGGCCAAGGCCTCGGATGCTGCATGGTAC





CGATGCAC





LD027
SEQ ID NO: 47
SEQ ID NO: 48
SEQ ID NO: 23



CCATGGTGGC
GGTATAGATGA
CCATGGTGGCGATAAACCATACTTGATATCGGGAGCAGACGATCGGTTGGTTAAAATCTGG



GAYAARCCVTA
ARCARTCDCCV
GACTATCAAAACAAAACGTGTGTCCAAACCTTGGAAGGACACGCCCAAAACGTAACCGCG



C
ACCCA
GTTTGTTTCCACCCTGAACTACCTGTGGCTCTCACAGGCAGCGAAGATGGTACCGTTAGAG





TTTGGCATACGAATACACACAGATTAGAGAATTGTTTGAATTATGGGTTCGAGAGAGTGTG





GACCATTTGTTGCTTGAAGGGTTCGAATAATGTTTCTCTGGGGTATGACGAGGGCAGTATA





TTAGTGAAAGTTGGAAGAGAAGAACCGGCAGTTAGTATGGATGCCAGTGGCGGTAAAATAA





TTTGGGCAAGGCACTCGGAATTACAACAAGCTAATTTGAAGGCGCTGCCAGAAGGTGGAG





AAATAAGAGATGGGGAGCGTTTACCTGTCTCTGTAAAAGATATGGGAGCATGTGAAATATA





CCCTCAAACAATCCAACATAATCCGAATGGAAGATTCGTTGTAGTATGCGGAGACGGCGAA





TATATCATTTACACAGCGATGGCTCTACGGAACAAGGCTTTTGGAAGCGCTCAAGAGTTTG





TCTGGGCTCAGGACTCCAGCGAGTATGCCATTCGCGAGTCTGGTTCCACAATTCGGATATT





CAAAAACTTCAAAGAAAGGAAGAACTTCAAGTCGGATTTCAGCGCGGAAGGAATCTACGGG





GGTTTTCTCTTGGGGATTAAATCGGTGTCCGGTTTAACGTTTTACGATTGGGAAACTTTGGA





CTTGGTGAGACGGATTGAAATACAACCGAGGGCGGTTTATTGGTCTGACAGTGGAAAATTA





GTCTGTCTCGCAACGGAGGACAGCTACTTCATCCTTTCTTATGATTCGGAGCAAGTTCAGA





AGGCCAGGGAGAACAATCAAGTCGCAGAGGATGGCGTAGAGGCCGCTTTCGATGTGTTGG





GGGAAATGAACGAGTCTGTCCGAACAGGTCTTTGGGTCGGAGACTGTTTCATCTATACC



















TABLE 2-PC





Target
Primer Forward
Primer Reverse
cDNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







PC001
SEQ ID NO: 261
SEQ ID NO: 262
SEQ ID NO: 247



CATTTGAAGCG
CTTCGTGCCCT
CATTTGAAGCGTTTAGCTGCTCCCAAAGCATGGATGTTGGACAAATTGGGGGGTGTCTTCGCCC



TTTWRMYGCY
TGCCRATKATR
CTCGTCCATCCACCGGGCCTCACAAGTTGCGCGAATCCCTGCCTTTAGTGATTTTCCTTCGTAAC



CC
AABACG
AGGCTGAAGTATGCCCTTACAAACAGTGAAGTCACTAAAATTGTCATGCAAAGGTTGATCAAAGT





TGATGGTAAAGTGAGGACTGATTCTAATTACCCTGCTGGTTTCATGGATGTCATTACTATTGAGAA





GACTGGTGAATTTTTCCGTCTGATCTATGATGTTAAAGGAAGATTTGCTGTGCACCGTATTACAGC





TGAAGAGGCAAAATACAAGTTGTGTAAAGTAAGGAGAGTCCAAACTGGTCCCAAAGGAATCCCAT





TTTTGGTAACACATGATGGCAGAACCATTCGTTACCCTGACCCCAACATCAAAGTGAATGACACA





ATTCAAATGGAAATTGCTACATCTAAAATTCTTGACTACATCAAATTTGAATCTGGCAACCTCTGC





ATGATCACGGGGAGG





PC003
SEQ ID NO: 263
SEQ ID NO: 264
SEQ ID NO: 249



TCGGTCTTCTC
CCCTGGTTCTT
CCCTAGACGTCCCTATGAAAAGGCCCGTCTGGATCAGGAATTGAAAATTATCGGCGCCTTTGGTT



GAAGACNTAYG
CTTVRRRTTCT
TACGAAACAAACGTGAAGTGTGGAGAGTAAAGTACACTTTGGCTAAAATCCGTAAAGCTGCTCGT



TKAC
TCCTC
GAACTGCTCACCCTAGAAGAAAAAGAGCCTAAAAGATTGTTTGAAGGTAATGCACTTCTACGTCG





TTTGGTGCGAATTGGTGTTCTGGATGAGAACAGGATGAAGCTTGATTATGTTTTGGGTCTGAAAA





TTGAAGATTTCTTGGAAAGAAGGCTCCAAACTCAGGTGTTCAAATCTGGTCTGGCAAAGTCAATT





CATCATGCTAGAGTACTGATTAGGCAGAGACACATCCGGGTGCGCAAGCAGGTGGTGAACATCC





CCTCGTTCATCGTGCGGCTGGACTCGCAGAAGCACATCGACTTCTCCCTGAAGTCGCCCTTCGG





GGGTGGCCGACCTGGCCGTGTCAA





PC005
SEQ ID NO: 265
SEQ ID NO: 266
SEQ ID NO: 251



TGCGATGCGG
TCCTGCTTCTT
TGCGATGCGGCAAAAAGAAGGTGTGGTTGGATCCAAATGAAATCAACGAAATCGCCAACACCAA



CAARAARAAGG
SGYRGCRATW
CTCAAGACAAAACATCCGTAAGCTCATCAAGGATGGTCTTATCATCAAGAAGCCAGTGGCAGTAC



TBTGG
CGYTC
ACTCTAGGGCCCGTGTACGCAAGAACACTGAAGCCAGAAGGAAGGGAAGGCATTGTGGATTTG





GAAAGAGGAAGGGTACGGCAAATGCCCGTATGCCTCAAAAGGAACTGTGGGTGCAGCGCATGC





GCGTCCTCAGGCGCCTCCTCAAAAAGTACAGGGAGGCCAAGAAAATCGACCGCCATCTTTACCA





CGCCCTGTACATGAAAGCGAAGGGTAACGTGTTCAGGAACAAGAGGGTCCTTATGGAGTACATC





CACAAGAAGAAGGCAGAGAAGGCCAGGGCCAAGATGCTGTCTGACCAGGCTAACGCCAGGAGA





TTGAAGGTGAAGCAGGCCAGGGAACGTAGGGAAGAGCGTATCGCCACCAAGAAGCAGG





PC010
SEQ ID NO: 267
SEQ ID NO: 268
SEQ ID NO: 253



CTCTCAAGGAT
CGCCATTGGG
CTCTCAAGGATTCTTTGCAGATGTCGCTCAGCCTATTACCGCCCAACGCGTTGATTGGATTGATC



TCKYTRCARAT
CRATGGTYTCK
ACGTTCGGAAAAATGGTGCAAGTCCACGAACTGGGTACCGAAGGCTGCAGCAAGTCGTACGTGT



GTC
CC
TCTGTGGAACGAAAGATCTCACCGCCAAGCAAGTCCAGGAGATGTTGGGCATTGGAAAAGGGTC





ACCAAATCCCCAACAACAGCCAGGGCAACCTGGGCGGCCAGGGCAGAATCCCCAAGCTGCCCC





TGTACCACCGGGGAGCAGATTCTTGCAGCCCGTGTCAAAATGCGACATGAACTTGACAGATCTG





ATCGGGGAGTTGCAGAAAGACCCTTGGCCCGTACATCAGGGCAAAAGACCTCTTAGATCCACAG





GCGCAGCATTGTCCATCGCTGTCGGCCTCTTAGAATGCACCTATCCGAATACGGGTGGCAGAAT





CATGATATTCTTAGGAGGACCATGCTCTCAGGGTCCCGGCCAGGTGTTGAACGACGATTTGAAG





CAGCCCATCAGGTCCCATCATGACATACACAAAGACAATGCCAAGTACATGAAGAAGGCTATCAA





ACATTACGATCACTTGGCAATGCGAGCTGCCACCAACAGCCATTGCATCGACATTTACTCCTGCG





CCCTGGATCAGACGGGACTGATGGAGATGAAGCAGTGCTGCAATTCCACCGGAGGGCACATGG





TCATGGGCGATTCCTTCAATTCCTCTCTATTCAAACAAACCTTCCAGCGAGTGTTCTCAAAAGACC





CGAAGAACGACCTCAAGATGGCGTTCAACGCCACCTTGGAGGTGAAGTGTTCCAGGGAGTTAAA





AGTCCAAGGGGGCATCGGCTCGTGCGTGTCCTTGAACGTTAAAAGCCCTCTGGTTTCCGATACG





GAACTAGGCATGGGGAATACTGTGCAGTGGAAACTTTGCACGTTGGCGCCGAGCTCTACTGTGG





CGCTGTTCTTCGAGGTGGTTAACCAGCATTCGGCGCCCATACCACAGGGAGGCAGGGGCTGCA





TCCAGCTCATCACCCAGTATCAGCACGCGAGCGGGCAAAGGAGGATCAGAGTGACCACGATTG





CTAGAAATTGGGCGGACGCTACTGCCAACATCCACCACATTAGCGCTGGCTTCGACCAAGAAGC





GGCGGCAGTTGTGATGGCCCGAATGGCCGGTTACAAGGCGGAATCGGACGAGACTCCCGACGT





GCTCAGATGGGTGGACAGGATGTTGATCAGGCTGTGCCAGAAGTTCGGAGAGTACAATAAAGAC





GATCCGAATTCGTTCAGGTTGGGGGAGAACTTCAGTCTGTATCCGCAGTTCATGTACCATTTGAG





ACGGTCGCAGTTTCTGCAGGTGTTCAATAATTCTCCTGATGAAACGTCGTTTTATAGGCACATGC





TGATGCGTGAGGATTTGACTCAGTCTTTGATCATGATCCAGCCGATTTTGTACAGTTACAGCTTCA





ACGGGCCGCCCGAGCCTGTGTTGTTGGACACAAGCTCTATTCAGCCGGATAGAATCCTGCTCAT





GGACACTTTCTTCCAGATACTCATTTTCCATGGAGAGACCATTGCCCAATGGCG





PC014
SEQ ID NO: 269
SEQ ID NO: 270
SEQ ID NO: 255



CGCAGATCAAR
CGGATCTCGG
CTGATGTTCAAAAACAAATCAAACACATGATGGCTTTCATTGAACAAGAAGCCAATGAGAAAGCA



CAYATGATGGC
GCASMARYTG
GAAGAAATTGATGCCAAGGCAGAGGAGGAATTCAACATTGAAAAAGGGCGTTTGGTCCAGCAAC




C
AGAGACTCAAGATCATGGAGTACTACGAGAAAAAGGAGAAGCAAGTCGAACTTCAAAAGAAAATT





CAGTCCTCTAATATGTTGAATCAGGCTCGTTTGAAGGTGCTGAAAGTGAGAGAGGACCATGTCAG





AGCAGTCCTGGAGGATGCTCGTAAAAGTCTTGGTGAAGTAACCAAAGACCAAGGAAAATACTCC





CAAATTTTGGAGAGCCTAATCCTACAAGGACTGTTCCAGCTGTTCGAGAAGGAGGTGACGGTCC





GCGTGAGACCGCAAGACAGGGACCTGGTCAGGTCCATCCTGCCCAACGTCGCTGCCAAATACA





AGGACGCCACCGGCAAAGACATCCTACTCAAGGTGGACGATGAGTCGCACCTGTCTCAGGAGAT





CACCGGAGGCGTCGATTTGCTCGCTCAGAAGAACAAGATCAAGATCAGCAACACGATGGAGGCT





AGGTTGGATCTGATCGCTCA





PC016
SEQ ID NO: 271
SEQ ID NO: 272
SEQ ID NO: 257



GACTGTGTCTG
GGAATAGGAT
GGAATAGGATGGGTGATGTCGTCGTTGGGCATAGTCAAGATGGGGATCTGCGTGATGGAGCCG



GTGTRAACGG
GGGTRATRTC
TTGCGGCCCTCCACACGACCGGCGCGCTCGTAAATGGTGGCCAGATCGGTGTACATGTAACCG



WCC
GTCG
GGGAAACCCCTACGGCCGGGCACTTCTTCTCGAGCGGCAGACACCTCACGCAACGCCTCCGCG





TACGACGACATGTCGGTCAAGATGACCAGCACGTGCTTCTCGCACTGGTAGGCCAAGAATTCGG





CGGCCGTCAGAGCCAAACGCGGCGTGATGATGCGCTCGATGGTCGGATCGTTGGCCAAGTTCA





AGAACAGACACACGTTCTCCATCGAGCCGTTCTCTTCGAAGTCCTGCTTGAAGAACCTGGCAGTT





TCCATGTTGACACCCATAGCAGCAAACACAATAGCAAAGTTGTCTTCATGGTCATCCAGCACAGA





CTTGCCAGGTACTTTGACCAAGCCAGCCTGCCTACAAATCTGGGCTGCAATCTCATTGTGGGGC





AGCCCAGCGGCGGAGAAGATCGGAATCTTCTGCCCTCTGGCGATAGAGTTCATCACGTCGATGG





CCGTGATCCCAGTCTGGATCATTTCCTCGGGATAAATACGCGACCACGGGTTGATCGGCTGTCC





TTGGATGTCGAGGTAGTCCTCAGCCAGGATCGGGGGACCTTTATCAATGGGTTTTCCTGATCCAT





TGAAGACACGTCCCAGCATATCTTCTGATACTGGAGTTCTTAGAATATCTCCAGTGAACTCACAC





ACCGTGTTCTTAGCATCAATACCTGATGTGCCTTCAAATACCTGAACAACTGCCTTTGATCCACTG





ACTTCCAAAACTTGTCCAGATCGTAGAGTTCCATCTGCCAATTTGAGCTGGACAATTTCATTGAAT





TTTGGAAACTTGACATCCTCAAGAATGACCAGTGGTCCGTTCACACCAGACACAGTC





PC027
SEQ ID NO: 273
SEQ ID NO: 274
SEQ ID NO: 259



GGGCCAAGCA
TGTGCCACCC
GGGCCAAGCACAGTGAAATACAGCAAGCTAACTTGAAAGCACTACCAGAAGGAGCTGAAATCAG



CWSYGAAATRC
TAGTRCGRTG
AGATGGAGAACGTTTGCCAGTCACAGTAAAGGACATGGGAGCATGCGAGATTTACCCACAAACA



AG
YTC
ATCCAACACAACCCCAATGGGCGGTTTGTAGTGGTTTGTGGTGATGGAGAATACATAATATACAC





GGCTATGGCCCTTCGTAACAAAGCATTTGGTAGCGCTCAAGAATTTGTATGGGCACAGGACTCC





AGTGAATATGCCATCCGCGAATCCGGATCCACCATTCGAATCTTCAAGAATTTCAAAGAAAAAAA





GAATTTCAAGTCCGACTTTGGTGCCGAAGGAATCTATGGTGGTTTTCTCTTGGGTGTGAAATCAG





TGTCTGGCTTAGCTTTCTATGACTGGGAAACGCTTGAGTTAGTAAGGCGCATTGAAATACAGCCT





AGAGCTATCTACTGGTCAGATAGTGGCAAGTTGGTATGCCTTGCTACCGAAGATAGCTATTTCAT





ATTGTCCTATGACTCTGACCAAGTCCAGAAAGCTAGAGATAACAACCAAGTTGCCGAAGATGGAG





TGGAGGCTGCCTTTGATGTCCTAGGTGAAATAAATGAATCCGTAAGAACAGGTCTTTGGGTAGGA





GACTGCTTCATTTACACAAACGCAGTCAACCGTATCAACTACTTTGTGGGTGGTGAATTGGTAAC





TATTGCACATCTGGACCGTCCTCTATATGTCCTGGGCTATGTACCTAGAGATGACAGGTTATACT





TGGTTGATAAAGAGTTAGGAGTAGTCAGCTATCAATTGCTATTATCTGTACTCGAATATCAGACTG





CAGTCATGCGACGAGACTTCCCAACGGCTGATCGAGTATTGCCTTCAATTCCAAAAGAACATCGC





ACTAGGGTGGCACA



















TABLE 2-EV





Target
Primer Forward
Primer Reverse
cDNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







EV005
SEQ ID NO: 523
SEQ ID NO: 524
SEQ ID NO: 513



TGCGATGCGG
TCCTGCTTCTT
TGCGATGCGGCAAGAAGAAGGTTTGGCTGGATCCTAATGAAATAACTGAAATTGCTAATACA



CAARAARAAGG
SGYRGCRATW
AACTCTAGACAAAACATCCGCAAACTGATTAAAGATGGTCTTATTATTAAAAAGCCTGTCGCG



TBTGG
CGYTC
GTGCATTCTCGTGCACGTGTACGCAAAAATACTGAAGCCCGCAGGAAAGGTCGTCATTGTG





GATTTGGTAAAAGGAAAGGAACTGCAAATGCTAGGATGCCCAGAAAGGAATTATGGATTCAA





CGTATGAGAGTTCTCAGAAGGTTATTGAAGAAATATAGGGAAGCTAAGAAAATTGATAGGCA





TTTATACCATGCTTTATATATGAAAGCTAAGGGAAATGTATTCAAGAATAAGAGAGTAATGAT





GGACTATATCCATAAAAAGAAGGCGGAGAAAGCACGTACAAAGATGCTCAATGATCAAGCT





GATGCAAGGAGGCTGAAAGTCAAAGAGGCACGTAAGCGACGTGAAGAGCGTATCGCTACG





AAGAAGCAGGA





EV009
SEQ ID NO: 525
SEQ ID NO: 526
SEQ ID NO: 515



GGGCCGTGGT
GCAGCCCACG
CCAACTCTCGATCCAAGCATTCCAAAATACAGGACTGAAGAATCTATAATAGGAACAAACCC



CAGAAYATYWA
CYYTGCACTC
AGGAATGGGTTTTAGGCCAATGCCCGACAACAACGAAGAAAGTACCCTGATTTGGTTACAG



YAAC

GGTTCTAATAAAACAAACTACGAAAAATGGAAAATGAATCTCCTCTCATATTTAGACAAGTAT





TACACTCCCGGAAAAATAGAAAAGGGAAATATTCCAGTAAAGCGCTGTTCATACGGAGAAAA





ATTGATTAGGGGACAAGTATGTGATGTAGATGTGAGGAAATGGGAGCCGTGCACCCCGGAA





AATCATTTTGATTACCTCAGAAATGCGCCTTGTATATTTCTGAAGCTGAACAGGATATATGGA





TGGGAACCGGAGTACTACAACGATCCAAATGATCTTCCAGATGATATGCCGCAGCAGTTGA





AGGACCATATACGTTATAATATCACCAATCCAGTGGAGAGAAATACCGTCTGGGTAACATGC





GCAGGTGAAAATCCGGCAGACGTGGAGTACTTGGGCCCTGTGAAGTATTACCCATCTTTCC





AGGGATTCCCCGGTTACTATTTTCCATATTTGAATTCTGAAGGGTACCTAAGTCCATTATTGG





CGGTACAATTCAAGAGACCGGTGTCTGGTATTGTTATAAATATCGAGTGCAAAGCGTGGGCT





GC





EV010
SEQ ID NO: 527
SEQ ID NO: 528
SEQ ID NO: 517



CGGCTGACGT
CGGCGTATTCT
CTGGCGGCCACATGGTCATGGGTGATTCATTTAACTCTTCACTTTTCAAACAAACATTTCAAC



GGAAYGTKTGG
CCRAAYTTCTG
GAGTATTTTCGAAAGATTCCAATGGAGACTTGAAGATGTCCTTCAACGCCATATTAGAAGTG



CC
GC
AAGTGTTCTAGAGAACTTAAAGTACAAGGAGGTATAGGTCCTTGTGTCTCTCTAAATGTCAA





AAATCCTCTTGTTTCTGATTTAGAAATAGGCATGGGTAACACAGTTCAGTGGAAACTGTGTA





GCTTAAGTCCAAGCACTACGGTTGCCTTATTTTTCGAAGTTGTTAATCAGCATGCAGCACCC





ATTCCTCAAGGGGGACGTGGATGCATTCAGTTTATTACTCAATATCAGCATTCAAGTGGTCA





GAAAAAAATAAGGGTAACTACAATAGCAAGAAATTGGGCGGATGCCACTGCAAATATTCACC





ATATTAGCGCTGGCTTTGACGAACAAACTGCGGCTGTTTTAATGGCGAGGATCGCTGTATAT





AGAGCAGAAACTGATGAGAGTTCAGATGTTCTCAGATGGGTTGACAGAATGTTGATACGATT





GTGTCAGAAATTTGGAGAATATAACAAAGATGACACCAACAGCTTCAGGCTCAGTGAAAACT





TCAGCTTATATCCACAGTTTATGTATCATCTACGTCGTTCCCAATTTCTACAAGTGTTCAATAA





TTCACCAGATGAAACTTCATTCTATAGGCACATGTTGATGAGGGAAGATCGCAATCAG





EV015
SEQ ID NO: 529
SEQ ID NO: 530
SEQ ID NO: 519



CGCTGTCGCAR
CGATCAAAGC
CGCCATCCGTCGCTGTTCAAGGCGATCGGCGTTAAGCCTCCAAGGGGTATTCTCCTTTACG



GCRAARATGG
GWCCRAAVCG
GGCCTCCCGGCACGGGGAAAACGCTGATCGCCAGGGCCGTTGCCAACGAAACTGGTGCGT




ACG
TCTTCTTCCTCATCAATGGGCCCGAGATTATGAGCAAGCTGGCCGGAGAATCCGAGAGCAA





TCTTAGAAAGGCTTTTGAAGAGGCTGATAAAAACTCTCCTGCAATCATCTTTATCGACGAATT





AGACGCAATCGCTCCCAAGCGCGAGAAGACTCATGGTGAGGTAGAGAGACGCATCGTCTC





CCAACTGTTGACTTTGATGGACGGCATGAAGAAAAGTTCCCATGTGATCGTGATGGCGGCC





ACGAACAGGCCCAATTCCATCGACCCTGCACTCAGACGTTTCGGCCGATTCGACAGAGAGA





TCGACATCGGTATCCCCGACGCTACTGGAAGATTAGAAGTACTCAGAATACACACCAAAAAC





ATGAAATTGGCTGACGATGTAGATTTGGAACAGATTGCCGCAGAGACTCACGGTCATGTAG





GTGCTGACTTGGCTTCTTTGTGCTCAGAGGCTGCCTTGCAACAAATTAGAGAAAAAATGGAC





CTCATCGACTTAGATGATGAGCAGATCGATGCCGAAGTCCTAAATTCTCTGGCAGTTACCAT





GGAGAACTTCCGTTACGCCATGTCTAAGAGCAGTCCGAGCGCTTTGCGCGAAACCGTCGT





EV016
SEQ ID NO: 531
SEQ ID NO: 532
SEQ ID NO: 521



GTTCACCGGC
CGGCATAGTC
GACTGTGTCTGGTGTGAACGGACCGTTGGTGATCCTTGATAGTGTTAAGTTTCCAAAATTTA



GAYATYCTGCG
AGAATSGGRAT
ACGAAATTGTACAGCTCAAGTTATCAGATGGAACAGTTAGGTCTGGACAAGTTTTGGAAGTC




CTG
AGTGGACAGAAGGCGGTTGTCCAAGTTTTTGAAGGCACCTCCGGAATTGATGCTAAAAACA





CTTTATGTGAATTTACAGGAGATATCTTAAGAACTCCAGTGTCTGAAGATATGTTGGGTCGT





GTGTTTAATGGATCTGGAAAGCCTATCGATAAAGGGCCGCCAATCTTAGCTGAAGATTTTCT





TGACATTCAAGGTCAACCTATAAATCCTTGGTCTCGTATCTATCCAGAAGAAATGATCCAGA





CTGGTATTTCTGCGATTGATGTGATGAATTCCATTGCCAGAGGACAAAAGATTCCAATTTTCT





CTGCAGCTGGTTTACCCCACAATGAAATCGCTGCTCAAATCTGTAGACAAGCTGGTCTTGTC





AAAATCCCAGGGAAATCTGTCTTAGATGATCATGAAGACAACTTTGCTATCGTTTTCGCCGC





TATGGGTGTCAATATGGAAACAGCCAGATTCTTCAAGCAAGATTTTGAAGAGAATGGCTCTA





TGGAAAATGTGTGCCTATTTTTGAACTTGGCCAATGATCCTACCATTGAAAGAATTATAACAC





CCCGTTTGACTTTAACAGCGGCTGAATTTATGGCATATCAATGTGAGAAGCATGTGTTAGTC





ATATTGACTGACATGTCATCTTATGCTGAGGCTTTGCGTGAGGTATCTGCTGCT



















TABLE 2-AG





Target
Primer Forward
Primer Reverse
cDNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







AG001
SEQ ID NO: 611
SEQ ID NO: 612
SEQ ID NO: 601



CATTTGAAGCG
CGCTTGTCCC
CATTTGAAGCGTTTTGCTGCCCCCAAAGCATGGATGTTGGACAAATTGGGGGGTGTGTTCGCCC



TTTWRMYGCYC
GCTCCTCNGC
CCAGGCCCTCCACCGGGCCACACAAGCTCAGGGAGTCCCTTCCATTAGTGATTTTCTTGCGTAA



C
RAT
CAGGTTGAAGTACGCCCTGACAAACTGTGAGGTGACCAAGATCGTTATGCAGAGACTTATTAAG





GTCGACGGCAAAGTCAGGACTGATCCTAACTATCCTGCTGGATTCATGGATGTGATCACCATTGA





AAAAACTGGTGAATTCTTCCGTTTGATCTATGATGTTAAGGGAAGATTCACTATTCACAGGATCAC





TGCTGAAGAAGCAAAATACAAATTGTGCAAAGTCCGCAAGGTGCAAACCGGACCAAAAGGTATTC





CATTCTTGGTCACCCACGATGGTAGGACCATTAGGTACCCTGACCCAATGATCAAGGTAAACGAC





ACCATCCAACTGGAAATCGCCACCTCAAAGATCCTGGACTTTATCAAATTCGAATCCGGCAACTT





GTGCATGATCACCGGAGGCAGGAATTTGGGTAGAGTGGGAACGGTAGTGAACAGGGAAAGGCA





TCCGGGATCATTCGATATTGTCCACATTAGGGACGCTAATGATCACGTGTTCGCCACTAGATTAA





ACAACGTATTCGTCATCGGTAAAGGAAGCAAAGCTTTCGTGTCTCTGCCAAGGGGCAAGGGAGT





GAAACTGTCCATCGCTG





AG005
SEQ ID NO: 613
SEQ ID NO: 614
SEQ ID NO: 603



GGTCTGGTTGG
TCCTGCTTCTT
GGTCTGGTTGGATCCAAATGAAATCAATGAGATTGCCAACACCAACTCGAGGCAAAACATCCGTA



ATCCHAATGAA
SGYRGCRATW
AATTGATCAAGGATGGTTTGATCATTAAGAAACCGGTGGCAGTGCACTCTAGGGCTCGTGTCCGT



ATCAAYGA
CGYTC
AAAAACACAGAAGCTCGCAGGAAGGGAAGGCACTGCGGTTTCGGTAAGAGGAAAGGTACAGCG





AACGCTCGTATGCCTCAAAAGGAACTATGGATCCAAAGGATGCGTGTCTTGAGGCGTCTCCTGA





AAAAATACAGGGAAGCCAAAAAGATCGACAGGCATCTGTACCACGCCCTGTACATGAAGGCCAA





GGGTAACGTGTTCAAGAACAAGAGAGTGTTGATGGAATACATCCACAAGAAGAAGGCTGAGAAG





GCCCGTGCCAAGATGTTGGCCGACCAAGCTAACGCCAGAAGGCAAAAGGTGAAACAAGTCCCG





TGAGAGGAGGGAAGAGCGTATCGCCGCGAAGAAGCAGGA





AG010
SEQ ID NO: 615
SEQ ID NO: 616
SEQ ID NO: 605



CTGGCGGCCA
CGCCATTGGG
CTGGCGGCCACATGCTTATGGGAGACTCTTTCAATTCGTCGTTGTTCAAACAAACTTTCCAAAGG



CATGSTBATGG
CRATGGTYTCK
GTGTTCGCGAAGGACCAGAATGGACATTTGAAGATGGCTTTCAACGGTACTTTGGAGGTGAAGT




CC
GCTCTAGGGAATTAAAAGTTCAAGGCGGTATTGGCTCATGCGTGTCGCTAAATGTAAAAAGTCCT





TTGGTAGCGGACACGGAAATAGGCATGGGAAACACCGTGCAATGGAAGATGTGCACCTTCAACC





CTAGCACGACGATGGCGCTGTTTTTCGAGGTGGTCAATCAGCATTCGGCCCCCATTCCTCAAGG





TGGTAGAGGATGTATACAGTTTATTACACAATATCAGCACTCGAGTGGCCAAAGGAGGATAAGGG





TGACGACGATAGCGAGAAATTGGGCGGACGCATCGGCGAATATTCACCACATCAGCGCGGGTTT





CGATCAGGAACGTGCCGCGGTGATTATGGCCCGGATGGCTGTTTATAGAGCGGAGACCGATGA





GAGTCCCGATGTTTTAAGATGGGTCGATCGGATGCTGATTCGTTTGTGTCAAAAGTTTGGAGAAT





ATAACAAAGATGACCAGGCATCCTTCAGATTAGGAGAAAATTTTAGCTTATACCCGCAATTCATGT





ACCACTTAAGGCGATCCCAGTTTTTGCAAGTGTTCAACAATTCACCTGACGAAACGTCGTTTTACA





GGCATATGCTTATGAGGGAAGATTTGACACAGTCCCTGATAATGATTCAGCCGATCTTGTACAGT





TACAGTTTTAATGGTCCTCCGGAGCCCGTTTTGTTGGACACCAGCTCAATACAACCGGACAGAAT





TCTGCTTATGGACACGTTTTTCCAGATATTGATTTTCCATGGAGAAACCATTGCCCAATGGCG





AG014
SEQ ID NO: 617
SEQ ID NO: 618
SEQ ID NO: 607



CGCAGATCAAR
GAACTTGCGG
CGCAGATCAAGCATATGATGGCCTTCATTGAGCAAGAGGCTAATGAAAAGGCCGAGGAAATTGA



CAYATGATGGC
TTGABGTTSCG
TGCCAAGGCGGAAGAAGAATTTAACATTGAAAAGGGCCGCCTTGTGCAACAACAAAGATTGAAG




DCC
ATCATGGAATACTATGAGAAGAAGGAGAAGCAAGTCGAACTACAAAAGAAAATTCAATCCTCCAA





CATGCTGAACCAAGCCCGTCTTAAGGTTCTGAAAGTCCGCGAAGATCATGTTAGAGCTGTATTGG





ATGAGGCTCGCAAGAAGCTTGGTGAAGTCACCAGGGATCAAGGCAAATATGCCCAGATTCTGGA





ATCTTTGATCCTTCAGGGACTCTACCAGCTTTTCGAGGCAAACGTGACCGTACGCGTCCGCCCA





CAAGACAGAACCTTAGTCCAATCAGTGCTGCCAACCATCGCAACCAAATACCGTGACGTCACCG





GCCGAGATGTACACCTGTCCATCGATGACGAAACTCAACTGTCCGAATCCGTAACCGGCGGAAT





CGAACTTTTGTGCAAACAAAACAAAATTAAGGTCTGCAACACCCTGGAGGCACGTTTGGACCTGA





TTTCGCAACAGTTGGTTCCGCAAATCCGTAACGCCTTGTTCGGACGCAACATCAACCGCAAGTTC





AG016
SEQ ID NO: 619
SEQ ID NO: 620
SEQ ID NO: 609



GTGTCGGAGG
GGAATAGGAT
GTGTCGGAGGATATGTTGGGCCGAGTGTTCAACGGATCAGGAAAACCCATTGACAAAGGTCCTC



ATATGYTGGGY
GGGTRATRTC
CAATCTTAGCCGAAGATTTCTTGGACATCCAAGGTCAACCCATCAACCCATGGTCGCGTATCTAC



CG
GTCG
CCGGAAGAAATGATCCAGACCGGTATCTCCGCCATCGACGTGATGAACTCCATCGCGCGTGGG





CAAAAAATCCCCATTTTCTCCGCGGCCGGTTTACCGCACAACGAAATCGCCGCCCAAATCTGTAG





ACAGGCCGGTTTAGTCAAACTGCCGGGCAAATCGGTAATCGACGATCACGAGGACAATTTCGCC





ATCGTGTTCGCCGCCATGGGTGTCAACATGGAAACCGCCCGTTTCTTCAAGCAGGACTTCGAAG





AAAACGGTTCCATGGAGAACGTGTGTCTCTTCTTGAATTTGGCCAACGATCCCACCATCGAGAGA





ATCATCACGCCCCGTTTGGCTCTGACCGCCGCCGAATTTTTGGCTTATCAATGCGAGAAACACGT





GCTGGTTATCTTAACTGATATGTCTTCTTACGCCGAGGCTTTGCGTGAAGTATCCGCCGCCAGAG





AAGAAGTACCCGGACGTCGTGGGTTCCCCGGTTACATGTACACCGATTTGGCCACCATTTACGA





AAGAGCCGGTCGCGTTGAGGGTAGAAACGGTTCCATCACCCAGATTCCCATCTTGACTATGCCG





AACGACGACATCACCCATCCTATTCC



















TABLE 2-TC





Target
Primer Forward
Primer Reverse
cDNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







TC001
SEQ ID NO: 803
SEQ ID NO: 804
SEQ ID NO: 793



GGCCCCAAGA
CGCTTGTCCC
GGCCCCAAGAAGCATTTGAAGCGTCTCAATGCGCCCAAAGCATGGATGTTGGATAAACTG



AGCATTTGAAG
GCTCCTCNGC
GGGGGTGTGTTTGCCCCTCGGCCTTCCACCGGCCCCCACAAGCTACGGGAGTCGCTACC



CG
RAT
TTTGGTTATCTTCCTGCGAAACAGGCTGAAGTATGCCTTGACCAACTCAGAAGTGACGAA





GATTGTTATGCAAAGATTGATTAAAGTTGACGGAAAAGTTAGGACAGACCCCAACTACCCC





GCGGGTTTCATGGATGTTGTGACTATTGAGAAAACTGGGGAATTCTTCCGCTTGATTTATG





ATGTTAAGGGAAGGTTCACAATCCATCGCATTACTGGAGAAGAGGCCAAATATAAATTGTG





CAAAGTGAAGAAAGTACAGACAGGCCCCAAGGGCATTCCCTTCTTGGTGACCCGCGACG





GACGCACTATCAGATACCCAGACCCCATGATCAAAGTGAATGACACCATTCAATTGGAGAT





TGCCACTTCGAAAATTCTTGATTTTATCAAATTTGAGTCCGGTAATTTGTGTATGATTACTG





GAGGTCGTAACTTGGGGCGTGTCGGTACAGTGGTGAGCCGAGAACGTCACCCAGGTTCC





TTCGACATCGTTCATATTAAGGATGCAAATGGGCACACC





TC002
SEQ ID NO: 805
SEQ ID NO: 806
SEQ ID NO: 795



CAGGAGTTCCT
GCAATGTCATC
CAGGAGTTCCTGGAGGCTAAAATCGACCAAGAGATCCTCACAGCGAAGAAAAACGCGTC



GGARRMBAAR
CATCAKRTCRT
GAAAAACAAACGAGCGGCCATCCAGGCCATCAAGAGGAAGAAACGCTACGAAAAGCAGC



ATMGA
GTAC
TCCAGCAGATCGATGGCACCCTCAGCACCATCGAGATGCAGCGGGAGGCCCTCGAGGG





GGCCAACACCAACACAGCCGTACTCAAAACGATGAAAAACGCAGCGGACGCCCTCAAAAA





TGCCCACCTCAACATGGATGTTGATGAGGTACATGACATGATGGATGACATTGC





TC010
SEQ ID NO: 807
SEQ ID NO: 808
SEQ ID NO: 797



GCATTCTGCGC
TGCCGGAAGT
AAAATTCGGCGAATACAACAAAGACGACCCTAACAGTTTCCGTTTGAGTGAAAACTTCAGT



TGGGTCGATCG
TCTCRTAYTCK
CTCTATCCCCAATTCATGTACCATTTGCGCCGCTCCCAATTCCTCCAAGTTTTCAACAACT




GGC
CCCCAGACGAGACCTCGTTCTACCGCCACATGCTGATGCGGGAGGACCTCACCCAAAGT





CTCATTATGATCCAGCCGATTTTGTACAGTTATAGTTTCAACGGCCCCCCTGAACCCGTCC





TCCTCGACACTAGTTCCATTCAACCCGATCGGATCCTTCTCATGGACACATTTTTCCAAATT





TTGATTTTCCACGGTGAGACAATCGCCCAATGGAGGAACCTCAAGTACCAGGACATGCCC





GAATACGAGAACTTCCGGCA





TC014
SEQ ID NO: 809
SEQ ID NO: 810
SEQ ID NO: 799



GAGAAAGCCG
GAACTTGCGG
GAGAAAGCCGAAGAAATCGATGCGAAAGCTGAGGAGGAGTTTAACATTGAAAAAGGGCG



ARGARATYGAT
TTGABGTTSCG
CCTGGTCCAACAACAGCGCTTGAAGATCATGGAATATTACGAGAAGAAGGAGAAACCGGT



GC
DCC
GGAATTGCAGAAGAAAATTCAGTCGTCAAACATGCTGAACCAAGCCCGTTTGAAAGTATTA





AAAGTGCGTGAAGACCACGTCCACAATGTGCTGGATGACGCCCGCAAACGTCTGGGCGA





AATCACCAATGACCAGGCGAGATATTCACAACTTTTGGAGTCTCTTATCCTCCAGAGTCTC





TACCAGTACTTGGGAATCAGTGATGAGTTGTTTGAGAACAATATAGTGGTGAGAGTCAGG





CAACAGGACAGGAGTATAATCCAGGGCATTCTCCCAGTTGTTGCGACGAAATACAGGGAC





GCCACTGGTAAAGACGTTCATCTTAAAATCGACGATGAGAGCCACTTGCCATCCGAAACC





ACCGGAGGAGTGGTTTTGTATGCGCAAAAGGGTAAAATCAAGATTGACAACACCTTGGAG





GCTCGTTTGGATTTAATTGCACAGCAACTTGTGCCAGAAATTCGTACGGCCTTGTTTGGAC





GCAACATCAACCGCAAGTTC





TC015
SEQ ID NO: 811
SEQ ID NO: 812
SEQ ID NO: 801



GGATGAACTAC
CGATCAAAGC
GGATGAACTACAGCTGTTCCGTGGCGATACAGTGTTGCTGAAAGGGAAGCGGCGGAAAG



AGCTBTTCCGH
GWCCRAAVCG
AGACCGTCTGCATTGTGCTGGCCGACGAAAACTGCCCCGATGAGAAGATCCGGATGAAC



GG
ACG
AGGATCGTCAGGAATAATCTACGGGTTAGGCTCTCTGACGTCGTCTGGATCCAGCCCTGT





CCCGACGTCAAATACGGGAAGAGGATCCACGTTTTGCCCATCGATGACACGGTCGAAGG





GCTCGTCGGAAATCTCTTCGAGGTGTACTTAAAACCATACTTCCTCGAAGCTTATCGACCA





ATCCACAAAGGCGACGTTTTCATCGTCCGTGGTGGCATGCGAGCCGTTGAATTCAAAGTG





GTGGAAACGGAACCGTCACCATATTGTATCGTCGCCCCCGATACCGTCATCCATTGTGAC





GGCGATCCGATCAAACGAGAAGAAGAGGAGGAAGCCTTGAACGCCGTCGGCTACGACGA





TATCGGCGGTTGTCGCAAACAACTCGCACAAATCAAAGAAATGGTCGAATTACCTCTACG





CCACCCGTCGCTCTTCAAGGCCATTGGCGTGAAACCACCACGTGGTATCCTCTTGTACGG





ACCTCCAGGTACCGGTAAAACTTTAATCGCACGTGCAGTGGCCAACGAAACCGGTGCTTT





CTTCTTCTTAATCAACGGTCCCGAAATTATGAGTAAATTAGCCGGCGAATCCGAAAGTAAT





CTAAGGAAAGCGTTCGAAGAAGCCGATAAAAACTCACCGGCTATTATTTTCATCGATGAAT





TGGACGCGATTGCACCGAAACGTGAAAAAACCCACGGCGAAGTCGAACGCCGAATTGTC





TCGCAATTGTTAACACTGATGGACGGCATGAAGAAAAGCTCGCATGTTATCGTGATGGCG





GCCACAAATCGCCCGAACTCAATCGATCCGGCTTTGCGTCGGTTCGGTCGCTTTGATCG



















TABLE 2-MP





Target
Primer Forward
Primer Reverse
cDNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







MP001
SEQ ID NO: 898
SEQ ID NO: 899
SEQ ID NO: 888



GGCCCCAAGAA
CGCTTGTCCC
GGCCCCAAGAAGCATTTGAAGCGTTTAAACGCACCCAAAGCATGGATGTTGGACAAATCGGG



GCATTTGAAGC
GCTCCTCNGC
GGGTGTCTTCGCTCCACGTCCAAGCACCGGTCCACACAAACTTCGTGAATCACTACCGTTATT



G
RAT
GATCTTCTTGCGTAATCGTTTGAAGTATGCACTTACTGGTGCCGAAGTCACCAAGATTGTCAT





GCAAAGATTAATCAAGGTTGATGGCAAAGTCCGTACCGACCCTAATTATCCAGCCGGTTTTAT





GGATGTTATATCTATCCAAAAGACCAGTGAGCACTTTAGATTGATCTATGATGTGAAAGGTCG





TTTCACCATCCACAGAATTACTCCTGAAGAAGCAAAATACAAGTTGTGTAAAGTAAAGAGGGT





ACAAACTGGACCCAAAGGTGTGCCATTTTTAACTACTCATGATGGCCGTACTATTCGCTACCC





TGACCCTAACATCAAGGTTAATGACACTATTAGATACGATATTGCATCATCTAAAATTTTGGAT





CATATCCGTTTTGAAACTGGAAACTTGTGCATGATAACTGGAGGTCGCAATTTAGGGCGTGTT





GGTATTGTTACCAACAGGGAAAGACATCCAGGATCTTTTGATATTGTTCACATTAAGGATGCA





AATGAACATATTTTTGCTACCCGGATGAACAATGTTTTTATTATTGGAAAAGGTCAAAAGAACT





ACATTTCTCTACCAAGGAGTAAGGGAGTTAAATTGACTAT





MP002
SEQ ID NO: 900
SEQ ID NO: 901
SEQ ID NO: 890



GAGTTTCTTTA
GCAATGTCATC
GAGTTTCTTTAGTAAAGTATTCGGTGGCAAAAAGGAAGAGAAGGGACCATCAACCGAAGATG



GTAAAGTATTC
CATCAKRTCRT
CGATACAAAAGCTTCGATCCACTGAAGAGATGCTGATAAAGAAACAAGAATTTTTAGAAAAAA



GGTGG
GTAC
AAATTGAACAAGAAGTAGCGATAGCCAAAAAAAATGGTACAACTAATAAACGAGCTGCATTGC





AAGCATTGAAGCGTAAGAAACGGTACGAACAACAATTAGCCCAAATTGATGGTACCATGTTAA





CTATTGAACAACAGCGGGAGGCATTAGAAGGTGCCAACACAAATACAGCAGTATTGACTACC





ATGAAAACTGCAGCAGATGCACTTAAATCAGCTCATCAAAACATGAATGTAGATGATGTACAT





GATCTGATGGATGACATTGC





MP010
SEQ ID NO: 902
SEQ ID NO: 903
SEQ ID NO: 892



GTGGCTGCATA
CGCGGCTGCT
GTGGCTGCATACAGTTCATTACGCAGTATCAACATTCCAGTGGCTATAAACGAATTAGAGTCA



CAGTTCATTAC
CCATGAAYASY
CCACATTAGCTAGGAATTGGGCAGACCCTGTTCAGAATATGATGCATGTTAGTGCTGCATTTG



GCAG
TG
ATCAAGAAGCATCTGCCGTTTTAATGGCTCGTATGGTAGTGAACCGTGCTGAAACTGAGGATA





GTCCAGATGTGATGCGTTGGGCTGATCGTACGCTTATACGCTTGTGTCAAAAATTTGGTGATT





ATCAAAAAGATGATCCAAATAGTTTCCGATTGCCAGAAAACTTCAGTTTATATCCACAGTTCAT





GTATCATTTAAGAAGGTCTCAATTTCTACAAGTTTTTAATAATAGTCCTGATGAAACATCATATT





ATAGGCACATGTTGATGCGTGAAGATGTTACCCAAAGTTTAATCATGATACAGCCAATTCTGT





ATAGCTATAGTTTTAATGGTAGGCCAGAACCTGTACTTTTGGATACCAGTAGTATTCAACCTGA





TAAAATATTATTGATGGACACATTTTTCCATATTTTGATATTCCATGGAGAGACTATTGCTCAAT





GGAGAGCAATGGATTATCAAAATAGACCAGAGTATAGTAACCTCAAGCAGTTGCTTCAAGCCC





CCGTTGATGATGCTCAGGAAATTCTCAAAACTCGATTCCCAATGCCTCGGTATATTGACACAG





AACAAGGTGGTAGTCAGGCAAGATTTTTACTATGCAAAGTAAACCCATCTCAAACACATAATAA





TATGTATGCTTATGGAGGGTGATGGTGGAGCACCAGTTTTGACAGATGATGTAAGCTTGCAG





CTGTTCATGGAGCAGCCGCG





MP016
SEQ ID NO: 904
SEQ ID NO: 905
SEQ ID NO: 894



GTGTCGGAGG
GGAATAGGAT
GTGTCGGAGGATATGTTGGGCCGCGTTTTCAATGGCAGTGGAAAGCCGATAGATAAAGGACC



ATATGYTGGGY
GGGTRATRTC
TCCTATTTTGGCTGAAGATTATTTGGATATTGAAGGCCAACCTATTAATCCATACTCCAGAACA



CG
GTCG
TATCCTCAAGAAATGATTCAAACTGGTATTTCAGCTATTGATATCATGAACTCTATTGCTCGTG





GACAAAAAATTCCAATATTTTCAGCTGCAGGTTTACCACATAATGAGATTGCTGCTCAAATTTG





TAGACAAGCTGGTCTCGTTAAAAAACCTGGTAAATCAGTTCTTGACGATCATGAAGACAATTTT





GCTATAGTATTTGCTGCTATGGGTGTTAATATGGAAACAGCCAGATTCTTTAAACAAGATTTTG





AGGAAAATGGTTCAATGGAGAATGTTTGTTTGTTCTTGAATTTAGCTAATGATCCTACTATTGA





GCGTATCATTACACCACGTCTTGCTTTAACTGCTGCTGAATTTTTAGCTTACCAATGTGAAAAG





CATGTCTTAGTTATTTTAACTGACATGAGTTCATATGCTGAAGCTTTAAGAGAAGTTTCTGCTG





CTCGTGAAGAAGTACCTGGGCGTCGTGGTTTCCCTGGTTACATGTACACCGATTTAGCTACAA





TTTATGAACGTGCTGGGCGTGTAGAAGGAAGAAATGGTTCTATCACACAAATACCTATTTTAA





CTATGCCTAACGACGACATCACCCATCCTATTCC





MP027
SEQ ID NO: 906
SEQ ID NO: 907
SEQ ID NO: 896



CGCCGATTACC
GGGATACTGT
CGCCGATTACCAAAACAAGACGTGTGTTCAGACATTAGAAGGCCATGCTCAAAATATTTCTGC



AAAACAARACB
CACAAYYTCDC
TCGTTTGTTTCCATCCAGAACTTCCCATCGTGTTAACTGGCTCAGAAGATGGTACCGTCAGAA



TG
CRCC
TTTGGCATTCTGGTACTTATCGATTAGAATCATCATTAAACTATGGGTTAGAACGTGTATGGAC





AATCTGTTGCTTACGGGGATCTAATAATGTAGCTCTAGGTTATGATGAAGGAAGTATAATGGT





TAAAGTTGGTCGTGAAGAGCCAGCAATGTCAATGGATGTTCATGGGGGTAAAATTGTTTGGG





CACGTCATAGTGAAATTCAACAAGCTAACCTTAAAGCGATGCTTCAAGCAGAAGGAGCCGAAA





TCAAAGATGGTGAACGTTTACCAATACAAGTTAAAGACATGGGTAGCTGTGAAATTTATCCAC





AGTCAATATCTCATAATCCGAATGGTAGATTTTTAGTAGTATGTGGTGATGGAGAGTATATTAT





ATATACATCAATGGCTTTGCGTAATAAAGCATTTGGCTCCGCTCAGGATTTTGTATGGTCTTCT





GATTCTGAGTATGCCATTAGAGAAAATTCTTCTACAATCAAAGTTTTTAAAAATTTTAAAGAAAA





AAAGTCTTTTAAACCAGAAGGTGGAGCAGATGGTATTTTTGGAGGTTATTTGTTAGGTGTGAA





ATCTGTTACTGGGTTGGCTTTATATGATTGGGAAAATGGTAACTTAGTTCGAAGAATTGAGAC





ACAACCTAAACATGTATTTTGGTCAGAGTCTGGAGAATTAGTATGTCTTGCCACAGATGAAGC





ATACTTTATTTTACGTTTTGACGTCAATGTACTTAGTGCTGCAAGAGCATCCAATTATGAAGCT





GCTAGTCCTGATGGTCTTGAAGATGCCTTTGAGATTTTAGGAGAAGTTCAAGAAGTTGTAAAA





ACTGGTCTATGGGTTGGTGATTGCTTTATTTACACCAATGGAGTAAATCGTATCAACTATTATG





TTGGTGGTGAAGTTGTGACAGTATCCC



















TABLE 2-NL





Target
Primer Forward
Primer Reverse
cDNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







NL001
SEQ ID NO: 1117
SEQ ID NO: 1118
SEQ ID NO: 1071



GAAATCATGGAT
ACTGAGCTTCACAC
GAAATCATGGATGTTGGACAAATTGGGTGGTGTGTATGCACCCCGACCCAGCACAGG



GTTGGACAAATT
CCTTGCCC
TCCACACAAGCTGCGAGAATCTCTCCCACTTGTCATATTTTTGCGTAATCGGCTCAAG



GG

TACGCTTTAACTAACTGTGAAGTGAAGAAAATTGTGATGCAGCGTCTCATCAAGGTTG





ACGGCAAAGTGAGGACTGACCCCAACTATCCTGCAGGTTTTATGGACGTTGTTCAAAT





CGAAAAGACAAACGAGTTCTTCCGTTTGATCTATGATGTTAAGGGACGTTTCACCATC





CACAGGATCACAGCTGAAGAAGCTAAGTACAAGCTGTGCAAAGTGAAGAGGGTTCAG





ACAGGACCCAAGGGCATTCCATTTTTGACCACTCACGATGGACGCACCATCAGGTAT





CCAGACCCCTTGGTAAAAGTCAATGACACCATCCAATTGGACATTGCCACATCCAAAA





TCATGGACTTCATCAGATTCGACTCTGGTAACCTGTGTATGATCACTGGAGGTCGTAA





CTTGGGTCGTGTGGGCACTGTCGTGAACAGGGAGCGACACCCGGGGTCTTTCGACA





TCGTGCACATCAAGGACGTGTTGGGACACACTTTTGCCACTAGGTTGAACAACGTTTT





CATCATCGGCAAGGGTAGTAAAGCATACGTGTCTCTGCCCAAGGGCAAGGGTGTGAA





GCTCAGT





NL002
SEQ ID NO: 1119
SEQ ID NO: 1120
SEQ ID NO: 1073



GATGAAAAGGG
CTGATCCACATCCA
GATGAAAAGGGCCCTACAACTGGCGAAGCCATTCAGAAACTACGCGAAACAGAGGAA



CCCTACAACTG
TGTGTTGATGAG
ATGCTGATAAAGAAACAAGACTTTTTAGAAAAGAAAATTGAAGTTGAAATTGGAGTTGC



GC

CAGGAAGAATGGAACAAAAAACAAAAGAGCCGCGATCCAGGCACTCAAAAGGAAGAA





GAGGTATGAAAAGCAATTGCAGCAGATCGATGGAACGTTATCAACAATTGAGATGCA





GAGAGAGGCCCTCGAAGGAGCCAACACGAATACGGCCGTACTGCAAACTATGAAGA





ACGCAGCAGATGCTCTCAAAGCGGCTCATCAACACATGGATGTGGATCAG





NL003
SEQ ID NO: 1121
SEQ ID NO: 1122
SEQ ID NO: 1075



TCCGCGTCGTC
TTGACGCGACCAG
TCCGCGTCGTCCTTACGAGAAGGCACGTCTCGAACAGGAGTTGAAGATCATCGGAGA



CTTACGAGAAG
GTCGGCCAC
GTATGGACTCCGTAACAAGCGTGAGGTGTGGAGAGTCAAATACGCCCTGGCCAAGAT



GC

TCGTAAGGCCGCTCGTGAGCTGTTGACTCTGGAAGAGAAGGACCAGAAACGTTTGTT





TGAAGGTAACGCCCTGCTGCGTCGCCTGGTGCGTATTGGAGTGTTGGACGAAGGAA





GAATGAAGCTCGATTACGTCTTGGGTTTAAAAATTGAAGATTTCCTTGAACGTCGTCT





ACAGACTCAGGTGTACAAACTCGGTTTGGCCAAGTCCATCCATCACGCCCGTGTACT





CATCAGACAAAGACATATCAGAGTGCGCAAACAAGTAGTGAACATTCCGAGCTTTGTG





GTGCGCCTGGACTCGCAGAAGCACATTGACTTCTCGCTGAAGTCGCCGTTCGGCGG





TGGCCGACCTGGTCGCGTCAA





NL004
SEQ ID NO: 1123
SEQ ID NO: 1124
SEQ ID NO: 1077



TGAAGGTGGAG
GTCGTCTTCTCDGA
AAGGAGTTGGCTGCTGTAAGAACTGTCTGCTCTCACATCGAAAACATGCTGAAGGGA



AARGGTTYGGM
HACRTAVAGACC
GTCACAAAGGGATTCCTGTACAAGATGCGTGCCGTGTACGCCCATTTCCCCATCAAC



WCMAAG

TGTGTGACGACCGAGAACAACTCTGTGATCGAGGTGCGTAACTTCCTGGGCGAGAAG





TACATCCGACGGGTGAGGATGGCGCCCGGCGTCACTGTTACCAACTCGACAAAGCA





GAAGGACGAGCTCATCGTCGAAGGAAACAGCATAGAGGACGTGTCAAGATCAGCTG





CCCTCATCCAACAGTCAACAACAGTGAAGAACAAGGATATTCGTAAATTCTTGGAC





NL005
SEQ ID NO: 1125
SEQ ID NO: 1126
SEQ ID NO: 1079



GGTCTGGTTGG
TCCTGCTTCTTSGY
TTGGATCCCAATGAAATAAATGAAATCGCAAACACAAATTCACGTCAAAGCATCAGGA



ATCCHAATGAAA
RGCRATWCGYTC
AGCTGATCAAAGACGGTCTTATCATCAAGAAACCGGTTGCAGTACATTCACGTGCTCG



TCAAYGA

CGTTCGTAAAAACACTGAAGCCAGGAGGAAAGGCAGACATTGTGGCTTTGGTAAGAG





GAAAGGTACAGCCAACGCCCGTATGCCACAAAAGGTTCTATGGGTGAATCGTATGCG





TGTCTTGAGAAGACTGTTGAAAAAATACAGACAAGATAAGAAAATCGACAGGCATCTG





TACCATCACCTTTACATGAAGGCTAAGGGTAACGTATTCAAGAACAAGCGTGTATTGA





TGGAGTTCATTCATAAGAAGAAGGCCGAGAAAGCAAGAATGAAGATGTTGAACGACC





AGGCTGAAGCTCGCAGACAAAAGGTCAAGGAGGCCAAGAAGCGAAGGGAA





NL006
SEQ ID NO: 1127
SEQ ID NO: 1128
SEQ ID NO: 1081



GGAGCGAGACT
GAGATCTTCTGCAC
AAGTGCTTGTGTCAAGTGGTGTGGTGGAGTACATTGACACCCTGGAGGAGGAGACG



ACAACAAYKAYR
RTTKACVGCATC
ACCATGATAGCGATGTCGCCGGATGACCTGCGTCAGGACAAGGAGTATGCCTACTGT



GYTGGC

ACCACCTACACGCACTGCGAGATCCACCCGGCCATGATACTCGGTGTGTGCGCCTCT





ATTATTCCCTTCCCCGATCACAACCAAAGTCCCAGGAACACCTATCAGAGCGCTATGG





GGAAACAGGCGATGGGCGTGTACATCACCAACTTCCACGTGCGAATGGACACGCTG





GCTCACGTGCTGTTCTACCCGCACAAGCCACTGGTCACCACTCGCTCCATGGAGTAC





CTGCGCTTCAGGGAGCTTCCTGCCGGCATCAACTCTGTGGTCGCCATCGCCTGCTAC





ACTGGATACAACCAGGAGGACAGTGTCATTCTCAACGCCTCCGCTGTCGAGCGCGG





ATTCTTCAGATCGGTTTTCTTCCGATCTTACAAAGATGCAGAATCGAAGCGTATTGGC





GACCAAGAGGAGCAATTCGAGAAGCCCACCAGACAGACGTGTCAGGGAATGAGGAA





TGCCATTTATGACAAATTGGACGATGATGGCATCATTGCTCCCGGTCTGAGAGTGTCT





GGTGACGATGTGGTTATTGGCAAAACCATAACACTGCCCGATAATGATGACGAGCTG





GAAGGTACAACAAAGAGGTTCACGAAGAGAGATGCCAGTACTTTCCTGCGTAACAGT





GAGACGGGAATCGTCGACCAAGTCATGTTAACCTTGAACTCTGAGGGTTACAAGTTC





TGCAAAATTCGAGTCAGGTCTGTGCGTATCCCGCAGATTGGCGATAAGTTCGCTTCC





CGACATGGCCAAAAAGGAACGTGTGGAATACAGTATCGTCAAGAGGACATGCCTTTT





ACAAGCGAGGGAATCGCACCGGATATTATTATCAATCCTCACGCTATCCCATCTCGTA





TGACAATTGGCCATTTAATTGAATGTCTCCAAGGAAAGGTGTCGTCGAACAAGGGCG





AGATAGGTGACGCGACGCCGTTCAAC





NL007
SEQ ID NO: 1129
SEQ ID NO: 1130
SEQ ID NO: 1083



CGGTGTCCATTC
CGATGCAAGTAGG
TTTCAGAGATTTCCTTCTGAAACCTGAAATTTTGAGAGCAATCCTTGACTGTGGTTTTG



ACAGYTCCGG
TGTCKGARTCYTC
AACATCCATCTGAAGTACAACATGAATGCATTCCTCAAGCTGTACTTGGAATGGACAT





ATTGTGTCAAGCGAAATCCGGTATGGGAAAAACTGCTGTATTTGTGTTGGCGACATTA





CAGCAAATTGAACCAACTGACAACCAAGTCAGTGTATTGGTCATGTGTCATACCAGAG





AGCTTGCATTCCAAATCAGCAAAGAGTATGAACGATTTTCGAAATGTATGCCAAATAT





CAAGGTTGGAGTTTTCTTCGGCGGACTGCCGATTCAGAGGGATGAGGAGACGTTGAA





ATTGAACTGTCCTCACATCGTGGTTGGAACACCCGGACGAATTTTGGCGTTGGTACG





CAACAAGAAGCTGGACCTCAAGCATCTCAAGCACTTTGTCCTTGACGAATGTGACAAA





ATGTTGGAACTGTTAGATATGCGAAGAGATGTGCAGGAAATATTCCGAAACACGCCG





CACAGCAAACAAGTCATGATGTTCAGTGCAACTCTCAGCAAAGAAATTCGTCCAGTCT





GCAAGAAATTCATGCAAGATCCGATGGAAGTGTACGTTGATGACGAGGCCAAGCTGA





CGCTTCACGGCCTGCAGCAGCACTATGTCAAACTCAAAGAAAACGAAAAGAACAAAA





AGTTATTTGAATTACTTGACATACTTGAATTCAACCAGGTTGTTATATTTGTGAAGTCA





GTGCAGCGCTGCATGGCCCTATCGCAACTCCTAACAGAGCAGAACTTCCCTGCAGTG





GCTATTCACCGTGGCATGACACAAGAAGAACGATTGAAGAAATATCAAGAGTTCAAAG





AGTTCCTAAAGCGAATTTTGGTAGCAACGAATCTGTTTGGCAGAGGAATGGATATTGA





GAGAGTCAACATTGTATTCAACTATGACATGCCT





NL008
SEQ ID NO: 1131
SEQ ID NO: 1132
SEQ ID NO: 1085



GTGGTGGATCA
GCGCATTTGATCGT
GGAAGGATAGAAAACCAGAAACGAGTTGTTGGTGTTCTTTTGGGATGCTGGAGACCT



CTTYAAYCGKAT
TBGTYTTCAC
GGAGGTGTATTAGATGTTTCAAACAGTTTTGCAGTTCCATTTGATGAGGACGACAAAG



G

AAAAGAATGTTTGGTTCTTAGACCATGATTACTTGGAAAACATGTTCGGGATGTTCAA





GAAAGTTAATGCTAGAGAAAAGGTTGTGGGTTGGTACCATACTGGACCCAAACTCCA





CCAAAACGATGTTGCAATCAATGAGTTGATTCGTCGTTACTGTCCAAACTGTGTCTTA





GTCATAATCGATGCCAAGCCTAAAGATTTGGGTCTACCTACAGAGGCATACAGAGTC





GTTGAAGAAATCCATGATGATGGATCGCCAACATCAAAAACATTTGAACATGTGATGA





GTGAGATTGGGGCAGAAGAGGCTGAGGAGATTGGCGTTGAACATCTGTTGAGAGAC





ATCAAAGATACAACAGTCGGGTCACTGTCACAGCGCGTCACAAATCAGCTGATGGGC





TTGAAGGGCTTGCATCTGCAATTACAGGATATGCGAGACTATTTGAATCAGGTTGTCG





AAGGAAAGTTGCCAATGAACCATCAAATCGTTTACCAACTGCAAGACATCTTCAACCT





TCTACCCGATATCGGCCACGGCAATTTTGTAGACTCGCTCTAC





NL009
SEQ ID NO: 1133
SEQ ID NO: 1134
SEQ ID NO: 1087



GGGCCGTGGTC
CCGCCAAAGGACT
TGCGACTATGATCGACCGCCGGGACGCGGTCAGGTGTGCGACGTCGACGTCAAGAA



AGAAYATYWAYA
SARRTADCCCTC
CTGGTTTCCCTGCACCTCTGAGAACAATTTCAACTACCATCAATCGAGCCCTTGTGTT



AC

TTTCTCAAACTGAACAAGATAATTGGTTGGCAACCGGAGTACTACAATGAGACTGAAG





GCTTTCCAGATAATATGCCAGGTGACCTCAAGCGACACATTGCCCAACAGAAGAGTA





TCAACAAGCTGTTTATGCAAACAATCTGGATAACTTGCGAAGGAGAGGGTCCTCTAGA





CAAGGAGAATGCAGGGGAGATCCAGTACATCCCTAGACAGGGATTTCCGGGCTACTT





CTACCCTTACACTAATGCC





NL010
SEQ ID NO: 1135
SEQ ID NO: 1136
SEQ ID NO: 1089 (amino terminus)



CGGCTGACGTG
TGCCGGAAGTTCTC
GTCCAGTCGACTGGAAGCCACCAGGCTTGTTGTTCCCGTTGGATGTCTGTATCAACC



GAAYGTKTGGC
RTAYTCKGGC
TTTGAAGGAGAGACCTGATCTACCGCCTGTACAGTACGATCCAGTTCTTTGTACTAGG



C

AATACTTGTCGTGCAATTCTGAATCCATTGTGCCAAGTCGACTATCGAGCCAAGCTAT





GGGTCTGCAACTTTTGTTTCCAGAGGAATCCTTTCCCCCCTCAATATGCAGCTATTTC





GGAGCAGCATCAACCAGCAGAACTGATACCTTCATTTTCCACCATCGAATACATCATT





ACCAGAGCGCAAACGATGCCGCCGATGTTCGTGCTGGTGGTGGACACATGTCTGGA





CGACGAGGAGCTGGGAGCTTTGAAGGACTCACTGCAGATGTCGCTGTCGCTGCTGC





CGCCCAATGCACTCATCGGTCTCATCACGTTCGGCAAAATGGTGCAGGTGCACGAGC





TTGGCTGCGACGGCTGCTCGAAGAGCTACGTGTTCCGTGGCGTGAAGGACCTGACT





GCCAAGCAGATCCAGGACATGTTGGGCATTGGCAAGATGGCCGCCGCTCCACAGCC





CATGCAACAGCGCATTCCCGGCGCCGCTCCCTCCGCACCTGTCAACAGATTTCTTCA





GCCTGTCGGAAAGTGCGATATGAGTTTAACTGATCTGCTTGGGGAATTGCAAAGAGA





TCCATGGAATGTGGCTCAGGGCAAGAGACCTCTCCGATCTACTGGAGTTGCATTGTC





CATTGCAGTTGGTCTGCTCGAGTGCACA








SEQ ID NO: 1115 (carboxy terminus)





CGTTGAACGTGAAAGGCTCGTGTGTGTCAGACACTGACATTGGCTTGGGCGGCACCT





CTCAATGGAAAATGTGCGCCTTCACTCCACACACAACTTGTGCATTCTTCTTCGAAGT





TGTCAACCAGCACGCAGCCCCAATCCCACAGGGAGGAAGAGGATGCATCCAATTCAT





TACGCAATACCAACATTCCAGTGGCCAGAGAAGGATACGTGTCACCACCATCGCTCG





AAACTGGGCAGATGCGAGCACCAACCTGGCACACATCAGTGCCGGCTTCGACCAGG





AGGCAGGAGCCGTGCTGATGGCCCGCATGGTCGTGCATCGCGCCGAGACTGACGAT





GGACCTGACGTCATGCGCTGGGCTGACCGCATGCTCATCCGTCTCTGTCAGAGGTTC





GGTGAATACAGTAAGGATGACCCTAACAGTTTCCGTCTGCCAGAGAACTTCACACTTT





ATCCGCAGTTCATGTACCATCTGCGTCGATCCCAATTCTTGCAAGTGTTCAACAACAG





TCCTGATGAAACATCTTACTACAGGCACATTCTTATGCGAGAGGATCTGACTCAGAGT





TTGATTATGATCCAGCCGATTTTGTACAGCTACAGCTTCAATGGTCCCCCCGAGCCAG





TGCTGCTCGACACCAGCAGTATTCAACCCGACAGAATCCTATTGATGGACACATTTTT





CCAAATTCTCATTTTCCATGGAGAGACGATTGCTCAATGGCGATCTCTGGGCTACCAG





GACAT





NL011
SEQ ID NO: 1137
SEQ ID NO: 1138
SEQ ID NO: 1091



CCCACTTTCAAG
CGCTCTCTCTCGAT
AGATGGTGGTACCGGCAAAACTACATTTGTCAAACGACATCTTACCGGAGAATTTGAA



TGYGTRYTRGTC
CTGYDSCTGCC
AAGAAGTATGTTGCCACCCTTGGAGTTGAAGTTCACCCCCTTGTATTTCACACAAACA



GG

GAGGTGTGATTAGGTTCAATGTGTGGGACACAGCTGGCCAGGAAAAGTTCGGTGGA





CTTCGTGATGGATATTACATTCAGGGACAATGCGCCATCATTATGTTTGACGTAACGT





CAAGAGTCACCTACAAGAACGTTCCCAACTGGCACAGAGATTTAGTGAGGGTTTGCG





AAAACATTCCCATTGTACTATGCGGCAACAAAGTAGACATCAAGGACAGGAAAGTCAA





GGCCAAGAGCATAGTCTTCCATAGGAAGAAGAACCTTCAGTACTACGACATCAGTGC





GAAAAGCAACTACAACTTCGAGAAGCCGTTCCTGTGGTTGGCAAAGAAGCTGATCGG





TGACCCCAACCTGGAGTTCGTCGCCATGCCCGCCCTCCTCCCACCCGAGGTCACAAT





GGACCCCCAAT





NL012
SEQ ID NO: 1139
SEQ ID NO: 1140
SEQ ID NO: 1093



GCAGGCGCAGG
GAATTTCCTCTTSA
GCAGCAGACGCAGGCACAGGTAGACGAGGTTGTCGATATAATGAAAACAAACGTTGA



TBGABGARGT
GYTTBCCVGC
GAAAGTATTGGAGAGGGATCAAAAACTATCAGAATTGGATGATCGAGCAGATGCTCTA





CAGCAAGGCGCTTCACAGTTTGAACAGCAAGCTGGCAAACTCAAGAGGAAATTC





NL013
SEQ ID NO: 1141
SEQ ID NO: 1142
SEQ ID NO: 1095



CAGATGCGCCC
GCCCTTGACAGAYT
CGCAGAGCAAGTCTACATCTCTTCACTGGCCTTATTGAAAATGCTTAAGCACGGTCGC



GTBGTDGAYAC
GDATVGGATC
GCCGGTGTTCCCATGGAAGTTATGGGCCTAATGCTGGGCGAATTTGTAGACGACTAC





ACTGTGCGTGTCATTGATGTATTCGCTATGCCACAGAGTGGAACGGGAGTGAGTGTG





GAGGCTGTAGACCCGGTGTTCCAAGCGAAGATGTTGGACATGCTAAAGCAGACAGG





ACGGCCCGAGATGGTGGTGGGCTGGTACCACTCGCACCCGGGCTTCGGCTGCTGG





CTGTCGGGTGTCGACATCAACACGCAGGAGAGCTTCGAGCAACTATCCAAGAGAGC





CGTTGCCGTCGTCGTC





NL014
SEQ ID NO: 1143
SEQ ID NO: 1144
SEQ ID NO: 1097



CGCAGATCAAR
GAACTTGCGGTTGA
TTTCATTGAGCAAGAAGCCAATGAGAAAGCCGAAGAGATCGATGCCAAGGCCGAGGA



CAYATGATGGC
BGTTSCGDCC
AGAATTCAACATTGAAAAGGGAAGGCTCGTACAGCACCAGCGCCTTAAAATCATGGA





GTACTATGACAGGAAAGAGAAGCAGGTTGAGCTCCAGAAAAAAATCCAATCGTCAAA





CATGCTGAACCAAGCGCGTCTGAAGGCACTGAAGGTGCGCGAAGATCACGTGAGAA





GTGTGCTCGAAGAATCCAGAAAACGTCTTGGAGAAGTAACCAGAAACCCAGCCAAGT





ACAAGGAAGTCCTCCAGTATCTAATTGTCCAAGGACTCCTGCAGCTGCTAGAATCAAA





CGTAGTACTGCGCGTGCGCGAGGCTGACGTGAGTCTGATCGAGGGCATTGTTGGCT





CATGCGCAGAGCAGTACGCGAAGATGACCGGCAAAGAGGTGGTGGTGAAGCTGGAC





GCTGACAACTTCCTGGCCGCCGAGACGTGTGGAGGCGTCGAGTTGTTCGCCCGCAA





CGGCCGCATCAAGATCCCCAACACCCTCGAGTCCAGGCTCGACCTCATCTCCCAGCA





ACTTGTGCCCGAGATTAGAGTCGCGCTCTTT





NL015
SEQ ID NO: 1145
SEQ ID NO: 1146
SEQ ID NO: 1099



GCCGCAAGGAG
GTCCGTGGGAYTC
ATTGTGCTGTCTGACGAGACATGTCCGTTCGAAAAGATCCGCATGAATCGAGTGGTC



ACBGTVTGC
RGCHGCAATC
AGGAAGAATCTGCGAGTGCGCTTGTCCGACATTGTCTCGATCCAGCCTTGCCCAGAC





GTCAAGTATGGAAAGCGTATCCATGTGCTGCCCATTGATGATACCGTTGAGGGTCTTA





CAGGAAATCTGTTCGAAGTGTATTTGAAGCCATACTTCCTGGAAGCATACAGGCCAAT





TCACAAGGATGATGCATTCATTGTTCGCGGAGGTATGAGAGCGGTCGAATTCAAGGT





GGTTGAAACAGATCCATCGCCCTACTGCATTGTCGCGCCAGACACCGTCATCCATTG





TGAGGGAGACCCCATCAAACGTGAGGATGAAGAAGACGCAGCAAACGCAGTCGGCT





ACGACGACATTGGAGGCTGCAGAAAGCAGCTGGCGCAGATCAAAGAGATGGTGGAG





TTGCCGCTGAGACATCCCAGTCTGTTCAAGGCGATCGGCGTGAAGCCGCCACGAGG





CATCCTGCTGTACGGACCACCGGGAACCGGAAAGACGTTGATAGCGCGCGCCGTCG





CCAACGAAACGGGCGCCTTCTTCTTCCTCATCAACGGACCCGAGATTATGAGCAAAT





TGGCCGGCGAGTCGGAGAGTAACCTGCGCAAAGCTTTCGAGGAAGCGGACAAAAAC





GCACCGGCCATCATCTTCATCGATGAGCTGGACGCAATCGCGCCAAAACGCGAGAA





GACGCACGGCGAGGTGGAGCGACGCATCGTGTCGCAGCTGCTGACGCTGATGGAC





GGTCTCAAGCAGAGCTCGCACGTGATTGTCATGGCCGCCACCAATCGGCCCAACTC





GATCGATGCCGCGCTTAGGCGCTTTGGCCGCTTTGATCGCGAAATCGACATTGGCAT





TCCCGATGCCACCGGTCGTCTCGAGGTGCTGCGCATCCACACCAAGAACATGAAGTT





GGCTGATGACGTCGATTTGGAACA





NL016
SEQ ID NO: 1147
SEQ ID NO: 1148
SEQ ID NO: 1101



GTTCACCGGCG
CGGCATAGTCAGA
GACGCCAGTATCAGAAGACATGCTTGGTCGTGTATTCAACGGAAGTGGTAAGCCCAT



AYATYCTGCG
ATSGGRATCTG
CGACAAAGGACCTCCCATTCTTGCTGAGGATTATCTCGACATTCAAGGTCAACCCATC





AATCCTTGGTCGCGTATCTATCCCGAGGAAATGATCCAGACTGGAATTTCAGCCATCG





ACGTCATGAACTCGATTGCTCGTGGCCAGAAAATCCCCATCTTTTCAGCTGCCGGTCT





ACCTCACAACGAAATTGCTGCTCAAATCTGTAGACAGGCTGGTCTTGTCAAACTGCCA





GGAAAGTCAGTTCTCGATGACTCTGAGGACAACTTTGCTATTGTATTCGCAGCCATGG





GAGTCAACATGGAAACTGCTCGATTCTTCAAACAGGATTTCGAGGAGAACGGCTCTAT





GGAGAACGTGTGCCTGTTCTTGAACCTGGCGAACGACCCGACGATCGAGCGTATCAT





CACACCACGCCTGGCGCTGACGGCCGCCGAGTTCCTGGCCTACCAGTGCGAGAAGC





ACGTGCTCGTCATCCTCACCGACATGAGCTCCTACGCCGAGGCGCTGCGAGAGGTG





TCCGCCGCCCGCGAGGAGGTGCCCGGCCGTCGTGGTTTCCCCGGTTACATGTACAC





CGATCTGGCCACCATCTACGAGCGCGCCGGACGAGTCGAGGGTCGCAACGGCTCCA





TCACG





NL018
SEQ ID NO: 1149
SEQ ID NO: 1150
SEQ ID NO: 1103



GCTCCGTCTACA
GTGCATCGGTACC
TATGCAAATGCCTGTGCCACGCCCACAAATAGAAAGCACACAACAGTTTATTCGATCC



THCARCCNGAR
AHSCHGCRTC
GAGAAAACAACATACTCGAATGGATTCACCACCATTGAGGAGGACTTCAAAGTAGACA



GG

CTTTCGAATACCGTCTTCTGCGCGAGGTGTCGTTCCGCGAATCTCTGATCAGAAACTA





CTTGCACGAGGCGGACATGCAGATGTCGACGGTGGTGGACCGAGCATTGGGTCCCC





CCTCGGCGCCACACATCCAGCAGAAGCCGCGCAACTCAAAAATCCAGGAGGGCGGC





GATGCCGTCTTTTCCATCAAGCTCAGCGCCAACCCCAAGCCTCGGCTGGTCTGGTTC





AAGAACGGTCAGCGCATCGGTCAGACGCAGAAACACCAGGCCTCCTACTCCAATCAG





ACCGCCACGCTCAAGGTCAACAAAGTCAGCGCTCAAGACTCCGGCCACTACACGCT





GCTTGCTGAAAATCCGCAAGGATGTACTGTGTCCTCAGCTTACCTAGCTGTCGAATCA





GCTGGCACTCAAGATACAGGATACAGTGAGCAATACAGCAGACAAGAGGTGGAGAC





GACAGAGGCGGTGGACAGCAGCAAGATGCTGGCACCGAACTTTGTTCGCGTGCCGG





CCGATCGCGACGCGAGCGAAGGCAAGATGACGCGGTTTGACTGCCGCGTGACGGG





CCGACCCTACCCGGACGTGGCCTGGTTCATCAACGGCCAACAGGTGGCTGACGACG





CCACGCACAAGATCCTCGTCAACGAGTCTGGCAACCACTCGCTCATGATCACCGGCG





TCACTCGCTTGGACCACGGAGTGGTCGGCTGTATTGCCCGCAACAAGGCTGGCGAA





ACCTCATTCCAGTGCAACTTGAATGTGATCGAGAAAGAACTGGTTGTGGCGCCGAAA





TTTGTGGAGAGATTCGCACAAGTGAATGTGAAGGAGGGTGAGCCGGTTGTGCTGAG





CGCACGCGCTGTTGGCACACCTGTTCCAAGAATAACATGGCAGAAGGACGGCGCCC





CGATCCAGTCGGGACCGAGCGTGAGTCTGTTTGTGGACGGAGGTGCGACCAGCCTG





GACATCCCGTACGCGAAGGCGTCG





NL019
SEQ ID NO: 1151
SEQ ID NO: 1152
SEQ ID NO: 1105



GTCCTGTCTGCT
CCTTGATCTCHGC
CGATGACACATACACAGAAAGTTACATCAGTACCATTGGTGTAGATTTTAAAATTAGAA



GCTVMGWTTYG
MGCCATBGTC
CAATAGATCTCGATGGAAAAACCATAAAGCTTCAGATTTGGGACACGGCCGGCCAGG



C

AGCGGTTCCGCACGATCACATCGAGCTACTACCGGGGCGCCCACGGCATCATTGTG





GTGTACGACTGCACCGACCAGGAGTCGTTCAACAACCTCAAACAGTGGCTCGAGGA





GATTGACCGCTACGCCTGTGATAATGTCAACAAACTGCTCGTCGGCAACAAGTGTGA





TCAGACCAACAAAAAGGTCGTCGACTATACACAGGCTAAGGAATACGCCGACCAGCT





GGGCATTCCGTTCCTGGAGACGTCGGCGAAGAACGCGACCAATGTGGAGCAGGCGT





TCAT





NL021
SEQ ID NO: 1153
SEQ ID NO: 1154
SEQ ID NO: 1107



CTCAATCAGAGC
GGAATTGCCSAGV
CGTCAGTCTCAATTCTGTCACCGATATCAGCACCACGTTCATTCTCAAGCCACAAGAG



GTYCCHCCRTAY
CGDGADCC
AACGTGAAGATAACGCTTGAGGGCGCACAGGCCTGTTTCATTTCACACGAACGACTT



GG

GTGATCTCACTGAAGGGAGGAGAACTCTATGTTCTAACTCTCTATTCCGATAGTATGC





GCAGTGTGAGGAGTTTTCATCTGGAGAAAGCTGCTGCCAGTGTCTTGACTACTTGTAT





CTGTGTTTGTGAGGAGAACTATCTGTTCCTTGGTTCCCGTCTTGGAAACTCACTGTTG





CTCAGGTTTACTGAGAAGGAATTGAACCTGATTGAGCCGAGGGCCATCGAAAGCTCA





CAGTCCCAGAATCCGGCCAAGAAGAAAAAGCTGGATACTTTGGGAGATTGGATGGCA





TCTGACGTCACTGAAATACGCGACCTGGATGAACTAGAAGTGTATGGCAGTGAAACA





CAAACCTCTATGCAAATTGCATCCTACATATTC





NL022
SEQ ID NO: 1155
SEQ ID NO: 1156
SEQ ID NO: 1109



GCGTGCTCAAG
CCAGTTCATGCTTR
TACATTGCACAGAGAATTCCTTTCCGAGCCAGATCTGCAATCTTACAGTGTTATGATA



TAYATGACBGAY
TANGCCCANGC
ATTGATGAAGCTCACGAGAGGACGTTGCACACTGATATACTGTTCGGTTTGGTGAAA



GG

GATGTCGCCCGATTCAGACCTGACTTGAAGCTGCTCATATCAAGCGCCACACTGGAT





GCTCAGAAATTCTCCGAGTTTTTCGACGATGCACCCATCTTCAGGATTCCGGGCCGT





AGATTTCCGGTGGACATCTACTACACAAAGGCGCCCGAGGCTGACTACGTGGACGCA





TGTGTCGTTTCGATCCTGCAGATCCACGCCACTCAGCCGCTGGGAGACATCCTGGTC





TTCCTCACCGGTCAGGAGGAGATCGAAACCTGCCAGGAGCTGCTGCAGGACAGAGT





GCGCAGGCTTGGGCCTCGTATCAAGGAGCTGCTCATATTGCCCGTCTATTCCAACCT





ACCCAGTGATATGCAGGCAAAGATTTTCCTGCCCACTCCACCAAATGCTAGAAAGGTA





GTATTGGCCACAAATATTGCAGAAACCTCATTGACCATCGACAATATAATCTACGTGA





TTGATCCTGGTTTTTGTAAGCAGAATAACTTCAATTCAAGGACTGGAATGGAATCGCT





TGTTGTAGTGCCTGTTTCAAAGGCATCGGCCAATCAGCGAGCAGGGCGGGCGGGAC





GGGTGGCGGCCGGCAAGTGCTTCCGTCTGTACACG





NL023
SEQ ID NO: 1157
SEQ ID NO: 1158
SEQ ID NO: 1111



CCGGAGCTTCT
GAAAGCACACGCT
CCGGAGCTTCTCTCAGGAACGCCAGCACGAGGAAATGAAGGAATCCTCGGGTCGCA



CTCAGGAACGC
GTTGCTCTGG
TGCATCACAGCGATCCTCTAATCGTCGAGACTCATAGCGGTCACGTGAGAGGAATCT





CGAAGACCGTCCTCGGACGGGAGGTCCACGTGTTTACCGGGATTCCGTTTGCGAAA





CCTCCCATCGGTCCGTTGCGATTCCGTAAACCGGTTCCCGTCGACCCGTGGCACGG





CGTTCTGGATGCGACCGCGCTTCCCAACAGCTGCTACCAGGAACGGTACGAGTATTT





CCCGGGCTTCGAGGGAGAGGAAATGTGGAATCCGAATACGAATTTGTCCGAAGATTG





TCTGTATTTGAACATATGGGTGCCGCACCGGTTGAGAATCCGACACAGAGCCAACAG





CGAGGAGAATAAACCAAGAGCGAAGGTGCCGGTGCTGATCTGGATCTACGGCGGGG





GTTACATGAGCGGCACAGCTACACTGGACGTGTACGATGCTGACATGGTGGCCGCC





ACGAGTGACGTCATCGTCGCCTCCATGCAGTACCGAGTGGGTGCGTTCGGCTTCCTC





TACCTCGCACAGGACTTGCCTCGAGGCAGCGAGGAGGCGCCGGGCAACATGGGGC





TCTGGGACCAGGCCCTTGCCATCCGCTGGCTCAAGGACAACATTGCCGCCTTCGGA





GGCGATCCCGAACTCATGACGCTCTTTGGCGAGTCGGCTGGGGGTGGATCTGTAAG





CATCCACTTGGTATCACCGATAACTCGCGGCCTAGCGCGTCGTGGCATCATGCAGTC





AGGAACGATGAACGCACCGTGGAGCTTCATGACGGCGGAACGCGCGACCGAAATCG





CCAAGACGCTCATTGACGACTGCGGCTGCAACTCGTCGCTCCTGACCGACGCTCCC





AGTCGCGTCATGTCCTGTATGCGATCAGTCGAGGCAAAGATCATCTCCGTGCAGCAA





TGGAACAGCTACTCCGGCATTCTCGGACTTCCGTCTGCACCCACCATCGACGGCATT





TTCCTGCCCAAACATCCCCTCGATCTGCTCAAGGAAGGCGACTTTCAGGACACTGAA





ATACTCATCGGCAGTAATCAGGATGAGGGTACCTACTTCATATTGTACGATTTCATCG





ACTTCTTCCAAAAAGACGGGCCGAGTTTCTTGCAAAGAGATAAGTTCCTAGACATCAT





CAACACAATTTTCAAGAATATGACGAAAATTGAGAGGGAAGCTATCATATTCCAGTAC





ACAGATTGGGAGCATGTTATGGATGGTTATCTGAACCAGAAAATGATCGGAGATGTG





GTTGGTGATTACTTCTTCATCTGTCCGACAAATCATTTCGCACAGGCATTCGCAGAGC





ATGGAAAGAAGGTGTATTACTATTTCTTCACCCAGAGAACCAGTACAAGTTTATGGGG





CGAGTGGATGGGAGTCATGCATGGAGATGAAATAGAATACGTTTTTGGTCATCCTCTC





AACATGTCGCTGCAATTCAATGCTAGGGAAAGGGATCTCAGTCTGCGAATAATGCAA





GCTTACTCTAGGTTTGCATTGACAGGTAAACCAGTGCCTGATGACGTGAATTGGCCTA





TCTACTCCAAGGACCAGCCGCAGTATTACATTTTCAATGCGGAGACTTCGGGCACAG





GCAGAGGACCCAGAGCAACAGCGTGTGCTTTC





NL027
SEQ ID NO: 1159
SEQ ID NO: 1160
SEQ ID NO: 1113



GCCGATCGTKYT
GGTATAGATGAARC
AGAAGACGGCACGGTGCGTATTTGGCACTCGGGCACCTACAGGCTGGAGTCCTCGC



VACKGGCTC
ARTCDCCVACCCA
TGAATTATGGCCTCGAAAGAGTGTGGACCATTTGCTGCATGCGAGGATCCAACAATG





TGGCTCTTGGCTACGACGAAGGCAGCATAATGGTGAAGGTGGGTCGGGAGGAGCCG





GCCATCTCGATGGATGTGAACGGTGAGAAGATTGTGTGGGCGCGCCACTCGGAGAT





ACAACAGGTCAACCTCAAGGCCATGCCGGAGGGCGTCGAAATCAAAGATGGCGAAC





GACTGCCGGTCGCCGTTAAGGATATGGGCAGCTGTGAAATATATCCGCAGACCATCG





CTCATAATCCCAACGGCAGATTCCTAGTCGTTTGTGGAGATGGAGAGTACATAATTCA





CACATCAATGGTGCTAAGAAATAAGGCGTTTGGCTCGGCCCAAGAGTTCATTTGGGG





ACAGGACTCGTCCGAGTATGCTATCAGAGAAGGAACATCCACTGTCAAAGTATTCAAA





AACTTCAAAGAAAAGAAATCATTCAAGCCAGAATTTGGTGCTGAGAGCATATTCGGCG





GCTACCTGCTGGGAGTTTGTTCGTTGTCTGGACTGGCGCTGTACGACTGGGAGACCC





TGGAGCTGGTGCGTCGCATCGAGATCCAACCGAAACACGTGTACTGGTCGGAGAGT





GGGGAGCTGGTGGCGCTGGCCACTGATGACTCCTACTTTGTGCTCCGCTACGACGC





ACAGGCCGTGCTCGCTGCACGCGACGCCGGTGACGACGCTGTCACGCCGGACGGC





GTCGAGGATGCATTCGAGGTCCTTGGTGAAGTGCACGAAACTGTAAAAACTGGATTG



















TABLE 2-CS





Target
Primer Forward
Primer Reverse
cDNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







CS001
SEQ ID NO: 1706
SEQ ID NO: 1707
SEQ ID NO: 1682



CATTTGAAGCGT
CTTCGTGCCCTT
TAAAGCATGGATGTTGGACAAACTGGGTGGCGTGTACGCGCCGCGGCCGTCGACCGG



TTWRMYGCYCC
GCCRATKATRAA
CCCCCACAAGTTGCGCGAGTGCCTGCCGCTGGTGATCTTCCTCAGGAACCGGCTCAA




BACG
GTACGCGCTCACCGGAAATGAAGTGCTTAAGATTGTAAAGCAGCGACTTATCAAAGTTG





ACGGCAAAGTCAGGACAGACCCCACATATCCCGCTGGATTTATGGATGTTGTTTCCATT





GAAAAGACAAATGAGCTGTTCCGTCTTATATATGATGTCAAAGGCAGATTTACTATTCAC





CGTATTACTCCTGAGGAGGCTAAATACAAGCTGTGCAAGGTGCGGCGCGTGGCGACG





GGCCCCAAGAACGTGCCTTACCTGGTGACCCACGACGGACGCACCGTGCGATACCCC





GACCCACTCATCAAGGTCAACGACTCCATCCAGCTCGACATCGCCACCTCCAAGATCA





TGGACTTCATCAAGTTTGAATCTGGTAACCTATGTATGATCACGGGAGGCCGTAACTTG





GGGCGCGTGGGCACCATCGTGTCCCGCGAGCGACATCCCGGGTCCTTCGACATCGTG





CATATACGGGACTCCACCGGACATACCTTCGCTACCAGATTGAACAACGTGTTCATAAT





CGGCAAGGGCACGAAG





CS002
SEQ ID NO: 1708
SEQ ID NO: 1709
SEQ ID NO: 1684



GAGTTTCTTTAG
GCAATGTCATCC
GAGTTTCTTTAGTAAAGTATTCGGTGGCAAGAAGGAGGAGAAGGGTCCATCAACACAC



TAAAGTATTCGG
ATCAKRTCRTGTA
GAAGCTATACAGAAATTACGCGAAACGGAAGAGTTATTGCAGAAGAAACAAGAGTTTCT



TGG
C
AGAGCGAAAGATCGACACTGAATTACAAACGGCGAGAAAACATGGCACAAAGAATAAG





AGAGCTGCCATTGCGGCACTGAAGCGCAAGAAGCGTTATGAAAAGCAGCTTACCCAGA





TTGATGGCACGCTTACCCAAATTGAGGCCCAAAGGGAAGCGCTAGAAGGAGCTAACAC





CAATACACAGGTGCTTAACACTATGCGAGATGCTGCTACCGCTATGAGACTCGCCCAC





AAGGATATCGATGTAGACAAGGTACACGATCTGATGGATGACATTGC





CS003
SEQ ID NO: 1710
SEQ ID NO: 1711
SEQ ID NO: 1686



CAGGAGTTGAR
CAGGTTCTTCCT
TGGTCTCCGCAACAAGCGTGAGGTGTGGAGGGTGAAGTACACGCTGGCCAGGATCCG



RATHATYGGHSA
CTTKACRCGDCC
TAAGGCTGCCCGTGAGCTGCTCACACTCGAGGAGAAAGACCCTAAGAGGTTATTCGAA



RTA

GGTAATGCTCTCCTTCGTCGTCTGGTGAGGATCGGTGTGTTGGATGAGAAGCAGATGA





AGCTCGATTATGTACTCGGTCTGAAGATTGAGGACTTCTTGGAACGTCGTCTCCAGACT





CAGGTGTTCAAGGCTGGTCTAGCTAAGTCTATCCATCATGCCCGTATTCTTATCAGACA





GAGGCACATCCGTGTCCGCAAGCAAGTTGTGAACATCCCTTCGTTCATCGTGCGGCTG





GACTCTGGCAAGCACATTGACTTCTCGCTGAAGTCTCCGTTCGGCGGCGGCCGGCCG





CS006
SEQ ID NO: 1712
SEQ ID NO: 1713
SEQ ID NO: 1688



ACCTGCCAAGG
GAGATCTTCTGC
ACCTGCCAAGGAATGAGGAACGCTTTGTATGACAAATTGGATGATGATGGTATAATTGC



AATGMGVAAYG
ACRTTKACVGCAT
ACCAGGGATTCGTGTATCTGGTGACGATGTAGTCATTGGAAAAACTATAACTTTGCCAG



C
C
AAAACGATGATGAGCTGGAAGGAACATCAAGACGATACAGTAAGAGAGATGCCTCTAC





ATTCTTGCGAAACAGTGAAACTGGTATTGTTGACCAAGTTATGCTTACACTTAACAGCG





AAGGATACAAATTTTGTAAAATACGTGTGAGATCTGTGAGAATCCCACAAATTGGAGAC





AAATTTGCTTCTCGTCATGGTCAAAAAGGGACTTGTGGTATTCAATATAGGCAAGAAGA





TATGCCTTTCACTTGTGAAGGATTGACACCAGATATTATCATCAATCCACATGCTATCCC





CTCTCGTATGACAATTGGTCACTTGATTGAATGTATTCAAGGTAAGGTCTCCTCAAATAA





AGGTGAAATAGGTGATGCTACACCATTTAACGATGCTGTCAACGTGCAGAAGATCTC





CS007
SEQ ID NO: 1714
SEQ ID NO: 1715
SEQ ID NO: 1690



CGGTGTCCATTC
CGATGCAAGTAG
TTTCAGAGATTTCTTGTTGGAACCAGAGATTTTGGGGGCTATCGTCGATTGCGGTTTCG



ACAGYTCCGG
GTGTCKGARTCY
AGCACCCTTCAGAAGTTCAACATGAATGTATTCCCCAAGCTGTTTTGGGAATGGATATT




TC
CTTTGTCAAAGCTAAATCCGGAATGGGAAAAACCGCCGTATTTGTTTTAGCAACACTGC





AACAGCTAGAACCTTCAGAAAACCATGTTTACGTATTAGTAATGTGCCATACAAGGGAA





CTCGCTTTCCAAATAAGCAAGGAATATGAGAGGTTCTCTAAATATATGGCTGGTGTTAG





AGTATCTGTATTCTTTGGTGGGATGCCAATTCAGAAAGATGAAGAAGTATTGAAGACAG





CCTGCCCGCACATCGTTGTTGGTACTCCTGGCAGAATATTAGCATTGGTTAACAACAAG





AAACTGAATTTAAAACACCTGAAACACTTCATCCTGGATGAATGTGACAAAATGCTTGAA





TCTCTAGACATGAGACGTGATGTGCAGGAAATATTCAGGAACACCCCTCACGGTAAGC





AGGTCATGATGTTTTCTGCAACATTGAGTAAGGAGATCAGACCAGTCTGTAAGAAATTT





ATGCAAGATCCTATGGAAGTTTATGTGGATGATGAAGCTAAACTTACATTGCACGGTTT





GCAGCAACATTATGTTAAACTCAAGGAAAATGAAAAGAATAAGAAGTTATTTGAACTTTT





GGATGTACTGGAGTTCAACCAAGTTGTCATATTTGTAAAGTCAGTGCAGCGCTGCATAG





CTCTCGCACAGCTGCTGACAGACCAAAACTTCCCAGCTATTGGTATACACCGAAATATG





ACTCAAGATGAGCGTCTCTCCCGCTATCAGCAGTTCAAAGATTTCCAGAAGAGGATCCT





TGTTGCGACAAATCTTTTTGGACGGGGTATGGACATTGAAAGAGTCAACATAGTCTTCA





ATTATGACATGCCG





CS009
SEQ ID NO: 1716
SEQ ID NO: 1717
SEQ ID NO: 1692



CCTCGTTGCCAT
CTGGATTCTCTC
CCTCGTTGCCATTTGTATTTGGACGTTTCTGCAGCGGCTGGACTCACGGGAGCCCATG



YTGYWTKTGG
CCTCGCAMGAHA
TGGCAGCTGGACGAGAGCATCATCGGCACCAACCCCGGGCTCGGCTTCCGGCCCACG




CC
CCGCCAGAGGTCGCCAGCAGCGTCATCTGGTATAAAGGCAACGACCCCAACAGCCAA





CAATTCTGGGTGCAAGAAACCTCCAACTTTCTAACCGCGTACAAACGAGACGGTAAGA





AAGCAGGAGCAGGCCAGAACATCCACAACTGTGATTTCAAACTGCCTCCTCCGGCCGG





TAAGGTGTGCGACGTGGACATCAGCGCCTGGAGTCCCTGTGTAGAGGACAAGCACTTT





GGATACCACAAGTCCACGCCCTGCATCTTCCTCAAACTCAACAAGATCTTCGGCTGGA





GGCCGCACTTCTACAACAGCTCCGACAGCCTGCCCACTGACATGCCCGACGACTTGAA





GGAGCACATCAGGAATATGACAGCGTACGATAAGAATTATCTAAACATGGTATGGGTGT





CTTGCGAGGGAGAGAATCCAG





CS011
SEQ ID NO: 1718
SEQ ID NO: 1719
SEQ ID NO: 1694



GGCTCCGGCAA
GTGGAAGCAGGG
GGCTCCGGCAAGACGACCTTTGTCAAACGACACTTGACTGGAGAGTTCGAGAAAAGAT



GACVACMTTYGT
CWGGCATKGCRA
ATGTCGCCACATTAGGTGTCGAGGTGCATCCCTTAGTATTCCACACAAATAGAGGCCCT



C
C
ATAAGGTTTAATGTATGGGATACTGCTGGCCAAGAAAAGTTTGGTGGTCTCCGAGATG





GTTACTATATCCAAGGTCAATGTGCCATCATCATGTTCGATGTAACGTCTCGTGTCACC





TACAAAAATGTACCCAACTGGCACAGAGATTTAGTGCGAGTCTGTGAAGGCATTCCAAT





TGTTCTTTGTGGCAACAAAGTAGATATCAAGGACAGAAAAGTCAAAGCAAAAACTATTG





TTTTCCACAGAAAAAAGAACCTTCAGTATTATGACATCTCTGCCAAGTCAAACTACAATT





TCGAGAAACCCTTCCTCTGGTTAGCGAGAAAGTTGATCGGTGATGGTAACCTAGAGTTT





GTCGCCATGCAGCCCTGCTTCCAC





CS013
SEQ ID NO: 1720
SEQ ID NO: 1721
SEQ ID NO: 1696



GGATCGTCTGC
CTATGGTGTCCA
CAGATGCGCCCGTTGTTGATACTGCCGAACAGGTATACATCTCGTCTTTGGCCCTGTT



TAMGWYTWGGA
GCATSGCGC
GAAGATGTTAAAACACGGGCGCGCCGGTGTTCCAATGGAAGTTATGGGACTTATGTTA



GG

GGTGAATTTGTTGATGATTACACGGTGCGTGTCATAGACGTATTTGCCATGCCTCAAAC





TGGCACAGGAGTGTCGGTTGAAGCTGTAGATCCTGTCTTCCAAGCAAAGATGTTGGAT





ATGTTGAAGCAAACTGGACGACCTGAGATGGTAGTGGGATGGTACCACTCGCATCCTG





GCTTTGGATGTTGGTTATCTGGAGTCGACATTAATACTCAGCAGTCTTTCGAAGCTTTG





TCTGAACGTGCTGTAGCTGTAGTGGTTGATCCCATTCAGTCTGTCAAGGGC





CS014
SEQ ID NO: 1722
SEQ ID NO: 1723
SEQ ID NO: 1698



ATGGCACTGAG
GAACTTGCGGTT
TTCAAAAGCAGATCAAGCATATGATGGCCTTCATCGAACAAGAGGCTAATGAAAAGGCC



CGAYGCHGATG
GABGTTSCGDCC
GAGGAAATCGATGCAAAGGCCGAAGAGGAGTTCAACATTGAAAAAGGCCGCCTGGTG





CAGCAGCAGCGGCTCAAGATCATGGAATACTACGAAAAGAAAGAGAAACAAGTGGAAC





TCCAGAAAAAGATCCAATCTTCGAACATGCTGAATCAAGCCCGTCTGAAGGTGCTCAAA





GTGCGTGAGGACCACGTACGCAACGTTCTCGACGAGGCTCGCAAGCGCCTGGCTGAG





GTGCCCAAAGACGTGAAACTTTACACAGATCTGCTGGTCACGCTCGTCGTACAAGCCC





TATTCCAGCTCATGGAACCCACAGTAACAGTTCGCGTTAGGCAGGCGGACGTCTCCTT





AGTACAGTCCATATTGGGCAAGGCACAGCAGGATTACAAAGCAAAGATCAAGAAGGAC





GTTCAATTGAAGATCGACACCGAGAATTCCCTGCCCGCCGATACTTGTGGCGGAGTGG





AACTTATTGCTGCTAGAGGGCGTATTAAGATCAGCAACACTCTGGAGTCTCGTCTGGA





GCTGATAGCCCAACAACTGTTGCCCGAAATACGTACCGCATTGTTC





CS015
SEQ ID NO: 1724
SEQ ID NO: 1725
SEQ ID NO: 1700



GCCGCAAGGAG
CGATCAAAGCGW
ATCGTGCTTTCAGACGATAACTGCCCCGATGAGAAGATCCGCATGAACCGCGTCGTGC



ACBGTVTGC
CCRAAVCGACG
GAAACAACTTGCGTGTACGCCTGTCAGACATAGTCTCCATAGCGCCTTGTCCATCGGT





CAAATATGGGAAACGGGTACATATATTGCCCATTGATGATTCTGTCGAGGGTTTGACTG





GAAATTTATTCGAAGTCTACTTGAAACCATACTTCATGGAAGCTTATCGGCCTATCCATC





GCGATGACACATTCATGGTTCGCGGGGGCATGAGGGCTGTTGAATTCAAAGTGGTGGA





GACTGATCCGTCGCCGTATTGCATCGTCGCTCCCGACACAGTGATACACTGCGAAGGA





GACCCTATCAAACGAGAGGAAGAAGAAGAAGCCCTAAACGCCGTAGGGTACGACGAC





ATCGGTGGCTGTCGTAAACAGCTCGCTCAGATCAAAGAGATGGTCGAGTTGCCTCTAA





GGCATCCGTCGCTGTTCAAGGCAATTGGTGTGAAGCCGCCACGTGGAATCCTCATGTA





TGGGCCGCCTGGTACCGGCAAAACTCTCATTGCTCGGGCAGTGGCTAATGAAACTGGT





GCATTCTTCTTTCTGATCAACGGGCCGGAGATCATGTCCAAACTCGCGGGCGAGTCCG





AATCGAACCTTCGCAAGGCATTCGAGGAAGCGGACAAGAACTCCCCGGCTATAATCTT





CATCGATGAACTGGATGCCATCGCACCAAAGAGGGAGAAGACTCACGGTGAAGTGGA





GCGTCGTATTGTGTCGCAACTACTTACTCTTATGGATGGAATGAAGAAGTCATCGCACG





TGATCGTAATGGCCGCCACCAACCGTCCGAATTCGATCGACCCGGCGCTA





CS016
SEQ ID NO: 1726
SEQ ID NO: 1727
SEQ ID NO: 1702



GTTCACCGGCG
GTCGCGCAGGTA
AGGATGGAAGCGGGGATACGTTTGAGCATCTCCTTGGGGAAGATACGGAGCAGCTGC



AYATYCTGCG
GAAYTCKGC
CAGCCGATGTCCAGCGACTCGAATACTGTGCGGTTCTCGTAGTTGCCCTGTGTGATGA





AGTTCTTCTCGAACTTGGTGAGGAACTCGAGGTAGAGCAGATCGTCGGGTGTCAGGGC





TTCCTCACCGACGACAGCCTTCATGGCCTGCACGTCCTTACCGATGGCGTAGCAGGCG





TACAGCTGGTTGGAAACATCAGAGTGGTCCTTGCGGGTCATTCCCTCACCGATGGCAG





ACTTCATGAGACGAGACAGGGAAGGCAGCACGTTTACAGGCGGGTAGATCTGTCTGTT





GTGGAGCTGACGGTCTACGTAGATCTGTCCCTCAGTGATGTAGCCCGTTAAATCGGGA





ATAGGATGGGTGATGTCGTCGTTGGGCATAGTCAAGATGGGGATCTGCGTGATGGATC





CGTTTCTACCCTCTACACGCCCGGCTCTCTCGTAGATGGTGGCCAAATCGGTGTACAT





GTAACCTGGGAAACCACGTCGTCCGGGCACCTCCTCACGGGCGGCGGACACTTCACG





CAGAGCCTCCGCGTACGAAGACATGTCAGTCAAGATTACCAGCACGTGTTTCTCACAC





TGGTAGGCCAAGAACTCAGCAGCAGTCAAGGCCAAACGTGGTGTGATGATTCTCTCAA





TAGTGGGATCGTTGGCCAGATTCAAGAACAGGCACACGTTCTCCATGGAGCCGTTCTC





CTCGAAGTCCTGCTTGAAGAACCGGGCCGTCTCCATGTTCACACCCATGGCGGCGAAC





ACGATGGCAAAGTTGTCCTCGTGGTCGTCCAGCACAGATTTGCCGGGGATCTTTACAA





GACCGGCTTGCCTACAGATCTGGGCGGCAATTTCGTTGTGTGGCAGACCGGCAGCCG





AGAAAATGGGGATCTTTTGCCCGCGAGCAATGGAGTTCATCACGTCGATAGCGGAGAT





ACCAGTCTGGATCATTTCCTCAGGGTAGATACGGGACCAGGGGTTGATGGGCTGTCCC





TGGATGTCCAAAAAGTCTTCAGCAAGGATTGGGGGACCTTTGTCAATGGGTTTTCCAGA





GCCGTTGAATACGCGACCCAACATGTCTTCGGAGACAGGGGTGC





CS018
SEQ ID NO: 1728
SEQ ID NO: 1729
SEQ ID NO: 1704



GCTCCGTCTACA
GTGCATCGGTAC
GCTCCGTCTACATTCAGCCGGAAGGCGTCCCTGTACCTGCTCAGCAATCCCAACAGCA



THCARCCNGAR
CAHSCHGCRTC
GCAGAGTTACCGCCACGTCAGCGAGAGCGTCGAACACAAATCCTACGGCACGCAAGG



GG

GTACACCACTTCGGAACAGACCAAGCAGACACAGAAGGTGGCGTACACCAACGGTTCC





GACTACTCTTCCACGGACGACTTTAAGGTGGATACGTTCGAATACAGACTCCTCCGAG





AAGTTTCGTTCAGGGAATCCATCACGAAGCGGTACATTGGCGAGACAGACATTCAGAT





CAGCACGGAGGTCGACAAGTCTCTCGGTGTGGTGACCCCTCCTAAGATAGCACAAAAG





CCTAGGAATTCCAAGCTGCAGGAGGGAGCCGACGCTCAGTTTCAAGTGCAGCTGTCG





GGTAACCCGCGGCCACGGGTGTCATGGTTCAAGAACGGGCAGAGGATAGTCAACTCG





AACAAACACGAAATCGTCACGACACATAATCAAACAATACTTAGGGTAAGAAACACACA





AAAGTCTGATACTGGCAACTACACGTTGTTGGCTGAAAATCCTAACGGATGCGTCGTCA





CATCGGCATACCTGGCCGTGGAGTCGCCTCAAGAAACTTACGGCCAAGATCATAAATC





ACAATACATAATGGACAATCAGCAAACAGCTGTAGAAGAAAGAGTAGAAGTTAATGAAA





AAGCTCTCGCTCCGCAATTCGTAAGAGTCTGCCAAGACCGCGATGTAACGGAGGGGAA





AATGACGCGATTCGATTGCCGCGTCACGGGCAGACCTTACCCAGAAGTCACGTGGTTC





ATTAACGATAGACAAATTCGAGACGATTATWATCATAAGATATTAGTAAACGAATCGTGT





AATCATGCACTTATGATTACAAACGTCGATCTCAGTGATAGTGGCGTAGTATCATGTATA





GCACGCAACAAGACCGGCGAAACTTCGTTTCAGTGTAGGCTGAACGTGATAGAGAAGG





AGCAAGTGGTCGCTCCCAAATTCGTGGAGCGGTTCAGCACGCTCAACGTGCGCGAGG





GCGAGCCCGTGCAGCTGCACGCGCGCGCCGTCGGCACGCCTACGCCACGCATCACA





TGGCAGAAGGACGGCGTTCAAGTTATACCCAATCCAGAGCTACGAATAAATACCGAAG





GTGGGGCCTCGACGCTGGACATCCCTCGAGCCAAGGCGTCGGACGCGGGATGGTAC





CGATGCAC



















TABLE 2-PX





Target
Primer Forward
Primer Reverse
cDNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







PX001
SEQ ID NO: 2110
SEQ ID NO: 2111
SEQ ID NO: 2100



GGCCCCAAGAAG
CTTCGTGCCCTTGC
GGCCCCAAGAAGCATTTGAAGCGCCTGAACGCGCCGCGCGCATGGATGCTGGA



CATTTGAAGCG
CRATKATRAABACG
CAAGCTCGGCGGCGTGTACGCGCCGCGGCCCAGCACGGGCCCGCACAAGCTG





CGCGAGTGCCTGCCGCTCGTCATCTTCCTGCAACCGCCTCAAGTACGCGCTCAG





CGGCAACGAGGTGCTGAAGATCGTGAAGCAGCGCCTCATCAAGGTGGACGGCA





AGGTCCGCACCGACCCCACCTACCCGGCTGGATTCATGGATGTTGTGTCGATTG





AAAAGACCAATGAGCTGTTCCGTCTGATCTACGATGTGAAGGGACGCTTCACCAT





CCACCGCATCACTCCCGAGGAGGCCAAGTACAAGCTGTGCAAGGTGAAGCGCG





TGGCGACGGGCCCCAAGAACGTGCCGTACATCGTGACGCACAACGGCCGCACG





CTGCGCTACCCCGACCCGCTCATCAAGGTCAACGACTCCATCCAGCTCGACATC





GCCACCTGCAAGATCATGGACATCATCAAGTTCGACTCAGGTAACCTGTGCATGA





TCACGGGAGGGCGTAACTTGGGGCGAGTGGGCACCATCGTGTCCCGCGAGAGG





CACCCCGGGAGCTTCGACATCGTCCACATCAAGGACACCACCGGACACACCTTC





GCCACCAGGTTGAACAACGTGTTCATCATCGGCAAGGGCACGAAG





PX009
SEQ ID NO: 2112
SEQ ID NO: 2113
SEQ ID NO: 2102



GCACGTTGATCTG
GCAGCCCACGCYYT
GCACGTTGATCTGGTACAAAGGAACCGGTTACGACAGCTACAAGTATTGGGAGA



GTACARRGGMAC
GCACTC
ACCAGCTCATTGACTTTTTGTCAGTATACAAGAAGAAGGGTCAGACAGCGGGTGC



C

TGGTCAGAACATCTTCAACTGTGACTTCCGCAACCCGCCCCCACACGGCAAGGT





GTGCGACGTGGACATCCGCGGCTGGGAGCCCTGCATTGATGAGAACCACTTCTC





TTTCCACAAGTCTTCGCCTTGCATCTTCTTGAAGCTGAATAAGATCTACGGCTGG





CGTCCAGAGTTCTACAACGACACGGCTAACCTGCCTGAAGCCATGCCCGTGGAC





TTGCAGACCCACATTCGTAACATTACTGCCTTCAACAGAGACTATGCGAACATGG





TGTGGGTGTCGTGCCACGGCGAGACGCCGGCGGACAAGGAGAACATCGGGCC





GGTGCGCTACCTGCCCTACCCGGGCTTCCCCGGGTACTTCTACCCGTACGAGAA





CGCCGAGGGGTATCTGAGCCCGCTGGTCGCCGTGCATTTGGAGAGGCCGAGGA





CCGGCATAGTGATCAACATCGAGTGCAAAGCGTGGGCTGC





PX010
SEQ ID NO: 2114
SEQ ID NO: 2115
SEQ ID NO: 2104



GTGGCTGCATACA
CGCGGCTGCTCCAT
GTGGCTGCATACAGTTCATTACGCAGTACCAGCACTCTAGTGGACAACGTCGCG



GTTCATTACGCAG
GAAYASYTG
TTCGGGTCACCACTGTCGCGCGCAATTGGGGCGACGCAGCCGCCAACTTACAC





CACATATCGGCGGGCTTCGACCAGGAGGCGGCGGCGGTGGTGATGGCGCGGC





TGGTGGTGTACCGCGCGGAGCAGGAGGACGGGCCCGACGTGCTGCGCTGGCT





CGACCGCATGCTCATACGCCTGTGCCAGAAGTTCGGCGAGTACGCGAAGGACG





ACCCGAACAGCTTCCGTCTGTCGGAGAACTTCAGCCTGTACCCGCAGTTCATGT





ACCACCTGCGCCGCTCGCAGTTCCTGCAGGTCTTCAACAACTCGCCCGACGAGA





CCACCTTCTACAGACACATGCTGATGCGCGAAGACCTGACCCAATCCCTCATCAT





GATCCAGCCGATCCTCTACTCGTACAGCTTCGGAGGCGCGCCCGAACCCGTGCT





GTTAGACACCAGCTCCATCCAGCCCGACCGCATCCTGCTCATGGACACCTTCTT





CCAGATCCTCATCTACCATGGAGAGACAATGGCGCAATGGCGCGCTCTCCGCTA





CCAAGACATGGCTGAGTACGAGAACTTCAAGCAGCTGCTGCGAGCGCCCGTGG





ACGACGCGCAGGAGATCCTGCAGACCAGGTTCCCCGTGCCGCGGTACATTGATA





CAGAGCACGGCGGCTCACAGGCCCGGTTCTTGCTTTCCAAAGTGAATCCCTCTC





AGACTCACAACAACATGTACGCGTATGGCGGGGCGATGCCGATACCATCAGCGG





ACGGTGGCGCCCCCGTGTTGACGGATGACGTGTCGCTGCAAGTGTTCATGGAG





CAGCCGCG





PX015
SEQ ID NO: 2116
SEQ ID NO: 2117
SEQ ID NO: 2106



GCCGCAAGGAGA
GCAATGGCATCAAK
GCCGCAAGGAGACCGTGTGCATTGTGCTGTCCGACGACAACTGCCCCGACGAG



CBGTVTGC
YTCRTCRATG
AAGATCCGCATGAACCGCGTCGTCCGGAACAACCTGCGAGTGCGCCTGTCAGAC





ATTGTGTCCATCGCTCCTTGCCCGTCAGTGAAGTACGGCAAGAGAGTTCATATTC





TGCCCATTGATGACTCTGTTGAGGGTTTGACTGGAAACCTGTTCGAAGTCTACCT





GAAGCCGTACTTCATGGAGGCGTACCGGCCCATCCACCGCGACGACACGTTCAT





GGTGCGCGGCGGCATGCGCGCCGTCGAGTTCAAGGTGGTGGAGACCGACCCCT





CGCCCTACTGCATCGTGGCCCCCGACACGGTCATTCATTGTGAGGGAGAGCCGA





TTAAACGCGAGGAAGAAGAGGAGGCTCTCAACGCCGTCGGCTACGACGACATC





GGCGGGTGCCGCAAGCAGCTGGCGCAGATCAAGGAGATGGTGGAGCTGCCGCT





GCGCCACCCCTCGCTGTTCAAGGCCATCGGGGTCAAGCCGCCGCGGGGGATAC





TGATGTACGGGCCCCCGGGGACGGGGAAGACCTTGATCGCTAGGGCTGTCGCT





AATGAGACGGGCGCATTCTTCTTCCTCATCAACGGCCCCGAGATCATGTCGAAA





CTCGCCGGTGAATCCGAGTCGAACCTGCGCAAGGCGTTCGAGGAGGCGGACAA





GAACTCTCCGGCCATCATCCTCATTGATGAACTTGATGCCATTGC





PX016
SEQ ID NO: 2118
SEQ ID NO: 2119
SEQ ID NO: 2108



GTTCACCGGCGAY
CATCTCCTTGGGGA
GTTCACCGGCGATATTCTGCGCACGCCCGTCTCTGAGGACATGCTGGGTCGTAT



ATYCTGCG
AGATACGCAGC
TTTCAACGGCTCCGGCAAGCCCATCGACAAGGGGCCCCCGATCCTGGCCGAGG





AGTACCTGGACATCCAGGGGCAGCCCATCAACCCGTGGTCCCGTATCTACCCGG





AGGAGATGATCCAGACTGGTATCTCCGCTATCGACGTGATGAACTCCATCGCCC





GTGGTCAGAAGATCCCCATCTTCTCCGCCGCCGGTCTGCCCCACAACGAGATTG





CTGCTCAGATCTGTAGGCAGGCTGGTCTTGTCAAGGTCCCCGGAAAATCCGTGT





TGGACGACCACGAAGACAACTTCGCCATCGTGTTCGCCGCCATGGGAGTCAACA





TGGAGACCGCCAGGTTCTTCAAGCAGGACTTCGAGGAGAACGGTTCCATGGAGA





ACGTCTGTCTGTTCTTGAACTTGGCCAATGACCCGACCATTGAGAGGATTATCAC





GCCGAGGTTGGCGCTGACTGCTGCCGAGTTCTTGGCCTACCAGTGCGAGAAACA





CGTGTTGGTAATCTTGACCGACATGTCTTCATACGCGGAGGCTCTTCGTGAAGTG





TCAGCCGCCCGTGAGGAGGTGCCCGGACGACGTGGTTTCCCAGGTTACATGTA





CACGGATTTGGCCACAATCTACGAGCGCGCCGGGCGAGTCGAGGGCCGCAACG





GCTCCATCACGCAGATCCCCATCCTGACCATGCCCAACGACGACATCACCCACC





CCATCCCCGACTTGACCGGGTACATCACTGAGGGACAGATCTACGTGGACCGTC





AGCTGCACAACAGGCAGATCTACCCGCCGGTGAATGTGCTCCCGTCGCTATCTC





GTCTCATGAAGTCCGCCATCGGAGAGGGCATGACCAGGAAGGACCACTCCGAC





GTGTCCAACCAACTGTACGCGTGCTACGCCATCGGCAAGGACGTGCAGGCGAT





GAAGGCGGTGGTGGGCGAGGAGGCGCTCACGCCCGACGACCTGCTCTACCTCG





AGTTCCTCACCAAGTTCGAGAAGAACTTCATCACACAGGGAAGCTACGAGAACC





GCACAGTGTTCGAGTCGCTGGACATCGGCTGGCAGCCCCTGCGTATCTTCCCCA





AGGAGATG



















TABLE 2-AD





Target
Primer Forward
Primer Reverse
cDNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







AD001
SEQ ID NO: 2374
SEQ ID NO: 2375
SEQ ID NO: 2364



GGCCCCAAGAAGCA
CGCTTGTCCCG
GGCCCCAAGAAGCATTTGAAGCGTTTAAATGCTCCTAAAGCATGGATGTTGGACAA



TTTGAAGCG
CTCCTCNGCRA
ACTCGGAGGAGTATTCGCTCCTCGCCCCAGTACTGGCCCCCACAAATTGCGTGAA




T
TGTTTACCTTTGGTGATTTTTCTTCGCAATCGGCTCAAGTATGCTCTGACGAACTGT





GAAGTAACGAAGATTGTTATGCAGCGACTTATCAAAGTTGACGGCAAGGTGCGAAC





CGATCCGAATTATCCCGCTGGTTTCATGGATGTTGTCACCATTGAGAAGACTGGAG





AGTTCTTCAGGCTGGTGTATGATGTGAAAGGCCGTTTCACAATTCACAGAATTAGT





GCAGAAGAAGCCAAGTACAAGCTCTGCAAGGTCAGGAGAGTTCAAACTGGGCCAA





AAGGTATTCCATTCTTGGTGACCCATGATGGCCGTACTATCCGTTATCCTGACCCA





GTCATTAAAGTTAATGACTCAATCCAATTGGATATTGCCACTTGTAAAATCATGGAC





CACATCAGATTTGAATCTGGCAACCTGTGTATGATTACTGGTGGACGTAACTTGGG





TCGAGTGGGGACTGTTGTGAGTCGAGAACGTCACCCAGGCTCGTTTGATATTGTT





CATATCAAGGATACCCAAGGACATACTTTTGCCACAAGATTGAATAATGTATTCATC





ATTGGAAAAGCTACAAAGCCTTACATTTCATTGCCAAAGGGTAAGGGTGTGAAATT





GAGTATCGCCGAGGAGCGGGACAAGCG





AD002
SEQ ID NO: 2376
SEQ ID NO: 2377
SEQ ID NO: 2366



GAGTTTCTTTAGTAA
GCAATGTCATCC
GAGTTTCTTTAGTAAAGTATTCGGTGGGAAGAAAGATGGAAAGGCTCCGACCACTG



AGTATTCGGTGG
ATCAKRTCRTGT
GTGAGGCCATTCAGAAACTCAGAGAAACAGAAGAAATGTTAATCAAAAAGCAGGAA




AC
TTTTTAGAGAAGAAAATCGAACAAGAAATCAATGTTGCAAAGAAAAATGGAACGAAA





AATAAGCGAGCTGCTATTCAGGCTCTGAAAAGGAAAAAGAGGTATGAAAAACAATT





GCAGCAAATTGATGGCACCTTATCCACAATTGAAATGCAAAGAGAAGCTTTGGAGG





GTGCTAATACTAATACAGCTGTATTACAAACAATGAAATCAGCAGCAGATGCCCTTA





AAGCAGCTCATCAGCACATGGATGTGGACAAGGTACATGACCTGATGGATGACATT





GC





AD009
SEQ ID NO: 2378
SEQ ID NO: 2379
SEQ ID NO: 2368



GAGTCCTAGCCGCV
CTGGATTCTCTC
GAGTCCTAGCCGCCTTGGTTGCAGTATGTTTATGGGTCTTCTTCCAGACACTGGAT



YTSGTKGC
CCTCGCAMGAH
CCTCGTATTCCCACCTGGCAGTTAGATTCTTCTATCATTGGCACATCACCTGGCCT




ACC
AGGTTTCCGGCCAATGCCAGAAGATAGCAATGTAGAGTCAACTCTCATCTGGTACC





GTGGAACAGATCGTGATGACTTCCGTCAGTGGACAGACACCCTTGATGAATTTCTT





GCTGTGTACAAGACTCCTGGTCTGACCCCTGGTCGAGGTCAGAACATCCACAACT





GTGACTATGATAAGCCGCCAAAGAAAGGCCAAGTTTGCAATGTGGACATCAAGAAT





TGGCATCCCTGCATTCAAGAGAATCACTACAACTACCACAAGAGCTCTCCATGCAT





ATTCATCAAGCTCAACAAGATCTACAATTGGATCCCTGAATACTACAATGAGAGTAC





GAATTTGCCTGAGCAGATGCCAGAAGACCTGAAGCAGTACATCCACAACCTGGAG





AGTAACAACTCGAGGGAGATGAACACGGTGTGGGTGTCGTGCGAGGGAGAGAAT





CCAG





AD015
SEQ ID NO: 2380
SEQ ID NO: 2381
SEQ ID NO: 2370



GGATGAACTACAGC
GTCCGTGGGAY
GGATGAACTACAGCTTTTCCGAGGAGATACAGTTCTTCTTAAAGGAAAAAGGAGGA



TBTTCCGHGG
TCRGCHGCAAT
AAGAAACTGTATGCATAGTGTTATCAGATGATACATGTCCTGATGGAAAAATAAGAA




C
TGAATAGAGTTGTACGCAACAATTTACGTGTTCGTTTGTCAGATGTTGTATCTGTAC





AACCTTGTCCTGATGTTAAGTATGGAAAAAGGATACATGTACTACCAATTGATGATA





CAGTTGAAGGACTAACCGGGAATTTGTTTGAGGTGTACTTAAAACCGTACTTTCTC





GAAGCATACCGACCCATTCACAAAGATGATGCGTTTATTGTTCGTGGTGGTATGCG





AGCAGTAGAATTCAAAGTAGTGGAAACAGATCCTTCACCATATTGTATTGTTGCTCC





TGATACTGTTATTCACTGTGAAGGTGATCCAATAAAACGTGAAGAGGAAGAAGAAG





CATTAAATGCTGTTGGTTATGATGACATTGGGGGTTGCCGAAAACAGCTAGCACAG





ATCAAGGAAATGGTGGAATTGCCATTACGGCACCCCAGTCTCTTTAAGGCTATTGG





TGTTAAGCCACCGAGGGGAATACTGCTGTATGGACCCCCTGGAACTGGTAAAACC





CTCATTGCCAGGGCTGTGGCTAATGAAACTGGTGCATTCTTCTTTTTAATAAATGGT





CCTGAAATTATGAGCAAGCTTGCTGGTGAATCTGAAAGCAACTTACGTAAGGCATT





TGAAGAAGCTGATAAGAATGCTCCGGCAATTATATTTATTGATGAACTAGATGCAAT





TGCCCCTAAAAGAGAAAAAACTCATGGAGAGGTGGAACGTCGCATAGTTTCACAAC





TACTAACTTTAATGGATGGTCTGAAGCAAAGTTCACATGTTATTGTTATGGCTGCCA





CAAATAGACCCAACTCTATTGATGGTGCCTTGCGCCGCTTTGGCAGATTTGATAGG





GAAATTGATATTGGTATACCAGATGCCACTGGTCGCCTTGAAATTCTTCGTATCCAT





ACTAAGAATATGAAGTTAGCTGATGATGTTGATTTGGAACAGATTGCAGCCGAATC





CCACGGAC





AD016
SEQ ID NO: 2382
SEQ ID NO: 2383
SEQ ID NO: 2372



GTTCACCGGCGAYA
GGAATAGGATG
GTTCACCGGCGATATTCTGCGCGTGCCCGTGTCCGAGGACATGCTGGGCCGCAC



TYCTGCG
GGTRATRTCGT
CTTCAACGGCAGCGGCATCCCCATCGACGGCGGCCCGCCCATCGTCGCAGAGAC




CG
CTACCTCGACGTCCAGGGCATGCCGATTAATCCTCAAACGCGCATCTACCCGGAA





GAAATGATCCAGACGGGGATCTCGACCATCGACGTGATGACGTCCATCGCGCGAG





GGCAGAAGATCCCCATCTTCTCGGGCGCAGGGCTGCCACACAACGAGATCGCTG





CGCAGATCTGCCGACAGGCGGGGCTGGTGCAGCACAAGGAGAACAAGGACGACT





TCGCCATCGTGTTCGCGGCGATGGGCGTCAACATGGAGACGGCGCGCTTCTTCAA





GCGCGAGTTCGCGCAGACGGGCGCGTGCAACGTGGTGCTGTTCCTCAACCTGGC





CAACGACCCCACCATCGAGCGCATCATCACCCCGCGCCTCGCGCTCACCGTGGC





CGAGTTCCTGGCCTACCAGTGCAACAAGCACGTGCTCGTCATCATGACCGACATG





ACCTCCTACGCGGAGGCGCTGCGCGAGGTGAGCGCGGCGCGCGAGGAGGTTCC





TGGGCGAAGAGGCTTCCCAGGCTACATGTACACCGATCTCTCCACCATCTACGAG





CGCGCTGGCCGTGTGCAAGGCCGCCCCGGCTCCATCACTCAGATCCCCATCCTG





ACGATGCCCAACGACGACATCACCCATCCTATTC


















TABLE 3-LD





Target
cDNA SEQ



ID
ID NO
Corresponding amino acid sequence of cDNA clone

















LD001
1
SEQ ID NO: 2 (frame + 1)




GPKKHLKRLNAPKAWMLDKLGGVFAPRPSTGPHKLRESLPLVIFLRNRLKYALTNSEVTKIVMQRLIKVDGKVRTD




SNYPAGFMDVITIEKTGEFFRLIYDVKGRFAVHRITAEEAKYKLCKVRRMQTGPKGIPFIVTHDGRTIR





LD002
3
SEQ ID NO: 4 (frame − 3)




AMQALKRKKRLEKNQLQIDGTLTTIELQREALEGASTNTTVLESMKNAAEALKKAHKNLDVDNVHDMMDDI





LD003
5
SEQ ID NO: 6 (frame − 2)




PRRPYEKARLDQELKIIGEYGLRNKREVWRVKYTLAKIRKAARELLTLEEKDQRRLFEGNALLRRLVRIGVLDETRM




KLDYVLGLKIEDFLERRLQTQVFKLGLAKSIHHARVLVRQRHIRVRKQVVNIPSFIVRLDSQKHIDFSLKSPFGGGRP




GRVKRKNL





LD006
7
SEQ ID NO: 8 (frame + 1)




HNYGWQVLVASGVVEYIDTLEEETVMIAMNPEDLRQDKEYAYCTTYTHCEIHPAMILGVCASIIPFPDHNQSPRNT




YQSAMGKQAMGVYITNFHVRMDTLAHVLYYPHKPLVTTRSMEYLRFRELPAGINSIVAIACYTGYNQEDSVILNAS




AVERGFFRSVFYRSYKDAESKRIGDQEEQFE





LD007
9
SEQ ID NO: 10 (frame + 1)




PKKDVKGTYVSIHSSGFRDFLLKPEILRAIVDCGFEHPSEVQHECIPQAVIGMDILCQAKSGMGKTAVFVLATLQQL




EPADNVVYVLVMCHTRELAFQISKEYERFSKYMPSVKVGVFFGGMPIANDEEVLKNKCPHIVVGTPGRILALVKSR




KLVLKNLKHFILDECDKMLELLDMRRDVQEIYRNTPHTKQVMMFSATLSKEIRPVCKKFMQDPMEVYVDDEAKLTL




HGLQQHYVKLKENEKNKKLFELLDVLEFNQVVIFVKSVQRCVALAQLLTEQNFPAIGIHRGMDQKERLSRYEQFKD




FQKRILVATNLFGRGMDIERVNIVFNYDMPEDSDTYLH





LD010
11
SEQ ID NO: 12 (frame + 1)




VKCSRELKIQGGIGSCVSLNVKNPLVSDTEIGMGNTVQWKMCTVTPSTTMALFFEVVNQHSAPIPQGGRGCIQFIT




QYQHASGQKRIRVTTVARNWADASANIHHVSAGFDQEAAAVIMARMAVYRAESDDSPDVLRWVDRMLIRLCQKF




GEYNKDDPNSFRLGENFSLYPQFMYHLRRSQFLQVFNNSPDETSFYRHMLMREDLTQSLIMIQPILYSYSFNGPP




EPVLLDTSSIQPDRILLMDTFFQILIFHGETIAQW





LD011
13
SEQ ID NO: 14 (frame − 1)




PTFKCVLVGDGGTGKTTFVKRHMTGEFEKRYVATLGVEVHPLVFHTNRGPIRFNVWDTAGQEKFGGLRDGYYIQ




GQCAIIMFDVTSRVTYKNVPNWHRDLVRVCENIPIVLCGNKVDIKDRKVKAKSIVFHRKKNLQYYDISAKSNYNFEK




PFLWLARKLIGDPNLEFVAMPALLP





LD014
15
SEQ ID NO: 16 (frame + 3)




QIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKEKQVELQKKIQSSNMLNQARLKVLKV




REDHVRTVLEEARKRLGQVTNDQGKYSQILESLILQGLYQLFEKDVTIRVRPQDRELVKSIIPTVTNKYKDATGKDI




HLKIDDEIHLSQETTGGIDLLAQKNKIKISNTMEARLELISQQLLPEI





LD015
17
SEQ ID NO: 18 (frame − 1)




RHPSLFKAIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEADKNSPAIIFI




DELDAI





LD016
19
SEQ ID NO: 20 (frame − 2)




TVSGVNGPLVILEDVKFPKYNEIVQLKLADGTIRSGQVLEVSGSKAVVQVFEGTSGIDAKNTACEFTGDILRTPVSE




DMLGRVFNGSGKPIDKGPPILAEDFLDIQGQPINPWSRIYPEEMIQTGITAIDVMNSIARGQKIPIFSAAGLPHNEIAA




QICRQAGLVKIPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERIITPRLALT




AAEFLAYQCEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMP




NDDITHPI





LD018
21
SEQ ID NO: 22 (frame + 2)




TWFKDGQRITESQKYESTFSNNQASLRVKQAQSEDSGHYTLLAENPQGCIVSSAYLAIEPVTTQEGLIHESTFKQQ




QTEMEQIDTSKTLAPNFVRVCGDRDVTEGKMTRFDCRVTGRPYPDVTWYINGRQVTDDHNHKILVNESGNHALM




ITTVSRNDSGVVTCVARNKTGETSFQCNLNVIEKEQVVAPKFVERFTTVNVAEGEPVSLRARAVGTPVPRITWQR




DGAPLASGPDVRIAIDGGASTLNISRAKASDAAWYRC





LD027
23
SEQ ID NO: 24 (frame + 1)




HGGDKPYLISGADDRLVKIWDYQNKTCVQTLEGHAQNVTAVCFHPELPVALTGSEDGTVRVWHTNTHRLENCLN




YGFERVWTICCLKGSNNVSLGYDEGSILVKVGREEPAVSMDASGGKIIWARHSELQQANLKALPEGGEIRDGERL




PVSVKDMGACEIYPQTIQHNPNGRFVVVCGDGEYIIYTAMALRNKAFGSAQEFVWAQDSSEYAIRESGSTIRIFKN




FKERKNFKSDFSAEGIYGGFLLGIKSVSGLTFYDWETLDLVRRIEIQPRAVYWSDSGKLVCLATEDSYFILSYDSEQ




VQKARENNQVAEDGVEAAFDVLGEMNESVRTGLWVGDCFIYT


















TABLE 3-PC





Target
cDNA SEQ



ID
ID NO
Corresponding amino acid sequence of cDNA clone







PC001
247
SEQ ID NO: 248 (frame + 1)




AWMLDKLGGVFAPRPSTGPHKLRESLPLVIFLRNRLKYALTNSEVTKIVMQRLIKVDGKVRTDSNYPAGFMDVITIE




KTGEFFRLIYDVKGRFAVHRITAEEAKYKLCKVRRVQTGPKGIPFLVTHDGRTIRYPDPNIKVNDTIQMEIATSKILDY




IKFES





PC003
249
SEQ ID NO: 250 (frame: + 2)




PRRPYEKARLDQELKIIGAFGLRNKREVWRVKYTLAKIRKAARELLTLEEKEPKRLFEGNALLRRLVRIGVLDENRM




KLDYVLGLKIEDFLERRLQTQVFKSGLAKSIHHARVLIRQRHIRVRKQVVNIPSFIVRLDSQKHIDFSLKSPFGGGRP




GRV





PC005
251
SEQ ID NO: 252 (frame + 3)




PNEINEIANTNSRQNIRKLIKDGLIIKKPVAVHSRARVRKNTEARRKGRHCGFGKRKGTANARMPQKELWVQRMR




VLRRLLKKYREAKKIDRHLYHALYMKAKGNVFRNKRVLMEYIHKKKAEKARAKMLSDQANARRLKVKQARERRE





PC010
253
SEQ ID NO: 254 (frame + 3)




LKDSLQMSLSLLPPNALIGLITFGKMVQVHELGTEGCSKSYVFCGTKDLTAKQVQEMLGIGKGSPNPQQQPGQPG




RPGQNPQAAPVPPGSRFLQPVSKCDMNLTDLIGELQKDPWPVHQGKRPLRSTGAALSIAVGLLECTYPNTGGRI




MIFLGGPCSQGPGQVLNDDLKQPIRSHHDIHKDNAKYMKKAIKHYDHLAMRAATNSHCIDIYSCALDQTGLMEMK




QCCNSTGGHMVMGDSFNSSLFKQTFQRVFSKDPKNDLKMAFNATLEVKCSRELKVQGGIGSCVSLNVKSPLVSD




TELGMGNTVQWKLCTLAPSSTVALFFEVVNQHSAPIPQGGRGCIQLITQYQHASGQRRIRVTTIARNWADATANIH




HISAGFDQEAAAVVMARMAGYKAESDETPDVLRWVDRMLIRLCQKFGEYNKDDPNSFRLGENFSLYPQFMYHLR




RSQFLQVFNNSPDETSFYRHMLMREDLTQSLIMIQPILYSYSFNGPPEPVLLDTSSIQPDRILLMDTFFQILIFHGETI




AQW





PC014
255
SEQ ID NO: 256 (frame + 3)




DVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKEKQVELQKKIQSSNMLNQARLK




VLKVREDHVRAVLEDARKSLGEVTKDQGKYSQILESLILQGLFQLFEKEVTVRVRPQDRDLVRSILPNVAAKYKDA




TGKDILLKVDDESHLSQEITGGVDLLAQKNKIKISNTMEARLDLIA





PC016
257
SEQ ID NO: 258 (frame + 2)




LVILEDVKFPKFNEIVQLKLADGTLRSGQVLEVSGSKAVVQVFEGTSGIDAKNTVCEFTGDILRTPVSEDMLGRVFN




GSGKPIDKGPPILAEDYLDIQGQPINPWSRIYPEEMIQTGITAIDVMNSIARGQKIPIFSAAGLPHNEIAAQICRQAGL




VKVPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERIITPRLALTAAEFLAYQ




CEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMP





PC027
259
SEQ ID NO: 260 (frame + 1)




QANLKVLPEGAEIRDGERLPVTVKDMGACEIYPQTIQHNPNGRFVVVCGDGEYIIYTAMALRNKAFGSAQEFVWA




QDSSEYAIRESGSTIRIFKNFKEKKNFKSDFGAEGIYGGFLLGVKSVSGLAFYDWETLELVRRIEIQPRAIYWSDSG




KLVCLATEDSYFILSYDSDQVQKARDNNQVAEDGVEAAFDVLGEINESVRTGLWVGDCFIYTNAVNRINYFVGGEL




VTIAHLDRPLYVLGYVPRDDRLYLVDKELGVVSYXIAIICTRISDCSHATRLPNG*SSIAFNSK


















TABLE 3-EV






cDNA



Target
SEQ



ID
ID NO
Corresponding amino acid sequence of cDNA clone







EV005
513
SEQ ID NO: 514 (frame + 3)




RCGKKKVWLDPNEITEIANTNSRQNIRKLIKDGLIIKKPVAVHSRARVRKNTEARRKGRHCGFGKRKGTANARMPRK




ELWIQRMRVLRRLLKKYREAKKIDRHLYHALYMKAKGNVFKNKRVMMDYIHKKKAEKARTKMLNDQADARRLKVKE




ARKRREERIATKKQ





EV009
515
SEQ ID NO: 516 (frame + 1)




PTLDPSIPKYRTEESIIGTNPGMGFRPMPDNNEESTLIWLQGSNKTNYEKWKMNLLSYLDKYYTPGKIEKGNIPVKRC




SYGEKLIRGQVCDVDVRKWEPCTPENHFDYLRNAPCIFLKLNRIYGWEPEYYNDPNDLPDDMPQQLKDHIRYNITNP




VERNTVWVTCAGENPADVEYLGPVKYYPSFQGFPGYYFPYLNSEGYLSPLLAVQFKRPVSGIVINIECKAWA





EV010
517
SEQ ID NO: 518 (frame + 3)




GGHMVMGDSFNSSLFKQTFQRVFSKDSNGDLKMSFNAILEVKCSRELKVQGGIGPCVSLNVKNPLVSDLEIGMGNT




VQWKLCSLSPSTTVALFFEVVNQHAAPIPQGGRGCIQFITQYQHSSGQKKIRVTTIARNWADATANIHHISAGFDEQT




AAVLMARIAVYRAETDESSDVLRWVDRMLIRLCQKFGEYNKDDTNSFRLSENFSLYPQFMYHLRRSQFLQVFNNSP




DETSFYRHMLMREDRNQ





EV015
519
SEQ ID NO: 520 (frame + 1)




RHPSLFKAIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEADKNSPAIIFIDE




LDAIAPKREKTHGEVERRIVSQLLTLMDGMKKSSHVIVMAATNRPNSIDPALRRFGRFDREIDIGIPDATGRLEVLRIHT




KNMKLADDVDLEQIAAETHGHVGADLASLCSEAALQQIREKMDLIDLDDEQIDAEVLNSLAVTMENFRYAMSKSSPSA




LRETV





EV016
521
SEQ ID NO: 522 (frame + 2)




TVSGVNGPLVILDSVKFPKFNEIVQLKLSDGTVRSGQVLEVSGQKAVVQVFEGTSGIDAKNTLCEFTGDILRTPVSED




MLGRVFNGSGKPIDKGPPILAEDFLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAAGLPHNEIAAQIC




RQAGLVKIPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERIITPRLTLTAAEFM




AYQCEKHVLVILTDMSSYAEALREVSAA


















TABLE 3-AG






cDNA



Target
SEQ



ID
ID NO
Corresponding amino acid sequence of cDNA clone







AG001
601
SEQ ID NO: 602 (frame + 1)




HLKRFAAPKAWMLDKLGGVFAPRPSTGPHKLRESLPLVIFLRNRLKYALTNCEVTKIVMQRLIKVDGKVRTDPNYPAG




FMDVITIEKTGEFFRLIYDVKGRFTIHRITAEEAKYKLCKVRKVQTGPKGIPFLVTHDGRTIRYPDPMIKVNDTIQLEIATS




KILDFIKFESGNLCMITGGRNLGRVGTVVNRERHPGSFDIVHIRDANDHVFATRLNNVFVIGKGSKAFVSLPRGKGVK




LSIA





AG005
603
SEQ ID NO: 604 (frame + 2)




VWLDPNEINEIANTNSRQNIRKLIKDGLIIKKPVAVHSRARVRKNTEARRKGRHCGFGKRKGTANARMPQKELWIQR




MRVLRRLLKKYREAKKIDRHLYHALYMKAKGNVFKNKRVLMEYIHKKKAEKARAKMLADQANARRQKVKQVP*EEG




RAYRREEAG





AG010
605
SEQ ID NO: 606 (frame + 3)




GGHMLMGDSFNSSLFKQTFQRVFAKDQNGHLKMAFNGTLEVKCSRELKVQGGIGSCVSLNVKSPLVADTEIGMGN




TVQWKMCTFNPSTTMALFFEVVNQHSAPIPQGGRGCIQFITQYQHSSGQRRIRVTTIARNWADASANIHHISAGFDQ




ERAAVIMARMAVYRAETDESPDVLRWVDRMLIRLCQKFGEYNKDDQASFRLGENFSLYPQFMYHLRRSQFLQVFNN




SPDETSFYRHMLMREDLTQSLIMIQPILYSYSFNGPPEPVLLDTSSIQPDRILLMDTFFQILIFHGETIAQW





AG014
607
SEQ ID NO: 608 (frame + 3)




QIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKEKQVELQKKIQSSNMLNQARLKVLKVRE




DHVRAVLDEARKKLGEVTRDQGKYAQILESLILQGLYQLFEANVTVRVRPQDRTLVQSVLPTIATKYRDVTGRDVHLS




IDDETQLSESVTGGIELLCKQNKIKVCNTLEARLDLISQQLVPQIRNALFGRNINRKF





AG016
609
SEQ ID NO: 610 (frame + 1)




VSEDMLGRVFNGSGKPIDKGPPILAEDFLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAAGLPHNEIA




AQICRQAGLVKLPGKSVIDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERIITPRLALTA




AEFLAYQCEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMPND




DITHPI


















TABLE 3-TC





Target
cDNA SEQ



ID
ID NO
Corresponding amino acid sequence of cDNA clone







TC001
793
SEQ ID NO: 794 (frame + 1)




GPKKHLKRLNAPKAWMLDKLGGVFAPRPSTGPHKLRESLPLVIFLRNRLKYALTNSEVTKIVMQRLIKVDGKVRTD




PNYPAGFMDVVTIEKTGEFFRLIYDVKGRFTIHRITGEEAKYKLCKVKKVQTGPKGIPFLVTRDGRTIRYPDPMIKVN




DTIQLEIATSKILDFIKFESGNLCMITGGRNLGRVGTVVSRERHPGSFDIVHIKDANGHTFATRLNNVFIIGKGSKPYV




SLPRGKGVKLSI





TC002
795
SEQ ID NO: 796 (frame + 1)




QEFLEAKIDQEILTAKKNASKNKRAAIQAIKRKKRYEKQLQQIDGTLSTIEMQREALEGANTNTAVLKTMKNAADAL




KNAHLNMDVDEVHDMMDDI





TC010
797
SEQ ID NO: 798 (frame + 3)




PEVLVFGHVLVLEVPPLGDCLTVENQNLEKCVHEKDPIGLNGTSVEEDGFRGAVETITVQNRLDHNETLGEVLPH




QHVAVERGLVWGVVENLEELGAAQMVHELGIETEVFTQTETVRVVFVVFAEF





TC014
799
SEQ ID NO: 800 (frame + 1)




EKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKEKPVELQKKIQSSNMLNQARLKVLKVREDHVHNVLDDARK




RLGEITNDQARYSQLLESLILQSLYQYLGISDELFENNIVVRVRQQDRSIIQGILPVVATKYRDATGKDVHLKIDDES




HLPSETTGGVVLYAQKGKIKIDNTLEARLDLIAQQLVPEIRTALFGRNINRKF





TC015
801
SEQ ID NO: 802 (frame + 2)




DELQLFRGDTVLLKGKRRKETVCIVLADENCPDEKIRMNRIVRNNLRVRLSDVVWIQPCPDVKYGKRIHVLPIDDTV




EGLVGNLFEVYLKPYFLEAYRPIHKGDVFIVRGGMRAVEFKVVETEPSPYCIVAPDTVIHCDGDPIKREEEEEALNA




VGYDDIGGCRKQLAQIKEMVELPLRHPSLFKAIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKL




AGESESNLRKAFEEADKNSPAIIFIDELDAIAPKREKTHGEVERRIVSQLLTLMDGMKKSSHVIVMAATNRPNSIDPA




LRRFGRFD


















TABLE 3-MP





Target
cDNA SEQ



ID
ID NO
Corresponding amino acid sequence of cDNA clone







MP001
888
SEQ ID NO: 889 (frame + 1)




GPKKHLKRLNAPKAWMLDKSGGVFAPRPSTGPHKLRESLPLLIFLRNRLKYALTGAEVTKIVMQRLIKVDGKVRTDPN




YPAGFMDVISIQKTSEHFRLIYDVKGRFTIHRITPEEAKYKLCKVKRVQTGPKGVPFLTTHDGRTIRYPDPNIKVNDTIR




YDIASSKILDHIRFETGNLCMITGGRNLGRVGIVTNRERHPGSFDIVHIKDANEHIFATRMNNVFIIGKGQKNYISLPRSK




GVKLT





MP002
890
SEQ ID NO: 891 (frame + 2)




SFFSKVFGGKKEEKGPSTEDAIQKLRSTEEMLIKKQEFLEKKIEQEVAIAKKNGTTNKRAALQALKRKKRYEQQLAQID




GTMLTIEQQREALEGANTNTAVLTTMKTAADALKSAHQNMNVDDVHDLMDDI





MP010
892
SEQ ID NO: 893 (frame + 3)




GCIQFITQYQHSSGYKRIRVTTLARNWADPVQNMMHVSAAFDQEASAVLMARMVVNRAETEDSPDVMRWADRTLI




RLCQKFGDYQKDDPNSFRLPENFSLYPQFMYHLRRSQFLQVFNNSPDETSYYRHMLMREDVTQSLIMIQPILYSYSF




NGRPEPVLLDTSSIQPDKILLMDTFFHILIFHGETIAQWRAMDYQNRPEYSNLKQLLQAPVDDAQEILKTRFPMPRYID




TEQGGSQARFLLCKVNPSQTHNNMYAYGG*WWSTSFDR*CKLAAVHGAAA





MP016
894
SEQ ID NO: 895 (frame + 1)




VSEDMLGRVFNGSGKPIDKGPPILAEDYLDIEGQPINPYSRTYPQEMIQTGISAIDIMNSIARGQKIPIFSAAGLPHNEIA




AQICRQAGLVKKPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERIITPRLALT




AAEFLAYQCEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMPN




DDITHPI





MP027
896
SEQ ID NO: 897 (frame + 3)




PITKTRRVFRH*KAMLKIFLLVCFHPELPIVLTGSEDGTVRIWHSGTYRLESSLNYGLERVWTICCLRGSNNVALGYDE




GSIMVKVGREEPAMSMDVHGGKIVWARHSEIQQANLKAMLQAEGAEIKDGERLPIQVKDMGSCEIYPQSISHNPNG




RFLVVCGDGEYIIYTSMALRNKAFGSAQDFVWSSDSEYAIRENSSTIKVFKNFKEKKSFKPEGGADGIFGGYLLGVKS




VTGLALYDWENGNLVRRIETQPKHVFWSESGELVCLATDEAYFILRFDVNVLSAARASNYEAASPDGLEDAFEILGEV




QEVVKTGLWVGDCFIYTNGVNRINYYVGGEVVTVS


















TABLE 3-NL





Target
cDNA SEQ



ID
ID NO
Corresponding amino acid sequence of cDNA clone







NL001
1071
SEQ ID NO: 1072 (frame + 2)




KSWMLDKLGGVYAPRPSTGPHKLRESLPLVIFLRNRLKYALTNCEVKKIVMQRLIKVDGKVRTDPNYPAGFMDVVQIEK




TNEFFRLIYDVKGRFTIHRITAEEAKYKLCKVKRVQTGPKGIPFLTTHDGRTIRYPDPLVKVNDTIQLDIATSKIMDFIRFDS




GNLCMITGGRNLGRVGTVVNRERHPGSFDIVHIKDVLGHTFATRLNNVFIIGKGSKAYVSLPKGKGVKLS





NL002
1073
SEQ ID NO: 1074 (frame + 1)




DEKGPTTGEAIQKLRETEEMLIKKQDFLEKKIEVEIGVARKNGTKNKRAAIQALKRKKRYEKQLQQIDGTLSTIEMQREAL




EGANTNTAVLQTMKNAADALKAAHQHMDVDQ





NL003
1075
SEQ ID NO: 1076 (frame + 2)




PRRPYEKARLEQELKIIGEYGLRNKREVWRVKYALAKIRKAARELLTLEEKDQKRLFEGNALLRRLVRIGVLDEGRMKLD




YVLGLKIEDFLERRLQTQVYKLGLAKSIHHARVLIRQRHI RVRKQVVNIPSFVVRLDSQKHIDFSLKSPFGGGRPGRV





NL004
1077
SEQ ID NO: 1078 (frame + 1)




KELAAVRTVCSHIENMLKGVTKGFLYKMRAVYAHFPINCVTTENNSVIEVRNFLGEKYIRRVRMAPGVTVTNSTKQKDEL




IVEGNSIEDVSRSAALIQQSTTVKNKDIRKFLD





NL005
1079
SEQ ID NO: 1080 (frame + 1)




LDPNEINEIANTNSRQSIRKLIKDGLIIKKPVAVHSRARVRKNTEARRKGRHCGFGKRKGTANARMPQKVLWVNRMRVL




RRLLKKYRQDKKIDRHLYHHLYMKAKGNVFKNKRVLMEFIHKKKAEKARMKMLNDQAEARRQKVKEAKKRRE





NL006
1081
SEQ ID NO: 1082 (frame + 3)




VLVSSGVVEYIDTLEEETTMIAMSPDDLRQDKEYAYCTTYTHCEIHPAMILGVCASIIPFPDHNQSPRNTYQSAMGKQAM




GVYITNFHVRMDTLAHVLFYPHKPLVTTRSMEYLRFRELPAGINSVVAIACYTGYNQEDSVILNASAVERGFFRSVFFRS




YKDAESKRIGDQEEQFEKPTRQTCQGMRNAIYDKLDDDGIIAPGLRVSGDDVVIGKTITLPDNDDELEGTTKRFTKRDAS




TFLRNSETGIVDQVMLTLNSEGYKFCKIRVRSVRIPQIGDKFASRHGQKGTCGIQYRQEDMPFTSEGIAPDIIINPHAIPSR




MTIGHLIECLQGKVSSNKGEIGDATPFN





NL007
1083
SEQ ID NO: 1084 (frame + 2)




FRDFLLKPEILRAILDCGFEHPSEVQHECIPQAVLGMDILCQAKSGMGKTAVFVLATLQQ1EPTDNQVSVLVMCHTRELA




FQISKEYERFSKCMPNIKVGVFFGGLPIQRDEETLKLNCPHIVVGTPGRILALVRNKKLDLKHLKHFVLDECDKMLELLDM




RRDVQEIFRNTPHSKQVMMFSATLSKEIRPVCKKFMQDPMEVYVDDEAKLTLHGLQQHYVKLKENEKNKKLFELLDILE




FNQVVIFVKSVQRCMALSQLLTEQNFPAVAIHRGMTQEERLKKYQEFKEFLKRILVATNLFGRGMDIERVNIVFNYDMP





NL008
1085
SEQ ID NO: 1086 (frame + 1)




GRIENQKRVVGVLLGCWRPGGVLDVSNSFAVPFDEDDKEKNVWFLDHDYLENMFGMFKKVNAREKVVGWYHTGPKL




HQNDVAINELIRRYCPNCVLVIIDAKPKDLGLPTEAYRVVEEIHDDGSPTSKTFEHVMSEIGAEEAEEIGVEHLLRDIKDTT




VGSLSQRVTNQLMGLKGLHLQLQDMRDYLNQVVEGKLPMNHQIVYQLQDIFNLLPDIGHGNFVDSLY





NL009
1087
SEQ ID NO: 1088 (frame + 1)




CDYDRPPGRGQVCDVDVKNWFPCTSENNFNYHQSSPCVFLKLNKIIGWQPEYYNETEGFPDNMPGDLKRHIAQQKSI




NKLFMQTIWITCEGEGPLDKENAGEIQYIPRQGFPGYFYPYTNA





NL010
1089
SEQ ID NO: 1090 (amino terminus end) (frame + 2)




SSRLEATRLVVPVGCLYQPLKERPDLPPVQYDPVLCTRNTCRAILNPLCQVDYRAKLWVCNFCFQRNPFPPQYAAISEQ




HQPAELIPSFSTIEYIITRAQTMPPMFVLVVDTCLDDEELGALKDSLQMSLSLLPPNALIGLITFGKMVQVHELGCDGCSK




SYVFRGVKDLTAKQIQDMLGIGKMAAAPQPMQQRIPGAAPSAPVNRFLQPVGKCDMSLTDLLGELQRDPWNVAQGKR




PLR STGVALSIAVGLLECT






1115
SEQ ID NO: 1116 (carboxy terminus end) (frame + 3)




LNVKGSCVSDTDIGLGGTSQWKMCAFTPHTTCAFFFEVVNQHAAPIPQGGRGCIQFITQYQHSSGQRRIRVTTIARNWA




DASTNLAHISAGFDQEAGAVLMARMVVHRAETDDGPDVMRWADRMLIRLCQRFGEYSKDDPNSFRLPENFTLYPQFM




YHLRRSQFLQVFNNSPDETSYYRHILMREDLTQSLIMIQPILYSYSFNGPPEPVLLDTSSIQPDRILLMDTFFQILIFHGETI




A





NL011
1091
SEQ ID NO: 1092 (frame + 2)




DGGTGKTTFVKRHLTGEFEKKYVATLGVEVHPLVFHTNRGVIRFNVWDTAGQEKFGGLRDGYYIQGQCAIIMFDVTSRV




TYKNVPNWHRDLVRVCENIPIVLCGNKVDIKDRKVKAKSIVFHRKKNLQYYDISAKSNYNFEKPFLWLAKKLIGDPNLEFV




AMPALLPPEVTMDPQX





NL012
1093
SEQ ID NO: 1094 (frame + 2)




QQTQAQVDEVVDIMKTNVEKVLERDQKLSELDDRADALQQGASQFEQQAGKLKRKF





NL013
1095
SEQ ID NO: 1096 (frame + 2)




AEQVYISSLALLKMLKHGRAGVPMEVMGLMLGEFVDDYTVRVIDVFAMPQSGTGVSVEAVDPVFQAKMLDMLKQTGR




PEMVVGWYHSHPGFGCWLSGVDINTQESFEQLSKRAVAVVV





NL014
1097
SEQ ID NO: 1098 (frame + 2)




FIEQEANEKAEEIDAKAEEEFNIEKGRLVQHQRLKIMEYYDRKEKQVELQKKIQSSNMLNQARLKALKVREDHVRSVLEE




SRKRLGEVTRNPAKYKEVLQYLIVQGLLQLLESNVVLRVR




EADVSLIEGIVGSCAEQYAKMTGKEVVVKLDADNFLAAETCGGVELFARNGRIKIPNTLESRLDLISQQLVPEIRVALF





NL015
1099
SEQ ID NO: 1100 (frame + 1)




IVLSDETCPFEKIRMNRVVRKNLRVRLSDIVSIQPCPDVKYGKRIHVLPIDDTVEGLTGNLFEVYLKPYFLEAYRPIHKDDA




FIVRGGMRAVEFKVVETDPSPYCIVAPDTVIHCEGDPIKREDEEDAANAVGYDDIGGCRKQLAQIKEMVELPLRHPSLFK




AIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEADKNAPAIIFIDELDAIAPKRE




KTHGEVERRIVSQLLTLMDGLKQSSHVIVMAATNRPNSIDAALRRFGRFDREIDIGIPDATGRLEVLRIHTKNMKLADDVD




LEX





NL016
1101
SEQ ID NO: 1102 (frame + 2)




TPVSEDMLGRVFNGSGKPIDKGPPILAEDYLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAAGLPHNEIA




AQICRQAGLVKLPGKSVLDDSEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERIITPRLALTAAE




FLAYQCEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSIT





NL018
1103
SEQ ID NO: 1104 (frame + 2)




MQMPVPRPQIESTQQFIRSEKTTYSNGFTTIEEDFKVDTFEYRLLREVSFRESLIRNYLHEADMQMSTVVDRALGPPSAP




HIQQKPRNSKIQEGGDAVFSIKLSANPKPRLVWFKNGQRIGQTQKHQASYSNQTATLKVNKVSAQDSGHYTLLAENPQ




GCTVSSAYLAVESAGTQDTGYSEQYSRQEVETTEAVDSSKMLAPNFVRVPADRDASEGKMTRFDCRVTGRPYPDVA




WFINGQQVADDATHKILVNESGNHSLMITGVTRLDHGVVGCIARNKAGETSFQCNLNVIEKELVVAPKFVERFAQVNVK




EGEPVVLSARAVGTPVPRITWQKDGAPIQSGPSVSLFVDGGATSLDIPYAKAS





NL019
1105
SEQ ID NO: 1106 (frame + 2)




DDTYTESYISTIGVDFKIRTIDLDGKTIKLQIWDTAGQERFRTITSSYYRGAHGIIVVYDCTDQESFNNLKQWLEEIDRYAC




DNVNKLLVGNKCDQTNKKVVDYTQAKEYADQLGIPFLETSAKNATNVEQAF





NL021
1107
SEQ ID NO: 1108 (frame + 2)




VSLNSVTDISTTFILKPQENVKITLEGAQACFISHERLVISLKGGELYVLTLYSDSMRSVRSFHLEKAAASVLTTCICVCEE




NYLFLGSRLGNSLLLRFTEKELNLIEPRAIESSQSQNPAKKKKLDTLGDWMASDVTEIRDLDELEVYGSETQTSMQ1ASY1




F





NL022
1109
SEQ ID NO: 1110 (frame + 2)




TLHREFLSEPDLQSYSVMIIDEAHERTLHTDILFGLVKDVARFRPDLKLLISSATLDAQKFSEFFDDAPIFRIPGRRFPVDIY




YTKAPEADYVDACVVSILQIHATQPLGDILVFLTGQEEIETCQELLQDRVRRLGPRIKELLILPVYSNLPSDMQAKIFLPTPP




NARKVVLATNIAETSLTIDNIIYVIDPGFCKQNNFNSRTGMESLVVVPVSKASANQRAGRAGRVAAGKCFRLYT





NL023
1111
SEQ ID NO: 1112 (frame + 2)




RSFSQERQHEEMKESSGRMHHSDPLIVETHSGHVRGISKTVLGREVHVFTGIPFAKPPIGPLRFRKPVPVDPWHGVLDA




TALPNSCYQERYEYFPGFEGEEMWNPNTNLSEDCLYLNIWVPHRLRIRHRANSEENKPRAKVPVLIWIYGGGYMSGTA




TLDVYDADMVAATSDVIVASMQYRVGAFGFLYLAQDLPRGSEEAPGNMGLWDQALAIRWLKDNIAAFGGDPELMTLFG




ESAGGGSVSIHLVSPITRGLARRGIMQSGTMNAPWSFMTAERATEIAKTLIDDCGCNSSLLTDAPSRVMSCMRSVEAKII




SVQQWNSYSGILGLPSAPTIDGIFLPKHPLDLLKEGDFQDTEILIGSNQDEGTYFILYDFIDFFQKDGPSFLQRDKFLDIINT




IFKNMTKIEREAIIFQYTDWEHVMDGYLNQKMIGDVVGDYFFICPTNHFAQAFAEHGKKVYYYFFTQRTSTSLWGEWMG




VMHGDEIEYVFGHPLNMSLQFNARERDLSLRIMQAYSRFALTGKPVPDDVNWPIYSKDQPQYY1FNAETSGTGRGPRA




TACAF





NL027
1113
SEQ ID NO: 1114 (frame + 2)




PIVLTGSEDGTVRIWHSGTYRLESSLNYGLERVWTICCMRGSNNVALGYDEGSIMVKVGREEPAISMDVNGEKIVWARH




SEIQQVNLKAMPEGVEIKDGERLPVAVKDMGSCEIYPQTIAHNPNGRFLVVCGDGEYIIHTSMVLRNKAFGSAQEFIWG




QDSSEYAIREGTSTVKVFKNFKEKKSFKPEFGAESIFGGYLLGVCSLSGLALYDWETLELVRRIEIQPKHVYWSESGELV




ALATDDSYFVLRYDAQAVLAARDAGDDAVTPDGVEDAFEVLGEVHETVKTGLWVGDCFIYT


















TABLE 3-CS





Target
cDNA SEQ



ID
ID NO
Corresponding amino acid sequence of cDNA clone







CS001
1682
SEQ ID NO: 1683 (frame + 1)




KAWMLDKLGGVYAPRPSTGPHKLRECLPLVIFLRNRLKYALTGNEVLKIVKQRLIKVDGKVRTDPTYPAGFMDVV




SIEKTNELFRLIYDVKGRFTIHRITPEEAKYKLCKVRRVATGPKNVPYLVTHDGRTVRYPDPLIKVNDSIQLDIATSK




IMDFIKFESGNLCMITGGRNLGRVGTIVSRERHPGSFDIVHIRDSTGHTFATRLNNVFIIGKGTKAYISLPRGKGVR




LT





CS002
1684
SEQ ID NO: 1685 (frame + 1)




SFFSKVFGGKKEEKGPSTHEAIQKLRETEELLQKKQEFLERKIDTELQTARKHGTKNKRAAIAALKRKKRYEKQLT




QIDGTLTQIEAQREALEGANTNTQVLNTMRDAATAMRLAHKDIDVDKVHDLMDDI





CS003
1686
SEQ ID NO: 1687 (frame + 1)




GLRNKREVWRVKYTLARIRKAARELLTLEEKDPKRLFEGNALLRRLVRIGVLDEKQMKLDYVLGLKIEDFLERRLQ




TQVFKAGLAKSIHHARILIRQRHIRVRKQVVNIPSFIVRLDSGKHIDFSLKSPFGGGRP





CS006
1688
SEQ ID NO: 1689 (frame + 1)




TCQGMRNALYDKLDDDGIIAPGIRVSGDDVVIGKTITLPENDDELEGTSRRYSKRDASTFLRNSETGIVDQVMLTL




NSEGYKFCKIRVRSVRIPQIGDKFASRHGQKGTCGIQYRQEDMPFTCEGLTPDIIINPHAIPSRMTIGHLIECIQGK




VSSNKGEIGDATPFNDAVNVQKI





CS007
1690
SEQ ID NO: 1691 (frame + 3)




SEISCWNQRFWGLSSIAVSSTLQKFNMNVFPKLFWEWIFFVKAKSGMGKTAVFVLATLQQLEPSENHVYVLVMC




HTRELAFQISKEYERFSKYMAGVRVSVFFGGMPIQKDEEVLKTACPHIVVGTPGRILALVNNKKLNLKHLKHFILD




ECDKMLESLDMRRDVQEIFRNTPHGKQVMMFSATLSKEIRPVCKKFMQDPMEVYVDDEAKLTLHGLQQHYVKL




KENEKNKKLFELLDVLEFNQVVIFVKSVQRCIALAQLLTDQNFPAIGIHRNMTQDERLSRYQQFKDFQKRILVATN




LFGRGMDIERVNIVFNYDMP





CS009
1692
SEQ ID NO: 1693 (frame + 1)




LVAICIWTFLQRLDSREPMWQLDESIIGTNPGLGFRPTPPEVASSVIWYKGNDPNSQQFWVQETSNFLTAYKRD




GKKAGAGQNIHNCDFKLPPPAGKVCDVDISAWSPCVEDKHFGYHKSTPCIFLKLNKIFGWRPHFYNSSDSLPTD




MPDDLKEHIRNMTAYDKNYLNMVWVSCEGENP





CS011
1694
SEQ ID NO: 1695 (frame + 1)




GSGKTTFVKRHLTGEFEKRYVATLGVEVHPLVFHTNRGPIRFNVWDTAGQEKFGGLRDGYYIQGQCAIIMFDVT




SRVTYKNVPNWHRDLVRVCEGIPIVLCGNKVDIKDRKVKAKTIVFHRKKNLQYYDISAKSNYNFEKPFLWLARKLI




GDGNLEFVAMQPCFH





CS013
1696
SEQ ID NO: 1697 (frame + 2)




DAPVVDTAEQVYISSLALLKMLKHGRAGVPMEVMGLMLGEFVDDYTVRVIDVFAMPQTGTGVSVEAVDPVFQA




KMLDMLKQTGRPEMVVGWYHSHPGFGCWLSGVDINTQQSFEALSERAVAVVVDPIQSVKG





CS014
1698
SEQ ID NO: 1699 (frame + 2)




QKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKEKQVELQKKIQSSNMLNQARLKV




LKVREDHVRNVLDEARKRLAEVPKDVKLYTDLLVTLVVQALFQLMEPTVTVRVRQADVSLVQSILGKAQQDYKA




KIKKDVQLKIDTENSLPADTCGGVELIAARGRIKISNTLESRLELIAQQLLPEIRTALF





CS015
1700
SEQ ID NO: 1701 (frame + 1)




IVLSDDNCPDEKIRMNRVVRNNLRVRLSDIVSIAPCPSVKYGKRVHILPIDDSVEGLTGNLFEVYLKPYFMEAYRPI




HRDDTFMVRGGMRAVEFKVVETDPSPYCIVAPDTVIHCEGDPIKREEEEEALNAVGYDDIGGCRKQLAQIKEMV




ELPLRHPSLFKAIGVKPPRGILMYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEADKN




SPAIIFIDELDAIAPKREKTHGEVERRIVSQLLTLMDGMKKSSHVIVMAATNRPNSIDPAL





CS016
1702
SEQ ID NO: 1703(frame − 3)




TPVSEDMLGRVFNGSGKPIDKGPPILAEDFLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAAGLP




HNEIAAQICRQAGLVKIPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERII




TPRLALTAAEFLAYQCEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSI




TQIPILTMPNDDITHPIPDLTGYITEGQIYVDRQLHNRQIYPPVNVLPSLSRLMKSAIGEGMTRKDHSDVSNQLYAC




YAIGKDVQAMKAVVGEEALTPDDLLYLEFLTKFEKNFITQGNYENRTVFESLDIGWQLLRIFPKEMLKRIPASI





CS018
1704
SEQ ID NO: 1705 (frame + 2)




SVYIQPEGVPVPAQQSQQQQSYRHVSESVEHKSYGTQGYTTSEQTKQTQKVAYTNGSDYSSTDDFKVDTFEY




RLLREVSFRESITKRYIGETDIQISTEVDKSLGVVTPPKIAQKPRNSKLQEGADAQFQVQLSGNPRPRVSWFKNG




QRIVNSNKHEIVTTHNQTILRVRNTQKSDTGNYTLLAENPNGCVVTSAYLAVESPQETYGQDHKSQYIMDNQQT




AVEERVEVNEKALAPQFVRVCQDRDVTEGKMTRFDCRVTGRPYPEVTWFINDRQIRDDYXHKILVNESCNHAL




MITNVDLSDSGVVSCIARNKTGETSFQCRLNVIEKEQVVAPKFVERFSTLNVREGEPVQLHARAVGTPTPRITWQ




KDGVQVIPNPELRINTEGGASTLDIPRAKASDAGWYRC


















TABLE 3-PX





Target
cDNA SEQ



ID
ID NO
Corresponding amino acid sequence of cDNA clone







PX001
2100
SEQ ID NO: 2101 (frame + 1)




GPKKHLKRLNAPRAWMLDKLGGVYAPRPSTGPHKLRECLPLVIFLQPPQVRAQRQRGAEDREAAPHQGGRQGPH




RPHLPGWIHGCCVD*KDQ*AVPSDLRCEGTLHHPPHHSRGGQVQAVQGEARGDGPQERAVHRDAQRPHAALPRP




AHQGQRLHPARHRHLQDHGHHQVRLR*PVHDHGRA*LGASGHHRVPREAPRELRHRPHQGHHRTHLRHQVEQRV




HHRQGHE





PX009
2102
SEQ ID NO: 2103 (frame + 3)




TLIWYKGTGYDSYKYWENQL IDFLSVYKKKGQTAGAGQNIFNCDFRNPPPHGKVCDVDIRGWEPCIDENHFSFHKS




SPCIFLKLNKIYGWRPEFYNDTANLPEAMPVDLQTHIRNITAFNRDYANMVWVSCHGETPADKENIGPVRYLPYPGFP




GYFYPYENAEGYLSPLVAVHLERPRTGIVINIECKAWA





PX010
2104
SEQ ID NO: 2105 (frame + 3)




GCIQFITQYQHSSGQRRVRVTTVARNWGDAAANLHHISAGFDQEAAAVVMARLVVYRAEQEDGPDVLRWLDRMLIR




LCQKFGEYAKDDPNSFRLSENFSLYPQFMYHLRRSQFLQVFNNSPDETTFYRHMLMREDLTQSLIMIQPILYSYSFG




GAPEPVLLDTSSIQPDRILLMDTFFQILIYHGETMAQWRALRYQDMAEYENFKQLLRAPVDDAQEILQTRFPVPRYIDT




EHGGSQARFLLSKVNPSQTHNNMYAYGGAMPIPSADGGAPVLTDDVSLQVFMEQP





PX015
2106
SEQ ID NO: 2107 (frame + 3)




RKETVCIVLSDDNCPDEKIRMNRVVRNNLRVRLSDIVSIAPCPSVKYGKRVHILPIDDSVEGLTGNLFEVYLKPYFMEA




YRPIHRDDTFMVRGGMRAVEFKVVETDPSPYCIVAPDTVIHCEGEPIKREEEEEALNAVGYDDIGGCRKQLAQIKEMV




ELPLRHPSLFKAIGVKPPRGILMYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEADKNSPAI




ILIDELDAI





PX016
2108
SEQ ID NO: 2109 (frame + 2)




FTGDILRTPVSEDMLGRIFNGSGKPIDKGPPILAEEYLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSA




AGLPHNEIAAQICRQAGLVKVPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIE




RIITPRLALTAAEFLAYQCEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSIT




QIPILTMPNDDITHPIPDLTGYITEGQIYVDRQLHNRQIYPPVNVLPSLSRLMKSAIGEGMTRKDHSDVSNQLYACYAIG




KDVQAMKAVVGEEALTPDDLLYLEFLTKFEKNFITQGSYENRTVFESLDIGWQPLRIFPKEM


















TABLE 3-AD





Target
cDNA SEQ



ID
ID NO
Corresponding amino acid sequence of cDNA clone







AD001
2364
SEQ ID NO: 2365 (frame + 1)




GPKKHLKRLNAPKAWMLDKLGGVFAPRPSTGPHKLRECLPLVIFLRNRLKYALTNCEVTKIVMQRLIKVDGKVRTDPN




YPAGFMDVVTIEKTGEFFRLVYDVKGRFTIHRISAEEAKYKLCKVRRVQTGPKGIPFLVTHDGRTIRYPDPVIKVNDSI




QLDIATCKIMDHIRFESGNLCMITGGRNLGRVGTVVSRERHPGSFDIVHIKDTQGHTFATRLNNVFIIGKATKPYISLPK




GKGVKLSIAEERDK





AD002
2366
SEQ ID NO: 2367 (frame + 2)




SFFSKVFGGKKDGKAPTTGEAIQKLRETEEMLIKKQEFLEKKIEQEINVAKKNGTKNKRAAIQALKRKKRYEKQLQQID




GTLSTIEMQREALEGANTNTAVLQTMKSAADALKAAHQHMDVDKVHDLMDDI





AD009
2368
SEQ ID NO: 2369 (frame + 3)




VLAALVAVCLWVFFQTLDPRIPTWQLDSSIIGTSPGLGFRPMPEDSNVESTLIWYRGTDRDDFRQWTDTLDEFLAVY




KTPGLTPGRGQNIHNCDYDKPPKKGQVCNVDIKNWHPCIQENHYNYHKSSPCIFIKLNKIYNWIPEYYNESTNLPEQM




PEDLKQYIHNLESNNSREMNTVWVSCEGENP





AD015
2370
SEQ ID NO: 2371 (frame + 2)




DELQLFRGDTVLLKGKRRKETVCIVLSDDTCPDGKIRMNRVVRNNLRVRLSDVVSVQPCPDVKYGKRIHVLPIDDTVE




GLTGNLFEVYLKPYFLEAYRPIHKDDAFIVRGGMRAVEFKVVETDPSPYCIVAPDTVIHCEGDPIKREEEEEALNAVGY




DDIGGCRKQLAQIKEMVELPLRHPSLFKAIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESE




SNLRKAFEEADKNAPAIIFIDELDAIAPKREKTHGEVERRIVSQLLTLMDGLKQSSHVIVMAATNRPNSIDGALRRFGRF




DREIDIGIPDATGRLEILRIHTKNMKLADDVDLEQIAAESHG





AD016
2372
SEQ ID NO: 2373 (frame + 2)




FTGDILRVPVSEDMLGRTFNGSGIPIDGGPPIVAETYLDVQGMPINPQTRIYPEEMIQTGISTIDVMTSIARGQKIPIFSG




AGLPHNEIAAQICRQAGLVQHKENKDDFAIVFAAMGVNMETARFFKREFAQTGACNVVLFLNLANDPTIERIITPRLAL




TVAEFLAYQCNKHVLVIMTDMTSYAEALREVSAAREEVPGRRGFPGYMYTDLSTIYERAGRVQGRPGSITQIPILTMP




NDDITHPI



















TABLE 4-LD






SEQ




Target
ID




ID
NO
Sequences*
Example Gi-number and species


















LD001
49
GGCCCCAAGAAGCATTTGAAGCGTTT
3101175 (Drosophilamelanogaster), 92477283 (Drosophila






erecta)






LD001
50
AATGCCCCAAAAGCATGGATGTTGGATAAA
70909480 (Carabusgranulatus), 77325294 (Chironomus




TTGGGAGGTGT

tentans), 900945 (Ctenocephalidesfelis), 






60297219 (Diaprepesabbreviatus), 37951951 (Ipspini),





75735533 (Triboliumcastaneum),





22039624 (Ctenocephalidesfelis)





LD001
51
GAAGTTACTAAGATTGTTATGCA
33368080 (Glossinamorsitans)





LD001
52
ATTGAAAAAACTGGTGAATTTTTCCG
60297219 (Diaprepesabbreviatus)





LD001
53
ACACACGACGGCCGCACCATCCGCT
27555937 (Anophelesgambiae), 33355008 (Drosophila






yakuba), 22474232 (Helicoverpaarmigera),






3738704 (Manducasexta)





LD001
54
ACACACGACGGCCGCACCATCCGCTA
92477283 (Drosophilaerecta)





LD001
55
CCCAAGAAGCATTTGAAGCGTTTG
92954810 (Drosophilaananassae), 92231605 (Drosophila






willistoni)






LD002
56
GCAATGTCATCCATCATGTCGTG
17861597 (Drosophilamelanogaster), 92223378 (Drosophila






willistoni), 92471309 (Drosophilaerecta)






LD003
57
CAGGTTCTTCCTCTTGACGCGTCCAGG
24975810 (Anophelesgambiae), 3478578 (Antheraeayamamai),





42764756 (Armigeressubalbatus), 24661714 (Drosophila






melanogaster), 68267151 (Drosophilasimulans), 33355000






(Drosophilayakuba), 49532931 (Plutellaxylostella),





76552910 (Spodopterafrugiperda), 92959651





(Drosophilaananassae), 92467993 (Drosophilaerecta)





LD003
58
TTGAGCGAGAAGTCAATATGCTTCT
49558930 (Boophilusmicroplus)





LD003
59
TTCCAAGAAATCTTCAATCTTCAAACCCAA
62238687 (Diabroticavirgifera), 76169907 (Diploptera






punctata), 67872253 (Drosophilapseudoobscura),






55877642 (Locustamigratoria), 66548956 (Apismellifera)





LD003
60
TTCATCCAACACTCCAATACG
22040140 (Ctenocephalidesfelis)





LD003
61
AAGAGCATTGCCTTCAAACAACCT
2459311 (Antheraeayamamai)





LD003
62
AGTTCTCTGGCAGCTTTACGGATTTT
76169907 (Diplopterapunctata)





LD003
63
CCACACTTCACGTTTGTTCCT
57963694 (Heliconiusmelpomene)





LD003
64
CCGTATGAAGCTTGATTACGT
108742527 (Gryllusrubens), 108742525 (Gryllus






pennsylvanicus), 108742523 (Gryllusveletis),






108742521 (Gryllusbimaculatus),





108742519 (Gryllusfirmus), 109194897 (Myzuspersicae)





LD003
65
AGGAACAAACGTGAAGTGTGGCG
109194897 (Myzuspersicae)





LD006
66
AGCGCTATGGGTAAGCAAGCTATGGG
27819970 (Drosophilamelanogaster)





LD006
67
TGTTATACTGGTTATAATCAAGAAGAT
55801622 (Acyrthosiphonpisum), 66535130 (Apismellifera)





LD007
68
GAAGTTCAGCACGAATGTATTCC
50563603 (Homalodiscacoagulata)





LD007
69
CAAGCAAGTGATGATGTTCAGTGCCAC
50563603 (Homalodiscacoagulata)





LD007
70
TGCAAGAAATTCATGCAAGATCC
21068658 (Chironomustentans)





LD007
71
AAATGAAAAGAATAAAAAATT
49201437 (Drosophilamelanogaster)





LD007
72
CAGAATTTCCCAGCCATAGGAAT
67895225 (Drosophilapseudoobscura)





LD007
73
AGCAGTTCAAAGATTTCCAGAAG
77848709 (Aedesaegypti)





LD007
74
TTCCAAATCAGCAAAGAGTACGAG
91083250 (Triboliumcastaneum)





LD010
75
TACCCGCAGTTCATGTACCAT
29558345 (Bombyxmori)





LD010
76
CAGTCGCTGATCATGATCCAGCC
49559866 (Boophilusmicroplus)





LD010
77
CTCATGGACACGTTCTTCCAGAT
60293559 (Homalodiscacoagulata)





LD010
78
GGGGCTGCATACAGTTCATCAC
92971011 (Drosophilamojavensis)





LD010
79
CCCGCAGTTCATGTACCATTTG
92952825 (Drosophilaananassae)





LD010
80
GACAATGCCAAATACATGAAGAA
92921253 (Drosophilavirilis)





LD010
81
TTCGATCAGGAGGCAGCCGCAGTG
92921253 (Drosophilavirilis)





LD011
82
AGCAGGGCTGGCATGGCGACAAA
28317118 (Drosophilamelanogaster)





LD011
83
TTCTCAAAGTTGTAGTTAGATTTGGC
37951963 (Ipspini)





LD011
84
TACTGCAAATTCTTCTTCCTATG
55883846 (Locustamigratoria)





LD011
85
GGTACATTCTTGTATGTAACTC
67885713 (Drosophilapseudoobscura)





LD011
86
TCAAACATGATAATAGCACACTG
68771114 (Acanthoscurriagomesiana)





LD011
87
TCTCCTGACCGGCAGTGTCCCATA
17944197 (Drosophilamelanogaster), 77843537 (Aedes






aegypti), 94469127 (Aedesaegypti), 24664595






(Drosophilamelanogaster)





LD011
88
GCTACTTTGGGAGTTGAAGTCCATCC
101410627 (Plodiainterpuntella)





LD011
89
TAACTACAACTTTGAGAAGCCTTTCCT
90813103 (Nasoniavitripennis)





LD011
90
AAGTTTGGTGGTCTCCGTGATGG
84267747 (Aedesaegypti)





LD014
91
GCAGATCAAGCATATGATGGC
9732 (Manducasexta), 90814338 (Nasoniavitripennis),





87266590 (Choristoneurafumiferana)





LD014
92
ATCAAGCATATGATGGCTTTCATTGA
75470953 (Triboliumcastaneum), 76169390 (Diploptera






punctata)






LD014
93
AATATTGAAAAGGGGCGCCTTGT
78055682 (Heliconiuserato)





LD014
94
CAACGTCTCAAGATTATGGAATA
37659584 (Bombyxmori)





LD014
95
ATTATGGAATATTATGAGAAGAAAGA
66556286 (Apismellifera)





LD014
96
AACAAAATCAAGATCAGCAATACT
25958976 (Curculioglandium)





LD016
97
ATGTCGTCGTTGGGCATAGTCA
27372076 (Spodopteralittoralis)





LD016
98
GTAGCTAAATCGGTGTACATGTAACCTGGG
27372076 (Spodopteralittoralis), 55797015 (Acyrthosiphon




AAACCACGACG

pisum), 73615307 (Aphisgossypii), 4680479 (Aedes







aegypti), 9713 (Manducasexta), 76555122






(Spodopterafrugiperda), 237458 (Heliothisvirescens),





53883819 (Plutellaxylostella), 22038926 (Ctenocephalides





felis), 101403557 (Plodiainterpuntella), 92969578





(Drosophilagrimshawi), 91829127 (Bornbyxmori)





LD016
99
GCAGATACCTCACGCAAAGCTTC
62239897 (Diabroticavirgifera)





LD016
100
GGATCGTTGGCCAAATTCAAGAACAGGCA
67882712 (Drosophilapseudoobscura), 92985459 (Drosophila






grimshawi)






LD016
101
TTCTCCATAGAACCGTTCTCTTCGAAATCCT
4680479 (Aedesaegypti), 27372076 (Spodopteralittoralis)




G






LD016
102
GCTGTTTCCATGTTAACACCCAT
49558344 (Boophilusmicroplus)





LD016
103
TCCATGTTAACACCCATAGCAGCGA
62238871 (Diabroticavirgifera)





LD016
104
CTACAGATCTGGGCAGCAATTTCATTGTG
22038926 (Ctenocephalidesfelis), 16898595





(Ctenocephalidesfelis)





LD016
105
GGCAGACCAGCTGCAGAGAAAAT
22038926 (Ctenocephalidesfelis), 16898595





(Ctenocephalidesfelis)





LD016
106
GAGAAAATGGGGATCTTCTGACCACGAGCA
4680479 (Aedesaegypti), 9713 (Manducasexta),




ATGGAGTTCATCACGTC
22038926 (Ctenocephalidesfelis), 16898595





(Ctenocephalidesfelis), 67877903 (Drosophila






pseudoobscura), 10763875 (Manducasexta),






76554661 (Spodopterafrugiperda), 77905105





(Aedesaegypti),





50562965 (Homalodiscacoagulate), 27372076 (Spodoptera






littoralis)






LD016
107
ATGGAGTTCATCACGTCAATAGC
9713 (Manducasexta), 237458 (Heliothisvirescens),





76554661 (Spodopterafrugiperda), 22474331 (Helicoverpa






armigera)






LD016
108
GTCTGGATCATTTCCTCAGGATAGATACGG
16898595 (Ctenocephalidesfelis),




GACCACGGATTGATTGGTTGACCCTGGATG
22038926 (Ctenocephalidesfelis),




TCCAAGAAGTCTTCAGCCAAAATTGGGGGA
50562965 (Homalodiscacoagulate),




CCTTTGTC
49395165 (Drosophilamelanogaster),





6901845 (Bombyxmori), 92931000 (Drosophilavirilis)





LD016
109
ATTGGGGGACCTTTGTCGATGGG
10763875 (Manducasexta)





LD016
110
ATGGGTTTTCCTGATCCATTGAAAACACGTC
49395165 (Drosophilamelanogaster),




CCAACATATCTTCAGAAACAGGAGTCCTCA
55905051 (Locustamigratoria)




AAATATCTCCTGTGAATTCACAAGCGGTGTT





TTTGGCGTCGATTCCTGATGTGCCCTCGAA





CACTTGAACCACAGCTTT






LD016
111
ACAGCTTTTGACCCACTGACTTCCAG
21642266 (Amblyommavariegatum)





LD016
112
GACCCACTGACTTCCAGAACTTGTCCCGAA
49395165 (Drosophilamelanogaster)




CGTATAGTGCCATCAGCCAGTTTGAGT






LD016
113
GGACCGTTCACACCAGACACAGT
24646342 (Drosophilamelanogaster)





LD016
114
GACTGTGTCTGGTGTGAACGGTCCTCT
103769163 (Drosophilamelanogaster), 92048971 (Drosophila






willistoni)






LD016
115
TTCTCTTCGAAATCCTGTTTGAA
84116133 (Dermatophagoidesfarinae)





LD016
116
GACTGTGTVTGGTGTGAACGGTCC
24646342 (Drosophilamelanogaster)





LD016
117
GGTCGTCGTGGTTTCCCAGGTTACATGTAC
92231646 (Drosophilawillistoni), 91755555 (Bombyxmori),




ACCGATTT
84228226 (Aedesaegypti)





LD016
118
TGACAGCTGCCGAATTCTTGGC
92231646 (Drosophilawillistoni)





LD018
119
CAAGTCACCGACGACCACAACCACAA
91080016 (Triboliumcastaneum)





LD018
120
ATCGCGATTGACGGTGGAGCC
91080016 (Triboliumcastaneum)





LD027
121
AGACGATCGGTTGGTTAAAATC
66501387 (Apismellifera)





LD027
122
GATATGGGAGCATGTGAAATATA
77326476 (Chironomustentans)





LD027
123
TTAGAGAATTGTTTGAATTAT
90129719 (Bicyclusanynana)



















TABLE 4-PC





Target
SEQ




ID
ID NO
Sequence *
Example Gi-number and species







PC001
275
AAAATTGTCATGCAAAGGTTGAT
37952206 (Ipspini)





PC001
276
AAAGCATGGATGTTGGACAAA
98994282 (Antheraeamylitta)





109978109 (Grylluspennsylvanicus)





55904580 (Locustamigratoria)





PC001
277
AAAGCATGGATGTTGGACAAATT
31366663 (Toxopteracitricida)





PC001
278
AAAGCATGGATGTTGGACAAATTGGG
60311985 (Papiliodardanus)





PC001
279
AAAGCATGGATGTTGGACAAATTGGGGGGTGT
37951951 (Ipspini)





PC001
280
AAATACAAGTTGTGTAAAGTAA
84647793 (Myzuspersicae)





PC001
281
AAGCATGGATGTTGGACAAATTGGGGGGTGT
70909486 (Mycetophagusquadripustulatus)





PC001
282
ATGGATGTCATTACTATTGAGAA
25957367 (Carabusgranulatus)





PC001
283
CATCAAATTTGAATCTGGCAACCT
37952206 (Ipspini)





PC001
284
CATGATGGCAGAACCATTCGTTA
60303405 (Julodisonopordi)





PC001
285
CCAAAGCATGGATGTTGGACAA
90138164 (Spodopterafrugiperda)





PC001
286
CCATTTTTGGTAACACATGATGG
111011915 (Apismellifera)





PC001
287
CCCAAAGCATGGATGTTGGACAA
50565112 (Homalodiscacoagulata)





PC001
288
CCCAAAGCATGGATGTTGGACAAA
103790417 (Heliconiuserato)





101419954 (Plodiainterpunctella)





PC001
289
CCCAAAGCATGGATGTTGGACAAATT
73612809 (Aphisgossypii)





PC001
290
CCCAAAGCATGGATGTTGGACAAATTGGG
77329254 (Chironomustentans)





PC001
291
CCCAAAGCATGGATGTTGGACAAATTGGGGGGTGT
60305420 (Mycetophagusquadripustulatus)





PC001
292
CCCAAAGCATGGATGTTGGACAAATTGGGGGGTGTCTTCGC
84647995 (Myzuspersicae)





PC001
293
CGTTACCCTGACCCCAACATCAA
73613065 (Aphisgossypii)





PC001
294
GCAAAATACAAGTTGTGTAAAGTAA
83662334 (Myzuspersicae)





PC001
295
GCATGGATGTTGGACAAATTGGG
92969396 (Drosophilagrimshawi)





PC001
296
GCATGGATGTTGGACAAATTGGGGG
67885868 (Drosophilapseudoobscura)





PC001
297
GCATGGATGTTGGACAAATTGGGGGGTGT
25956479 (Biphylluslunatus)





PC001
298
GCATGGATGTTGGACAAATTGGGGGGTGTCT
90814901 (Nasoniavitripennis)





PC001
299
GCTCCCAAAGCATGGATGTTGGA
110260785 (Spodopterafrugiperda)





PC001
300
GCTCCCAAAGCATGGATGTTGGACAA
76551269 (Spodopterafrugiperda)





PC001
301
GCTCCCAAAGCATGGATGTTGGACAAA
56085210 (Bombyxmori)





PC001
302
GCTCCCAAAGCATGGATGTTGGACAAATTGGG
22474232 (Helicoverpaarmigera)





PC001
303
GGTCCCAAAGGAATCCCATTTTTGGT
50565112 (Homalodiscacoagulata)





PC001
304
GGTGTCTTCGCCCCTCGTCCA
82575022 (Acyrthosiphonpisum)





PC001
305
GTGAAGTCACTAAAATTGTCATGCAAAG
25956820 (Biphylluslunatus)





PC001
306
TCCACCGGGCCTCACAAGTTGCG
58371410 (Lonomiaobliqua)





PC001
307
TCCCAAAGCATGGATGTTGGA
110263957 (Spodopterafrugiperda)





PC001
308
TGCTCCCAAAGCATGGATGTTGGACAA
48927129 (Hydropsyche sp.)





PC001
309
TGGATGTTGGACAAATTGGGGGGTGTCT
90814560 (Nasoniavitripennis)





PC003
310
AAAATTGAAGATTTCTTGGAA
108742519 (Gryllusfirmus)





109978291 (Grylluspennsylvanicus)





62083482 (Lysiphlebustestaceipes)





56150446 (Rhynchosciaraamericana)





PC003
311
AACAAACGTGAAGTGTGGAGAGT
57963755 (Heliconiusmelpomene)





PC003
312
AAGTCGCCCTTCGGGGGTGGCCG
77884026 (Aedesaegypti)





PC003
313
ACTTCTCCCTGAAGTCGCCCTTCGG
92992453 (Drosophilamojavensis)





PC003
314
AGATTGTTTGAAGGTAATGCACTTCT
60298816 (Diaphorinacitri)





PC003
315
ATCCGTAAAGCTGCTCGTGAA
33373689 (Glossinamorsitans)





PC003
316
ATCGACTTCTCCCTGAAGTCGCC
92987113 (Drosophilagrimshawi)





PC003
317
ATCGACTTCTCCCTGAAGTCGCCCT
1899548 (Drosophilamelanogaster)





PC003
318
ATGAAGCTTGATTATGTTTTGGGTCTGAAAATTGAAGATTTCT
71539459 (Diaphorinacitri)




TGGAAAGA






PC003
319
ATTGAAGATTTCTTGGAAAGA
62240069 (Diabroticavirgifera)





PC003
320
CACATCGACTTCTCCCTGAAGTC
71550961 (Oncometopianigricans)





PC003
321
CAGAAGCACATCGACTTCTCCCTGAAGTCGCCCTTCGG
68267151 (Drosophilasimulans)





33355000 (Drosophilayakuba)





PC003
322
CAGAAGCACATCGACTTCTCCCTGAAGTCGCCCTTCGGGGG
2152719 (Drosophilamelanogaster)





PC003
323
CGACTTCTCCCTGAAGTCGCC
107324644 (Drosophilamelanogaster)





PC003
324
CTCCCTGAAGTCGCCCTTCGG
15461311 (Drosophilamelanogaster)





PC003
325
CTGGACTCGCAGAAGCACATCGACTTCTCCCTGAA
38624772 (Drosophilamelanogaster)





PC003
326
GACTTCTCCCTGAAGTCGCCCTTCGG
92959651 (Drosophilaananassae)





92981958 (Drosophilamojavensis)





76552467 (Spodopterafrugiperda)





PC003
327
GCTAAAATCCGTAAAGCTGCTCGTGA
60296953 (Diaprepesabbreviatus)





PC003
328
GCTAAAATCCGTAAAGCTGCTCGTGAACT
77329341 (Chironomustentans)





PC003
329
GTGCGCAAGCAGGTGGTGAACATCCC
60312414 (Papiliodardanus)





PC003
330
TACACTTTGGCTAAAATCCGTAAAGCTGC
22040140 (Ctenocephalidesfelis)





PC003
331
TCGCAGAAGCACATCGACTTCTC
18883211 (Anophelesgambiae)





PC003
332
TCGCAGAAGCACATCGACTTCTCCCTGAAGTCGCCCTTCGG
92963738 (Drosophilagrimshawi)





PC003
333
TCTCCCTGAAGTCGCCCTTCGG
38047836 (Drosophilayakuba)





27260897 (Spodopterafrugiperda)





PC003
334
TGAAAATTGAAGATTTCTTGGAA
61646980 (Acyrthosiphonpisum)





73615225 (Aphisgossypii)





83661890 (Myzuspersicae)





37804775 (Rhopalosiphumpadi)





30049209 (Toxopteracitricida)





PC003
335
TGAAAATTGAAGATTTCTTGGAAAGA
90813959 (Nasoniavitripennis)





PC003
336
TGGACTCGCAGAAGCACATCGACTTCTCCCT
25959408 (Melademacoriacea)





PC003
337
TGGCTAAAATCCGTAAAGCTGC
76169907 (Diplopterapunctata)





PC003
338
TGGGTCTGAAAATTGAAGATTTCTTGGA
34788046 (Callosobruchusmaculatus)





PC003
339
TTCTCCCTGAAGTCGCCCTTCGG
107331362 (Drosophilamelanogaster)





110240861 (Spodopterafrugiperda)





PC003
340
TTGGGTCTGAAAATTGAAGATTTCTTGGAAAG
37952462 (Ipspini)





PC003
341
GGGTGCGCAAGCAGGTGGTGAAC
110887729 (Argasmonolakensis)





PC005
342
CTCCTCAAAAAGTACAGGGAGGCCAAGAA
63512537 (Ixodesscapularis)





PC005
343
AAAAAGAAGGTGTGGTTGGATCC
33491424 (Trichoplusiani)





PC005
344
AAAAAGAAGGTGTGGTTGGATCCAAATGAAATCAA
91759273 (Bombyx mori)





55908261 (Locustamigratoria)





PC005
345
AAAGAAGGTGTGGTTGGATCCAAATGAAATCA
101414616 (Plodiainterpunctella)





PC005
346
AACACCAACTCAAGACAAAACAT
25957531 (Cicindelacampestris)





PC005
347
AACACCAACTCAAGACAAAACATCCGTAA
25958948 (Curculioglandium)





PC005
348
AACTCAAGACAAAACATCCGTAA
60314333 (Panorpa cf. vulgaris APV-2005)





PC005
349
AAGAACACTGAAGCCAGAAGGAAGGGAAGGCATTGTGG
25958948 (Curculioglandium)





PC005
350
AATGAAATCAACGAAATCGCCAACAC
92979160 (Drosophilagrimshawi)





92232072 (Drosophilawillistoni)





PC005
351
ATGGAGTACATCCACAAGAAGAAGGC
15454802 (Drosophilamelanogaster)





PC005
352
CAAGATGCTGTCTGACCAGGC
67872905 (Drosophilapseudoobscura)





PC005
353
CGCCTCCTCAAAAAGTACAGGGAGGC
75471260 (Triboliumcastaneum)





PC005
354
CGTATCGCCACCAAGAAGCAG
68267374 (Drosophilasimulans)





PC005
355
CTGTACATGAAAGCGAAGGGTAA
25957246 (Carabusgranulatus)





PC005
356
GAACAAGAGGGTCCTTATGGAG
90977107 (Aedesaegypti)





PC005
357
GAACAAGAGGGTCCTTATGGAGTACATCCA
40544432 (Triboliumcastaneum)





PC005
358
GAGCGTATCGCCACCAAGAAGCA
92480972 (Drosophilaerecta)





33354497 (Drosophilayakuba)





PC005
359
GAGTACATCCACAAGAAGAAGGC
15516174 (Drosophilamelanogaster)





PC005
360
GATCCAAATGAAATCAACGAAAT
56149737 (Rhynchosciaraamericana)





PC005
361
GCCAACACCAACTCAAGACAAAACATCCG
103019061 (Triboliumcastaneum)





PC005
362
GCCAACACCAACTCAAGACAAAACATCCGTAAGCTCAT
56149737 (Rhynchosciaraamericana)





PC005
363
GGCAAAAAGAAGGTGTGGTTGGATCCAAATGAAATCA
101417042 (Plodiainterpunctella)





PC005
364
GGGTCCTTATGGAGTACATCCACAAGAA
67885759 (Drosophilapseudoobscura)





PC005
365
TGCGATGCGGCAAAAAGAAGGT
56149531 (Rhynchosciaraamericana)





PC005
366
TGGTTGGATCCAAATGAAATCAACGAAAT
15355452 (Apismellifera)





83662749 (Myzuspersicae)





PC005
367
TTGGATCCAAATGAAATCAACGAAAT
110985444 (Apismellifera)





111158439 (Myzuspersicae)





PC010
368
CCGCAGTTCATGTACCATTTG
92952825 (Drosophilaananassae)





PC010
369
CTGATGGAGATGAAGCAGTGCTGCAATTC
58395529 (Anopheles gambiae str. PEST)





PC010
370
GACGTGCTCAGATGGGTGGACAG
56152422 (Rhynchosciaraamericana)





PC010
371
GCCCGAGCCTGTGTTGTTGGA
92939820 (Drosophilavirilis)





PC010
372
GGCACATGCTGATGCGTGAGGAT
83937570 (Lutzomyialongipalpis)





PC010
373
GGGCACATGGTCATGGGCGATTC
3337934 (Drosophilamelanogaster)





PC014
374
AAGATCATGGAGTACTACGAGAA
85577611 (Aedesaegypti)





PC014
375
ACGAGAAAAAGGAGAAGCAAG
67838315 (Drosophilapseudoobscura)





PC014
376
ATGGAGTACTACGAGAAAAAGGAGAAGCAAGT
92928915 (Drosophilavirilis)





PC014
377
CAAAAACAAATCAAACACATGATGGC
82574001 (Acyrthosiphonpisum)





111160670 (Myzuspersicae)





PC014
378
CTCAAGATCATGGAGTACTACGA
55692554 (Drosophilayakuba)





PC014
379
CTCAAGATCATGGAGTACTACGAGAA
92942301 (Drosophilaananassae)





92476196 (Drosophilaerecta)





53884266 (Plutellaxylostella)





PC014
380
GAACAAGAAGCCAATGAGAAAGC
111160670 (Myzuspersicae)





PC014
381
GACTCAAGATCATGGAGTACT
112432414 (Myzuspersicae)





PC014
382
GATGTTCAAAAACAAATCAAACACATGATGGC
73618688 (Aphisgossypii)





PC014
383
TACTACGAGAAAAAGGAGAAGC
62239529 (Diabroticavirgifera)





PC014
384
TTCATTGAACAAGAAGCCAATGA
15357365 (Apismellifera)





PC016
385
ACACGACCGGCGCGCTCGTAAAT
75710699 (Triboliumcastaneum)





PC016
386
ACCAGCACGTGCTTCTCGCACTGGTAGGCCAAGAATTCGGC
92048971 (Drosophilawillistoni)





PC016
387
AGCACGTGCTTCTCGCACTGGTAGGC
92985459 (Drosophilagrimshawi)





PC016
388
ATACGCGACCACGGGTTGATCGG
18868609 (Anophelesgambiae)





31206154 (Anopheles gambiae str. PEST)





PC016
389
ATCGGTGTACATGTAACCGGGGAAACC
2921501 (Culexpipiens)





62239897 (Diabroticavirgifera)





92957249 (Drosophilaananassae)





92477818 (Drosophilaerecta)





92965644 (Drosophilagrimshawi)





24646342 (Drosophilamelanogaster)





67896654 (Drosophilapseudoobscura)





75710699 (Triboliumcastaneum)





PC016
390
ATCGTTGGCCAAGTTCAAGAACAG
92950254 (Drosophilaananassae)





PC016
391
CACGTGCTTCTCGCACTGGTAGGCCAAGAA
4680479 (Aedesaegypti)





PC016
392
CCAGTCTGGATCATTTCCTCGGG
67884189 (Drosophilapseudoobscura)





PC016
393
CCAGTCTGGATCATTTCCTCGGGATA
92940287 (Drosophilavirilis)





PC016
394
CGCTCGATGGTCGGATCGTTGGCCAAGTTCAAGAACA
2921501 (Culexpipiens)





PC016
395
CGCTCGATGGTCGGATCGTTGGCCAAGTTCAAGAACAGACA
92477818 (Drosophilaerecta)




CACGTTCTCCAT
15061308 (Drosophilamelanogaster)





PC016
396
CGTGCTTCTCGCACTGGTAGGCCAAGAA
13752998 (Drosophilamelanogaster)





PC016
397
CTGGCAGTTTCCATGTTGACACCCATAGC
16898595 (Ctenocephalidesfelis)





PC016
398
CTTAGCATCAATACCTGATGT
61646107 (Acyrthosiphonpisum)





PC016
399
GACATGTCGGTCAAGATGACCAGCACGTG
9713 (Manducasexta)





PC016
400
GACATGTCGGTCAAGATGACCAGCACGTGCTTCTCGCACTG
92933153 (Drosophilavirilis)





PC016
401
GACATGTCGGTCAAGATGACCAGCACGTGCTTCTCGCACTG
2921501 (Culexpipiens)




GTA






PC016
402
GAGCCGTTCTCTTCGAAGTCCTG
237458 (Heliothisvirescens)





PC016
403
GATGACCAGCACGTGCTTCTC
18883474 (Anophelesgambiae)





PC016
404
GATGACCAGCACGTGCTTCTCGCACTG
92477818 (Drosophilaerecta)





PC016
405
GATGACCAGCACGTGCTTCTCGCACTGGTAGGCCAAGAA
15061308 (Drosophilamelanogaster)





67883622 (Drosophilapseudoobscura)





PC016
406
GATGACCAGCACGTGCTTCTCGCACTGGTAGGCCAAGAATTC
31206154 (Anopheles gambiae str. PEST)




GGC






PC016
407
GATGGGGATCTGCGTGATGGA
101403557 (Plodiainterpunctella)





PC016
408
GATGGGGATCTGCGTGATGGAGCCGTTGCGGCCCTCCAC
53883819 (Plutellaxylostella)





PC016
409
GGAATAGGATGGGTGATGTCGTCGTTGGGCATAGT
110240379 (Spodopterafrugiperda)





PC016
410
GGAATAGGATGGGTGATGTCGTCGTTGGGCATAGTCA
27372076 (Spodopteralittoralis)





PC016
411
GGATCGTTGGCCAAGTTCAAGAA
91757299 (Bombyxmori)





PC016
412
GGATCGTTGGCCAAGTTCAAGAACA
103020368 (Triboliumcastaneum)





PC016
413
GGATCGTTGGCCAAGTTCAAGAACAG
237458 (Heliothisvirescens)





PC016
414
GGATGGGTGATGTCGTCGTTGGGCAT
101403557 (Plodiainterpunctella)





PC016
415
GGCAGTTTCCATGTTGACACCCATAGC
4680479 (Aedesaegypti)





PC016
416
GGCATAGTCAAGATGGGGATCTG
92924977 (Drosophilavirilis)





PC016
417
GTCTGGATCATTTCCTCGGGATA
92966144 (Drosophilagrimshawi)





PC016
418
GTGATGATGCGCTCGATGGTCGGATCGTTGGCCAAGTTCAA
15514750 (Drosophilamelanogaster)




GAACAGACACACGTTCTCCAT






PC016
419
GTGTACATGTAACCGGGGAAACC
92924977 (Drosophilavirilis)





PC016
420
GTTTCCATGTTGACACCCATAGC
91826756 (Bombyxmori)





PC016
421
TCAATGGGTTTTCCTGATCCATTGAA
49395165 (Drosophilamelanogaster)





99009492 (Leptinotarsadecemlineata)





PC016
422
TCATCCAGCACAGACTTGCCAG
10763875 (Manducasexta)





PC016
423
TCATCCAGCACAGACTTGCCAGG
9713 (Manducasexta)





PC016
424
TCCATGTTGACACCCATAGCAGC
92962756 (Drosophilaananassae)





PC016
425
TCCATGTTGACACCCATAGCAGCAAACAC
60295607 (Homalodiscacoagulata)





PC016
426
TCGAAGTCCTGCTTGAAGAACCTGGC
101403557 (Plodiainterpunctella)





PC016
427
TCGATGGTCGGATCGTTGGCCAAGTTCAAGAACAGACACAC
4680479 (Aedesaegypti)




GTTCTCCAT






PC016
428
TCGGATCGTTGGCCAAGTTCAAGAACAGACACACGTTCTCCA
2793275 (Drosophilamelanogaster)




T






PC016
429
TCGTTGGCCAAGTTCAAGAACAG
90137502 (Spodopterafrugiperda)





PC016
430
TGGGTGATGTCGTCGTTGGGCAT
53883819 (Plutellaxylostella)





PC016
431
TTCTCGCACTGGTAGGCCAAGAA
110240379 (Spodopterafrugiperda)





27372076 (Spodopteralittoralis)





PC016
432
TTCTCTTCGAAGTCCTGCTTGAAGAACCTGGC
9713 (Manducasexta)





PC016
433
TTGGCCAAGTTCAAGAACAGACACACGTT
55905051 (Locustamigratoria)





PC016
434
GTTTCCATGTTGACACCCATAGCAGCAAA
84116133 (Dermatophagoidesfarinae)



















TABLE 4-EV





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







EV005
533
AAGCGACGTGAAGAGCGTATCGC
76553206 (Spodopterafrugiperda)





EV005
534
ATTAAAGATGGTCTTATTATTAA
15355452 (Apismellifera)





EV005
535
CGTAAGCGACGTGAAGAGCGTATCGC
33491424 (Trichoplusiani)





EV005
536
GGTCGTCATTGTGGATTTGGTAAAAG
60314333 (Panorpa cf.vulgaris APV-2005)





EV005
537
TGCGATGCGGCAAGAAGAAGGT
15048930 (Drosophilamelanogaster)





EV005
538
TGCGGCAAGAAGAAGGTTTGG
93002524 (Drosophilamojavensis)





92930455 (Drosophilavirilis)





92044532 (Drosophilawillistoni)





EV005
539
TTGTGGATTTGGTAAAAGGAA
60306723 (Sphaerius sp.)





EV010
540
CAAGTGTTCAATAATTCACCA
83937567 (Lutzomyialongipalpis)





EV010
541
CATTCTATAGGCACATGTTGATG
29558345 (Bombyxmori)





EV010
542
CTGGCGGCCACATGGTCATGGG
92476940 (Drosophilaerecta)





92977931 (Drosophilagrimshawi)





2871327 (Drosophilamelanogaster)





EV015
543
AACAGGCCCAATTCCATCGACCC
92947821 (Drosophilaananassae)





EV015
544
AGAGAAAAAATGGACCTCATCGAC
62239128 (Diabroticavirgifera)





EV015
545
CGCCATCCGTCGCTGTTCAAGGCGATCGG
18866954 (Anophelesgambiae)





EV015
546
CTGGCAGTTACCATGGAGAACTTCCGTTACGCCATG
62239128 (Diabroticavirgifera)





EV015
547
GTGATCGTGATGGCGGCCACGAA
18887285 (Anophelesgambiae)





EV015
548
GTGATCGTGATGGCGGCCACGAAC
83423460 (Bombyxmori)





EV015
549
TGATGGACGGCATGAAGAAAAG
91086234 (Triboliumcastaneum)





EV016
550
AATATGGAAACAGCCAGATTCTT
109193659 (Myzuspersicae)





EV016
551
ATGATCCAGACTGGTATTTCTGC
92938857 (Drosophilavirilis)





EV016
552
ATTGATGTGATGAATTCCATTGCC
55905051 (Locustamigratoria)





EV016
553
GAAATGATCCAGACTGGTATTTCTGC
50562965 (Homalodiscacoagulata)





EV016
554
GAAGAAATGATCCAGACTGGTAT
92969748 (Drosophilamojavensis)





EV016
555
GACTGTGTCTGGTGTGAACGG
2286639 (Drosophilamelanogaster)





92042621 (Drosophilawillistoni)





EV016
556
GATATGTTGGGTCGTGTGTTTAA
92969748 (Drosophilamojavensis)





EV016
557
GATCCTACCATTGAAAGAATTAT
99011193 (Leptinotarsadecemlineata)





EV016
558
GTGTCTGAAGATATGTTGGGTCGTGT
76554661 (Spodopterafrugiperda)





EV016
559
GTGTCTGGTGTGAACGGACCG
22474331 (Helicoverpaarmigera)





EV016
560
TCTGAAGATATGTTGGGTCGTGT
27372076 (Spodopteralittoralis)





EV016
561
TGGCATATCAATGTGAGAAGCA
60336595 (Homalodiscacoagulata)





EV016
562
TTGAACTTGGCCAATGATCCTACCAT
91827863 (Bombyxmori)



















TABLE 4-AG





Target
SEQ




ID
ID NO
Sequence *
Example Gi-number and species







AG001
621
AAAACTGGTGAATTCTTCCGTTTGAT
37953169 (Ipspini)





AG001
622
AAAGCATGGATGTTGGACAAA
98994282 (Antheraeamylitta)





109978109 (Grylluspennsylvanicus)





55904580 (Locustamigratoria)





AG001
623
AAAGCATGGATGTTGGACAAATT
31366663 (Toxopteracitricida)





AG001
624
AAAGCATGGATGTTGGACAAATTGGG
60311985 (Papiliodardanus)





AG001
625
AAAGCATGGATGTTGGACAAATTGGGGGGTGT
37951951 (Ipspini)





109195107 (Myzuspersicae)





AG001
626
AAATACAAATTGTGCAAAGTCCG
25958703 (Curculioglandium)





AG001
627
AACTTGTGCATGATCACCGGAG
22039624 (Ctenocephalidesfelis)





AG001
628
AAGCATGGATGTTGGACAAATTGGGGG
112433559 (Myzuspersicae)





AG001
629
AAGCATGGATGTTGGACAAATTGGGGGGTGTGTT
70909486 (Mycetophagusquadripustulatus)





AG001
630
ACTGGTGAATTCTTCCGTTTGAT
77327303 (Chironomustentans)





AG001
631
ATTGAAAAAACTGGTGAATTCTTCCGTTTGATCTATGATGTTA
22039624 (Ctenocephalidesfelis)




A






AG001
632
CCAAAGCATGGATGTTGGACAA
90138164 (Spodopterafrugiperda)





AG001
633
CCCAAAGCATGGATGTTGGACAA
48927129 (Hydropsyche sp.)





76551269 (Spodopterafrugiperda)





AG001
634
CCCAAAGCATGGATGTTGGACAAA
91835558 (Bombyxmori)





103783745 (Heliconiuserato)





101419954 (Plodiainterpunctella)





AG001
635
CCCAAAGCATGGATGTTGGACAAATT
73619372 (Aphisgossypii)





77329254 (Chironomustentans)





AG001
636
CCCAAAGCATGGATGTTGGACAAATTGGG
22474232 (Helicoverpaarmigera)





AG001
637
CCCAAAGCATGGATGTTGGACAAATTGGGGG
84647382 (Myzuspersicae)





AG001
638
CCCAAAGCATGGATGTTGGACAAATTGGGGGGTGT
84647995 (Myzuspersicae)





AG001
639
CCCAAAGCATGGATGTTGGACAAATTGGGGGGTGTGTT
60305420 (Mycetophagusquadripustulatus)





AG001
640
CTGGATTCATGGATGTGATCA
27617172 (Anophelesgambiae)





AG001
641
GAATTCTTCCGTTTGATCTATGATGT
50565112 (Homalodiscacoagulata)





71049326 (Oncometopianigricans)





AG001
642
GCATGGATGTTGGACAAATTGGG
92969396 (Drosophilagrimshawi)





93001617 (Drosophilamojavensis)





92929731 (Drosophilavirilis)





AG001
643
GCATGGATGTTGGACAAATTGGGGG
67885868 (Drosophilapseudoobscura)





AG001
644
GCATGGATGTTGGACAAATTGGGGGGTGT
90814901 (Nasoniavitripennis)





AG001
645
GCATGGATGTTGGACAAATTGGGGGGTGTGTTCGCCCC
25956479 (Biphylluslunatus)





AG001
646
GCCCCCAAAGCATGGATGTTGGACAA
50565112 (Homalodiscacoagulata)





AG001
647
GCTGGATTCATGGATGTGATC
103775903 (Heliconiuserato)





AG001
648
GGATCATTCGATATTGTCCACAT
113017118 (Bemisiatabaci)





AG001
649
GGCAACTTGTGCATGATCACCGGAGG
25958703 (Curculioglandium)





AG001
650
TACAAATTGTGCAAAGTCCGCAA
56161193 (Rhynchosciaraamericana)





AG001
651
TATCCTGCTGGATTCATGGATGT
40934103 (Bombyxmori)





AG001
652
TCACCATTGAAAAAACTGGTGAATTCTTC
62083410 (Lysiphlebustestaceipes)





AG001
653
TGCATGATCACCGGAGGCAGGAA
3478550 (Antheraeayamamai)





AG001
654
TGCATGATCACCGGAGGCAGGAATTTGGG
14627585 (Drosophilamelanogaster)





33355008 (Drosophilayakuba)





AG001
655
TGGATGTTGGACAAATTGGGGGGTGT
90814560 (Nasoniavitripennis)





AG001
656
TGTGCATGATCACCGGAGGCAG
92949859 (Drosophilaananassae)





92999306 (Drosophilagrimshawi)





AG001
657
TGTGCATGATCACCGGAGGCAGGAATTTGGG
67842487 (Drosophilapseudoobscura)





AG005
658
AAGATCGACAGGCATCTGTACCACG
83935651 (Lutzomyialongipalpis)





AG005
659
AAGATCGACAGGCATCTGTACCACGCCCTGTACATGAAGGC
76552995 (Spodopterafrugiperda)





AG005
660
AAGGGTAACGTGTTCAAGAACAA
18932248 (Anophelesgambiae)





60306606 (Sphaerius sp.)





AG005
661
AAGGGTAACGTGTTCAAGAACAAG
18953735 (Anophelesgambiae)





25957811 (Cicindelacampestris)





60311920 (Euclidiaglyphica)





AG005
662
AAGGGTAACGTGTTCAAGAACAAGAGAGT
25958948 (Curculioglandium)





90812513 (Nasoniagiraulti)





AG005
663
ACAAGAAGAAGGCTGAGAAGGC
60311700 (Euclidiaglyphica)





AG005
664
ATCAAGGATGGTTTGATCATTAA
25957811 (Cicindelacampestris)





AG005
665
ATGGAATACATCCACAAGAAGAAG
56149737 (Rhynchosciaraamericana)





AG005
666
CAAAACATCCGTAAATTGATCAAGGATGGT
60314333 (Panorpa cf. vulgaris APV-2005)





AG005
667
CAAAACATCCGTAAATTGATCAAGGATGGTTTGATCAT
25958948 (Curculioglandium)





AG005
668
CAAGGGTAACGTGTTCAAGAA
476608 (Drosophilamelanogaster)





38048300 (Drosophilayakuba)





AG005
669
CAAGGGTAACGTGTTCAAGAACAAG
92946023 (Drosophilaananassae)





2871633 (Drosophilamelanogaster)





68267374 (Drosophilasimulans)





33354497 (Drosophilayakuba)





83937096 (Lutzomyialongipalpis)





AG005
670
CATCTGTACCACGCCCTGTACATGAAGGC
101417042 (Plodiainterpunctella)





AG005
671
GAAGAAGGCTGAGAAGGCCCG
40874303 (Bombyxmori)





AG005
672
GACAGGCATCTGTACCACGCCCTGTACATGAAGGC
90135865 (Bicyclusanynana)





AG005
673
GAGAAGGCCCGTGCCAAGATGTTG
82572137 (Acyrthosiphonpisum)





AG005
674
GATCCAAATGAAATCAATGAGATTGC
60312128 (Papiliodardanus)





AG005
675
GCTCGTATGCCTCAAAAGGAACTATGG
25957246 (Carabusgranulatus)





AG005
676
GGGTAACGTGTTCAAGAACAAG
4447348 (Drosophilamelanogaster)





AG005
677
GGTAACGTGTTCAAGAACAAG
18948649 (Anophelesgambiae)





AG005
678
TACATCCACAAGAAGAAGGCTGAGAAG
2871633 (Drosophilamelanogaster)





AG005
679
TACCACGCCCTGTACATGAAGGC
10764114 (Manducasexta)





AG005
680
TCAATGAGATTGCCAACACCAACTC
83935651 (Lutzomyialongipalpis)





AG005
681
TGATCAAGGATGGTTTGATCAT
77642775 (Aedesaegypti)





27615052 (Anophelesgambiae)





92982271 (Drosophilagrimshawi)





67896961 (Drosophilapseudoobscura)





AG005
682
TGATCAAGGATGGTTTGATCATTAAGAA
92042883 (Drosophilawillistoni)





AG005
683
TGGTTGGATCCAAATGAAATCA
40867709 (Bombyxmori)





101417042 (Plodiainterpunctella)





AG005
684
TGGTTGGATCCAAATGAAATCAA
15355452 (Apismellifera)





83662749 (Myzuspersicae)





AG005
685
TGGTTGGATCCAAATGAAATCAATGAGAT
63013469 (Bombyxmori)





55908261 (Locustamigratoria)





AG005
686
TGTACCACGCCCTGTACATGAAGGC
23573622 (Spodopterafrugiperda)





AG005
687
TTGATCAAGGATGGTTTGATCA
113019292 (Bemisiatabaci)





AG005
688
TTGATCAAGGATGGTTTGATCAT
61674956 (Aedesaegypti)





41576849 (Culicoidessonorensis)





AG005
689
TTGATGGAATACATCCACAAGAAGAAGGC
92225847 (Drosophilawillistoni)





AG005
690
AGGATGCGTGTCTTGAGGCGTCT
110887217 (Argasmonolakensis)





AG005
691
AAGGCCAAGGGTAACGTGTTCAAGAACAAG
110887217 (Argasmonolakensis)





AG010
692
CGTTTGTGTCAAAAGTTTGGAGAATA
78539702 (Glossinamorsitans)





AG010
693
GATGTTTTAAGATGGGTCGATCG
110759793 (Apismellifera)





AG010
694
TTTTACAGGCATATGCTTATGAGGGAAGATTT
55902158 (Locustamigratoria)





AG010
695
TTTTTCGAGGTGGTCAATCAGCATTCGGC
92925934 (Drosophilavirilis)





AG014
696
AACATGCTGAACCAAGCCCGT
75466802 (Triboliumcastaneum)





AG014
697
AACATGCTGAACCAAGCCCGTCT
87266590 (Choristoneurafumiferana)





103779114 (Heliconiuserato)





AG014
698
AAGATCATGGAATACTATGAGAAGAA
101403826 (Plodiainterpunctella)





AG014
699
AAGATCATGGAATACTATGAGAAGAAGGAGAA
81520950 (Lutzomyialongipalpis)





AG014
700
AATGAAAAGGCCGAGGAAATTGATGC
62239529 (Diabroticavirgifera)





AG014
701
ATGGAATACTATGAGAAGAAGGA
16901350 (Ctenocephalidesfelis)





AG014
702
CAATCCTCCAACATGCTGAACCA
53148472 (Plutellaxylostella)





AG014
703
CAGATCAAGCATATGATGGCCTTCAT
53148472 (Plutellaxylostella)





AG014
704
GCAGATCAAGCATATGATGGCCTTCAT
87266590 (Choristoneurafumiferana)





9732 (Manducasexta)





90814338 (Nasoniavitripennis)





AG014
705
GCGGAAGAAGAATTTAACATTGAAAAGGG
50558386 (Homalodiscacoagulata)





71552170 (Oncometopianigricans)





AG016
706
AACGACGACATCACCCATCCTATTC
110248186 (Spodopterafrugiperda)





27372076 (Spodopteralittoralis)





AG016
707
AACGGTTCCATGGAGAACGTGTG
2921501 (Culexpipiens)





92950254 (Drosophilaananassae)





110240379 (Spodopterafrugiperda)





AG016
708
AACGGTTCCATGGAGAACGTGTGTCT
24646342 (Drosophilamelanogaster)





AG016
709
AACGGTTCCATGGAGAACGTGTGTCTCTTCTTGAA
91829127 (Bombyxmori)





AG016
710
ATGATCCAGACCGGTATCTCCGC
22474040 (Helicoverpaarmigera)





AG016
711
ATGCCGAACGACGACATCACCCATCC
31206154 (Anopheles gambiae str. PEST)





AG016
712
CAATGCGAGAAACACGTGCTGGT
9713 (Manducasexta)





AG016
713
CCGCACAACGAAATCGCCGCCCAAAT
75469507 (Triboliumcastaneum)





AG016
714
CGTTTCTTCAAGCAGGACTTCGA
83937868 (Lutzomyialongipalpis)





AG016
715
CTTGGACATCCAAGGTCAACCCATCAACCCATGGTC
104530890 (Belgicaantarctica)





AG016
716
GAAATGATCCAGACCGGTATCTC
2921501 (Culexpipiens)





92966144 (Drosophilagrimshawi)





AG016
717
GAAATGATCCAGACCGGTATCTCCGCCATCGACGTGATGAAC
31206154 (Anopheles gambiae str. PEST)




TC






AG016
718
GAAGAAATGATCCAGACCGGTAT
75469507 (Triboliumcastaneum)





AG016
719
GAAGAAGTACCCGGACGTCGTGG
22038926 (Ctenocephalidesfelis)





AG016
720
GACATCCAAGGTCAACCCATCAA
16898595 (Ctenocephalidesfelis)





AG016
721
GCCCGTTTCTTCAAGCAGGACTTCGA
31206154 (Anopheles gambiae str. PEST)





AG016
722
GCCGCCCAAATCTGTAGACAGGC
60295607 (Homalodiscacoagulata)





AG016
723
GGATCAGGAAAACCCATTGACAAAGGTCC
49395165 (Drosophilamelanogaster)





99009492 (Leptinotarsadecemlineata)





AG016
724
GGTTACATGTACACCGATTTGGC
91829127 (Bombyxmori)





AG016
725
GGTTACATGTACACCGATTTGGCCACCAT
77750765 (Aedesaegypti)





9713 (Manducasexta)





110248186 (Spodopterafrugiperda)





27372076 (Spodopteralittoralis)





AG016
726
GGTTACATGTACACCGATTTGGCCACCATTTACGAA
92231646 (Drosophilawillistoni)





AG016
727
GTGTCGGAGGATATGTTGGGCCG
92460250 (Drosophilaerecta)





24646342 (Drosophilamelanogaster)





55694673 (Drosophilayakuba)





AG016
728
TACATGTACACCGATTTGGCCACCAT
31206154 (Anopheles gambiae str. PEST)





AG016
729
TTCAACGGATCAGGAAAACCCATTGACAAAGGTCC
99010653 (Leptinotarsadecemlineata)





AG016
730
TTCCCCGGTTACATGTACACCGATTTGGCCAC
2921501 (Culexpipiens)





75710699 (Triboliumcastaneum)





AG016
731
TTCCCCGGTTACATGTACACCGATTTGGCCACCAT
62239897 (Diabroticavirgifera)





92957249 (Drosophilaananassae)





92477149 (Drosophilaerecta)





67896654 (Drosophilapseudoobscura)





AG016
732
TTCCCCGGTTACATGTACACCGATTTGGCCACCATTTA
92969578 (Drosophilagrimshawi)





AG016
733
TTCCCCGGTTACATGTACACCGATTTGGCCACCATTTACGA
103744758 (Drosophilamelanogaster)





AG016
734
TTCGCCATCGTGTTCGCCGCCATGGGTGT
31206154 (Anophelesgambiae str. PEST)





AG016
735
TTCTTCAAGCAGGACTTCGAAGA
9713 (Manducasexta)





AG016
736
TTCTTGAATTTGGCCAACGATCC
92972277 (Drosophilagrimshawi)





99011193 (Leptinotarsadecemlineata)





AG016
737
TTCTTGAATTTGGCCAACGATCCCACCATCGAG
67839381 (Drosophilapseudoobscura)





AG016
738
GCCGAATTTTTGGCTTATCAATG
84116133 (Dermatophagoidesfarinae)



















TABLE 4-TC





Target
SEQ




ID
ID NO
Sequence *
Example Gi-number and species







TC001
813
AAAGCATGGATGTTGGATAAA
70909480 (Carabusgranulatus)





16898765 (Ctenocephalidesfelis)





60298000 (Diaprepesabbreviatus)





TC001
814
AATTTGTGTATGATTACTGGAGG
55904576 (Locustamigratoria)





TC001
815
ACTGGAGGTCGTAACTTGGGGCGTGT
60298000 (Diaprepesabbreviatus)





TC001
816
ATGATTACTGGAGGTCGTAACTTGGGGCGTGT
73619372 (Aphisgossypii)





37804548 (Rhopalosiphumpadi)





TC001
817
ATGCAAAGATTGATTAAAGTTGACGG
70909478 (Biphylluslunatus)





TC001
818
ATTAAAGTTGACGGAAAAGTT
110763874 (Apismellifera)





TC001
819
ATTGAGAAAACTGGGGAATTCTTCCG
37952206 (Ipspini)





TC001
820
ATTGTTATGCAAAGATTGATTAAAGTTGACGGAAAAGT
70909486 (Mycetophagusquadripustulatus)





TC001
821
CCAAGAAGCATTTGAAGCGTCT
55904580 (Locustamigratoria)





TC001
822
CCAAGAAGCATTTGAAGCGTCTC
83935971 (Lutzomyialongipalpis)





TC001
823
GCGCCCAAAGCATGGATGTTGGA
103790417 (Heliconiuserato)





101419954 (Plodiainterpunctella)





TC001
824
GGCCCCAAGAAGCATTTGAAGCGT
14700642 (Drosophilamelanogaster)





TC001
825
TGATTACTGGAGGTCGTAACTTGGGGCGTGT
73612212 (Aphisgossypii)





TC001
826
TGTATGATTACTGGAGGTCGTAACTTGGGGCGTGT
70909478 (Biphylluslunatus)





TC001
827
TTGATTTATGATGTTAAGGGA
77325485 (Chironomustentans)





TC001
828
TTGTGTATGATTACTGGAGGTCGTAA
60305816 (Mycetophagusquadripustulatus)





TC002
829
AAAAACAAACGAGCGGCCATCCAGGC
18920284 (Anophelesgambiae)





TC002
830
ATCGACCAAGAGATCCTCACAGCGAAGAAAAACGCGTCGAAA
75717966 (Triboliumcastaneum)




AACAAACGAGCGGCCATCCAGGCC






TC002
831
CTCCAGCAGATCGATGGCACCCT
92475657 (Drosophilaerecta)





13763220 (Drosophilamelanogaster)





TC002
832
TCAAGAGGAAGAAACGCTACGAAAAGCAGCTCCAGCAGATC
75717966 (Triboliumcastaneum)




GATGGCACCCTCAGCACCATCGAGATGCAGCGGGAGGCCCT





CGAGGGGGCCAACACCAACACAGCCGTACTCAAAACGATGA





AAAACGCAGCGGACGCCCTCAAAAATGCCCACCTCAACATG





GATGTTGATGAGGT






TC010
833
AACCTCAAGTACCAGGACATGCCCGA
90973566 (Aedesaegypti)





TC010
834
AGCCGATTTTGTACAGTTATA
92944620 (Drosophilaananassae)





TC010
835
ATGGACACATTTTTCCAAATT
33427937 (Glossinamorsitans)





TC010
836
ATGGACACATTTTTCCAAATTTTGATTTTCCACGG
56151768 (Rhynchosciaraamericana)





TC010
837
CAAGTACCAGGACATGCCCGA
18911059 (Anophelesgambiae)





TC010
838
CACATGCTGATGCGGGAGGACCTC
67893321 (Drosophilapseudoobscura)





TC010
839
CCTCAAGTACCAGGACATGCCCGA
67893324 (Drosophilapseudoobscura)





TC010
840
TCAAGTACCAGGACATGCCCGA
67893321 (Drosophilapseudoobscura)





TC010
841
TTCATGTACCATTTGCGCCGCTC
92952825 (Drosophilaananassae)





TC014
842
AAAATTCAGTCGTCAAACATGCTGAA
76169390 (Diplopterapunctata)





TC014
843
AACATGCTGAACCAAGCCCGT
87266590 (Choristoneurafumiferana)





103779114 (Heliconiuserato)





TC014
844
CACAGCAACTTGTGCCAGAAAT
92923718 (Drosophilavirilis)





TC014
845
GAGAAAGCCGAAGAAATCGATGC
77325830 (Chironomustentans)





TC014
846
GCCCGCAAACGTCTGGGCGAA
92232132 (Drosophilawillistoni)





TC014
847
TAAAAGTGCGTGAAGACCACGT
58371699 (Lonomiaobliqua)





TC015
848
ACACTGATGGACGGCATGAAGAA
78531609 (Glossinamorsitans)





TC015
849
ATCGGCGGTTGTCGCAAACAACT
6904417 (Bombyxmori)





TC015
850
CCCGATGAGAAGATCCGGATGAA
83922984 (Lutzomyialongipalpis)





TC015
851
CTGCCCCGATGAGAAGATCCG
92948836 (Drosophilaananassae)





TC015
852
AACGAAACCGGTGCTTTCTTCTT
84116975 (Dermatophagoidesfarinae)



















TABLE 4-MP






SEQ




Target
ID




ID
NO
Sequence *
Example Gi-number and species


















MP001
908
AAAGCATGGATGTTGGACAAA
98994282 (Antheraeamylitta)





108789768 (Bombyxmori)





109978109 (Grylluspennsylvanicus)





55904580 (Locustamigratoria)





MP001
909
AAAGCATGGATGTTGGACAAAT
77325485 (Chironomustentans)





37951951 (Ipspini)





60311985 (Papiliodardanus)





30031258 (Toxopteracitricida)





MP001
910
AAGAAGCATTTGAAGCGTTTAAACGCACC
3658572 (Manducasexta)





MP001
911
AAGCATTTGAAGCGTTTAAACGC
103790417 (Heliconiuserato)





22474232 (Helicoverpaarmigera)





MP001
912
AAGCATTTGAAGCGTTTAAACGCACC
25957217 (Carabusgranulatus)





MP001
913
AAGTCCGTACCGACCCTAATTATCCAGC
46994131 (Acyrthosiphonpisum)





MP001
914
ACGCACCCAAAGCATGGATGTT
46999037 (Acyrthosiphonpisum)





MP001
915
ACTATTAGATACGATATTGCA
46998791 (Acyrthosiphonpisum)





MP001
916
ACTGGACCCAAAGGTGTGCCATTTTTAACTACTCATGATGGC
46997137 (Acyrthosiphonpisum)




CGTACTAT






MP001
917
AGAAGCATTTGAAGCGTTTAAA
27620566 (Anophelesgambiae)





MP001
918
AGAAGCATTTGAAGCGTTTAAACGCACC
98994282 (Antheraeamylitta)





MP001
919
AGAAGCATTTGAAGCGTTTAAACGCACCCAAAGCATGGATGT
73619191 (Aphisgossypii)




TGGACAAAT






MP001
920
AGTAAGGGAGTTAAATTGACTA
46998791 (Acyrthosiphonpisum)





MP001
921
ATACAAGTTGTGTAAAGTAAAG
29553519 (Bombyxmori)





MP001
922
ATGGATGTTATATCTATCCAAAAGACCAGTGAGCACTTTAGAT
46998791 (Acyrthosiphonpisum)




TGATCTATGATGTGAAAGGTCGTTTCAC






MP001
923
ATTGATCTATGATGTGAAAGGTCGTTTCAC
46999037 (Acyrthosiphonpisum)





MP001
924
CAAAAGACCAGTGAGCACTTTAGATTGAT
30031258 (Toxopteracitricida)





MP001
925
CACAGAATTACTCCTGAAGAAGC
73619191 (Aphisgossypii)





MP001
926
CACAGAATTACTCCTGAAGAAGCAAAATACAAG
46998791 (Acyrthosiphonpisum)





30031258 (Toxopteracitricida)





MP001
927
CATCCAGGATCTTTTGATATTGTTCACATTAA
31364848 (Toxopteracitricida)





MP001
928
CATCCAGGATCTTTTGATATTGTTCACATTAAGGATGCAAATG
37804548 (Rhopalosiphumpadi)




AACATATTTTTGCTAC






MP001
929
CATCTAAAATTTTGGATCATATCCGTTTTGAAACTGGAAACTT
46998791 (Acyrthosiphonpisum)




GTGCATGAT






MP001
930
CATTTGAAGCGTTTAAACGCACC
30031258 (Toxopteracitricida)





MP001
931
CATTTGAAGCGTTTAAACGCACCCAAAGCATGGATGTT
46998791 (Acyrthosiphonpisum)





MP001
932
CCAAAGCATGGATGTTGGACAA
90138164 (Spodopterafrugiperda)





MP001
933
CCAAGGAGTAAGGGAGTTAAATTGACTA
73615238 (Aphisgossypii)





31364848 (Toxopteracitricida)





MP001
934
CCCAAAGCATGGATGTTGGAC
108789768 (Bombyxmori)





MP001
935
CCCAAAGCATGGATGTTGGACAA
50565112 (Homalodiscacoagulata)





48927129 (Hydropsyche sp.)





76551269 (Spodopterafrugiperda)





MP001
936
CCCAAAGCATGGATGTTGGACAAA
56085210 (Bombyxmori)





103792451 (Heliconiuserato)





101419954 (Plodiainterpunctella)





MP001
937
CCCAAAGCATGGATGTTGGACAAAT
22474095 (Helicoverpaarmigera)





MP001
938
CGTCCAAGCACCGGTCCACACAAACT
47537863 (Acyrthosiphonpisum)





MP001
939
CTGGAAACTTGTGCATGATAACTGGAGG
78524585 (Glossinamorsitans)





MP001
940
GAAAGACATCCAGGATCTTTTGATATTGTTCACATTAAGGATG
46997137 (Acyrthosiphonpisum)




CAAATGAACATATTTTTGCTACCCGGATGAACAATGTTTTTAT





TATTGGAAAAGGTCAAAAGAACTACATTTCTCTACCAAG






MP001
941
GATCATATCCGTTTTGAAACTGGAAACTTGTGCATGAT
73614725 (Aphisgossypii)





MP001
942
GATGCAAATGAACATATTTTTGCTAC
31364848 (Toxopteracitricida)





MP001
943
GCACCCAAAGCATGGATGTTGGA
70909486 (Mycetophagusquadripustulatus)





MP001
944
GCACCCAAAGCATGGATGTTGGACAAAT
77329254 (Chironomustentans)





60305420 (Mycetophagusquadripustulatus)





MP001
945
GGATCTTTTGATATTGTTCACAT
60303405 (Julodisonopordi)





MP001
946
GGATCTTTTGATATTGTTCACATTAAGGATGCAAATGAACATA
73619191 (Aphisgossypii)




TTTTTGCTAC






MP001
947
GGCCCCAAGAAGCATTTGAAGCGTTTAA
14693528 (Drosophilamelanogaster)





MP001
948
GGGCGTGTTGGTATTGTTACCAACAG
31365398 (Toxopteracitricida)





MP001
949
GGGCGTGTTGGTATTGTTACCAACAGGGAAAG
73612212 (Aphisgossypii)





37804548 (Rhopalosiphumpadi)





MP001
950
GGTACAAACTGGACCCAAAGG
60297572 (Diaprepesabbreviatus)





MP001
951
GTTTTTATTATTGGAAAAGGTCAAAAGAACTACATTTCTCT
73619191 (Aphisgossypii)





31364848 (Toxopteracitricida)





MP001
952
TGAAGTATGCACTTACTGGTGC
73619191 (Aphisgossypii)





MP001
953
TGTAAAGTAAAGAGGGTACAAACTGGACCCAAAGGTGT
73619191 (Aphisgossypii)





MP001
954
TGTGTAAAGTAAAGAGGGTACAAACTGGACCCAAAGGTGT
30031258 (Toxopteracitricida)





MP001
955
TTCTTGCGTAATCGTTTGAAGTATGCACTTACTGGTGCCGAA
46998791 (Acyrthosiphonpisum)




GTCACCAAGATTGTCATGCAAAGATTAATCAAGGTTGATGGC





AAAGTCCGTACCGACCCTAATTATCCAGC






MP001
956
TTGGAAAAGGTCAAAAGAACTACATTTCTCT
73615060 (Aphisgossypii)





MP001
957
TTGGATCATATCCGTTTTGAAACTGGAAACTTGTGCATGAT
37804548 (Rhopalosiphumpadi)





MP002
958
AAAAAAAATGGTACAACTAATAAACGAGCTGCATTGCAAGC
47537017 (Acyrthosiphonpisum)





MP002
959
AAGAAACGGTACGAACAACAA
15363283 (Apismellifera)





MP002
960
ACAAGAATTTTTAGAAAAAAAAATTGAACAAGAAGTAGCGATA
47537017 (Acyrthosiphonpisum)




GC






MP002
961
CAAATTGATGGTACCATGTTAACTATTGAACAACAGCG
47537017 (Acyrthosiphonpisum)





MP002
962
GAAGATGCGATACAAAAGCTTCGATCCAC
47537017 (Acyrthosiphonpisum)





MP002
963
GAGTTTCTTTAGTAAAGTATTCGGTGG
110762684 (Apismellifera)





MP010
964
AAAAGATGATCCAAATAGTTT
110759793 (Apismellifera)





MP010
965
AAAATATTATTGATGGACACATTTTTCCATATTTTGATATTCCA
47520567 (Acyrthosiphonpisum)





MP010
966
AATAGTCCTGATGAAACATCATATTATAG
47520567 (Acyrthosiphonpisum)





MP010
967
CAAAAAGATGATCCAAATAGTTTCCGATTGCCAGAAAACTTCA
47520567 (Acyrthosiphonpisum)




GTTTATATCCACAGTTCATGTATCATTTAAGAAGGTCTCAATTT





CTACAAGTTTTTAA






MP010
968
CAACATTCCAGTGGCTATAAACGAAT
47520567 (Acyrthosiphonpisum)





MP010
969
CACATGTTGATGCGTGAAGATGTTAC
47520567 (Acyrthosiphonpisum)





MP010
970
CCAATTCTGTATAGCTATAGTTTTAATGGTAGGCCAGAACCTG
47520567 (Acyrthosiphonpisum)




TACTTTTGGATACCAG






MP010
971
CCATCTCAAACACATAATAATATGTATGCTTATGGAGG
55814942 (Acyrthosiphonpisum)





MP010
972
CTCAAAACTCGATTCCCAATGCCTCGGTATATTGACACAGAA
55814942 (Acyrthosiphonpisum)




CAAGGTGGTAGTCAGGCAAGATTTTTACTATGCAAAGT






MP010
973
GGTGATGGTGGAGCACCAGTTTTGACAGATGATGTAAGCTTG
55814942 (Acyrthosiphonpisum)




CA






MP010
974
GTGGCTGCATACAGTTCATTACGCAGTA
28571527 (Drosophilamelanogaster)





MP010
975
TAATGGCTCGTATGGTAGTGAACCGTGCTGAAACTGA
47520567 (Acyrthosiphonpisum)





MP010
976
TATAGGCACATGTTGATGCGTGAAGAT
40924332 (Bombyxmori)





MP010
977
TGGGCTGATCGTACGCTTATACGCTTGTGTCA
47520567 (Acyrthosiphonpisum)





MP010
978
TTAGCTAGGAATTGGGCAGACCCTGT
47520567 (Acyrthosiphonpisum)





MP016
979
AAACAAGATTTTGAGGAAAATGG
35508791 (Acyrthosiphonpisum)





MP016
980
AACCTGGTAAATCAGTTCTTGA
35508791 (Acyrthosiphonpisum)





MP016
981
AACGACGACATCACCCATCCTATTC
110240379 (Spodopterafrugiperda)





27372076 (Spodopteralittoralis)





MP016
982
AATTTAGCTAATGATCCTACTATTGA
15366446 (Apismellifera)





MP016
983
ACTATGCCTAACGACGACATCACCCATCC
237458 (Heliothisvirescens)





MP016
984
ATAGTATTTGCTGCTATGGGTGTTAATATGGAAAC
30124460 (Toxopteracitricida)





MP016
985
CAAATTTGTAGACAAGCTGGTCT
103020368 (Triboliumcastaneum)





MP016
986
CATGAAGACAATTTTGCTATAGTATTTGCTGCTATGGGTGTTA
35508791 (Acyrthosiphonpisum)




ATATGGAAAC






MP016
987
CCGATAGATAAAGGACCTCCTATTTTGGCTGAAGATTATTTGG
35508791 (Acyrthosiphonpisum)




ATATTGAAGGCCAACCTATTAATCCATA






MP016
988
CCTATTTTGGCTGAAGATTAT
55905051 (Locustamigratoria)





MP016
989
CGTATCATTACACCACGTCTTGCTTTAACTGCTGCTGAATTTT
30124460 (Toxopteracitricida)




TAGCTTA






MP016
990
CGTCTTGCTTTAACTGCTGCTGAATTTTTAGCTTA
35508791 (Acyrthosiphonpisum)





MP016
991
GAAGAAGTACCTGGGCGTCGTGGTTTCCCTGGTTACATGTAC
30124460 (Toxopteracitricida)




AC






MP016
992
GAAGGAAGAAATGGTTCTATCACACAAATACCTATTTTAACTA
30124460 (Toxopteracitricida)




TGCCTAA






MP016
993
GAAGGAAGAAATGGTTCTATCACACAAATACCTATTTTAACTA
73615307 (Aphisgossypii)




TGCCTAACGA






MP016
994
GATTTAGCTACAATTTATGAACG
30124460 (Toxopteracitricida)





MP016
995
GCCAGATTCTTTAAACAAGATTTTGAGGAAAATGG
30124460 (Toxopteracitricida)





MP016
996
GCTATGGGTGTTAATATGGAAAC
75469507 (Triboliumcastaneum)





MP016
997
GCTGCAGGTTTACCACATAATGAGATTGCTGCTCAAATTTG
35508791 (Acyrthosiphonpisum)





MP016
998
GCTGGGCGTGTAGAAGGAAGAAATGGTTCTATCACACAAATA
55813096 (Acyrthosiphonpisum)




CCTATTTTAACTATGCCTAACGA






MP016
999
GGTTACATGTACACCGATTTAGCTACAATTTATGAACG
55813096 (Acyrthosiphonpisum)





73615307 (Aphisgossypii)





MP016
1000
GTGGACAAAAAATTCCAATATTTTC
55813096 (Acyrthosiphonpisum)





MP016
1001
GTGTCGGAGGATATGTTGGGCCG
92460250 (Drosophilaerecta)





2286639 (Drosophilamelanogaster)





55694673 (Drosophilayakuba)





MP016
1002
GTTCTTGAATTTAGCTAATGATCCTACTATTGA
82563007 (Acyrthosiphonpisum)





MP016
1003
TCAATGGAGAATGTTTGTTTGTTCTTGAATTTAGCTAATGATC
35508791 (Acyrthosiphonpisum)




CTACTATTGA
30124460 (Toxopteracitricida)





MP016
1004
TCAGCTATTGATATCATGAACTCTATTGCTCGTGGACAAAAAA
35508791 (Acyrthosiphonpisum)




TTCCAATATTTTC






MP016
1005
TCATATGCTGAAGCTTTAAGAGAAGTTTCTGCTGCTCG
30124460 (Toxopteracitricida)





MP016
1006
TCCAGAACATATCCTCAAGAAATGATTCAAACTGGTAT
35508791 (Acyrthosiphonpisum)





MP016
1007
TCTATTGCTCGTGGACAAAAAATTCC
110764393 (Apismellifera)





MP016
1008
TGTGAAAAGCATGTCTTAGTTATTTTAACTGACATGAGTTCAT
55813096 (Acyrthosiphonpisum)




ATGCTGAAGCTTTAAGAGAAGTTTCTGCTGCTCGTGAAGAAG





TACCTGGGCGTCGTGGTTTCCC






MP016
1009
TTAACTGACATGAGTTCATATGCTGAAGCTTTAAGAGAAGTTT
73615307 (Aphisgossypii)




CTGCTGCTCGTGAAGAAGTACCTGG






MP027
1010
TTTTTAAAAATTTTAAAGAAAAAAA
47522167 (Acyrthosiphonpisum)



















TABLE 4-NL






SEQ




Target
ID




ID
NO
Sequence *
Example Gi-number and species







NL001
1161
CTGAAGAAGCTAAGTACAAGCT
16566724 (Spodopterafrugiperda)





NL001
1162
TTCTTCCGTTTGATCTATGATGTTAA
16900870 (Ctenocephalidesfelis)





NL001
1163
CAGCTGAAGAAGCTAAGTACAA
16900870 (Ctenocephalidesfelis), 56199521 (Culicoides






sonorensis)






NL001
1164
GAGTTCTTCCGTTTGATCTATGATGTTAA
16900945 (Ctenocephalidesfelis)





NL001
1165
AAGTACAAGCTGTGCAAAGTGAAG
22474232 (Helicoverpaarmigera)





NL001
1166
TTCGACATCGTGCACATCAAGGAC
22474232 (Helicoverpaarmigera)





NL001
1167
ATCACAGCTGAAGAAGCTAAGTACAAG
25956820 (Biphylluslunatus)





NL001
1168
TGTGTATGATCACTGGAGGTCGTAA
25957367 (Carabusgranulatus)





NL001
1169
AACGTTTTCATCATCGGCAAG
27613698 (Anophelesgambiae)





NL001
1170
CCAAAATCATGGACTTCATCA
3738704 (Manducasexta)





NL001
1171
TGATCTATGATGTTAAGGGACG
3738704 (Manducasexta)





NL001
1172
CATGGATGTTGGACAAATTGGG
37951951 (Ipspini), 56772312 (Drosophilavirilis),





60305420 (Mycetophagusquadripustulatus), 67885868





(Drosophilapseudoobscura), 77321575 (Chironomus






tentans), 25956479 (Biphylluslunatus), 22474232






(Helicoverpaarmigera);





NL001
1173
TTTTGCCACTAGGTTGAACAACGT
37953169 (Ipspini)





NL001
1174
GCAGCGTCTCATCAAGGTTGACGGCAA
48927129 (Hydropsyche sp.)





NL001
1175
AAGGGACGTTTCACCATCCAC
50818668 (Heliconiusmelpomene)





NL001
1176
AACCTGTGTATGATCACTGGAGG
60293875 (Homalodiscacoagulata)





NL001
1177
ACTAACTGTGAAGTGAAGAAAATTGT
60293875 (Homalodiscacoagulata)





NL001
1178
TTCTTCCGTTTGATCTATGATGT
60293875 (Homalodiscacoagulata), 71047771





(Oncometopianigricans)





NL001
1179
TGTATGATCACTGGAGGTCGTAACTTGGG
60297219 (Diaprepesabbreviatus)





NL001
1180
CATGGATGTTGGACAAATTGGGTGG
60311985 (Papiliodardanus)





NL001
1181
GCTGAAGAAGCTAAGTACAAG
68758383 (Acanthoscurriagomesiana)





NL001
1182
GGAGGTCGTAACTTGGGTCGTGT
77327303 (Chironomustentans)





NL001
1183
TATGATGTTAAGGGACGTTTCACCAT
77327303 (Chironomustentans)





NL001
1184
CATGGATGTTGGACAAATTGGG
93002561 (Drosophilagrimshawi)





93001617 (Drosophilamojavensis)





92939328 (Drosophilavirilis)





112433559 (Myzuspersicae)





90814922 (Nasoniavitripennis)





NL001
1185
CTGAAGAAGCTAAGTACAAGCT
110264122 (Spodopterafrugiperda)





NL001
1186
GAAGAAGCTAAGTACAAGCTGTG
90820001 (Graphocephalaatropunctata)





NL001
1187
TTGCACAGCTTGTACTTAGCTTCTTC
90134075 (Bicyclusanynana)





NL001
1188
AAGTACAAGCTGTGCAAAGTGAAG
112350104 (Helicoverpaarmigera)





NL001
1189
ATGATCACTGGAGGTCGTAACTTGGGTCG
113017118 (Bemisiatabaci)





NL001
1190
GGTCGTAACTTGGGTCGTGTGGG
109978109 (Grylluspennsylvanicus)





NL001
1191
TTCGACATCGTGCACATCAAGGAC
112350104 (Helicoverpaarmigera)





NL001
1192
ACATCGTGCACATCAAGGACG
90981811 (Aedesaegypti)





NL003
1193
CAGGAGTTGAAGATCATCGGAGAGTATGG
15457393 (Drosophilamelanogaster), 76551770





(Spodopterafrugiperda)





NL003
1194
CGTAAGGCCGCTCGTGAGCTG
1797555 (Drosophilamelanogaster)





NL003
1195
AAGGTAACGCCCTGCTGCGTCG
18863433 (Anophelesgambiae)





NL003
1196
CAGGAGTTGAAGATCATCGGAGAGTA
2459311 (Antheraeayamamai), 49532931 (Plutella






xylostella)






NL003
1197
GCCAAGTCCATCCATCACGCCCG
33354488 (Drosophilayakuba), 60312414 (Papilio






dardanus)






NL003
1198
AAGTCCATCCATCACGCCCGT
33528372 (Trichoplusiani)





NL003
1199
TGTTTGAAGGTAACGCCCTGCT
34788046 (Callosobruchusmaculatus)





NL003
1200
CAGGAGTTGAAGATCATCGGAGA
35505798 (Acyrthosiphonpisum), 56772256 (Drosophila






virilis)






NL003
1201
GTGCGCCTGGACTCGCAGAAGCACAT
38624772 (Drosophilamelanogaster)





NL003
1202
GAGTTGAAGATCATCGGAGAGTA
4158332 (Bombyxmori)





NL003
1203
TTGGGTTTAAAAATTGAAGATTTC
56150446 (Rhynchosciaraamericana)





NL003
1204
TCGCAGAAGCACATTGACTTCTC
56772256 (Drosophilavirilis)





NL003
1205
AGAATGAAGCTCGATTACGTC
60306665 (Sphaerius sp.)





NL003
1206
TTTGTGGTGCGCCTGGACTCG
60312414 (Papiliodardanus)





NL003
1207
AGAAGCACATTGACTTCTCGCTGAAGTC
63514675 (Ixodesscapularis)





NL003
1208
TCGCAGAAGCACATTGACTTCTCGCT
70979521 (Anophelesalbimanus)





NL003
1209
CTCATCAGACAAAGACATATCAGAGT
71536734 (Diaphorinacitri)





NL003
1210
TTGAAGATCATCGGAGAGTATGG
73612958 (Aphisgossypii)





NL003
1211
AAAATTGAAGATTTCCTTGAA
75467497 (Triboliumcastaneum)





NL003
1212
CAGAAGCACATTGACTTCTCGCT
77730066 (Aedesaegypti)





NL003
1213
CGTAAGGCCGCTCGTGAGCTG
24661714 (Drosophilamelanogaster)





NL003
1214
GCGTGATGGATGGACTTGGCCAA
90813959 (Nasoniavitripennis)





NL003
1215
GCCAAGTCCATCCATCACGCCCG
92467993 (Drosophilaerecta)





NL003
1216
GCCAAGTCCATCCATCACGCCCGT
112349903 (Helicoverpaarmigera)





NL003
1217
CTCATCAGACAAAGACATATCAGAGT
110671455 (Diaphorinacitri)





NL003
1218
CAGGAGTTGAAGATCATCGGAGA
86464397 (Acyrthosiphonpisum)





92938865 (Drosophilavirilis)





NL003
1219
CAGGAGTTGAAGATCATCGGAGAGTATGG
101417830 (Plodiainterpunctella)





110254389 (Spodopterafrugiperda)





NL003
1220
GAGTTGAAGATCATCGGAGAGTA
112984021 (Bornbyxmori)





NL003
1221
TCGCAGAAGCACATTGACTTCTC
93002641 (Drosophilamojavensis)





92938865 (Drosophilavirilis)





NL003
1222
TTGAAGATCATCGGAGAGTATGG
111158779 (Myzuspersicae)





NL003
1223
CAGAAGCACATTGACTTCTCGCTGAA
92232387 (Drosophilawillistoni)





NL003
1224
CTCCGTAACAAGCGTGAGGTGTGG
92232387 (Drosophilawillistoni)





NL003
1225
CGTAACAAGCGTGAGGTGTGG
110558371 (Drosophilaananassae)





NL003
1226
GTCAAATACGCCCTGGCCAAGAT
93001117 (Drosophilagrimshawi)





NL004
1227
TACGCCCATTTCCCCATCAACTGTGT
14994663 (Spodopterafrugiperda),53883415 (Plutella






xylostella)






NL004
1228
TGCTCTCACATCGAAAACATG
22039837 (Ctenocephalidesfelis)





NL004
1229
AACTTCCTGGGCGAGAAGTACATC
25959088 (Melademacoriacea)





NL004
1230
GCCGTGTACGCCCATTTCCCCATCAACTG
25959088 (Melademacoriacea)





NL004
1231
GTGTACGCCCATTTCCCCATCAACTGTGTGAC
2761563 (Drosophilamelanogaster)





NL004
1232
GTGTACGCCCATTTCCCCATCAACTGTGT
33354902 (Drosophilayakuba)





NL004
1233
ATGCGTGCCGTGTACGCCCATTT
33433477 (Glossinamorsitans)





NL004
1234
TCAGCTGCCCTCATCCAACAGTC
33491496 (Trichoplusiani)





NL004
1235
AAGGATATTCGTAAATTCTTGGA
37952094 (Ipspini), 56199511 (Culicoidessonorensis)





NL004
1236
GCCCATTTCCCCATCAACTGTGT
42766318 (Armigeressubalbatus)





NL004
1237
AACTTCCTGGGCGAGAAGTACAT
49547659 (Rhipicephalusappendiculatus)





NL004
1238
AAGAACAAGGATATTCGTAAATTCTTGGA
56152793 (Rhynchosciaraamericana)





NL004
1239
AACTTCCTGGGCGAGAAGTACATCCG
58079798 (Amblyommaamericanum), 49554219 (Boophilus






microplus)






NL004
1240
CATTTCCCCATCAACTGTGTGAC
60312171 (Papiliodardanus)





NL004
1241
CGTAACTTCCTGGGCGAGAAGTACATCCG
63516417 (Ixodesscapularis)





NL004
1242
AGATCAGCTGCCCTCATCCAACA
71539722 (Diaphorinacitri)





NL004
1243
GTGTACGCCCATTTCCCCATCAACTGTGT
24583601 (Drosophilamelanogaster)





NL004
1244
TACGCCCATTTCCCCATCAACTGT
113017826 (Bemisiatabaci)





NL004
1245
TACGCCCATTTCCCCATCAACTGTGT
110263092 (Spodopterafrugiperda)





NL004
1246
GCCCATTTCCCCATCAACTGTGT
94468811 (Aedesaegypti)





NL004
1247
ACACAGTTGATGGGGAAATGGGC
90136736 (Bicyclusanynana)





NL004
1248
GCCCATTTCCCCATCAACTGTGT
110671493 (Diaphorinacitri)





110249018 (Spodopterafrugiperda)





NL004
1249
GTCACACAGTTGATGGGGAAATGGGC
87266195 (Choristoneurafumiferana)





NL004
1250
CCATTTCCCCATCAACTGTGT
90981351 (Aedesaegypti)





NL005
1251
AAGGGTAACGTATTCAAGAACAAGCG
1900283 (Drosophilamelanogaster)





NL005
1252
AAGGGTAACGTATTCAAGAACAAG
25956594 (Biphylluslunatus)





NL005
1253
CGTGTATTGATGGAGTTCATTCA
30124405 (Toxopteracitricida), 60294294 (Homalodisca






coagulata), 71046487 (Oncometopianigricans), 73612243






(Aphisgossypii)





NL005
1254
AAAGGTCAAGGAGGCCAAGAAG
67875089 (Drosophilapseudoobscura)





NL005
1255
AAGATGTTGAACGACCAGGCTGAAGC
77324118 (Chironomustentans)





NL005
1256
ACGTTACCCTTAGCCTTCATGTA
90812513 (Nasoniagiraulti)





NL005
1257
AAGGGTAACGTATTCAAGAACAAGCG
45552830 (Drosophilamelanogaster)





NL005
1258
CGTGTATTGATGGAGTTCATTCA
112433619 (Myzuspersicae)





NL005
1259
AGGTCAAGGAGGCCAAGAAGC
92941126 (Drosophilavirilis)





NL005
1260
ACGTTACCCTTAGCCTTCATGTA
90812513 (Nasoniagiraulti)





NL005
1261
AAGGGTAACGTATTCAAGAACAAGCG
45552830 (Drosophilamelanogaster)





NL006
1262
AGTCCCAGGAACACCTATCAG
21464337 (Drosophilamelanogaster)





NL006
1263
ATTATTCCCTTCCCCGATCACAA
24646762 (Drosophilamelanogaster)





NL006
1264
CACGCTATCCCATCTCGTATGACAATTGG
24646762 (Drosophilamelanogaster)





NL006
1265
TACAAGTTCTGCAAAATTCGAGT
49573116 (Boophilusmicroplus)





NL006
1266
ATGACAATTGGCCATTTAATTGAATG
50564037 (Homalodiscacoagulata)





NL006
1267
ACCTACACGCACTGCGAGATCCA
58384759 (Anopheles gambiae str. PEST)





NL006
1268
GGTGTGGTGGAGTACATTGACAC
58384759 (Anopheles gambiae str. PEST)





NL006
1269
ATTATTCCCTTCCCCGATCACAA
24646762 (Drosophilamelanogaster)





NL006
1270
AGTCCCAGGAACACCTATCAG
22026793 (Drosophilamelanogaster)





NL006
1271
CACGCTATCCCATCTCGTATGACAATTGG
24646762 (Drosophilamelanogaster)





NL006
1272
TCTCGTATGACAATTGGCCATTT
93000469 (Drosophilamojavensis)





NL007
1273
GCAAACAAGTCATGATGTTCAG
15354019 (Apismellifera)





NL007
1274
GGTATGGGAAAAACTGCTGTATTTGTGTT
15354019 (Apismellifera)





NL007
1275
GAATGCATTCCTCAAGCTGTA
21068658 (Chironomustentans)





NL007
1276
TGCAAGAAATTCATGCAAGATCC
21068658 (Chironomustentans)





NL007
1277
TTCCAAATCAGCAAAGAGTATGA
2890413 (Drosophilamelanogaster)





NL007
1278
GATGACGAGGCCAAGCTGACGCT
49536419 (Rhipicephalusappendiculatus)





NL007
1279
TGTGGTTTTGAACATCCATCTGAAGTACAACA
60308907 (Hister sp.)





NL007
1280
GAAAACGAAAAGAACAAAAAG
77642464 (Aedesaegypti)





NL007
1281
GGTATGGGAAAAACTGCTGTATTTGTGTT
110759359 (Apismellifera)





NL007
1282
GCAAACAAGTCATGATGTTCAG
110759359 (Apismellifera)





NL007
1283
CTGCAGCAGCACTATGTCAAACTCAA
90137538 (Spodopterafrugiperda)





NL007
1284
GAAAACGAAAAGAACAAAAAG
94468805 (Aedesaegypti)





NL008
1285
TGCCAAGCCTAAAGATTTGGG
60315277 (Dysderaerythrina)





NL008
1286
ATGTTCAAGAAAGTTAATGCTAGAGA
60336214 (Homalodiscacoagulata)





NL008
1287
GAGTTGTTGGTGTTCTTTTGGGATG
66522334 (Apismellifera)





NL008
1288
TTTCAAACAGTTTTGCAGTTCC
75735289 (Triboliumcastaneum)





NL008
1289
GAGTTGTTGGTGTTCTTTTGGGATG
110762109 (Apismellifera)





NL010_1
1290
AAGGACCTGACTGCCAAGCAG
2761430 (Drosophilamelanogaster)





NL010_1
1291
GCCAAGCAGATCCAGGACATG
49559867 (Boophilusmicroplus)





NL010_1
1292
TGCTCGAAGAGCTACGTGTTCCG
49559867 (Boophilusmicroplus)





NL010_1
1293
AAGAGCTACGTGTTCCGTGGC
92043082 (Drosophilawillistoni)





NL010_1
1294
AAGGACCTGACTGCCAAGCAG
92481328 (Drosophilaerecta)





28571527 (Drosophilamelanogaster)





NL010_2
1295
ATGGACACATTTTTCCAAATTCTCAT
33427937 (Glossinamorsitans)





NL010_2
1296
ACCAGCAGTATTCAACCCGACA
47520567 (Acyrthosiphonpisum)





NL010_2
1297
TATTGATGGACACATTTTTCCA
47520567 (Acyrthosiphonpisum)





NL010_2
1298
TTCAACAACAGTCCTGATGAAAC
55891325 (Locustamigratoria)





NL0102
1299
ATGGACACATTTTTCCAAATT
56151768 (Rhynchosciaraamericana), 75736992 (Tribolium






castaneum)






NL010_2
1300
CCGCAGTTCATGTACCATCTGCG
6932015 (Anophelesgambiae), 29558345 (Bombyxmori)





NL010_2
1301
ATGGACACATTTTTCCAAATT
91086194 (Triboliumcastaneum)





NL011
1302
AAGAAGTATGTTGCCACCCTTGG
21640529 (Amblyommavariegatum)





NL011
1303
GACATCAAGGACAGGAAAGTCAAGGCCAAGAGC
25959135 (Melademacoriacea)




ATAGT






NL011
1304
CAACTACAACTTCGAGAAGCCGTTCCTGTGG
25959135 (Melademacoriacea), 77646995 (Aedesaegypti)





NL011
1305
TACAAGAACGTTCCCAACTGGCA
3114090 (Drosophilamelanogaster)





NL011
1306
TGCGAAAACATTCCCATTGTACT
37951963 (Ipspini)





NL011
1307
AGGAAGAAGAACCTTCAGTACTACGA
40544671 (Triboliumcastaneum)





NL011
1308
AGCAACTACAACTTCGAGAAGCC
49565237 (Boophilusmicroplus), 49538692 (Rhipicephalus






appendiculatus)






NL011
1309
AACAAAGTAGACATCAAGGACAGGAAAGTCAA
76552920 (Spodopterafrugiperda)





NL011
1310
CCCAACTGGCACAGAGATTTAGTG
78230577 (Heliconiuserato/himera mixed EST library)





NL011
1311
GATGGTGGTACCGGCAAAACTAC
78538667 (Glossinamorsitans)





NL011
1312
TACAAGAACGTTCCCAACTGGCAC
84267747 (Aedesaegypti)





NL011
1313
AACAAAGTAGACATCAAGGACAGGAAAGTCAA
110263840 (Spodopterafrugiperda)





NL011
1314
TTGACTTTCCTGTCCTTGATGTC
90136305 (Bicyclusanynana)





NL011
1315
GACATCAAGGACAGGAAAGTCAAGGC
90813103 (Nasoniavitripennis)





NL011
1316
AGGAAGAAGAACCTTCAGTACTACGA
91091115 (Triboliumcastaneum)





NL011
1317
GATGTCGTAGTACTGAAGGTTCTT
90136305 (Bicyclusanynana)





NL011
1318
CAACTACAACTTCGAGAAGCCGTTCCTGTGG
90977910 (Aedesaegypti)





NL011
1319
CCAACCTGGAGTTCGTCGCCATGCC
92465523 (Drosophilaerecta)





NL011
1320
GAATTTGAAAAGAAGTATGTTGC
113015058 (Bemisiatabaci)





NL011
1321
CTTCAGTACTACGACATCAGTGCGAA
110086408 (Amblyommacajennense)





NL011
1322
AGCAACTACAACTTCGAGAAGCC
110086408 (Amblyommacajennense)





NL011
1323
AAGCTGATCGGTGACCCCAACCTGGAGTT
110086408 (Amblyommacajennense)





NL012
1324
CACAGTTTGAACAGCAAGCTGG
29552409 (Bombyxmori)





NL012
1325
GCAGCAGACGCAGGCACAGGTAGA
77823921 (Aedesaegypti)





NL012
1326
CACAGTTTGAACAGCAAGCTGG
94435913 (Bombyxmori)





NL013
1327
CAAGCGAAGATGTTGGACATGCT
15536506 (Drosophilamelanogaster)





NL013
1328
ATGGTGGTGGGCTGGTACCACTCGCACCC
49547019 (Rhipicephalusappendiculatus)





NL013
1329
GTGGTGGGCTGGTACCACTCGCACCC
58079586 (Amblyommaamericanum)





NL013
1330
GTGGGCTGGTACCACTCGCACCC
82848521 (Boophilusmicroplus)





NL013
1331
AAGATGTTGGACATGCTAAAGCAGACAGG
92229701 (Drosophilawillistoni)





NL013
1332
TGTCGGGTGTCGACATCAACAC
92962655 (Drosophilaananassae)





NL013
1333
GTTCCCATGGAAGTTATGGGC
112433067 (Myzuspersicae)





NL013
1334
GTGGGCTGGTACCACTCGCACCC
110085175 (Amblyommacajennense)





NL014
1335
GAGATCGATGCCAAGGCCGAGGA
1033187 (Drosophilamelanogaster)





NL014
1336
GAATTCAACATTGAAAAGGGA
16900951 (Ctenocephalidesfelis)





NL014
1337
GAAGAATTCAACATTGAAAAGGG
47518467 (Acyrthosiphonpisum)





NL014
1338
GAAGCCAATGAGAAAGCCGAAGA
47518467 (Acyrthosiphonpisum)





NL014
1339
TCGTCAAACATGCTGAACCAAGC
61954844 (Triboliumcastaneum)





NL014
1340
TTTCATTGAGCAAGAAGCCAATGA
62239529 (Diabroticavirgifera), 76169390 (Diploptera






punctata), 61954844 (Triboliumcastaneum), 16900951






(Ctenocephalidesfelis)





NL014
1341
CAAGAAGCCAATGAGAAAGCCGA
111160670 (Myzuspersicae)





NL014
1342
TTTCATTGAGCAAGAAGCCAATGA
91092061 (Triboliumcastaneum)





NL014
1343
AGAAGCCAATGAGAAAGCCGA
112432414 (Myzuspersicae)





NL014
1344
TCGTCAAACATGCTGAACCAAGC
91092061 (Triboliumcastaneum)





NL014
1345
GCCAATGAGAAAGCCGAAGAGATCGATGCCAA
93001435 (Drosophilagrimshawi)





NL014
1346
AAAGCCGAAGAGATCGATGCCAA
92936169 (Drosophilavirilis)





NL014
1347
GAGATCGATGCCAAGGCCGAGGA
24644299 (Drosophilamelanogaster)





NL014
1348
GAAGAATTCAACATTGAAAAGGG
86463006 (Acyrthosiphonpisum)





111160670 (Myzuspersicae)





NL014
1349
GAAGAATTCAACATTGAAAAGGGAAGGCT
90819999 (Graphocephalaatropunctata)





NL014
1350
AAGAATTCAACATTGAAAAGGG
111158385 (Myzuspersicae)





NL015
1351
GAGGTGCTGCGCATCCACACCAA
18887285 (Anophelesgambiae)





NL015
1352
ATCCATGTGCTGCCCATTGATGA
21641659 (Amblyommavariegatum)





NL015
1353
CATGTGCTGCCCATTGATGAT
22039735 (Ctenocephalidesfelis)





NL015
1354
CTGCGCATCCACACCAAGAACATGAAGTTGG
22474136 (Helicoverpaarmigera)





NL015
1355
TTCTTCTTCCTCATCAACGGACC
49552586 (Rhipicephalusappendiculatus)





NL015
1356
GAGATGGTGGAGTTGCCGCTG
58371722 (Lonomiaobliqua)





NL015
1357
CAGATCAAAGAGATGGTGGAG
92947821 (Drosophilaananassae)





NL015
1358
ATCAACGGACCCGAGATTATG
92947821 (Drosophilaananassae)





NL015
1359
ATGAAGATGATGGCCGGTGCGTT
92470977 (Drosophilaerecta)





NL015
1360
CCGGCCATCATCTTCATCGATGAG
92480997 (Drosophilaerecta)





NL015
1361
ATCATCTTCATCGATGAGCTGGACGC
99007898 (Leptinotarsadecemlineata)





NL015
1362
CAGCTGCTGACGCTGATGGACGG
92941440 (Drosophilavirilis)





NL015
1363
ATCGACATTGGCATTCCCGATGCCACCGG
92947821 (Drosophilaananassae)





NL016
1364
TCTATGGAGAACGTGTGCCTGTTCTTGAAC
27372076 (Spodopteralittoralis)





NL016
1365
TACCAGTGCGAGAAGCACGTGCT
2921501 (Culexpipiens)





NL016
1366
ATGGAGAACGTGTGCCTGTTCTTGAACCTGGC
31206154 (Anopheles gambiae str. PEST)





NL016
1367
CGTGGCCAGAAAATCCCCATCTT
3945243 (Drosophilamelanogaster)





NL016
1368
TGGCCTACCAGTGCGAGAAGCACGTG
4680479 (Aedesaegypti)





NL016
1369
TGGCCACCATCTACGAGCGCGCCGG
53883819 (Plutellaxylostella)





NL016
1370
ATGGAGAACGTGTGCCTGTTCTTGAA
67883622 (Drosophilapseudoobscura)





NL016
1371
CCCGAGGAAATGATCCAGACTGG
67883622 (Drosophilapseudoobscura)





NL016
1372
TGGCCTACCAGTGCGAGAAGCACGTGCT
67883622 (Drosophilapseudoobscura), 31206154





(Anopheles gambiae str. PEST)





NL016
1373
GAGGAGGTGCCCGGCCGTCGTGGTTTCCCCGG
67896654 (Drosophilapseudoobscura)




TTACATGTACACCGAT






NL016
1374
GAGGGTCGCAACGGCTCCATCAC
67896654 (Drosophilapseudoobscura)





NL016
1375
GAGGTGCCCGGCCGTCGTGGTTTCCCCGGTTAC
75710699 (Triboliumcastaneum)




ATGTACACCGAT






NL016
1376
ATGGAGAACGTGTGCCTGTTCTTGAAC
76554661 (Spodopterafrugiperda)





NL016
1377
TGGCCTACCAGTGCGAGAAGCACGTGCTCGTCA
9992660 (Drosophilamelanogaster)




TCCT






NL016
1378
CGTCGTGGTTTCCCCGGTTACATGTACACCGAT
9992660 (Drosophilamelanogaster), 2921501 (Culex






pipiens), 62239897 (Diabroticavirgifera)






NL016
1379
TGGTCGCGTATCTATCCCGAGGAAATGATCCAG
92999374 (Drosophilagrimshawi)




AC






NL016
1380
TGGTCGCGTATCTATCCCGAGGAAATGATCCAG
92940538 (Drosophilavirilis)




ACTGG






NL016
1381
TCTATGGAGAACGTGTGCCTGTTCTTGAAC
92938622 (Drosophilavirilis)





NL016
1382
ATGGAGAACGTGTGCCTGTTCTTGAAC
92950254 (Drosophilaananassae)





90137502 (Spodopterafrugiperda)





NL016
1383
AACGTGTGCCTGTTCTTGAAC
92946927 (Drosophilaananassae)





NL016
1384
TGGCCTACCAGTGCGAGAAGCACGTGCT
24646342 (Drosophilamelanogaster)





92231646 (Drosophilawillistoni)





NL016
1385
TGGCCTACCAGTGCGAGAAGCACGTGCTCGTCA
107256717 (Drosophilamelanogaster)




TCCT






NL016
1386
GCCTACCAGTGCGAGAAGCACGTGCT
92985459 (Drosophilagrimshawi)





NL016
1387
GAGGAGGTGCCCGGCCGTCGTGGTTTCCCCGG
92938622 (Drosophilavirilis)




TTACATGTACAC






NL016
1388
GAGGAGGTGCCCGGCCGTCGTGGTTTCCCCGG
92477818 (Drosophilaerecta)




TTACATGTACACCGAT






NL016
1389
GAGGTGCCCGGCCGTCGTGGTTTCCCCGGTTAC
91090030 (Triboliumcastaneum)




ATGTACACCGAT






NL016
1390
CGTCGTGGTTTCCCCGGTTACAT
104530890 (Belgicaantarctica)





NL016
1391
CGTCGTGGTTTCCCCGGTTACATGTACACCGAT
92981037 (Drosophilagrimshawi)





24646342 (Drosophilamelanogaster)





NL016
1392
CGTGGTTTCCCCGGTTACATGTACACCGAT
92957249 (Drosophilaananassae)





NL016
1393
ATCGGTGTACATGTAACCGGGGAAACCA
103744758 (Drosophilamelanogaster)





NL016
1394
CGTCCGGCGCGCTCGTAGATGGT
91829127 (Bombyxmori)





NL016
1395
GAGGGTCGCAACGGCTCCATCAC
92957249 (Drosophilaananassae)





NL018
1396
CGGACGTGGCCTGGTTCATCA
92479742 (Drosophilaerecta)





NL019
1397
GTGGTGTACGACTGCACCGACCAGGAGTCGTTC
84343006 (Aedesaegypti)




AACAAC






NL019
1398
GAAAGTTACATCAGTACCATTGGTGT
113018639 (Bemisiatabaci)





NL019
1399
CACCGACCAGGAGTCGTTCAACAAC
85857059 (Aedesaegypti)





NL019
1400
AGTACCATTGGTGTAGATTTTAAAAT
91087112 (Triboliumcastaneum)





NL019
1401
ATTGGTGTAGATTTTAAAATTAG
78542465 (Glossinamorsitans)





NL019
1402
GGTGTAGATTTTAAAATTAGAAC
92232411 (Drosophilawillistoni)





NL019
1403
GGTGTAGATTTTAAAATTAGAACAAT
90986845 (Aedesaegypti)





NL019
1404
GTTCTAATTTTAAAATCTACAC
92043152 (Drosophilawillistoni)





NL019
1405
TGGGACACGGCCGGCCAGGAG
91091115 (Triboliumcastaneum)





NL019
1406
TGGGACACGGCCGGCCAGGAGCG
90982219 (Aedesaegypti)





NL019
1407
TGGGACACGGCCGGCCAGGAGCGGT
94433465 (Bombyxmori)





NL019
1408
GACCAGCTGGGCATTCCGTTCCT
10708384 (Amblyommaamericanum)





NL019
1409
ATTGGTGTAGATTTTAAAATT
18864897 (Anophelesgambiae)





NL019
1410
TGGGACACGGCCGGCCAGGAGCGGTT
18888926 (Anophelesgambiae)





NL019
1411
CAGGAGCGGTTCCGCACGATCAC
21640713 (Amblyommavariegatum)





NL019
1412
ATTGGTGTAGATTTTAAAATTAGAAC
22039832 (Ctenocephalidesfelis)





NL019
1413
ATTGGTGTAGATTTTAAAATTAG
33378174 (Glossinamorsitans)





NL019
1414
TGGGACACGGCCGGCCAGGAG
3738872 (Manducasexta), 25959135 (Melademacoriacea),





40542849 (Triboliumcastaneum), 67840088 (Drosophila






pseudoobscura)






NL019
1415
TGGGACACGGCCGGCCAGGAGCGGT
4161805 (Bombyxmori)





NL019
1416
GATGACACATACACAGAAAGTTACATCAGTAC
50562545 (Homalodiscacoagulata), 71047909





(Oncometopianigricans)





NL019
1417
ACGGCCGGCCAGGAGCGGTTCCG
58378591 (Anophelesgambiae str. PEST)





NL019
1418
AGTACCATTGGTGTAGATTTTAAAAT
61954135 (Triboliumcastaneum)





NL019
1419
TAAAGCTTCAGATTTGGGACAC
68758530 (Acanthoscurriagomesiana)





NL019
1420
ATTTGGGACACGGCCGGCCAGGA
77667315 (Aedesaegypti)





NL019
1421
GTGGTGTACGACTGCACCGACCAGGAGTCGTTC
77705629 (Aedesaegypti)




AACAAC






NL019
1422
GGTGTAGATTTTAAAATTAGAACAAT
77890715 (Aedesaegypti)





NL019
1423
TGGGACACGGCCGGCCAGGAGCG
82851662 (Boophilusmicroplus), 49536894 (Rhipicephalus






appendiculatus)






NL022
1424
TCTTCCTCACCGGTCAGGAGGAGAT
6928515 (Anopheles gambiae)





NL022
1425
AAATTCTCCGAGTTTTTCGACGATGC
91082872 (Tribolium castaneum)





NL022
1426
TTCCTCACCGGTCAGGAGGAGAT
90976120 (Aedes aegypti)





NL022
1427
TAGTATTGGCCACAAATATTGCAGA
92042565 (Drosophila willistoni)





NL023
1428
TATTTGAACATATGGGTGCCGCA
20384699 (Plutella xylostella)





NL023
1429
GAGGGAGAGGAAATGTGGAATCC
22085301 (Helicoverpa armigera)





NL023
1430
CCGAAGATTGTCTGTATTTGAA
27531022 (Apis mellifera)





NL023
1431
GATTCCGTTTGCGAAACCTCC
57929927 (Anopheles gambiae str. PEST)





NL023
1432
GGTGCGTTCGGCTTCCTCTACCT
58380563 (Anophelesgambiae str. PEST)





NL023
1433
CAATTCAATGCTAGGGAAAGG
110759012 (Apismellifera)





NL023
1434
GAGGGAGAGGAAATGTGGAATCC
55793188 (Helicoverpaassulta)





NL023
1435
CCGAAGATTGTCTGTATTTGAA
58585075 (Apismellifera)





NL023
1436
GACGTCATCGTCGCCTCCATGCA
91077117 (Triboliumcastaneum)





NL027
1437
GGAGACCCTGGAGCTGGTGCG
49543279 (Rhipicephalusappendiculatus)



















TABLE 4-CS





Target
SEQ




ID
ID NO
Sequence *
Example Gi-number and species







CS001
1730
AAAGCATGGATGTTGGACAAA
73619372 (Aphis gossypii); 77325485 (Chironomus






tentans);






22474232 (Helicoverpaarmigera); 37951951 (Ips pini);





60305420 (Mycetophagusquadripustulatus); 84647995





(Myzuspersicae)





CS001
1731
AAAGCATGGATGTTGGACAAACT
40877657 (Bombyx mori); 103783745 (Heliconiuserato);





55904580 (Locustamigratoria); 101413238 (Plodia






interpunctella)






CS001
1732
AACCGGCTCAAGTACGCGCTCAC
22474232 (Helicoverpaarmigera)





CS001
1733
AACCGGCTCAAGTACGCGCTCACCGG
90134075 (Bicyclusanynana)





CS001
1734
AAGATCATGGACTTCATCAAGTT
90134075 (Bicyclusanynana)





CS001
1735
ACCAGATTGAACAACGTGTTCAT
71536878 (Diaphorinacitri)





3658573 (Manducasexta)





CS001
1736
ATCATGGACTTCATCAAGTTTGAATC
103783745 (Heliconiuserato)





CS001
1737
CAAGATCATGGACTTCATCAAGTT
3478550 (Antheraeayamamai)





CS001
1738
CCCCACAAGTTGCGCGAGTGC
63011732 (Bombyxmori)





CS001
1739
CCCGCTGGATTTATGGATGTTGT
101403940 (Plodiainterpunctella)





CS001
1740
CCTCCAAGATCATGGACTTCATCAAGTT
22474232 (Helicoverpaarmigera)





CS001
1741
CCTGCCGCTGGTGATCTTCCT
27597800 (Anophelesgambiae)





CS001
1742
CGACGGGCCCCAAGAACGTGCC
22474232 (Helicoverpaarmigera)





CS001
1743
CTCATCAAGGTCAACGACTCC
103783745 (Heliconiuserato)





112350001 (Helicoverpaarmigera)





101418268 (Plodiainterpunctella)





CS001
1744
CTCATCAAGGTCAACGACTCCATCCAGCTCGAC
3738704 (Manducasexta)




AT






CS001
1745
CTCATCAAGGTCAACGACTCCATCCAGCTCGAC
53884106 (Plutellaxylostella)




ATCGCCACCT






CS001
1746
CTGCCGCTGGTGATCTTCCTC
27603050 (Anophelesgambiae)





CS001
1747
GACCCCACATATCCCGCTGGATT
103783745 (Heliconiuserato)





CS001
1748
GCAGCGACTTATCAAAGTTGA
109978109 (Grylluspennsylvanicus)





CS001
1749
GCATGGATGTTGGACAAACTGGG
67899746 (Drosophilapseudoobscura)





CS001
1750
GCCACCTCCAAGATCATGGACTTCAT
110259010 (Spodopterafrugiperda)





CS001
1751
GCGCGTGGCGACGGGCCCCAAGAACGTGCC
53884106 (Plutellaxylostella)





CS001
1752
GCTGGATTTATGGATGTTGTTT
29553519 (Bombyxmori)





CS001
1753
GGCTCAAGTACGCGCTCACCGG
5498893 (Antheraeayamamai)





CS001
1754
GTGGGCACCATCGTGTCCCGCGAG
3953837 (Bombyxmandarina)





53884106 (Plutellaxylostella)





CS001
1755
GTGGGCACCATCGTGTCCCGCGAGCG
3478550 (Antheraeayamamai)





CS001
1756
GTGGGCACCATCGTGTCCCGCGAGCGACATCC
22474232 (Helicoverpaarmigera)




CGG






CS001
1757
TAAAGCATGGATGTTGGACAA
58371410 (Lonomiaobliqua)





CS001
1758
TAAAGCATGGATGTTGGACAAA
60311985 (Papiliodardanus)





31366663 (Toxopteracitricida)





CS001
1759
TAAAGCATGGATGTTGGACAAACT
109978109 (Grylluspennsylvanicus)





CS001
1760
TAAAGCATGGATGTTGGACAAACTGGG
98994282 (Antheraeamylitta)





CS001
1761
TACAAGCTGTGCAAGGTGCGGCGCGTGGCGAC
98993531 (Antheraeamylitta)




GGGCCC






CS001
1762
TACAAGCTGTGCAAGGTGCGGCGCGTGGCGAC
5498893 (Antheraeayamamai)




GGGCCCCAA






CS001
1763
TACCCCGACCCACTCATCAAGGT
90134075 (Bicyclusanynana)





CS001
1764
TGAACAACGTGTTCATAATCGG
98993531 (Antheraeamylitta)





CS001
1765
TGCGCGAGTGCCTGCCGCTGGT
22474232 (Helicoverpaarmigera)





CS001
1766
TGTATGATCACGGGAGGCCGTAACTTGGG
60311445 (Euclidiaglyphica)





CS001
1767
TGTATGATCACGGGAGGCCGTAACTTGGGGCG
3953837 (Bombyxmandarina)





CS001
1768
TGTATGATCACGGGAGGCCGTAACTTGGGGCG
91826697 (Bombyxmori)




CGTGGGCACCATCGTGTCCCGCGAG






CS001
1769
TGTGCAAGGTGCGGCGCGTGGCGACGGGCCC
3478550 (Antheraeayamamai)




CAAG






CS001
1770
TTGAACAACGTGTTCATAATCGGCAAGGGCACG
3953837 (Bombyxmandarina)




AA
40915191 (Bombyxmori)





CS002
1771
ATTGAGGCCCAAAGGGAAGCGCTAGAAGG
91849872 (Bombyxmori)





CS002
1772
CACGATCTGATGGATGACATTG
33498783 (Anophelesgambiae)





CS002
1773
GAGTTTCTTTAGTAAAGTATTCGGTGG
110762684 (Apismellifera)





CS002
1774
TATGAAAAGCAGCTTACCCAGAT
49552807 (Rhipicephalusappendiculatus)





CS003
1775
AGGCACATCCGTGTCCGCAAGCA
10707186 (Amblyommaamericanum)





CS003
1776
AAGATTGAGGACTTCTTGGAA
60295192 (Homalodiscacoagulata)





CS003
1777
AAGCACATTGACTTCTCGCTGAA
92219983 (Drosophilawillistoni)





CS003
1778
ATCAGACAGAGGCACATCCGTGT
27260897 (Spodopterafrugiperda)





CS003
1779
ATCCGTAAGGCTGCCCGTGAG
101413529 (Plodiainterpunctella)





CS003
1780
ATCCGTAAGGCTGCCCGTGAGCTG
92042852 (Drosophilawillistoni)





CS003
1781
ATCCGTAAGGCTGCCCGTGAGCTGCT
92959651 (Drosophilaananassae)





112349903 (Helicoverpaarmigera)





CS003
1782
ATCCGTAAGGCTGCCCGTGAGCTGCTCAC
90138123 (Spodopterafrugiperda)





CS003
1783
CACATCCGTGTCCGCAAGCAAG
60306665 (Sphaerius sp.)





CS003
1784
CACATCCGTGTCCGCAAGCAAGT
77329341 (Chironomustentans)





CS003
1785
CACATCCGTGTCCGCAAGCAAGTTG
60306676 (Sphaerius sp.)





CS003
1786
CGCAACAAGCGTGAGGTGTGG
92473214 (Drosophilaerecta)





67888665 (Drosophilapseudoobscura)





CS003
1787
CGTGTCCGCAAGCAAGTTGTGAACATCCC
90134575 (Bicyclusanynana)





29553137 (Bombyxmori)





CS003
1788
CTCGCTGAAGTCTCCGTTCGGCGGCGGCCG
3986375 (Antheraeayamamai)





CS003
1789
CTCGGTCTGAAGATTGAGGACTT
112349903 (Helicoverpaarmigera)





49532931 (Plutellaxylostella)





CS003
1790
CTGGACTCTGGCAAGCACATTGACTTCTC
29553137 (Bombyxmori)





58371398 (Lonomiaobliqua)





CS003
1791
GACTTCTCGCTGAAGTCTCCGTTCGGCGGCGG
60312414 (Papiliodardanus)





CS003
1792
GACTTCTCGCTGAAGTCTCCGTTCGGCGGCGG
49532931 (Plutellaxylostella)




CCG






CS003
1793
GAGGAGAAAGACCCTAAGAGGTTATTCGAAGG
37952462 (Ipspini)




TAA






CS003
1794
GATCCGTAAGGCTGCCCGTGA
67568544 (Anoplophoraglabripennis)





CS003
1795
GATCCGTAAGGCTGCCCGTGAGCTGCT
67843629 (Drosophilapseudoobscura)





56772258 (Drosophilavirilis)





CS003
1796
GATTATGTACTCGGTCTGAAGATTGAGGACTT
101413529 (Plodiainterpunctella)





CS003
1797
GGTCTGAAGATTGAGGACTTCTTGGA
2699490 (Drosophilamelanogaster)





CS003
1798
GTGTGGAGGGTGAAGTACACGCT
60312414 (Papiliodardanus)





CS003
1799
GTGTTCAAGGCTGGTCTAGCTAAGTC
78230982 (Heliconiuserato/himera mixed EST library)





CS003
1800
GTGTTGGATGAGAAGCAGATGAAGCTCGATTAT
112349903 (Helicoverpaarmigera)




GT






CS003
1801
TGAAGATTGAGGACTTCTTGGA
3986375 (Antheraeayamamai)





CS003
1802
TGGACTCTGGCAAGCACATTGACTTCTC
78230982 (Heliconiuserato/himera mixed EST library)





CS003
1803
TGGATGAGAAGCAGATGAAGCT
60312414 (Papiliodardanus)





CS003
1804
TGGTCTCCGCAACAAGCGTGAGGT
76552467 (Spodopterafrugiperda)





CS003
1805
TGGTCTCCGCAACAAGCGTGAGGTGTGG
33528372 (Trichoplusiani)





CS006
1806
CGTATGACAATTGGTCACTTGATTGA
91831926 (Bombyxmori)





CS006
1807
GAAGATATGCCTTTCACTTGTGAAGG
55801622 (Acyrthosiphonpisum)





CS006
1808
GGAAAAACTATAACTTTGCCAGAAAA
40926289 (Bombyxmori)





CS006
1809
GGTGATGCTACACCATTTAACGATGCTGT
31366154 (Toxopteracitricida)





CS006
1810
TCTCGTATGACAATTGGTCACTTGAT
49201759 (Drosophilamelanogaster)





CS006
1811
CTGTCAACGTGCAGAAGATCTC
49573116 (Boophilusmicroplus)





CS007
1812
TGGATGAATGTGACAAAATGCTTGAA
84114516 (Blomiatropicalis)





CS007
1813
TTTATGCAAGATCCTATGGAAGT
84114516 (Blomiatropicalis)





CS007
1814
AAATTTATGCAAGATCCTATGGAAGTTTATGT
78525380 (Glossinamorsitans)





CS007
1815
AATATGACTCAAGATGAGCGTCT
90137538 (Spodopterafrugiperda)





CS007
1816
ATGACTCAAGATGAGCGTCTCTCCCG
103792212 (Heliconiuserato)





CS007
1817
ATGCAAGATCCTATGGAAGTTTA
77336752 (Chironomustentans)





CS007
1818
ATGCAAGATCCTATGGAAGTTTATGT
77873166 (Aedesaegypti)





CS007
1819
CGCTATCAGCAGTTCAAAGATTTCCAGAAG
77873166 (Aedesaegypti)





CS007
1820
GAAAATGAAAAGAATAAGAAG
110759359 (Apismellifera)





78525380 (Glossinamorsitans)





CS007
1821
GAAGTTCAACATGAATGTATTCC
110759359 (Apismellifera)





CS007
1822
GATGAGCGTCTCTCCCGCTATCA
40932719 (Bombyxmori)





CS007
1823
TGCCAATTCAGAAAGATGAAGAAGT
110759359 (Apismellifera)





CS007
1824
TGTAAGAAATTTATGCAAGATC
45244844 (Bombyxmori)





CS009
1825
AGGTGTGCGACGTGGACATCA
92460383 (Drosophilaerecta)





CS009
1826
GACTTGAAGGAGCACATCAGGAA
29534871 (Bombyxmori)





CS009
1827
GGCCAGAACATCCACAACTGTGA
29534871 (Bombyxmori)





CS009
1828
TCTTGCGAGGGAGAGAATCCA
111005781 (Apismellifera)





CS011
1829
AAAACTATTGTTTTCCACAGAAAAAAGAA
86465126 (Bombyxmori)





CS011
1830
ATCAAGGACAGAAAAGTCAAAGC
78230577 (Heliconiuserato/himera mixed EST library)





CS011
1831
ATCTCTGCCAAGTCAAACTACAA
101406907 (Plodiainterpunctella)





CS011
1832
CAATGTGCCATCATCATGTTCGA
110242457 (Spodopterafrugiperda)





CS011
1833
CCCAACTGGCACAGAGATTTAGTGCG
78230577 (Heliconiuserato/himera mixed EST library)





CS011
1834
GACACTTGACTGGAGAGTTCGAGAAAAGATA
101410627 (Plodiainterpunctella)





CS011
1835
GATATCAAGGACAGAAAAGTCAA
60312108 (Papiliodardanus)





CS011
1836
GCCAAGTCAAACTACAATTTCGA
67873076 (Drosophilapseudoobscura)





CS011
1837
GCTGGCCAAGAAAAGTTTGGTGGT
111031693 (Apismellifera)





CS011
1838
GGCCAAGAAAAGTTTGGTGGTCTCCG
84267747 (Aedesaegypti)





CS011
1839
TACAAAAATGTACCCAACTGGCA
92963426 (Drosophilagrimshawi)





37951963 (Ipspini)





CS011
1840
TACAAAAATGTACCCAACTGGCACAGAGA
60312108 (Papiliodardanus)





CS011
1841
TATGGGATACTGCTGGCCAAGAA
40929360 (Bombyxmori)





CS011
1842
TATGGGATACTGCTGGCCAAGAAA
110749704 (Apismellifera)





CS011
1843
TGGGATACTGCTGGCCAAGAA
73618835 (Aphisgossypii)





112432160 (Myzuspersicae)





CS011
1844
TGTGCCATCATCATGTTCGATGT
84346664 (Aedesaegypti)





CS011
1845
TTGACTGGAGAGTTCGAGAAA
90136305 (Bicyclusanynana)





78230577 (Heliconiuserato/himera mixed EST library)





60312108 (Papiliodardanus)





CS011
1846
TTGACTGGAGAGTTCGAGAAAA
86465126 (Bombyxmori)





110262261 (Spodopterafrugiperda)





CS011
1847
TGGGATACTGCTGGCCAAGAA
21639295 (Sarcoptesscabiei)





CS013
1848
GATCCCATTCAGTCTGTCAAGGG
3626535 (Drosophilamelanogaster)





CS013
1849
TTCCAAGCAAAGATGTTGGATATGTTGAA
112433067 (Myzuspersicae)





CS014
1850
AAAAAGATCCAATCTTCGAACATGCTGAA
103775905 (Heliconiuserato)





CS014
1851
AAACAAGTGGAACTCCAGAAAAA
101403826 (Plodiainterpunctella)





CS014
1852
AAAGTGCGTGAGGACCACGTACG
87266590 (Choristoneurafumiferana)





3738660 (Manducasexta)





CS014
1853
AAGATCAGCAACACTCTGGAGTC
58371699 (Lonomiaobliqua)





CS014
1854
AAGATCAGCAACACTCTGGAGTCTCG
91848497 (Bombyxmori)





CS014
1855
AAGATCCAATCTTCGAACATG
77790417 (Aedesaegypti)





CS014
1856
AAGATCCAATCTTCGAACATGCTGAA
91756466 (Bombyxmori)





CS014
1857
AAGCAGATCAAGCATATGATGGCCTTCATCGAA
90814338 (Nasoniavitripennis)




CA






CS014
1858
AAGCAGATCAAGCATATGATGGCCTTCATCGAA
87266590 (Choristoneurafumiferana)




CAAGAGGC






CS014
1859
ATGATGGCCTTCATCGAACAAGA
111158385 (Myzuspersicae)





CS014
1860
ATGATGGCCTTCATCGAACAAGAGGC
98993392 (Antheraeamylitta)





91756466 (Bombyxmori)





103775905 (Heliconiuserato)





CS014
1861
CAGATCAAGCATATGATGGCCTTCATCGA
53884266 (Plutellaxylostella)





CS014
1862
CAGCAGCGGCTCAAGATCATGGAATACTA
101403826 (Plodiainterpunctella)





CS014
1863
CATATGATGGCCTTCATCGAACAAGAGGC
101403826 (Plodiainterpunctella)





CS014
1864
CTCAAAGTGCGTGAGGACCACGT
103775905 (Heliconiuserato)





CS014
1865
CTCAAGATCATGGAATACTACGA
15068660 (Drosophilamelanogaster)





CS014
1866
GAAATCGATGCAAAGGCCGAAGAGGAGTTCAA
103775905 (Heliconiuserato)





CS014
1867
GAACTCCAGAAAAAGATCCAATC
76551032 (Spodopterafrugiperda)





CS014
1868
GAACTCCAGAAAAAGATCCAATCTTCGAACATG
87266590 (Choristoneurafumiferana)




CTGAA






CS014
1869
GAGGAAATCGATGCAAAGGCCGA
76551032 (Spodopterafrugiperda)





CS014
1870
GCCGAAGAGGAGTTCAACATTGAAAAAGG
33374540 (Glossinamorsitans)





CS014
1871
GCGCCTGGCTGAGGTGCCCAA
101403826 (Plodiainterpunctella)





CS014
1872
GGCCGCCTGGTGCAGCAGCAGCG
24975647 (Anophelesgambiae)





CS014
1873
GGCTCAAGATCATGGAATACTA
37593557 (Pediculushumanus)





CS014
1874
GGCTCAAGATCATGGAATACTACGA
58371699 (Lonomiaobliqua)





CS014
1875
TACGAAAAGAAAGAGAAACAAGT
33374540 (Glossinamorsitans)





CS014
1876
TGAAGGTGCTCAAAGTGCGTGAGGA
92976185 (Drosophilagrimshawi)





92994742 (Drosophilamojavensis)





CS014
1877
TTCAAAAGCAGATCAAGCATATGATGGCCTTCA
3738660 (Manducasexta)




TCGAACAAGAGGC






CS015
1878
AACGGGCCGGAGATCATGTCCAA
92480997 (Drosophilaerecta)





CS015
1879
AACTGCCCCGATGAGAAGATCCG
91086234 (Triboliumcastaneum)





CS015
1880
ATCTTCATCGATGAACTGGATGC
56152379 (Rhynchosciaraamericana)





CS015
1881
CATATATTGCCCATTGATGATTC
58371642 (Lonomiaobliqua)





CS015
1882
CTCATGTATGGGCCGCCTGGTACCGG
83423460 (Bombyxmori)





CS015
1883
CTGCCCCGATGAGAAGATCCGCATGAACCG
92948836 (Drosophilaananassae)





CS015
1884
GAGAAGATCCGCATGAACCGCGT
4691131 (Aedesaegypti)





92466521 (Drosophilaerecta)





15070638 (Drosophilamelanogaster)





CS015
1885
GTACATATATTGCCCATTGAT
90133859 (Bicyclusanynana)





CS015
1886
TCATCGCACGTGATCGTAATGGC
22474136 (Helicoverpaarmigera)





CS015
1887
TTCATGGTTCGCGGGGGCATG
29551125 (Bombyxmori)





CS016
1888
AAATCGGTGTACATGTAACCTGGGAAACCACG
55797015 (Acyrthosiphonpisum)





73615307 (Aphisgossypii)





CS016
1889
AAGTTGTCCTCGTGGTCGTCCA
91826756 (Bombyxmori)





CS016
1890
ACAGATCTGGGCGGCAATTTC
18950388 (Anophelesgambiae)





31206154 (Anopheles gambiae str. PEST)





CS016
1891
ACAGCCTTCATGGCCTGCACGTCCTT
76169888 (Diplopterapunctata)





92953069 (Drosophilaananassae)





92477149 (Drosophilaerecta)





8809 (Drosophilamelanogaster)





55694467 (Drosophilayakuba)





CS016
1892
ACATCAGAGTGGTCCTTGCGGGTCAT
55694467 (Drosophilayakuba)





110248186 (Spodopterafrugiperda)





CS016
1893
ACCAGCACGTGTTTCTCACACTGGTA
91829127 (Bombyxmori)





CS016
1894
ACCTCCTCACGGGCGGCGGACAC
237458 (Heliothisvirescens)





27372076 (Spodopteralittoralis)





CS016
1895
ACGACAGCCTTCATGGCCTGCACGTCCTT
67896654 (Drosophilapseudoobscura)





CS016
1896
ACGTAGATCTGTCCCTCAGTGATGTA
53883819 (Plutellaxylostella)





CS016
1897
AGAGCCTCCGCGTACGAAGACATGTC
53883819 (Plutellaxylostella)





CS016
1898
AGCAATGGAGTTCATCACGTC
60295607 (Homalodiscacoagulata)





CS016
1899
AGCAGCTGCCAGCCGATGTCCAG
92953069 (Drosophilaananassae)





92477149 (Drosophilaerecta)





55694467 (Drosophilayakuba)





112349870 (Helicoverpaarmigera)





237458 (Heliothisvirescens)





9713 (Manducasexta)





110242332 (Spodopterafrugiperda)





CS016
1900
AGCATCTCCTTGGGGAAGATACG
63005818 (Bombyxmori)





92967975 (Drosophilamojavensis)





92938364 (Drosophilavirilis)





92231646 (Drosophilawillistoni)





237458 (Heliothisvirescens)





CS016
1901
AGGGCTTCCTCACCGACGACAGCCTTCATGGC
4680479 (Aedesaegypti)




CTG






CS016
1902
ATACCAGTCTGGATCATTTCCTCAGG
60295607 (Homalodiscacoagulata)





CS016
1903
ATACGGGACCAGGGGTTGATGGGCTG
92953552 (Drosophilaananassae)





CS016
1904
ATAGCGGAGATACCAGTCTGGATCAT
237458 (Heliothisvirescens)





76554661 (Spodopterafrugiperda)





CS016
1905
ATCTGGGCGGCAATTTCGTTGTG
83937869 (Lutzomyialongipalpis)





CS016
1906
ATGGCAGACTTCATGAGACGA
55894053 (Locustamigratoria)





CS016
1907
ATGGTGGCCAAATCGGTGTACATGTAACC
92965644 (Drosophilagrimshawi)





CS016
1908
ATGGTGGCCAAATCGGTGTACATGTAACCT
92969578 (Drosophilagrimshawi)





CS016
1909
ATGGTGGCCAAATCGGTGTACATGTAACCTGG
92231646 (Drosophilawillistoni)




GAAACCACG






CS016
1910
ATTCAAGAACAGGCACACGTTCTCCATGGAGCC
67841091 (Drosophilapseudoobscura)




GTTCTCCTCGAAGTCCTGCTTGAAGAA






CS016
1911
ATTGGGGGACCTTTGTCAATGGGTTTTCC
49395165 (Drosophilamelanogaster)





99009492 (Leptinotarsadecemlineata)





CS016
1912
CACACGTTCTCCATGGAGCCGTTCTCCTCGAAG
92477818 (Drosophilaerecta)




TCCTGCTTGAAGAA






CS016
1913
CACTGGTAGGCCAAGAACTCAGC
4680479 (Aedesaegypti)





CS016
1914
CATCTCCTTGGGGAAGATACG
16899457 (Ctenocephalidesfelis)





9713 (Manducasexta)





CS016
1915
CCCTCACCGATGGCAGACTTCAT
4680479 (Aedesaegypti)





92924977 (Drosophilavirilis)





110248186 (Spodopterafrugiperda)





CS016
1916
CCGATGGCAGACTTCATGAGACG
71049259 (Oncometopianigricans)





CS016
1917
CCGTCTCCATGTTCACACCCATGGCGGCGAAC
33547658 (Anophelesgambiae)




ACGATGGC






CS016
1918
CCGTTCTCCTCGAAGTCCTGCTTGAAGAA
31206154 (Anopheles gambiae str. PEST)





8809 (Drosophilamelanogaster)





CS016
1919
CCGTTCTCCTCGAAGTCCTGCTTGAAGAACC
101403557 (Plodiainterpunctella)





CS016
1920
CGAGCAATGGAGTTCATCACGTCGATAGCGGA
27372076 (Spodopteralittoralis)




GATACCAGTCTGGATCAT






CS016
1921
CGGGCCGTCTCCATGTTCACACCCATGGCGGC
31206154 (Anopheles gambiae str. PEST)




GAACACGATGGC






CS016
1922
CGTCCGGGCACCTCCTCACGGGCGGC
18883474 (Anophelesgambiae)





31206154 (Anopheles gambiae str. PEST)





CS016
1923
CGTCCGGGCACCTCCTCACGGGCGGCGGACA
9713 (Manducasexta)




C
110248186 (Spodopterafrugiperda)





CS016
1924
CTACAGATCTGGGCGGCAATTTC
91826756 (Bombyxmori)





9713 (Manducasexta)





27372076 (Spodopteralittoralis)





CS016
1925
CTACAGATCTGGGCGGCAATTTCGTTGTG
237458 (Heliothisvirescens)





76554661 (Spodopterafrugiperda)





CS016
1926
CTCGTAGATGGTGGCCAAATC
53883819 (Plutellaxylostella)





CS016
1927
CTCGTAGATGGTGGCCAAATCGGTGTACATGTA
18883474 (Anophelesgambiae)





31206154 (Anopheles gambiae str. PEST)





CS016
1928
CTCGTAGATGGTGGCCAAATCGGTGTACATGTA
92953069 (Drosophilaananassae)




ACC
92477818 (Drosophilaerecta)





8809 (Drosophilamelanogaster)





67896654 (Drosophilapseudoobscura)





CS016
1929
CTCGTAGATGGTGGCCAAATCGGTGTACATGTA
9713 (Manducasexta)




ACCTGGGAAACCACG
110248186 (Spodopterafrugiperda)





27372076 (Spodopteralittoralis)





CS016
1930
GAACAGGCACACGTTCTCCATGGA
92962756 (Drosophilaananassae)





CS016
1931
GACTCGAATACTGTGCGGTTCTCGTAGTT
87266757 (Choristoneurafumiferana)





9713 (Manducasexta)





CS016
1932
GACTTCATGAGACGAGACAGGGAAGGCAGCAC
9713 (Manducasexta)




GTT






CS016
1933
GAGATACCAGTCTGGATCATTTC
92969748 (Drosophilamojavensis)





CS016
1934
GAGATACCAGTCTGGATCATTTCCTC
92935139 (Drosophilavirilis)





CS016
1935
GATGAAGTTCTTCTCGAACTTGG
2921501 (Culexpipiens)





CS016
1936
GATGAAGTTCTTCTCGAACTTGGT
4680479 (Aedesaegypti)





31206154 (Anopheles gambiae str. PEST)





92953069 (Drosophilaananassae)





92477149 (Drosophilaerecta)





8809 (Drosophilamelanogaster)





67896654 (Drosophilapseudoobscura)





55694467 (Drosophilayakuba)





112349870 (Helicoverpaarmigera)





237458 (Heliothisvirescens)





CS016
1937
GATGAAGTTCTTCTCGAACTTGGTGAGGAACTC
76555122 (Spodopterafrugiperda)




GAGGTAGAGCA






CS016
1938
GATGGGGATCTGCGTGATGGA
101403557 (Plodiainterpunctella)





53883819 (Plutellaxylostella)





CS016
1939
GCACACGTTCTCCATGGAGCCGTTCTC
104530890 (Belgicaantarctica)





CS016
1940
GCCAAATCGGTGTACATGTAACCTGGGAAACCA
91829127 (Bombyxmori)




CGTCGTCCGGG






CS016
1941
GCCAAGAACTCAGCAGCAGTCA
237458 (Heliothisvirescens)





CS016
1942
GCCGTCTCCATGTTCACACCCA
83937868 (Lutzomyialongipalpis)





CS016
1943
GCCGTCTCCATGTTCACACCCAT
92965644 (Drosophilagrimshawi)





CS016
1944
GCCTGCACGTCCTTACCGATGGCGTAGCA
112349870 (Helicoverpaarmigera)





237458 (Heliothisvirescens)





110248186 (Spodopterafrugiperda)





CS016
1945
GCCTTCATGGCCTGCACGTCCTT
39675733 (Anophelesgambiae)





31206154 (Anopheles gambiae str. PEST)





CS016
1946
GCCTTCATGGCCTGCACGTCCTTACCGATGGC
2921501 (Culexpipiens)




GTAGCA






CS016
1947
GCGGCGAACACGATGGCAAAGTT
2921501 (Culexpipiens)





92965644 (Drosophilagrimshawi)





CS016
1948
GCGGCGAACACGATGGCAAAGTTGTCCTCGTG
77905105 (Aedesaegypti)





CS016
1949
GCGTACAGCTGGTTGGAAACATC
67896654 (Drosophilapseudoobscura)





CS016
1950
GGAATAGGATGGGTGATGTCGTCGTTGGGCAT
110248186 (Spodopterafrugiperda)




AGT






CS016
1951
GGAATAGGATGGGTGATGTCGTCGTTGGGCAT
27372076 (Spodopteralittoralis)




AGTCA






CS016
1952
GGATGGGTGATGTCGTCGTTGGGCAT
101403557 (Plodiainterpunctella)





CS016
1953
GGCAGACCGGCAGCCGAGAAAATGGGGATCTT
67841091 (Drosophilapseudoobscura)





CS016
1954
GGCATAGTCAAGATGGGGATCTG
92924977 (Drosophilavirilis)





CS016
1955
GGCCGTCTCCATGTTCACACCCATGGC
101403557 (Plodiainterpunctella)





CS016
1956
GGCGGGTAGATCTGTCTGTTGTG
2921501 (Culexpipiens)





92965644 (Drosophilagrimshawi)





92924977 (Drosophilavirilis)





CS016
1957
GGCGGGTAGATCTGTCTGTTGTGGAGCTGACG
237458 (Heliothisvirescens)




GTCTACGTAGATCTGTCCCTCAGT
110248186 (Spodopterafrugiperda)





CS016
1958
GGGAAGATACGGAGCAGCTGCCA
60336551 (Homalodiscacoagulata)





CS016
1959
GGGTTGATGGGCTGTCCCTGGATGTCCAA
76554661 (Spodopterafrugiperda)





27372076 (Spodopteralittoralis)





CS016
1960
GGTTTTCCAGAGCCGTTGAATAC
62238871 (Diabroticavirgifera)





CS016
1961
GTGATGAAGTTCTTCTCGAACTTGGT
87266757 (Choristoneurafumiferana)





CS016
1962
GTGCGGTTCTCGTAGTTGCCCTG
31206154 (Anophelesgambiae str. PEST)





92477149 (Drosophilaerecta)





8809 (Drosophilamelanogaster)





67896654 (Drosophilapseudoobscura)





92938364 (Drosophilavirilis)





92231646 (Drosophilawillistoni)





55694467 (Drosophilayakuba)





CS016
1963
GTGGCCAAATCGGTGTACATGTAACC
2921501 (Culexpipiens)





75469507 (Triboliumcastaneum)





CS016
1964
GTGTACATGTAACCTGGGAAACCACG
101403557 (Plodiainterpunctella)





CS016
1965
GTGTACATGTAACCTGGGAAACCACGTCG
237458 (Heliothisvirescens)





CS016
1966
GTGTACATGTAACCTGGGAAACCACGTCGTCC
53883819 (Plutellaxylostella)




GGGCACCTCCTCACGGGCGGC






CS016
1967
TCAGAGTGGTCCTTGCGGGTCAT
237458 (Heliothisvirescens)





9713 (Manducasexta)





CS016
1968
TCAGCAAGGATTGGGGGACCTTTGTC
10763875 (Manducasexta)





CS016
1969
TCCTCACCGACGACAGCCTTCATGGCCTG
92969578 (Drosophilagrimshawi)





CS016
1970
TCCTCAGGGTAGATACGGGACCA
76554661 (Spodopterafrugiperda)





CS016
1971
TCCTCAGGGTAGATACGGGACCAGGGGTTGAT
22474040 (Helicoverpaarmigera)




GGGCTG
237458 (Heliothisvirescens)





9713 (Manducasexta)





CS016
1972
TCGAAGTCCTGCTTGAAGAACC
9713 (Manducasexta)





CS016
1973
TCGTAGATGGTGGCCAAATCGGTGTACATGTAA
62239897 (Diabroticavirgifera)




CC






CS016
1974
TCGTAGATGGTGGCCAAATCGGTGTACATGTAA
4680479 (Aedesaegypti)




CCTGGGAAACCACG






CS016
1975
TCTACGTAGATCTGTCCCTCAGTGATGTA
101403557 (Plodiainterpunctella)





CS016
1976
TGCACGTCCTTACCGATGGCGTAGCA
9713 (Manducasexta)





75710699 (Triboliumcastaneum)





CS016
1977
TGGGTGATGTCGTCGTTGGGCAT
53883819 (Plutellaxylostella)





CS016
1978
TGGTAGGCCAAGAACTCAGCAGC
9713 (Manducasexta)





CS016
1979
TTCAAGAACAGGCACACGTTCTCCAT
18883474 (Anophelesgambiae)





31206154 (Anopheles gambiae str. PEST)





92933153 (Drosophilavirilis)





27372076 (Spodopteralittoralis)





CS016
1980
TTCAAGAACAGGCACACGTTCTCCATGGA
92950254 (Drosophilaananassae)





76554661 (Spodopterafrugiperda)





CS016
1981
TTCTCACACTGGTAGGCCAAGAA
18883474 (Anophelesgambiae)





CS016
1982
TTCTCCTCGAAGTCCTGCTTGAAGAA
83937868 (Lutzomyialongipalpis)





CS016
1983
TTGAGCATCTCCTTGGGGAAGATACG
92477149 (Drosophilaerecta)





8809 (Drosophilamelanogaster)





67896654 (Drosophilapseudoobscura)





112349870 (Helicoverpaarmigera)





CS016
1984
TTGAGCATCTCCTTGGGGAAGATACGGAGCA
83928466 (Lutzomyialongipalpis)





CS016
1985
TTGAGCATCTCCTTGGGGAAGATACGGAGCAG
50559098 (Homalodiscacoagulata)




CTGCCA
71049259 (Oncometopianigricans)





CS016
1986
TTGAGCATCTCCTTGGGGAAGATACGGAGCAG
87266757 (Choristoneurafumiferana)




CTGCCAGCCGATGTC






CS018
1987
TCCGACTACTCTTCCACGGAC
31659029 (Anophelesgambiae)



















TABLE 4-PX





Target
SEQ




ID
ID NO
Sequence *
Example Gi-number and species







PX001
2120
AACAACGTGTTCATCATCGGCAAGGGCACGAA
112350001 (Helicoverpa armigera)





PX001
2121
AACGTGTTCATCATCGGCAAG
27562760 (Anopheles gambiae)





58378595 (Anopheles gambiae str. PEST)





PX001
2122
AACGTGTTCATCATCGGCAAGG
42764924 (Armigeressubalbatus)





PX001
2123
AACGTGTTCATCATCGGCAAGGG
71048604 (Oncometopianigricans)





PX001
2124
AACGTGTTCATCATCGGCAAGGGCACGAA
112783858 (Anophelesfunestus)





PX001
2125
AACTTGGGGCGAGTGGGCACCATCGTGTC
90132259 (Bicyclusanynana)





PX001
2126
AACTTGGGGCGAGTGGGCACCATCGTGTCCCGCGAG
112350001 (Helicoverpaarmigera)





PX001
2127
AAGATCGTGAAGCAGCGCCTCATCAAGGTGGACGGCAAGGT
112350001 (Helicoverpaarmigera)





PX001
2128
AAGGTCCGCACCGACCCCACCTA
14627585 (Drosophilamelanogaster)





PX001
2129
AAGTACAAGCTGTGCAAGGTG
5498893 (Antheraeayamamai)





90132259 (Bicyclusanynana)





92969396 (Drosophilagrimshawi)





50818668 (Heliconiusmelpomene)





58371410 (Lonomiaobliqua)





PX001
2130
ACAACGTGTTCATCATCGGCAAGGGCACGAA
103783745 (Heliconiuserato)





PX001
2131
ACGGCAAGGTCCGCACCGACCC
77890923 (Aedesaegypti)





PX001
2132
ACGGCCGCACGCTGCGCTACCCCGACCCGCTCATCAAGGTC
101413238 (Plodiainterpunctella)




AACGACTCC






PX001
2133
ACGTGTTCATCATCGGCAAGGGCAC
109509107 (Culex pipiens)





PX001
2134
AGGAGGCCAAGTACAAGCTGT
27566312 (Anopheles gambiae)





67889891 (Drosophila pseudoobscura)





PX001
2135
AGGAGGCCAAGTACAAGCTGTGCAAGGT
92944919 (Drosophila ananassae)





67886177 (Drosophila pseudoobscura)





92045792 (Drosophila willistoni)





PX001
2136
AGGAGGCCAAGTACAAGCTGTGCAAGGTG
92929731 (Drosophila virilis)





PX001
2137
CAACGTGTTCATCATCGGCAA
109509107 (Culex pipiens)





PX001
2138
CAACGTGTTCATCATCGGCAAGGGCA
55816641 (Drosophila yakuba)





PX001
2139
CACACCTTCGCCACCAGGTTGAACAACGTGTT
3986403 (Antheraea yamamai)





PX001
2140
CCCCAAGAAGCATTTGAAGCG
2886669 (Drosophila melanogaster)





PX001
2141
CCGAGGAGGCCAAGTACAAGCT
92944919 (Drosophila ananassae)





PX001
2142
CCGAGGAGGCCAAGTACAAGCTGTGCAAGGT
15480750 (Drosophilamelanogaster)





PX001
2143
CCGCACAAGCTGCGCGAGTGCCTGCCGCT
22474232 (Helicoverpaarmigera)





PX001
2144
CGACGGGCCCCAAGAACGTGCC
112350001 (Helicoverpaarmigera)





PX001
2145
CGAGGAGGCCAAGTACAAGCT
58378595 (Anopheles gambiae str. PEST)





PX001
2146
CGAGGAGGCCAAGTACAAGCTG
18914191 (Anophelesgambiae)





PX001
2147
CGAGTGGGCACCATCGTGTCCCGCGAG
3986403 (Antheraeayamamai)





PX001
2148
CGCTACCCCGACCCGCTCATCAAGGTCAACGACTCC
112350001 (Helicoverpaarmigera)





PX001
2149
CGCTTCACCATCCACCGCATCAC
103783745 (Heliconiuserato)





PX001
2150
CGGCAACGAGGTGCTGAAGATCGT
90132259 (Bicyclusanynana)





PX001
2151
CGTAACTTGGGGCGAGTGGGCAC
60311985 (Papiliodardanus)





PX001
2152
CTACCCGGCTGGATTCATGGATGT
42764924 (Armigeressubalbatus)





PX001
2153
CTCATCAAGGTCAACGACTCC
103783745 (Heliconiuserato)





PX001
2154
CTCATCAAGGTCAACGACTCCATCCAGCTCGACAT
3738704 (Manducasexta)





PX001
2155
GACGGCAAGGTCCGCACCGAC
109509107 (Culexpipiens)





PX001
2156
GACGGCAAGGTCCGCACCGACCC
77759638 (Aedesaegypti)





PX001
2157
GAGGAGGCCAAGTACAAGCTGTGCAAGGT
67841491 (Drosophilapseudoobscura)





PX001
2158
GAGGAGGCCAAGTACAAGCTGTGCAAGGTG
56772971 (Drosophilavirilis)





PX001
2159
GAGGCCAAGTACAAGCTGTGCAA
112350001 (Helicoverpaarmigera)





PX001
2160
GAGGCCAAGTACAAGCTGTGCAAGGTG
98993531 (Antheraeamylitta)





PX001
2161
GCCAAGTACAAGCTGTGCAAGGT
67838306 (Drosophilapseudoobscura)





109978109 (Grylluspennsylvanicus)





PX001
2162
GCCCCAAGAAGCATTTGAAGCG
2151718 (Drosophilamelanogaster)





PX001
2163
GCGCGTGGCGACGGGCCCCAA
5498893 (Antheraeayamamai)





PX001
2164
GCGCGTGGCGACGGGCCCCAAG
3986403 (Antheraeayamamai)





PX001
2165
GGAGGCCAAGTACAAGCTGTGCAAGGT
92942537 (Drosophilaananassae)





PX001
2166
GGCCCCAAGAAGCATTTGAAGCG
4459798 (Drosophilamelanogaster)





PX001
2167
GGCGGCGTGTACGCGCCGCGGCCC
98994282 (Antheraeamylitta)





PX001
2168
GTCCGCACCGACCCCACCTACCC
92472430 (Drosophilaerecta)





55854272 (Drosophilayakuba)





PX001
2169
GTGGGCACCATCGTGTCCCGCGAGAG
3953837 (Bombyxmandarina)





29554802 (Bombyxmori)





PX001
2170
TCAAGGTGGACGGCAAGGTCCGCACCGACCC
92944919 (Drosophilaananassae)





PX001
2171
TGATCTACGATGTGAAGGGACG
83935965 (Lutzomyialongipalpis)





PX001
2172
TTCATGGATGTTGTGTCGATTGAAAA
90132259 (Bicyclusanynana)





PX001
2173
GCTGGATTCATGGATGTTGTG
10707240 (Amblyommaamericanum)





PX001
2174
AAGCAGCGCCTCATCAAGGTGGACGGCAAGGTCCGCACCGA
49545866 (Rhipicephalusappendiculatus)




C






PX009
2175
AACATCTTCAACTGTGACTTC
93001544 (Drosophilamojavensis)





PX009
2176
TGATCAACATCGAGTGCAAAGC
110755556 (Apismellifera)





PX009
2177
TTCTTGAAGCTGAATAAGATCT
103750396 (Drosophilamelanogaster)





PX010
2178
CAGTTCCTGCAGGTCTTCAACAA
71553175 (Oncometopianigricans)





PX010
2179
CCATCAGCGGACGGTGGCGCCCCCGTG
90139187 (Spodopterafrugiperda)





PX010
2180
CCCGCAGTTCATGTACCACCTGCGCCGCTCGCAGTTC
67893194 (Drosophilapseudoobscura)





PX010
2181
CCGAACAGCTTCCGTCTGTCGGAGAACTTCAG
29558345 (Bombyxmori)





PX010
2182
CGCCTGTGCCAGAAGTTCGGCGAGTACG
58395529 (Anopheles gambiae str. PEST)





PX010
2183
CTGCGCCGCTCGCAGTTCCTGCAGGT
18872210 (Anophelesgambiae)





PX010
2184
CTGTACCCGCAGTTCATGTACCA
29558345 (Bombyxmori)





PX010
2185
GACGTGCTGCGCTGGCTCGACCG
29558345 (Bombyxmori)





PX010
2186
GACGTGTCGCTGCAAGTGTTCATGGAGCA
18872210 (Anophelesgambiae)





PX010
2187
GAGTACGAGAACTTCAAGCAGCTGCTGC
77886140 (Aedesaegypti)





18872210 (Anophelesgambiae)





49376735 (Drosophilamelanogaster)





67893324 (Drosophilapseudoobscura)





PX010
2188
GGCGGGGCGATGCCGATACCATC
91757875 (Bombyxmori)





PX010
2189
GTGGCTGCATACAGTTCATTACGCAGTACCAGCAC
28571527 (Drosophilamelanogaster)





PX010
2190
TCGCAGTTCCTGCAGGTCTTCAACAA
92932090 (Drosophilavirilis)





PX010
2191
TGCGCCGCTCGCAGTTCCTGCAGGTCTTCAACAA
67893324 (Drosophilapseudoobscura)





PX010
2192
TGCGCCGCTCGCAGTTCCTGCAGGTCTTCAACAACTCGCCC
92952825 (Drosophilaananassae)




GACGAGACCAC






PX010
2193
TTCATGTACCACCTGCGCCGCTCGCAGTTCCTGCAGGTCTTC
28571527 (Drosophilamelanogaster)




AACAACTCGCCCGACGAGACCAC






PX010
2194
ATCCTGCTCATGGACACCTTCTTCCA
82842646 (Boophilusmicroplus)





PX015
2195
CACCGCGACGACACGTTCATGGTGCGCGGCGG
58371643 (Lonomiaobliqua)





PX015
2196
CAGATCAAGGAGATGGTGGAG
92480997 (Drosophilaerecta)





58371722 (Lonomiaobliqua)





PX015
2197
CCCGACGAGAAGATCCGCATGAA
67873606 (Drosophilapseudoobscura)





PX015
2198
CCCGACGAGAAGATCCGCATGAACCGCGT
15070733 (Drosophilamelanogaster)





PX015
2199
CCGACGAGAAGATCCGCATGAACCGCGT
92459970 (Drosophilaerecta)





PX015
2200
CGCAAGGAGACCGTGTGCATTGTGCT
67873606 (Drosophilapseudoobscura)





PX015
2201
GACGAGAAGATCCGCATGAACCG
18914444 (Anophelesgambiae)





PX015
2202
GACGAGAAGATCCGCATGAACCGCGT
4691131 (Aedesaegypti)





PX015
2203
GCGCAGATCAAGGAGATGGTGGAGCT
99007898 (Leptinotarsadecemlineata)





PX015
2204
GGCATGCGCGCCGTCGAGTTC
6901917 (Bombyxmori)





PX015
2205
GTGCGCGGCGGCATGCGCGCC
67891252 (Drosophilapseudoobscura)





PX015
2206
TCAAGGAGATGGTGGAGCTGC
27819993 (Drosophilamelanogaster)





PX015
2207
TGAAGCCGTACTTCATGGAGGC
29559940 (Bombyxmori)





PX015
2208
TGCCGCAAGCAGCTGGCGCAGATCAAGGAGATGGT
18914444 (Anophelesgambiae)





PX015
2209
TGGAGGCGTACCGGCCCATCCAC
18914444 (Anophelesgambiae)





PX016
2210
AAGGACCACTCCGACGTGTCCAA
101406307 (Plodiainterpunctella)





PX016
2211
AAGGACGTGCAGGCGATGAAGGC
112349870 (Helicoverpaarmigera)





110248186 (Spodopterafrugiperda)


PX016
2212
ACCAAGTTCGAGAAGAACTTCATC
4680479 (Aedesaegypti)





31206154 (Anopheles gambiae str. PEST)





92953069 (Drosophilaananassae)





92477149 (Drosophilaerecta)





24646340 (Drosophilamelanogaster)





67900295 (Drosophilapseudoobscura)





55694467 (Drosophilayakuba)





112349870 (Helicoverpaarmigera)





237458 (Heliothisvirescens)





PX016
2213
ACCAAGTTCGAGAAGAACTTCATCAC
87266757 (Choristoneurafumiferana)





PX016
2214
ACCGCCAGGTTCTTCAAGCAGGACTTCGA
9713 (Manducasexta)





PX016
2215
ACCGGCGATATTCTGCGCACGCCCGTCTC
92940287 (Drosophilavirilis)





PX016
2216
AGCAGGACTTCGAGGAGAACGG
67880606 (Drosophilapseudoobscura)





PX016
2217
ATCACGCAGATCCCCATCCTGACCATGCC
31206154 (Anophelesgambiae str. PEST)





PX016
2218
ATCTTGACCGACATGTCTTCATACGC
104530890 (Belgicaantarctica)





92231646 (Drosophilawillistoni)





PX016
2219
ATGACCAGGAAGGACCACTCCGACGT
75713096 (Triboliumcastaneum)





PX016
2220
ATGCCCAACGACGACATCACCCA
101406307 (Plodiainterpunctella)





76555122 (Spodopterafrugiperda)





27372076 (Spodopteralittoralis)





PX016
2221
CAGAAGATCCCCATCTTCTCCGCCGCCGGTCTGCCCCACAA
92460896 (Drosophilaerecta)




CGA
24646340 (Drosophilamelanogaster)





PX016
2222
CAGGACTTCGAGGAGAACGGTTCCATGGAGAACGT
2921501 (Culexpipiens)





76554661 (Spodopterafrugiperda)





PX016
2223
CCAAGTTCGAGAAGAACTTCATC
2921501 (Culexpipiens)





PX016
2224
CCCATCAACCCGTGGTCCCGTATCTACCCGGAGGA
2921501 (Culexpipiens)





PX016
2225
CCCGACTTGACCGGGTACATCACTGAGGGACAGATCTACGT
101406307 (Plodiainterpunctella)





PX016
2226
CCCGGACGACGTGGTTTCCCAGGTTACATGTACAC
91829127 (Bombyxmori)





PX016
2227
CCTGGACATCCAGGGGCAGCCCATCAACCC
91090030 (Triboliumcastaneum)





PX016
2228
CGACGTGGTTTCCCAGGTTACATGTACACGGATTTGGC
237458 (Heliothisvirescens)





PX016
2229
CGTCTCATGAAGTCCGCCATCGG
91829127 (Bombyxmori)





PX016
2230
CGTCTCATGAAGTCCGCCATCGGAGAGGGCATGACC
237458 (Heliothisvirescens)





PX016
2231
CGTGGTCAGAAGATCCCCATCTTCTC
27372076 (Spodopteralittoralis)





PX016
2232
CGTGGTCAGAAGATCCCCATCTTCTCCGC
76554661 (Spodopterafrugiperda)





PX016
2233
CGTGGTTTCCCAGGTTACATGTACAC
55797015 (Acyrthosiphonpisum)





4680479 (Aedesaegypti)





73615307 (Aphisgossypii)





92231646 (Drosophilawillistoni)





9713 (Manducasexta)





76555122 (Spodopterafrugiperda)





27372076 (Spodopteralittoralis)





PX016
2234
CGTGGTTTCCCAGGTTACATGTACACGGATTTGGCCACAATC
101406307 (Plodiainterpunctella)




TACGAGCGCGCCGGGCG






PX016
2235
CTACGAGAACCGCACAGTGTTCGAGTC
112350031 (Helicoverpaarmigera)





237458 (Heliothisvirescens)





76555122 (Spodopterafrugiperda)





PX016
2236
CTGCGTATCTTCCCCAAGGAGAT
63005818 (Bombyxmori)





92477149 (Drosophilaerecta)





24646340 (Drosophilamelanogaster)





56773982 (Drosophilapseudoobscura)





92935600 (Drosophilavirilis)





92220609 (Drosophilawillistoni)





112350031 (Helicoverpaarmigera)





237458 (Heliothisvirescens)





9713 (Manducasexta)





PX016
2237
CTGTACGCGTGCTACGCCATCGG
9713 (Manducasexta)





PX016
2238
CTGTTCTTGAACTTGGCCAATGA
16898595 (Ctenocephalidesfelis)





PX016
2239
CTGTTCTTGAACTTGGCCAATGACCC
27372076 (Spodopteralittoralis)





PX016
2240
GACAACTTCGCCATCGTGTTCGC
92950254 (Drosophilaananassae)





PX016
2241
GACAACTTCGCCATCGTGTTCGCCGC
92477818 (Drosophilaerecta)





24646340 (Drosophilamelanogaster)





237458 (Heliothisvirescens)





9713 (Manducasexta)





76554661 (Spodopterafrugiperda)





PX016
2242
GACAACTTCGCCATCGTGTTCGCCGCCATGGG
31206154 (Anophelesgambiae str. PEST)





PX016
2243
GACCGTCAGCTGCACAACAGGCA
50564193 (Homalodiscacoagulata)





PX016
2244
GACCTGCTCTACCTCGAGTTC
112349870 (Helicoverpaarmigera)





PX016
2245
GACGTGATGAACTCCATCGCCCG
237458 (Heliothisvirescens)





PX016
2246
GACGTGATGAACTCCATCGCCCGTGG
22474040 (Helicoverpaarmigera)





PX016
2247
GAGAACGGTTCCATGGAGAACGT
91829127 (Bombyxmori)





PX016
2248
GAGGAGATGATCCAGACTGGTATCTCCGCTAT
237458 (Heliothisvirescens)





76554661 (Spodopterafrugiperda)





PX016
2249
GAGGAGATGATCCAGACTGGTATCTCCGCTATCGACGTGATG
27372076 (Spodopteralittoralis)




AACTCCAT






PX016
2250
GAGGAGGCGCTCACGCCCGACGAC
9713 (Manducasexta)





PX016
2251
GAGTTCTTGGCCTACCAGTGCGAGAA
4680479 (Aedesaegypti)





PX016
2252
GCCAGGTTCTTCAAGCAGGACTTCGAGGAGAACGG
101403557 (Plodiainterpunctella)





PX016
2253
GCCCGTGGTCAGAAGATCCCCAT
67877903 (Drosophilapseudoobscura)





PX016
2254
GCCCGTGGTCAGAAGATCCCCATCTTCTC
6901845 (Bombyxmori)





PX016
2255
GCCCGTGGTCAGAAGATCCCCATCTTCTCCGCCGC
92950254 (Drosophilaananassae)





PX016
2256
GCCGAGTTCTTGGCCTACCAGTGCGAGAA
24646340 (Drosophilamelanogaster)





PX016
2257
GCCGAGTTCTTGGCCTACCAGTGCGAGAAACACGTGTTGGT
110240379 (Spodopterafrugiperda)





PX016
2258
GCCGCCCGTGAGGAGGTGCCCGGACG
31206154 (Anopheles gambiae str. PEST)





9713 (Manducasexta)





110240379 (Spodopterafrugiperda)





PX016
2259
GCCTACCAGTGCGAGAAACACGTGTTGGTAATCTTGACCGAC
101406307 (Plodiainterpunctella)




ATGTC






PX016
2260
GGCAGATCTACCCGCCGGTGAA
31206154 (Anophelesgambiae str. PEST)





PX016
2261
GGCGAGGAGGCGCTCACGCCCGACGA
31206154 (Anophelesgambiae str. PEST)





PX016
2262
GGTCAGAAGATCCCCATCTTCTC
60295607 (Homalodiscacoagulata)





PX016
2263
GGTTACATGTACACGGATTTGGCCAC
92924977 (Drosophilavirilis)





PX016
2264
GTGGTGGGCGAGGAGGCGCTCACGCC
112349870 (Helicoverpaarmigera)





PX016
2265
GTTCACCGGCGATATTCTGCG
92997483 (Drosophilagrimshawi)





PX016
2266
GTTCACCGGCGATATTCTGCGCAC
92950254 (Drosophilaananassae)





92048971 (Drosophilawillistoni)





PX016
2267
TACCAGTGCGAGAAACACGTGTTGGT
237458 (Heliothisvirescens)





PX016
2268
TACGCCATCGGCAAGGACGTGCAGGCGATGAAGGC
87266757 (Choristoneurafumiferana)





PX016
2269
TCCATCACGCAGATCCCCATCCT
101406307 (Plodiainterpunctella)





PX016
2270
TCCGGCAAGCCCATCGACAAGGG
92460896 (Drosophilaerecta)





24646340 (Drosophilamelanogaster)





22474040 (Helicoverpaarmigera)





237458 (Heliothisvirescens)





PX016
2271
TCTACGAGCGCGCCGGGCGAGTC
33528180 (Trichoplusiani)





PX016
2272
TCTCGTCTCATGAAGTCCGCCATCGG
9713 (Manducasexta)





PX016
2273
TGACTGCTGCCGAGTTCTTGGCCTACCAGTGCGAGAAACAC
27372076 (Spodopteralittoralis)




GTGTTGGT






PX016
2274
TGCACAACAGGCAGATCTACCC
62239897 (Diabroticavirgifera)





PX016
2275
TGCGTATCTTCCCCAAGGAGAT
16900620 (Ctenocephalidesfells)





92967975 (Drosophilamojavensis)





PX016
2276
TGCTACGCCATCGGCAAGGACGTGCAGGC
31206154 (Anophelesgambiae str. PEST)





92953069 (Drosophilaananassae)





92477149 (Drosophilaerecta)





24646340 (Drosophilamelanogaster)





67898824 (Drosophilapseudoobscura)





55694467 (Drosophilayakuba)





PX016
2277
TGCTCTACCTCGAGTTCCTCACCAAGTTCGAGAAGAACTTCA
76555122 (Spodopterafrugiperda)




TC






PX016
2278
TGTCTGTTCTTGAACTTGGCCAA
4680479 (Aedesaegypti)





92477818 (Drosophilaerecta)





24646340 (Drosophilamelanogaster)





PX016
2279
TGTCTGTTCTTGAACTTGGCCAATGA
55905051 (Locustamigratoria)





PX016
2280
TGTTCTTGAACTTGGCCAATGA
91090030 (Triboliumcastaneum)





PX016
2281
TTCAACGGCTCCGGCAAGCCCAT
76554661 (Spodopterafrugiperda)





PX016
2282
TTCAACGGCTCCGGCAAGCCCATCGACAAGGG
4680479 (Aedesaegypti)





31206154 (Anophelesgambiae str. PEST)





67877903 (Drosophilapseudoobscura)





PX016
2283
TTCGAGGAGAACGGTTCCATGGAGAA
92972277 (Drosophilagrimshawi)





PX016
2284
TTCGAGGAGAACGGTTCCATGGAGAACGT
92950254 (Drosophilaananassae)





PX016
2285
TTCTTCAAGCAGGACTTCGAGGAGAA
83937868 (Lutzomyialongipalpis)





PX016
2286
TTCTTCAAGCAGGACTTCGAGGAGAACGG
92477818 (Drosophilaerecta)





PX016
2287
TTCTTCAAGCAGGACTTCGAGGAGAACGGTTC
31206154 (Anophelesgambiae str. PEST)





PX016
2288
TTCTTCAAGCAGGACTTCGAGGAGAACGGTTCCATGGAGAAC
24646340 (Drosophilamelanogaster)




GT






PX016
2289
TTCTTGAACTTGGCCAATGACCC
9713 (Manducasexta)





PX016
2290
TTCTTGGCCTACCAGTGCGAGAA
31206154 (Anopheles gambiae str. PEST)





67883622 (Drosophilapseudoobscura)





92231646 (Drosophilawillistoni)



















TABLE 4-AD





Target
SEQ ID




ID
NO
Sequence *
Example Gi-number and species







AD001
2384
AAAGCATGGATGTTGGACAAA
73619372 (Aphisgossypii); 77325485 (Chironomus






tentans); 22474232 (Helicoverpaarmigera); 37951951






(Ipspini); 60305420 (Mycetophagusquadripustulatus);





84647995 (Myzuspersicae)





AD001
2385
AAAGCATGGATGTTGGACAAACT
94432102 (Bombyxmori); 103790417 (Heliconiuserato);





55904580 (Locustamigratoria); 101419954 (Plodia






interpunctella)






AD001
2386
AAAGGTATTCCATTCTTGGTGACCCATGATGGCC
109978109 (Grylluspennsylvanicus)




GTACTATCCGTTATCCTGACCCAGTCATTAAAGT






AD001
2387
AACTGTGAAGTAACGAAGATTGTTATGCAGCGACT
109978109 (Grylluspennsylvanicus)




TATCAAAGTTGA






AD001
2388
AAGAAGCATTTGAAGCGTTTAAA
3658572 (Manducasexta)





AD001
2389
AAGGGTAAGGGTGTGAAATTGAGTAT
109978109 (Grylluspennsylvanicus)





AD001
2390
AATGTATTCATCATTGGAAAAGC
55904577 (Locustamigratoria)





AD001
2391
AGAAGCATTTGAAGCGTTTAAA
98994282 (Antheraeamylitta)





73619372 (Aphisgossypii)





AD001
2392
AGAAGCATTTGAAGCGTTTAAATGC
27620566 (Anophelesgambiae)





AD001
2393
AGTACTGGCCCCCACAAATTGCG
109978109 (Grylluspennsylvanicus)





AD001
2394
AGTGCAGAAGAAGCCAAGTACAAGCT
109978109 (Grylluspennsylvanicus)





AD001
2395
ATCGCCGAGGAGCGGGACAAGC
3953837 (Bombyxmandarina)





94432102 (Bombyxmori)





AD001
2396
CAAGGACATACTTTTGCCACAAGATTGAATAATGT
109978109 (Grylluspennsylvanicus)




ATTCATCATTGGAAA






AD001
2397
CAGAAGAAGCCAAGTACAAGCT
42764924 (Armigeressubalbatus)





AD001
2398
CATGATGGCCGTACTATCCGTTA
73613065 (Aphisgossypii)





AD001
2399
CATGATGGCCGTACTATCCGTTATCCTGACCC
31365398 (Toxopteracitricida)





AD001
2400
CATTTGAAGCGTTTAAATGCTCC
27557322 (Anophelesgambiae)





AD001
2401
CCTAAAGCATGGATGTTGGAC
77324536 (Chironomustentans)





AD001
2402
CCTAAAGCATGGATGTTGGACAA
58371410 (Lonomiaobliqua)





AD001
2403
CCTAAAGCATGGATGTTGGACAAA
60311985 (Papiliodardanus)





30031258 (Toxopteracitricida)





AD001
2404
CCTAAAGCATGGATGTTGGACAAACT
98994282 (Antheraeamylitta)





AD001
2405
CGTACTATCCGTTATCCTGACCC
37804548 (Rhopalosiphumpadi)





AD001
2406
GAATGTTTACCTTTGGTGATTTTTCTTCGCAATCG
109978109 (Grylluspennsylvanicus)




GCT






AD001
2407
GCAGAAGAAGCCAAGTACAAGCT
37953169 (Ipspini)





AD001
2408
GCATGGATGTTGGACAAACTCGG
83935968 (Lutzomyialongipalpis)





AD001
2409
GCTGGTTTCATGGATGTTGTCAC
109978109 (Grylluspennsylvanicus)





AD001
2410
GGCCCCAAGAAGCATTTGAAGCGTTTAA
14693528 (Drosophilamelanogaster)





AD001
2411
GGTTTCATGGATGTTGTCACCAT
25958683 (Curculioglandium)





AD001
2412
TATGATGTGAAAGGCCGTTTCACAATTCACAGAAT
109978109 (Grylluspennsylvanicus)





AD001
2413
TCATTGCCAAAGGGTAAGGGT
77324972 (Chironomustentans)





AD001
2414
TGGATATTGCCACTTGTAAAATCATGGACCACATC
109978109 (Grylluspennsylvanicus)




AGATTTGAATCTGG






AD001
2415
TTAAATGCTCCTAAAGCATGGATGTTGGACAAACT
109978109 (Grylluspennsylvanicus)





AD001
2416
TTTGAATCTGGCAACCTGTGTATGAT
60311985 (Papiliodardanus)





AD001
2417
TTTGATATTGTTCATATCAAGGATAC
109978109 (Grylluspennsylvanicus)





AD002
2418
AAGAAAATCGAACAAGAAATC
55902553 (Locustamigratoria)





AD002
2419
CAGCACATGGATGTGGACAAGGT
67899569 (Drosophilapseudoobscura)





AD002
2420
GAGTTTCTTTAGTAAAGTATTCGGTGG
110762684 (Apismellifera)





AD009
2421
CACTACAACTACCACAAGAGC
84226228 (Aedesaegypti)





18941376 (Anophelesgambiae)





AD009
2422
CAGAACATCCACAACTGTGACT
29534871 (Bombyxmori)





AD009
2423
GGTGTGGGTGTCGTGCGAGGG
83926368 (Lutzomyialongipalpis)





AD009
2424
TGGATCCCTGAATACTACAATGA
83926506 (Lutzomyialongipalpis)





AD015
2425
GAGCAGTAGAATTCAAAGTAGT
99012451 (Leptinotarsadecemlineata)





AD015
2426
GCAATTATATTTATTGATGAA
83936542 (Lutzomyialongipalpis)





AD015
2427
TCACCATATTGTATTGTTGCT
31366806 (Toxopteracitricida)





AD015
2428
TTGTCCTGATGTTAAGTATGG
84114691 (Blomiatropicalis)





AD016
2429
ACGATGCCCAACGACGACATCACCCATCC
101406307 (Plodiainterpunctella)





AD016
2430
ATGCCCAACGACGACATCACCCA
53883819 (Plutellaxylostella)





AD016
2431
ATGCCCAACGACGACATCACCCATCCTATT
110240379 (Spodopterafrugiperda)





27372076 (Spodopteralittoralis)





AD016
2432
CAGAAGATCCCCATCTTCTCGG
91827264 (Bombyxmori)





22474331 (Helicoverpaarmigera)





60295607 (Homalodiscacoagulata)





AD016
2433
CGGCTCCATCACTCAGATCCCCAT
67896654 (Drosophilapseudoobscura)





AD016
2434
GCCAACGACCCCACCATCGAG
101406307 (Plodiainterpunctella)





AD016
2435
GCCCGTGTCCGAGGACATGCTGGG
83937868 (Lutzomyialongipalpis)





75473525 (Triboliumcastaneum)





AD016
2436
GGCAGAAGATCCCCATCTTCTC
2286803 (Drosophilamelanogaster)





AD016
2437
GTTCACCGGCGATATTCTGCG
92997483 (Drosophilagrimshawi)





AD016
2438
GTTCACCGGCGATATTCTGCGC
92953552 (Drosophilaananassae)





92042621 (Drosophilawillistoni)



















TABLE 5-LD





Target
SEQ




ID
ID No
Sequences*
Example Gi-number and species







LD001
124
AAGAAGCATTTGAAGCGTTTG
8005678 (Meloidogyne incognita ), 9829015 (Meloidogyne






javanica )






LD003
125
GTTCTTCCTCTTGACGCGTCC
7710484 (Zeldia punctata )





LD003
126
GCAGCTTTACGGATTTTTGCCAA
32183696 (Meloidogyne chitwoodi )





LD003
127
TTTCAACTCCTGATCAAGACGT
1662318 (Brugia malayi ), 31229562 (Wuchereria bancrofti )





LD006
128
GCTATGGGTAAGCAAGCTATGGG
520506 (Caenorhabditis elegans )





LD007
129
AAAGAATAAAAAATTATTTGA
17539725 (Caenorhabditis elegans )





LD007
130
AAGCAAGTGATGATGTTCAGTGC
7143515 (Globodera pallida )





LD014
131
ATGATGGCTTTCATTGAACAAGA
10122191 (Haemonchus contortus )





LD015
132
AACGCCCCAGTCTCATTAGCCAC
20064339 (Meloidogyne hapla )





LD016
133
TTTTGGCGTCGATTCCTGATG
71999357 (Caenorhabditis elegans )





LD016
134
GTGTACATGTAACCTGGGAAACC
13418283 (Necator americanus )





LD016
135
GTGTACATGTAACCTGGGAAACCACGACG
10819046 (Haemonchus contortus )



















TABLE 5-PC





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







PC001
435
ATGGATGTTGGACAAATTGGG
7143612 (Globoderarostochiensis)





PC003
436
GCTAAAATCCGTAAAGCTGCTCGTGAACT
9831177 (Strongyloidesstercoralis)





PC003
437
GAGTAAAGTACACTTTGGCTAAA
28914459 (Haemonchuscontortus)





PC003
438
AAAATCCGTAAAGCTGCTCGTGAACT
32185135 (Meloidogynechitwoodi)





PC003
439
CTGGACTCGCAGAAGCACATCGACTT
51334250 (Radopholussimilis)





PC003
440
CGTCTGGATCAGGAATTGAAA
61115845 (Litomosoidessigmodontis)





PC005
441
TGGTTGGATCCAAATGAAATCAA
5430825 (Onchocercavolvulus)





PC005
442
GTGTGGTTGGATCCAAATGAAATCAA
6845701 (Brugiamalayi); 45215079 (Wuchereria






bancrofti)






PC014
443
CACATGATGGCTTTCATTGAACAAGAAGC
10122191 (Haemonchuscontortus)





PC014
444
TACGAGAAAAAGGAGAAGCAAGT
21265518 (Ostertagiaostertagi)





PC016
445
GTCTGGATCATTTCCTCGGGATAAAT
18081287 (Globoderarostochiensis)





PC016
446
CCAGTCTGGATCATTTCCTCGGGATA
108957716 (Bursaphelenchusmucronatus); 108962248





(Bursaphelenchusxylophilus)



















TABLE 5-EV





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







EV005
563
TTAAAGATGGTCTTATTATTAA
21819186 (Trichinellaspiralis)





EV016
564
GCTATGGGTGTCAATATGGAAAC
54554020 (Xiphinema index)



















TABLE 5-AG





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







AG001
739
GCTGGATTCATGGATGTGATCA
15666884 (Ancylostoma ceylanicum)





AG001
740
ATGGATGTTGGACAAATTGGG
18081843 (Globodera rostochiensis)





AG001
741
TTCATGGATGTGATCACCATTGA
27002091 (Ascaris suum)





AG005
742
GTCTGGTTGGATCCAAATGAAATCAATGA
2099126 (Onchocerca volvulus)





AG005
743
GGATCCAAATGAAATCAATGA
2099309 (Onchocerca volvulus)





AG005
744
TGATCAAGGATGGTTTGATCAT
2130916 (Brugia malayi)





AG005
745
TGGTTGGATCCAAATGAAATCAATGA
6845701 (Brugia malayi)





AG005
746
CCAAGGGTAACGTGTTCAAGAACAAG
29964728 (Heterodera glycines)





AG005
747
TGGTTGGATCCAAATGAAATCAATGA
45215079 (Wuchereria bancrofti)





AG005
748
TGGATCCAAATGAAATCAATGA
61116961 (Litomosoides sigmodontis)





AG014
749
GAAGAATTTAACATTGAAAAGGG
10122191 (Haemonchus contortus)





AG014
750
GAATTTAACATTGAAAAGGGCCG
28252967 (Trichuris vulpis)





AG016
751
GGTTACATGTACACCGATTTGGC
54552787 (Xiphinema index)



















TABLE 5-TC





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







TC014
853
ATCATGGAATATTACGAGAAGAA
6562543 (Heteroderaschachtii); 15769883





(Heteroderaglycines)





TC015
854
AACGGTCCCGAAATTATGAGTAAATT
108966476 (Bursaphelenchusxylophilus)



















TABLE 5-MP





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







MP001
1011
GATCTTTTGATATTGTTCACATTAA
13099294 (Strongyloides ratti)





MP001
1012
ACATCCAGGATCTTTTGATATTGTTCAC
15275671 (Strongyloides ratti)





MP001
1013
TCTTTTGATATTGTTCACATTAA
32183548 (Meloidogyne chitwoodi)





MP016
1014
TATTGCTCGTGGACAAAAAAT
9832367 (Strongyloides stercoralis)





MP016
1015
TCTGCTGCTCGTGAAGAAGTACCTGG
13418283 (Necator americanus)





MP016
1016
GCTGAAGATTATTTGGATATT
20064440 (Meloidogyne hapla)





MP016
1017
GGTTTACCACATAATGAGATTGCTGC
20064440 (Meloidogyne hapla)





MP016
1018
AAGAAATGATTCAAACTGGTATTTCAGCTATTGAT
31545172 (Strongyloides ratti)





MP016
1019
TATTGCTCGTGGACAAAAAATTCCAAT
31545172 (Strongyloides ratti)





MP016
1020
GTTTCTGCTGCTCGTGAAGAAGT
31545172 (Strongyloides ratti)





MP016
1021
CGTGGTTTCCCTGGTTACATGTACAC
31545172 (Strongyloides ratti)





MP016
1022
CCTGGTTACATGTACACCGATTT
54552787 (Xiphinema index)





MP027
1023
TTTAAAAATTTTAAAGAAAAA
27540724 (Meloidogyne hapla)





MP027
1024
CTATTATGTTGGTGGTGAAGTTGT
34026304 (Meloidogyne arenaria)





MP027
1025
AAAGTTTTTAAAAATTTTAAA
34028558 (Meloidogyne javanica)



















TABLE 5-NL





Target
SEQ ID




ID
No
Sequence *
Example Gi-number and species







NL001
1438
AGTACAAGCTGTGCAAAGTGAAGA
18087933 (Globodera rostochiensis), 54547517





(Globodera pallida)





NL001
1439
ATGGATGTTGGACAAATTGGGTGG
7143612 (Globodera rostochiensis)





NL001
1440
TGGATGTTGGACAAATTGGGTGG
7235910 (Meloidogyne incognita)





NL001
1441
AGTACAAGCTGTGCAAAGTGAAGA
111164813 (Globodera rostochiensis)





NL003
1442
AGTCCATCCATCACGCCCGTGT
6081031 (Pristionchus pacificus)





NL003
1443
CTCCGTAACAAGCGTGAGGTGTGG
5815927 (Pristionchus pacificus)





NL003
1444
GACTCGCAGAAGCACATTGACTTCTC
5815618 (Pristionchus pacificus)





NL003
1445
GCAGAAGCACATTGACTTCTC
6081031 (Pristionchus pacificus)





NL003
1446
GCCAAGTCCATCCATCACGCCC
6081133 (Pristionchus pacificus)





NL003
1447
GCCAAGTCCATCCATCACGCCCGTGT
1783663 (Pristionchus pacificus)





NL003
1448
TCGCAGAAGCACATTGACTTCTC
10804008 (Ascaris suum)





NL003
1449
TCGCAGAAGCACATTGACTTCTCGCTGAA
18688500 (Ascaris suum)





NL003
1450
GCCAAGTCCATCCATCACGCCCGTGT
91102596 (Pristionchus pacificus)





NL003
1451
GACTCGCAGAAGCACATTGACTTCTC
91102596 (Pristionchus pacificus)





NL003
1452
CTCCGTAACAAGCGTGAGGTGTGG
91102596 (Pristionchus pacificus)





NL004
1453
AAGAACAAGGATATTCGTAAATT
3758529 (Onchocerca volvulus), 6200728





(Litomosoides sigmodontis)





NL004
1454
AAGAACAAGGATATTCGTAAATTCTTGGA
21056283 (Ascaris suum), 2978237 (Toxocara canis)





NL004
1455
CCGTGTACGCCCATTTCCCCATCAAC
1783477 (Pristionchus pacificus)





NL004
1456
TACGCCCATTTCCCCATCAAC
2181209 (Haemonchus contortus)





NL007
1457
CAACATGAATGCATTCCTCAAGC
39747064 (Meloidogyne paranaensis)





NL007
1458
GAAGTACAACATGAATGCATTCC
6721002 (Onchocerca volvulus)





NL007
1459
GCTGTATTTGTGTTGGCGACA
27541378 (Meloidogyne hapla)





NL008
1460
AGAAAAGGTTGTGGGTTGGTA
108958003 (Bursaphelenchus mucronatus)





NL011
1461
GGACTTCGTGATGGATATTACATTCAGGGACAATG
33138488 (Meloidogyneincognita)





NL011
1462
CAACTACAACTTCGAGAAGCC
108984057 (Bursaphelenchusxylophilus)





NL014
1463
GAAGAATTCAACATTGAAAAGGG
11927908 (Haemonchuscontortus)





NL014
1464
GAGCAAGAAGCCAATGAGAAAGC
108985855 (Bursaphelenchusmucronatus)





NL014
1465
TTTCATTGAGCAAGAAGCCAATGAGAAAGCCGAAGA
108979738 (Bursaphelenchusxylophilus)





NL015
1466
ATGAGCAAATTGGCCGGCGAGTCGGAG
18090737 (Globoderarostochiensis)





NL015
1467
CACACCAAGAACATGAAGTTGGCTGA
68276872 (Caenorhabditisremanei)





NL015
1468
CAGGAAATCTGTTCGAAGTGT
45564676 (Meloidogyneincognita)





NL015
1469
CTGGCGCAGATCAAAGAGATGGT
18090737 (Globoderarostochiensis)





NL015
1470
TGGCGCAGATCAAAGAGATGGT
27428872 (Heteroderaglycines)





NL016
1471
TATCCCGAGGAAATGATCCAGAC
18081287 (Globoderarostochiensis)





NL016
1472
CGTATCTATCCCGAGGAAATGATCCAGACTGGAATTTC
108957716 (Bursaphelenchusmucronatus)





108962248 (Bursaphelenchusxylophilus)





NL023
1473
TGGATGGGAGTCATGCATGGA
13959786 (Nippostrongylusbrasiliensis)



















TABLE 5-CS





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







CS001
1988
ATACAAGCTGTGCAAGGTGCG
10803803 (Trichurismuris)





CS003
1989
AAGCACATTGACTTCTCGCTGAA
18850138 (Ascarissuum)





CS003
1990
CGCAACAAGCGTGAGGTGTGG
40305701 (Heteroderaglycines)





CS003
1991
CGTCTCCAGACTCAGGTGTTCAAG
91102965 (Nippostrongylusbrasiliensis)





CS011
1992
TTTAATGTATGGGATACTGCTGG
9832495 (Strongyloidesstercoralis)





CS011
1993
CACTTGACTGGAGAGTTCGAGAAAA
18082874 (Globoderarostochiensis)





CS011
1994
CTCGTGTCACCTACAAAAATGTACC
71182695 (Caenorhabditisremanei)





CS011
1995
CACTTGACTGGAGAGTTCGAGAA
108987391 (Bursaphelenchusxylophilus)





CS013
1996
TAGGTGAATTTGTTGATGATTA
40305096 (Heteroderaglycines)





CS014
1997
AAGAAAGAGAAACAAGTGGAACT
51871231 (Xiphinema index)





CS016
1998
GTGTACATGTAACCTGGGAAACCACG
10819046 (Haemonchuscontortus)





CS016
1999
GTGTACATGTAACCTGGGAAACC
13418283 (Necatoramericanus)





CS016
2000
GCCAAATCGGTGTACATGTAACC
54552787 (Xiphinema index)





CS016
2001
AAGTTCTTCTCGAACTTGGTGAGGAACTC
111163626 (Globoderarostochiensis)



















TABLE 5-PX





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







PX001
2291
CTCGACATCGCCACCTGCAAG
11069004 (Haemonchuscontortus); 27770634





(Teladorsagiacircumcincta)





PX001
2292
GACGGCAAGGTCCGCACCGAC
32320500 (Heteroderaglycines)





PX001
2293
CCCGGCTGGATTCATGGATGT
51334233 (Radopholussimilis)





PX001
2294
ATCAAGGTGGACGGCAAGGTCCGCAC
108959807 (Bursaphelenchusxylophilus)





PX001
2295
ACAACGTGTTCATCATCGGCAA
111166840 (Globoderarostochiensis)





PX016
2296
CGTGGTTTCCCAGGTTACATGTACACGGATTTGGC
10819046 (Haemonchuscontortus)





PX016
2297
GGTTTCCCAGGTTACATGTACAC
13418283 (Necatoramericanus)





PX016
2298
GAGTTCCTCACCAAGTTCGAGAAGAACTT
111163626 (Globoderarostochiensis)



















TABLE 5-AD





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







AD015
2439
ATAAATGGTCCTGAAATTATGA
9832193 (Strongyloidesstercoralis)





AD016
2440
GTCAACATGGAGACGGCGCGCTT
30220804 (Heteroderaglycines)



















TABLE 6-LD





Tar-
SEQ




get
ID




ID
No
Sequences*
Example Gi-number and species







LD001
136
TAGCGGATGGTGCGGCCGTCGTG
54625255 (Phlebiopsis gigantea)





LD003
137
TTCCAAGAAATCTTCAATCTTCAAA
50294437 (Candida glabrata CBS 138)





LD007
138
GACTGCGGTTTTGAACACCCTTCAGAAGTTCA
110463173 (Rhizopus oryzae)





LD007
139
TGTCAAGCCAAATCTGGTATGGG
110463173 (Rhizopus oryzae)





LD011
140
GGCTTCTCAAAGTTGTAGTTA
48898288 (Aspergillus flavus)





LD011
141
CCATCACGGAGACCACCAAACTT
60673229 (Alternaria brassicicola)





LD011
142
AAAGGCTTCTCAAAGTTGTAGTTA
58157923 (Phytophthora infestans)





LD011
143
TGTGCTATTATCATGTTTGATGT
110458937 (Rhizopus oryzae)





LD011
144
ACTGCCGGTCAGGAGAAGTTTGG
90638500 (Thermomyces lanuginosus)





LD011
145
AATACAACTTTGAGAAGCCTTTCCT
90549582 (Lentinula edodes), 90381505 (Amorphotheca resinae)





LD011
146
CAGGAGAAGTTTGGTGGTCTCCG
90544763 (Gloeophyllum trabeum)





LD011
147
ACCACCAAACTTCTCCTGACC
90368069 (Aureobasidium pullulans)





LD011
148
GGTCAGGAGAAGTTGGTGGTCTCCG
90355148 (Coprinopsis cenerea)





LD016
149
GCAGCAATTTCATTGTGAGGCAGACCAG
50285562 (Candida glabrata CBS 138)





LD016
150
ATGGAGTTCATCACGTCAATAGC
68419480 (Phytophthora parasitica)





LD016
151
GGTCTGCCTCACAATGAAATTGCTGCCCAGAT
85109950 (Neurospora crassa)





LD016
152
CTATTGTTTTCGCTGCTATGGGTGTTAACATG
50423336 (Debaryomyces hansenii), 90540142 (Gloeophyllum




GA

trabeum)






LD016
153
ATGAACTCCATTGCTCGTGGTCAGAAGAT
84573655 (Aspergillus oryzae)





LD016
154
ATAGGAATCTGGGTGATGGATCCGTT
90562068 (Leucosporidium scottii), 90359845 (Aureobasidium






pullulans)






LD016
155
TCCTGTTTCTGAAGATATGTTGGG
90388021 (Cunninghamella elegans)





LD016
156
TTTGAAGATTGAAGATTTCTTGGAACG
50294437 (Candida glabrata CBS 138), 110468393 (Rhizopus






oryzae), 90388664 (Cunninghamella elegans), 90376235






(Amorphotheca resinae)





LD027
157
TCACAGGCAGCGAAGATGGTACC
90546087 (Gloeophyllum trabeum)





LD027
158
TTCTTTGAAGTTTTTGAATAT
50292600 (Candida glabrata CBS 138)



















TABLE 6-PC





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







PC001
447
CCCTGCTGGTTTCATGGATGTCAT
110469463 (Rhizopusoryzae)





PC003
448
ATTGAAGATTTCTTGGAAAGAAG
50294437 (Candida glabrata CBS 138)





PC003
449
TTGAAGATTTCTTGGAAAGAAG
50310014 (Kluyveromyceslactis NRRL Y-1140)





PC003
450
CTTCTTTCCAAGAAATCTTCAA
622611 (Saccharomycescerevisiae)





PC003
451
GACTCGCAGAAGCACATCGACTT
109744873 (Allomycesmacrogynus); 59284959





(Blastocladiellaemersonii); 90623359 (Corynascus






heterothallicus); 29427071 (Verticilliumdahliae)






PC003
452
GACTCGCAGAAGCACATCGACTTC
59298648 (Blastocladiellaemersonii); 90565029





(Leucosporidiumscottii)





PC003
453
TCGCAGAAGCACATCGACTTC
47032157 (Mycosphaerellagraminicola)





PC003
454
CAGAAGCACATCGACTTCTCCCT
34332427 (Ustilagomaydis)





PC005
455
CTTATGGAGTACATCCACAAG
98997063 (Spizellomycespunctatus)





PC005
456
AAGAAGAAGGCAGAGAAGGCCA
84572408 (Aspergillusoryzae)





PC010
457
GTGTTCAATAATTCTCCTGATGA
50288722 (Candidaglabrata CBS 138)





PC010
458
ATTTTCCATGGAGAGACCATTGC
70990481 (Aspergillusfumigatus)





PC010
459
GGGCAGAATCCCCAAGCTGCC
90631635 (Thermomyceslanuginosus)





PC014
460
AATACAAGGACGCCACCGGCA
30394561 (Magnaporthegrisea)





PC016
461
ATGCCCAACGACGACATCACCCA
59281308 (Blastocladiellaemersonii)





PC016
462
TGGGTGATGTCGTCGTTGGGCAT
38353161 (Hypocreajecorina)





PC016
463
GGTTTCCCCGGTTACATGTACAC
34447668 (Cryphonectriaparasitica)





PC016
464
ACTATGCCCAACGACGACATCAC
34447668 (Cryphonectriaparasitica)





PC016
465
CCGGGCACTTCTTCTCGAGCGGC
38353161 (Hypocreajecorina)





PC016
466
CCGACCATCGAGCGCATCATCAC
59281308 (Blastocladiellaemersonii)





PC016
467
TTCTTGAACTTGGCCAACGATCC
50285562 (Candida glabrata CBS 138)





PC016
468
TGTTCTTGAACTTGGCCAACGA
66909391 (Phaeosphaerianodorum)





PC016
469
GCTATGGGTGTCAACATGGAAACTGC
110463410 (Rhizopusoryzae)





PC016
470
TGCTATGGGTGTCAACATGGA
71006197 (Ustilagomaydis)





PC016
471
CTATTGTGTTTGCTGCTATGGGTGT
68488910 (Candidaalbicans)





PC016
472
TACGAGCGCGCCGGTCGTGTGGA
90347883 (Coprinopsiscinerea)



















TABLE 6-EV





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







EV010
565
TTCAATAATTCACCAGATGAAAC
50405834 (Debaryomyces hansenii)





EV015
566
CGATCGCCTTGAACAGCGACG
22502898 (Gibberella zeae)





EV015
567
GTTACCATGGAGAACTTCCGTTA
67900533 (Aspergillus nidulans FGSC A4)





EV015
568
GTTACCATGGAGAACTTCCGTTACGCC
70820241 (Aspergillus niger)





EV015
569
ACCATGGAGAACTTCCGTTACGCC
84573628 (Aspergillus oryzae)





EV015
570
ATGGAGAACTTCCGTTACGCC
71002727 (Aspergillus fumigatus)





EV016
571
TCTGAAGATATGTTGGGTCGTGT
90396765 (Cunninghamella elegans)





EV016
572
CAAAAGATTCCAATTTTCTCTGCA
50306984 (Kluyveromyces lactis NRRL Y-1140)





EV016
573
CCCCACAATGAAATCGCTGCTCAAAT
68001221 (Schizosaccharomyces pombe 972h-)





EV016
574
ATCGTTTTCGCCGCTATGGGTGT
58271359 (Cryptococcus neoformans var.)





EV016
575
TTCAAGCAAGATTTTGAAGAGAATGG
50285562 (Candida glabrata CBS 138)



















TABLE 6-AG





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







AG001
752
CGTAACAGGTTGAAGTACGCCCT
16931515 (Coccidioides posadasii)





AG001
753
AAGGTCGACGGCAAAGTCAGGACTGAT
33515688 (Cryptococcus neoformans var.)





AG001
754
CCATTCTTGGTCACCCACGATG
38132640 (Hypocrea jecorina)





AG001
755
ATCAAGGTAAACGACACCATC
56939474 (Puccinia graminisf. sp.)





AG005
756
TGTACATGAAGGCCAAGGGTAACGTGTTCAAGAACAAG
98997063 (Spizellomyces punctatus)





AG005
757
CCAAGGGTAACGTGTTCAAGAACAAG
109744763 (Allomyces macrogynus);





59297176 (Blastocladiella emersonii)





AG005
758
AAGGGTAACGTGTTCAAGAACAAG
109741162 (Allomyces macrogynus)





AG005
759
CAAGAAGAAGGCTGAGAAGGC
67903433 (Aspergillus nidulans FGSC A4)





AG005
760
CAAGAAGAAGGCTGAGAAGGC
4191107 (Emericella nidulans)





AG005
761
AAGAAGAAGGCTGAGAAGGCC
66909252 (Phaeosphaeria nodorum)





AG005
762
CAAAACATCCGTAAATTGATCAAGGATGGTTT
21649803 (Conidiobolus coronatus)





AG016
763
TTCGCCGCCATGGGTGTCAAC
50554108 (Yarrowia lipolytica)





AG016
764
ATGGGTGTCAACATGGAAACCGC
90639144 (Trametes versicolor)





AG016
765
TGGAAACCGCCCGTTTCTTCA
85109950 (Neurospora crassa)





AG016
766
GGTTACATGTACACCGATTTG
32169825 (Mucor circinelloides)





AG016
767
GTCAAGATGGGAATCTGGGTGATGGA
38353161 (Hypocrea jecorina)



















TABLE 6-TC





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







TC001
855
AACAGGCTGAAGTATGCCTTGACC
90545567 (Gloeophyllum trabeum)





TC015
856
TTCATCGTCCGTGGTGGCATG
46122304 (Gibberella zeae PH-1)





TC015
857
AGTTTTACCGGTACCTGGAGG
50310636 (Kluyveromyces lactis NRRL Y-1140)





TC015
858
CCTCCAGGTACCGGTAAAACT
85114224 (Neurospora crassa)





TC015
859
CCTCCAGGTACCGGTAAAACTTT
50290674 (Candida glabrata CBS 138)





TC015
860
ATTAAAGTTTTACCGGTACCTGGAGG
3356460 (Schizosaccharomyces pombe)





TC015
861
GGTGCTTTCTTCTTCTTAATCAA
21649889 (Conidiobolus coronatus)





TC015
862
ATCAACGGTCCCGAAATTATG
82610024 (Phanerochaete chrysosporium)



















TABLE 6-MP





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







MP002
1026
AATTTTTAGAAAAAAAAATTG
68026454 (Schizosaccharomyces pombe 972h-)





MP010
1027
GTCACCACATTAGCTAGGAAT
48564349 (Coccidioidesposadasii)





MP016
1028
AAGAAATGATTCAAACTGGTAT
90396765 (Cunninghamellaelegans)





MP016
1029
AAGAAATGATTCAAACTGGTATTTC
110463410 (Rhizopusoryzae)





MP016
1030
CATGAACTCTATTGCTCGTGG
50285562 (Candidaglabrata CBS 138)





MP016
1031
GCTGCTATGGGTGTTAATATGGA
90348219 (Coprinopsiscinerea)





MP016
1032
TGCTATGGGTGTTAATATGGAAAC
90396964 (Cunninghamellaelegans)





MP016
1033
CCTACTATTGAGCGTATCATTAC
90524974 (Geomycespannorum)





MP016
1034
GAAGTTTCTGCTGCTCGTGAAGAAGTACCTGG
90396313 (Cunninghamellaelegans)





MP016
1035
GTTTCTGCTGCTCGTGAAGAAGT
32169825 (Mucorcircinelloides)





MP016
1036
GTGTACATGTAACCAGGGAAACCACG
45392344 (Magnaporthegrisea)





MP016
1037
CCTGGTTACATGTACACCGATTT
32169825 (Mucorcircinelloides)





MP016
1038
GGTTACATGTACACCGATTTA
47067814 (Eremotheciumgossypii)





MP016
1039
CCTATTTTAACTATGCCTAACGA
90396313 (Cunninghamellaelegans)





MP027
1040
ACTCTCCATCACCACATACTA
60673889 (Alternariabrassicicola)



















TABLE 6-NL






SEQ




Target
ID




ID
No
Sequence *
Example Gi-number and species







NL001
1474
CCAAGGGCAAGGGTGTGAAGCTCA
30418788 (Magnaporthegrisea)





NL001
1475
TCTCTGCCCAAGGGCAAGGGTGT
22500578 (Gibberellazeae), 46128672 (Gibberellazeae PH-1),





70662858 (Gibberellamoniliformis), 71000466 (Aspergillus






fumigatus)






NL001
1476
TCTGCCCAAGGGCAAGGGTGT
14664568 (Fusariumsporotrichioides)





NL001
1477
TCTCTGCCCAAGGGCAAGGGT
50550586 (Yarrowialipolytica)





NL001
1478
TCTCTGCCCAAGGGCAAGGGTGT
71000466 (Aspergillusfumigatus)





92459259 (Gibberellazeae)





NL001
1479
CTGCCCAAGGGCAAGGGTGTGAAG
90545567 (Gloeophyllumtrabeum)





NL003
1480
ATGAAGCTCGATTACGTCTTGG
24446027 (Paracoccidioidesbrasiliensis)





NL003
1481
CGTAAGGCCGCTCGTGAGCTG
10229753 (Phytophthorainfestans)





NL003
1482
CGTAAGGCCGCTCGTGAGCTGTTGAC
58082846 (Phytophthorainfestans)





NL003
1483
GACTCGCAGAAGCACATTGACTT
21393181 (Pratylenchuspenetrans), 34330401 (Ustilago






maydis)






NL003
1484
TGAAGCTCGATTACGTCTTGG
46346864 (Paracoccidioidesbrasiliensis)





NL003
1485
TGGCCAAGTCCATCCATCACGCCCGTGT
58113938 (Phytophthorainfestans)





NL004
1486
CGTAACTTCCTGGGCGAGAAG
58127885 (Phytophthorainfestans)





NL003
1487
ATGAAGCTCGATTACGTCTTGG
90366381 (Aureobasidiumpullulans)





NL003
1488
TCGGTTTGGCCAAGTCCATCCA
90353540 (Coprinopsiscinerea)





NL003
1489
GACTCGCAGAAGCACATTGACTT
71012467 (Ustilagomaydis)





NL003
1490
GACTCGCAGAAGCACATTGACTTCTC
90616286 (Ophiostomapiliferum)





NL004
1491
TACGCCCATTTCCCCATCAAC
15771856 (Gibberellazeae), 29426217 (Verticilliumdahliae),





30399988 (Magnaporthegrisea), 34330394 (Ustilagomaydis),





39945691 (Magnaporthegrisea 70-15), 46108543 (Gibberella






zeae PH-1), 70660620 (Gibberellamoniliformis)






NL004
1492
CGTGTACGCCCATTTCCCCATCAAC
90615722 (Ophiostomapiliferum)





NL004
1493
TACGCCCATTTCCCCATCAAC
90367524 (Aureobasidiumpullulans)





90372622 (Cryptococcuslaurentii)





109654277 (Fusariumoxysporumf. sp.)





90535059 (Geomycespannorum)





46108543 (Gibberellazeae PH-1)





90566138 (Leucosporidiumscottii)





39945691 (Magnaporthegrisea 70-15)





110115733 (Saitoellacomplicata)





110081735 (Tuberborchii)





71021510 (Ustilagomaydis)





50554252 (Yarrowialipolytica)





NL004
1494
TACGCCCATTTCCCCATCAACTG
90640952 (Trametesversicolor)





NL004
1495
CGTGTACGCCCATTTCCCCATCAAC
90615722 (Ophiostomapiliferum)





NL005
1496
AAAAGGTCAAGGAGGCCAAGA
14662414 (Fusariumsporotrichioides)





NL005
1497
TTCAAGAACAAGCGTGTATTGATGGA
90395504 (Cunninghamellaelegans)





NL005
1498
TTCAAGAACAAGCGTGTATTGATGGAGT
90542553 (Gloeophyllumtrabeum)





NL006
1499
CCTGGAGGAGGAGACGACCAT
70998503 (Aspergillusfumigatus)





NL006
1500
TCCCATCTCGTATGACAATTGG
68471154 (Candidaalbicans)





NL006
1501
ATGGTCGTCTCCTCCTCCAGG
70998503 (Aspergillusfumigatus)





NL006
1502
TCCCATCTCGTATGACAATTGG
68471154 (Candidaalbicans)





50425488 (Debaryomyceshansenii)





NL007
1503
CAAGTCATGATGTTCAGTGCAAC
70984614 (Aspergillusfumigatus)





NL007
1504
TGACGCTTCACGGCCTGCAGCAG
10229203 (Phytophthorainfestans)





NL007
1505
CAAGTCATGATGTTCAGTGCAAC
70984614 (Aspergillusfumigatus)





NL010_2
1506
CAATTCTTGCAAGTGTTCAACAA
68478799 (Candida albicans)





NL010_2
1507
TTCAACAACAGTCCTGATGAAAC
21649260 (Conidiobolus coronatus)





NL010_2
1508
TTCTTGCAAGTGTTCAACAAC
47031965 (Mycosphaerella graminicola)





NL011
1509
AAGAACGTTCCCAACTGGCAC
68132303 (Trichophyton rubrum)





NL011
1510
ACAAGAACGTTCCCAACTGGCA
68132303 (Trichophyton rubrum)





NL011
1511
ACCTACAAGAACGTTCCCAACT
68132303 (Trichophyton rubrum)





NL011
1512
ACCTACAAGAACGTTCCCAACTGGCAC
70674996 (Gibberella moniliformis)





NL011
1513
CAACTACAACTTCGAGAAGCC
22500425 (Gibberella zeae), 34331122 (Ustilago maydis),





46108433 (Gibberella zeae PH-1), 47029512 (Mycosphaerella






graminicola), 56236507 (Setosphaeria turcica), 62926335






(Fusarium oxysporumf. sp.), 70674996 (Gibberella






moniliformis), 70992714 (Aspergillus fumigatus)






NL011
1514
CAAGAACGTTCCCAACTGGCAC
68132303 (Trichophyton rubrum)





NL011
1515
CACCTACAAGAACGTTCCCAAC
68132303 (Trichophyton rubrum)





NL011
1516
CCTACAAGAACGTTCCCAACTG
68132303 (Trichophyton rubrum)





NL011
1517
CTACAAGAACGTTCCCAACTGG
68132303 (Trichophyton rubrum)





NL011
1518
GCAACTACAACTTCGAGAAGCC
22505588 (Gibberella zeae)





NL011
1519
TACAAGAACGTTCCCAACTGGC
68132303 (Trichophyton rubrum)





NL011
1520
TCACCTACAAGAACGTTCCCA
68132303 (Trichophyton rubrum)





NL011
1521
TCACCTACAAGAACGTTCCCAA
68132303 (Trichophyton rubrum)





NL011
1522
TCACCTACAAGAACGTTCCCAACT
30405871 (Magnaporthe grisea)





NL011
1523
TCACCTACAAGAACGTTCCCAACTGGCAC
13903501 (Blumeria graminisf. sp.), 3140444 (Emericella






nidulans), 34331122 (Ustilago maydis), 49096317 (Aspergillus







nidulans FGSC A4)






NL011
1524
TGGGACACAGCTGGCCAGGAAA
14180743 (Magnaporthe grisea), 39950145 (Magnaporthe






grisea 70-15)






NL011
1525
TTCGAGAAGCCGTTCCTGTGG
38056576 (Phytophthora sojae), 45244260 (Phytophthora






nicotianae), 58091236 (Phytophthora infestans)






NL011
1526
TTCGAGAAGCCGTTCCTGTGGTTGGC
58090083 (Phytophthora infestans)





NL011
1527
TGGGACACAGCTGGCCAGGAAA
39950145 (Magnaporthe grisea 70-15)





NL011
1528
TATTACATTCAGGGACAATGCG
110134999 (Taphrina deformans)





NL011
1529
TCACCTACAAGAACGTTCCCAACTGGCAC
84573903 (Aspergillus oryzae)





90355199 (Coprinopsis cinerea)





90624693 (Corynascus heterothallicus)





90638500 (Thermomyces lanuginosus)





NL011
1530
ACCTACAAGAACGTTCCCAACTGGCAC
113544700 (Cordyceps bassiana)





85114463 (Neurospora crassa)





NL011
1531
TACAAGAACGTTCCCAACTGGCA
110269748 (Hypocrea lixii)





NL011
1532
TACAAGAACGTTCCCAACTGGCAC
110458937 (Rhizopus oryzae)





NL011
1533
AGGAAGAAGAACCTTCAGTACT
90557551 (Leucosporidium scottii)





NL011
1534
AAGAAGAACCTTCAGTACTACGA
113551594 (Cordyceps bassiana)





NL011
1535
AAGAAGAACCTTCAGTACTACGACATC
90036917 (Trichophyton rubrum)





NL011
1536
AAGAACCTTCAGTACTACGACATC
90624693 (Corynascus heterothallicus)





NL011
1537
GGCTTCTCGAAGTTGTAGTTGC
89975123 (Hypocrea lixii)





NL011
1538
CAACTACAACTTCGAGAAGCC
70992714 (Aspergillus fumigatus)





90368808 (Aureobasidium pullulans)





90629512 (Corynascus heterothallicus)





109656121 (Fusarium oxysporumf. sp.)





90532849 (Geomyces pannorum)





110272576 (Hypocrea lixii)





47029512 (Mycosphaerella graminicola)





85114463 (Neurospora crassa)





90617165 (Ophiostoma piliferum)





90036917 (Trichophyton rubrum)





NL011
1539
GGCTTCTCGAAGTTGTAGTTG
92233975 (Gibberella zeae)





NL013
1540
CCCGAGATGGTGGTGGGCTGGTACCA
49069733 (Ustilago maydis)





NL013
1541
GGTACCACTCGCACCCGGGCTT
58134950 (Phytophthora infestans)





NL013
1542
GTGGGCTGGTACCACTCGCACCCGGGC
38062327 (Phytophthora sojae)




TTCGGCTGCTGGCTGTCGGG






NL013
1543
TGGTACCACTCGCACCCGGGCTT
58084933 (Phytophthora infestans)





NL013
1544
CCCGAGATGGTGGTGGGCTGGTACCA
71006043 (Ustilago maydis)





NL015
1545
ATCCACACCAAGAACATGAAG
10181857 (Aspergillus niger), 22505190 (Gibberella zeae),





30394634 (Magnaporthe grisea), 33507832 (Cryptococcus






neoformans var.), 3773467 (Emericella nidulans), 39940093






(Magnaporthe grisea 70-15), 46122304 (Gibberella zeae PH-1),





47032030 (Mycosphaerella graminicola), 49106059 (Aspergillus






nidulans FGSC A4)






NL015
1546
CACACCAAGAACATGAAGTTGG
21649889 (Conidiobolus coronatus)





NL015
1547
GCCTTCTTCTTCCTCATCAACGG
46122304 (Gibberella zeae PH-1)





NL015
1548
TTGGAGGCTGCAGAAAGCAGCT
90369178 (Cryptococcus laurentii)





NL015
1549
GCCTTCTTCTTCCTCATCAACGG
46122304 (Gibberella zeae PH-1)





NL015
1550
ATCCACACCAAGAACATGAAG
70820941 (Aspergillus niger)





58260307 (Cryptococcus neoformans var.)





85691122 (Encephalitozoon cuniculi GB-M1)





46122304 (Gibberella zeae PH-1)





39940093 (Magnaporthe grisea 70-15)





85082882 (Neurospora crassa)





50555821 (Yarrowia lipolytica)





NL015
1551
CACACCAAGAACATGAAGTTGGC
110272618 (Hypocrea lixii)





NL016
1552
CATGAACTCGATTGCTCGTGG
30418452 (Magnaporthe grisea), 39942327 (Magnaporthe






grisea 70-15)






NL016
1553
CCACCATCTACGAGCGCGCCGGACG
39942327 (Magnaporthe grisea 70-15), 45392344





(Magnaporthe grisea)





NL016
1554
CATGAACTCGATTGCTCGTGG
90367610 (Aureobasidium pullulans)





39942327 (Magnaporthe grisea 70-15)





NL016
1555
CATGTCGGTGAGGATGACGAG
90562068 (Leucosporidium scottii)





NL016
1556
CCACCATCTACGAGCGCGCCGGACG
39942327 (Magnaporthe grisea 70-15)





NL019
1557
CAGATTTGGGACACGGCCGGCCAGGAGCG
9834078 (Phytophthora sojae)





NL019
1558
GACCAGGAGTCGTTCAACAAC
9834078 (Phytophthora sojae)





NL019
1559
TGGGACACGGCCGGCCAGGAG
38056576 (Phytophthora sojae), 40545332 (Phytophthora






nicotianae), 58083674 (Phytophthora infestans)






NL019
1560
TGGGACACGGCCGGCCAGGAGCG
29426828 (Verticillium dahliae), 38057141 (Phytophthora






sojae)






NL019
1561
TGGGACACGGCCGGCCAGGAGCGGTT
70981934 (Aspergillus fumigatus)





NL019
1562
TTCCTGGAGACGTCGGCGAAGAACGC
90643518 (Trametes versicolor)





NL019
1563
CAGATTTGGGACACGGCCGGCCAGGAGCG
90616605 (Ophiostoma piliferum)





NL019
1564
TGGGACACGGCCGGCCAGGAG
110272626 (Hypocrea lixii)





NL019
1565
TGGGACACGGCCGGCCAGGAGCG
50550714 (Yarrowia lipolytica)





NL019
1566
TGGGACACGGCCGGCCAGGAGCGGTT
70981934 (Aspergillus fumigatus)





NL019
1567
TGGGACACGGCCGGCCAGGAGCGGTTCCG
50553761 (Yarrowia lipolytica)





NL022
1568
CAGGCAAAGATTTTCCTGCCCA
58124185 (Phytophthora infestans)





NL022
1569
GGCAAGTGCTTCCGTCTGTACAC
58124872 (Phytophthora infestans)





NL023
1570
GGATGACCAAAAACGTATTCT
46137132 (Gibberella zeae PH-1)





NL023
1571
AGAATACGTTTTTGGTCATCC
46137132 (Gibberella zeae PH-1)



















TABLE 6-CS





Target
SEQ ID




ID
NO
Sequence *
Example Gi-number and species







CS003
2002
TGGTCTCCGCAACAAGCGTGA
46356829 (Paracoccidioidesbrasiliensis)





CS003
2003
GGTCTCCGCAACAAGCGTGAG
71012467 (Ustilagomaydis)





CS003
2004
TGGTCTCCGCAACAAGCGTGAGGT
5832048 (Botryotiniafuckeliana)





CS003
2005
TGGTCTCCGCAACAAGCGTGAGGT
40545704 (Sclerotiniasclerotiorum)





CS003
2006
GGTCTCCGCAACAAGCGTGAGGT
21907821 (Colletotrichumtrifolii); 90623359





(Corynascusheterothallicus); 94331331





(Pyronemaomphalodes); 29427071 (Verticillium






dahliae)






CS003
2007
TGGTCTCCGCAACAAGCGTGAGGTGTGG
27439041 (Chaetomiumglobosum); 47032270





(Mycosphaerellagraminicola)





CS003
2008
CGCAACAAGCGTGAGGTGTGG
71000428 (Aspergillusfumigatus); 67537265





(Aspergillus nidulans FGSC A4); 70825441





(Aspergillus niger); 84573806 (Aspergillus oryzae);





3773212 (Emericella nidulans); 90632673





(Thermomyces lanuginosus); 34332427 (Ustilago






maydis)






CS006
2009
TCCCCTCTCGTATGACAATTGGT
68011927 (Schizosaccharomyces pombe 972h-)





CS007
2010
ATTTAGCTTTGACAAAGAATA
50305206 (Kluyveromyces lactis NRRL Y-1140)





CS007
2011
GAGCACCCTTCAGAAGTTCAACA
90553133 (Lentinula edodes)





CS011
2012
TGGGATACTGCTGGCCAAGAA
90385536 (Amorphotheca resinae); 68475609





(Candida albicans); 50304104 (Kluyveromyces






lactis NRRL Y-1140); 85105150 (Neurospora







crassa)






CS011
2013
AAGTTTGGTGGTCTCCGAGATGGTTACTA
90355199 (Coprinopsis cinerea)





CS011
2014
CAATGTGCCATCATCATGTTCGA
15276938 (Glomus intraradices)





CS011
2015
CATCATCATGTTCGATGTAAC
28268268 (Chaetomiumglobosum)





CS011
2016
CACTTGACTGGAGAGTTCGAGAA
90368808 (Aureobasidiumpullulans); 34331122





(Ustilagomaydis)





CS011
2017
TGAAGGTTCTTTTTTCTGTGGAA
6831345 (Pneumocystiscarinii)





CS013
2018
GGATGGTACCACTCGCATCCTGG
109651225 (Fusariumoxysporumf. sp.)





CS015
2019
AACGAGAGGAAGAAGAAGAAG
39944615 (Magnaporthegrisea 70-15)





CS015
2020
AGGGCTTCTTCTTCTTCCTCTC
14662870 (Fusariumsporotrichioides)





CS015
2021
TAGGGCTTCTTCTTCTTCCTC
85112692 (Neurosporacrassa)





CS015
2022
GAGATGGTCGAGTTGCCTCTA
71005073 (Ustilagomaydis)





CS016
2023
GCTGAAGACTTTTTGGACATC
30418452 (Magnaporthegrisea)





CS016
2024
CCTCACCAAGTTCGAGAAGAACTTC
90566317 (Leucosporidiumscottii)





CS016
2025
GTCGTCGGTGAGGAAGCCCTG
84573655 (Aspergillusoryzae)





CS016
2026
TCCTCACCGACGACAGCCTTCATGGCC
29427786 (Verticilliumdahliae)





CS016
2027
GATGTTTCCAACCAGCTGTACGCC
90368806 (Aureobasidiumpullulans)





CS016
2028
GGCGTACAGCTGGTTGGAAACATC
29427786 (Verticilliumdahliae)





CS016
2029
TGATGTTTCCAACCAGCTGTACGCC
46107507 (Gibberella zeae PH-1)





CS016
2030
ATGGCAGACTTCATGAGACGAGA
29427786 (Verticilliumdahliae)





CS016
2031
ATGCCCAACGACGACATCACCCA
59281308 (Blastocladiellaemersonii)





CS016
2032
TGGGTGATGTCGTCGTTGGGCAT
38353161 (Hypocreajecorina)





CS016
2033
ACTATGCCCAACGACGACATCAC
34447668 (Cryphonectriaparasitica)





CS016
2034
GGTTACATGTACACCGATTTG
32169825 (Mucorcircinelloides)





CS016
2035
CCCAGGTTACATGTACACCGATTT
47067814 (Eremotheciumgossypii)





CS016
2036
ACACCACGTTTGGCCTTGACT
68488910 (Candidaalbicans)





CS016
2037
GCCATGGGTGTGAACATGGAGAC
82608508 (Phanerochaetechrysosporium)





CS016
2038
GACGACCACGAGGACAACTTTGCCATCGTGTTCG
59277641 (Blastocladiellaemersonii)





CS016
2039
AAGATCCCCATTTTCTCGGCTGC
90348219 (Coprinopsiscinerea)



















TABLE 6-PX





Target ID
SEQ ID NO
Sequence *
Example Gi-number and species







PX001
2299
CTCATCAAGGTGGACGGCAAGGT
85080580 (Neurosporacrassa)





PX001
2300
TCGGTGCGGACCTTGCCGTCCACCTTGA
70768092 (Gibberellamoniliformis)





PX001
2301
GACGGCAAGGTCCGCACCGAC
109745014 (Allomycesmacrogynus); 60673542





(Alternaria brassicicola); 90368699





(Aureobasidium pullulans); 59299145





(Blastocladiella emersonii); 27438899





(Chaetomium globosum); 90623992 (Corynascus






heterothallicus); 89975695 (Hypocrealixii);






99039195 (Leptosphaeriamaculans); 39970560





(Magnaporthegrisea); 47731115 (Metarhizium






anisopliae); 90036859 (Trichophytonrubrum);






29427127 (Verticilliumdahliae)





PX001
2302
GACGGCAAGGTCCGCACCGACCC
70823112 (Aspergillusniger);





90633197 (Thermomyceslanuginosus)





PX001
2303
AAGGTCCGCACCGACCCCACCTACCC
71015993 (Ustilagomaydis)





PX001
2304
CGCTTCACCATCCACCGCATCAC
90639458 (Trametesversicolor)





PX001
2305
CGAGGAGGCCAAGTACAAGCTG
78177454 (Chaetomiumcupreum);





27438899 (Chaetomiumglobosum)





PX001
2306
GAGGCCAAGTACAAGCTGTGCAAGGT
109745014 (Allomycesmacrogynus)





PX001
2307
GCCAAGTACAAGCTGTGCAAG
45923813 (Coccidioidesposadasii)





PX001
2308
CCCGACCCGCTCATCAAGGTCAACGAC
78177454 (Chaetomiumcupreum)





PX001
2309
CGACATCGTCCACATCAAGGAC
82603501 (Phanerochaetechrysosporium)





PX001
2310
CCGCACAAGCTGCGCGAGTGCCTGCCGCTC
109745014 (Allomycesmacrogynus)





PX010
2311
TTCGACCAGGAGGCGGCGGCGGT
90542152 (Gloeophyllum trabeum)





PX010
2312
CACCACCGCCGCCGCCTCCTG
84578035 (Aspergillus oryzae)





PX010
2313
TGCAGGTCTTCAACAACTCGCCCGACGA
39978050 (Magnaporthe grisea)





PX010
2314
TTCAACAACTCGCCCGACGAGAC
90618424 (Corynascus heterothallicus)





PX015
2315
CATGCGCGCCGTCGAGTTCAAGGTGGT
59282860 (Blastocladiella emersonii)





PX015
2316
GCATTCTTCTTCCTCATCAACGG
68323226 (Coprinopsis cinerea)





PX015
2317
ATCAACGGCCCCGAGATCATGTC
85082882 (Neurospora crassa)





PX015
2318
TGCGCAAGGCGTTCGAGGAGGC
71002727 (Aspergillus fumigatus)





PX016
2319
CCTCACCAAGTTCGAGAAGAACTTC
90566317 (Leucosporidium scottii)





PX016
2320
GAGGAGATGATCCAGACTGGTAT
90639144 (Trametes versicolor)





PX016
2321
GAGGAGATGATCCAGACTGGTATCTC
58271359 (Cryptococcus neoformans)





PX016
2322
ATGAACTCCATCGCCCGTGGTCAGAAGATCCC
90545177 (Gloeophyllum trabeum)





PX016
2323
GTCAGAAGATCCCCATCTTCTCCGCC
9651842 (Emericella nidulans)





PX016
2324
CAGAAGATCCCCATCTTCTCCGC
70825597 (Aspergillus niger); 90611576





(Ophiostomapiliferum); 90639144 (Trametes






versicolor)






PX016
2325
CAGAAGATCCCCATCTTCTCCGCC
67540123 (Aspergillusnidulans)





PX016
2326
CAGAAGATCCCCATCTTCTCCGCCGCCGG
59283275 (Blastocladiellaemersonii)





PX016
2327
AAGATCCCCATCTTCTCCGCCGCCGGTCT
34447668 (Cryphonectriaparasitica)





PX016
2328
CCCATCTTCTCCGCCGCCGGTCTGCC
90621827 (Corynascusheterothallicus)





PX016
2329
GGTCTGCCCCACAACGAGATTGCTGC
90367610 (Aureobasidiumpullulans);





66909391 (Phaeosphaerianodorum)





PX016
2330
TTCGCCGCCATGGGAGTCAACATGGAGAC
90562163 (Leucosporidiumscottii)





PX016
2331
ACCGCCAGGTTCTTCAAGCAGGA
47067814 (Eremotheciumgossypii)





PX016
2332
CTGTTCTTGAACTTGGCCAATGA
90545177 (Gloeophyllumtrabeum)





PX016
2333
GGTTACATGTACACGGATTTG
34447668 (Cryphonectriaparasitica); 90545177





(Gloeophyllumtrabeum); 39942327 (Magnaporthe






grisea); 82608506 (Phanerochaete







chrysosporium); 71006197 (Ustilagomaydis)






PX016
2334
GGCAAGCCCATCGACAAGGGGCCC
59283275 (Blastocladiellaemersonii)





PX016
2335
ATGGGGTGGGTGATGTCGTCGTTGGGCATGGTCA
38353161 (Hypocreajecorina)





PX016
2336
ACCATGCCCAACGACGACATCACCCACCC
59281308 (Blastocladiellaemersonii)





PX016
2337
TGCACAACAGGCAGATCTACCC
107889579 (Encephalitozooncuniculi)





PX016
2338
CCGTCGCTATCTCGTCTCATGAA
48521040 (Coccidioidesposadasii)



















TABLE 6-AD





Target





ID
SEQ ID NO
Sequence *
Example Gi-number and species







AD001
2441
CCCGCTGGTTTCATGGATGTT
58259586 (Cryptococcusneoformans)





AD001
2442
GACAACATCCATGAAACCAGCGGG
21649877 (Conidioboluscoronatus)





AD001
2443
TTCATGGATGTTGTCACCATTG
90616000 (Ophiostomapiliferum)





AD001
2444
GAAGAAGCCAAGTACAAGCTCTG
110469512 (Rhizopusoryzae)





AD001
2445
AAGAAGCCAAGTACAAGCTCTG
110469518 (Rhizopusoryzae)





AD001
2446
GCCAAGTACAAGCTCTGCAAGGT
98996590 (Spizellomycespunctatus)





AD001
2447
GCCAAGTACAAGCTCTGCAAGGTCA
109743129 (Allomycesmacrogynus)





AD001
2448
AGTACAAGCTCTGCAAGGTCA
71000466 (Aspergillusfumigatus); 67537247





(Aspergillusnidulans); 70823112 (Aspergillusniger);





40886470 (Emericellanidulans)





AD015
2449
TATGGACCCCCTGGAACTGGTAAAACC
46349704 (Paracoccidioidesbrasiliensis)





AD016
2450
TGCCCGTGTCCGAGGACATGCTGGGCCG
109743322 (Allomycesmacrogynus)





AD016
2451
TGCCCGTGTCCGAGGACATGCTGGGCCGC
59283275 (Blastocladiellaemersonii)





AD016
2452
CGTGTCCGAGGACATGCTGGGCCGCA
90612905 (Ophiostomapiliferum)





AD016
2453
ATGGGCGTCAACATGGAGACGGC
59277641 (Blastocladiellaemersonii)





AD016
2454
TGGAGACGGCGCGCTTCTTCA
90611376 (Ophiostomapiliferum)





AD016
2455
TTCCTCAACCTGGCCAACGACCCCAC
90611376 (Ophiostomapiliferum)





AD016
2456
ACCATCGAGCGCATCATCACCCCGCGCCTCGC
59281308 (Blastocladiellaemersonii)





AD016
2457
TCCACCATCTACGAGCGCGCTGG
90368806 (Aureobasidiumpullulans)





AD016
2458
CTGACGATGCCCAACGACGACATCAC
90611301 (Ophiostomapiliferum)





AD016
2459
ATGCCCAACGACGACATCACCCA
59281308 (Blastocladiellaemersonii)





AD016
2460
TGGGTGATGTCGTCGTTGGGCAT
38353161 (Hypocreajecorina)



















TABLE 7-LD







Target ID
SEQ ID NO and DNA Sequence (sense strand) 5′ → 3′ of fragments and concatemer constructs









LD014_F1
SEQ ID NO: 159




TCTAGAATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAA




CGACTTGGTCAGGTCACAAACGCCCGGG







LD014_F2
SEQ ID NO: 160




TCTAGAAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGCCCGGG







LD014_C1
SEQ ID NO: 161




TCTAGAATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAA




CGACTTGGTCAGGTCACAAACGATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTACCGTACTA




GAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCA




CGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGCCCGGG







LD014_C2
SEQ ID NO: 162




TCTAGAAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGAAGATCACGTTCGTACCGT




ACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTT




GGTCAGGTCACAAACGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGAAGATCACG




TTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGCCCGGG




















TABLE 8-LD






Primers Forward
Primers Reverse
dsRNA DNA Sequence (sense strand)


Target ID
5′ → 3′
5′ → 3′
5′ → 3′







LD001
SEQ ID NO: 164
SEQ ID NO: 165
SEQ ID NO: 163



GCGTAATACGACTC
CCTTTGGGGCCAGT
GGCCCCAAGAAGCATTTGAAGCGTTTGAATGCCCCAAAAGCATGGATGTTGG



ACTATAGGGGCCCC
TTGCATC
ATAAATTGGGAGGTGTTTTCGCACCTCGCCCATCTACAGGACCTCACAAATTG



AAGAAGCATTTGAA
SEQ ID NO: 167
CGAGAGTCTTTGCCCTTGGTGATCTTCCTACGTAACCGATTGAAGTATGCTTT



GCG
GCGTAATACGACTC
GACTAACAGCGAAGTTACTAAGATTGTTATGCAAAGGTTAATCAAAGTAGATG



SEQ ID NO: 166
ACTATAGGCCTTTG
GAAAAGTGAGGACCGACTCCAATTACCCTGCTGGGTTTATGGATGTTATTACC



GGCCCCAAGAAGCA
GGGCCAGTTTGCAT
ATTGAAAAAACTGGTGAATTTTTCCGACTCATCTATGATGTTAAAGGACGATTT



TTTGAAGCG
C
GCAGTGCATCGTATTACTGCTGAGGAAGCAAAGTACAAACTATGCAAAGTCAG





GAGGATGCAAACTGGCCCCAAAGG





LD002
SEQ ID NO: 169
SEQ ID NO: 170
SEQ ID NO: 168



GCGTAATACGACTC
AAGCGATTAGAAAA
GTCCACGTCCAAGTTTTTATGGGCTTTCTTAAGAGCTTCAGCTGCATTTTTCAT



ACTATAGGGTCCAC
AAATCAGTTGC
AGATTCCAATACTGTGGTGTTCGTACTAGCTCCCTCCAGAGCTTCTCGTTGAA



GTCCAAGTTTTTATG
SEQ ID NO: 172
GTTCAATAGTAGTTAAAGTGCCATCTATTTGCAACTGATTTTTTTCTAATCGCTT



GGC
GCGTAATACGACTC




SEQ ID NO: 171
ACTATAGGAAGCGA




GTCCACGTCCAAGT
TTAGAAAAAAATCAG




TTTTATGGGC
TTGC






LD003
SEQ ID NO: 174
SEQ ID NO: 175
SEQ ID NO: 173



GCGTAATACGACTC
GGTGACCACCACCG
GGTGACCACCACCGAATGGAGATTTGAGCGAGAAGTCAATATGCTTCTGGGA



ACTATAGGCCCAGG
AATGGAG
ATCAAGTCTCACAATGAAGCTTGGAATATTCACGACCTGCTTACGAACCCTGA



CGACCTTATGAAAA
SEQ ID NO: 177
TATGTCTTTGACGGACCAGCACACGAGCATGATGGATTGATTTTGCAAGCCCC



GGC
GCGTAATACGACTC
AACTTGAAAACTTGTGTTTGGAGACGTCGTTCCAAGAAATCTTCAATCTTCAAA



SEQ ID NO: 176
ACTATAGGGGTGAC
CCCAAGACGTAATCAAGCTTCATACGGGTTTCATCCAACACTCCAATACGCAC



CCCAGGCGACCTTA
CACCACCGAATGGA
CAACCGACGAAGAAGAGCATTGCCTTCAAACAACCTGCGCTGATCTTTCTCTT



TGAAAAGGC
G
CCAAAGTCAGAAGTTCTCTGGCAGCTTTACGGATTTTTGCCAAGGTATACTTG





ACTCGCCACACTTCACGTTTGTTCCTAAGACCATATTCTCCTATGATTTTCAAC





TCCTGATCAAGACGTGCCTTTTCATAAGGTCGCCTGGG





LD006
SEQ ID NO: 179
SEQ ID NO: 180
SEQ ID NO: 178



GCGTAATACGACTC
GCTTCGATTCGGCA
GGTGTTGGTTGCTTCTGGTGTGGTGGAATACATCGACACTCTTGAAGAAGAAA



ACTATAGGGGTGTT
TCTTTATAGG
CTGTCATGATTGCGATGAATCCTGAGGATCTTCGGCAGGACAAAGAATATGCT



GGTTGCTTCTGGTG
SEQ ID NO: 182
TATTGTACGACCTACACCCACTGCGAAATCCACCCGGCCATGATCTTGGGCG



TG
GCGTAATACGACTC
TTTGCGCGTCTATTATACCTTTCCCCGATCATAACCAGAGCCCAAGGAACACC



SEQ ID NO: 181
ACTATAGGGCTTCG
TACCAGAGCGCTATGGGTAAGCAAGCTATGGGGGTCTACATTACGAATTTCCA



GGTGTTGGTTGCTT
ATTCGGCATCTTTAT
CGTGCGGATGGACACCCTGGCCCACGTGCTATACTACCCGCACAAACCTCTG



CTGGTGTG
AGG
GTCACTACCAGGTCTATGGAGTATCTGCGGTTCAGAGAATTACCAGCCGGGA





TCAACAGTATAGTTGCTATTGCTTGTTATACTGGTTATAATCAAGAAGATTCTG





TTATTCTGAACGCGTCTGCTGTGGAAAGAGGATTTTTCCGATCCGTGTTTTAT





CGTTCCTATAAAGATGCCGAATCGAAGC





LD007
SEQ ID NO: 184
SEQ ID NO: 185
SEQ ID NO: 183



GCGTAATACGACTC
CCTTTCAATGTCCAT
GACTGGCGGTTTTGAACACCCTTCAGAAGTTCAGCACGAATGTATTCCTCAAG



ACTATAGGGACTGG
GCCACG
CTGTCATTGGCATGGACATTTTATGTCAAGCCAAATCTGGTATGGGCAAAACG



CGGTTTTGAACACC
SEQ ID NO: 187
GCAGTGTTTGTTCTGGCGACACTGCAACAATTGGAACCAGCGGACAATGTTG



C
GCGTAATACGACTC
TTTACGTTTTGGTGATGTGTCACACTCGTGAACTGGCTTTCCAAATCAGCAAA



SEQ ID NO: 186
ACTATAGGCCTTTCA
GAGTACGAGAGGTTCAGTAAATATATGCCCAGTGTCAAGGTGGGCGTCTTTTT



GACTGGCGGTTTTG
ATGTCCATGCCACG
CGGAGGAATGCCTATTGCTAACGATGAAGAAGTATTGAAAAACAAATGTCCAC



AACACCC

ACATTGTTGTGGGGACGCCTGGGCGTATTTTGGCGCTTGTCAAGTCTAGGAA





GCTAGTCCTCAAGAACCTGAAACACTTCATTCTTGATGAGTGCGATAAAATGT





TAGAACTGTTGGATATGAGGAGAGACGTCCAGGAAATCTACAGAAACACCCC





TCACACCAAGCAAGTGATGATGTTCAGTGCCACACTCAGCAAAGAAATCAGG





CCGGTGTGCAAGAAATTCATGCAAGATCCAATGGAGGTGTATGTAGACGATG





AAGCCAAATTGACGTTGCACGGATTACAACAGCATTACGTTAAACTCAAAGAA





AATGAAAAGAATAAAAAATTATTTGAGTTGCTCGATGTTCTCGAATTTAATCAG





GTGGTCATTTTTGTGAAGTCCGTTCAAAGGTGTGTGGCTTTGGCACAGTTGCT





GACTGAACAGAATTTCCCAGCCATAGGAATTCACAGAGGAATGGACCAGAAA





GAGAGGTTGTCTCGGTATGAGCAGTTCAAAGATTTCCAGAAGAGAATATTGGT





AGCTACGAATCTCTTTGGGCGTGGCATGGACATTGAAAGG





LD010
SEQ ID NO: 189
SEQ ID NO: 190
SEQ ID NO: 188



GCGTAATACGACTC
CTATCGGGTTGGAT
GCTTGTTGCCCCCGAATGCCTTGATAGGGTTGATTACCTTTGGGAAGATGGTC



ACTATAGGGCTTGTT
GGAACTCG
CAAGTGCACGAACTAGGTACCGAGGGCTGCAGCAAATCTTACGTTTTCCGAG



GCCCCCGAATGC
SEQ ID NO: 192
GGACGAAAGACCTCACAGCTAAGCAAGTTCAAGAGATGTTGGAAGTGGGCAG



SEQ ID NO: 191
GCGTAATACGACTC
AGCCGCAGTAAGTGCTCAACCTGCTCCTCAACAACCAGGACAACCCATGAGG



GCTTGTTGCCCCCG
ACTATAGGCTATCG
CCTGGAGCACTCCAGCAAGCTCCTACGCCACCAGGAAGCAGGTTCCTTCAAC



AATGC
GGTTGGATGGAACT
CCATCTCGAAATGCGACATGAACCTCACTGATCTTATTGGAGAGTTGCAAAGA




CG
GACCCATGGCCTGTCCACCAAGGCAAATGCGCCCTTAGATCGACCGGGACA





GCTTTATCGATAGCCATTGGGTTGTTGGAGTGCACATACGCCAATACTGGTGC





CAGGGTCATGCTATTCGTTGGAGGACCTTGCTCTCAAGGCCCTGGTCAAGTC





TTGAATGATGATCTGAAGCAACCTATCAGATCTCACCACGACATCCAAAAAGA





CAATGCCAAATACATGAAGAAAGCAATCAAGCACTATGATAATTTAGCGATGA





GAGCAGCAACGAATGGCCACTGCGTTGACATATATTCATGCGCTTTGGATCA





GACAGGATTGATGGAGATGAAACAGTGTTGTAATTCAACAGGGGGACATATG





GTCATGGGCGACTCGTTCAATTCTTCCCTGTTCAAGCAAACGTTCCAGCGCAT





ATTTTCGAAAGATCAGAAAAACGAGCTGAAGATGGCATTTAATGGTACTCTGG





AGGGTCAAGTGTTCCAGGGAGTTGAAAATTCAAGGCGGTATTGGATCTTGTGT





TTCGTTGAATGTGAAGAATCCTTTGGTTTCCGACACCGAAATAGGAATGGGTA





ACACGGTCCAGTGGAAAATGTGTACGGTAACTCCAAGTACTACCATGGCCTT





GTTCTTCGAGGTCGTCAACCAACATTCCGCTCCCATACCTCAAGGGGGAAGG





GGCTGCATACAGTTCATCACGCAATATCAGCATGCTAGTGGCCAGAAGAGGA





TCCGAGTAACGACAGTTGCTAGAAACTGGGCCGATGCTTCCGCTAATATACAT





CATGTCAGTGCTGGATTCGATCAGGAGGCAGCCGCAGTGATAATGGCGAGGA





TGGCAGTTTACAGAGCGGAATCAGACGATAGCCCTGATGTTTTGAGATGGGT





CGATAGGATGTTGATACGTCTGTGCCAGAAATTCGGCGAATATAACAAGGAC





GACCCGAATTCGTTCCGCTTGGGCGAAAACTTCAGCCTCTACCCGCAGTTCA





TGTACCATTTGAGAAGGTCACAGTTCCTGCAGGTGTTTAACAATTCTCCCGAC





GAAACGTCCTTCTACAGGCACATGCTTATGCGCGAAGACCTCACGCAGTCGC





TGATCATGATCCAGCCGATACTCTACAGCTACAGTTTCAATGGACCACCAGAA





CCTGTGCTTTTGGATACGAGTTCCATCCAACCCGATAG





LD011
SEQ ID NO:194
SEQ ID NO: 195
SEQ ID NO: 193



GCGTAATACGACTC
GGAAAAACGACATT
GCCATAGGAAAGGCTTCTCAAAGTTGTAGTTAGATTTGGCAGAGATATCATAG



ACTATAGGGCCATA
TGTGAAACGTC
TACTGCAAATTCTTCTTCCTATGAAAGACAATACTTTTCGCTTTTACTTTTCTGT



GGAAAGGCTTCTCA
SEQ ID NO: 197
CTTTGATGTCAACCTTGTTCCCGCAAAGTACTATCGGGATATTTTCACAGACTC



AAG
GCGTAATACGACTC
TGACAAGATCTCTGTGCCAATTTGGTACATTCTTGTATGTAACTCTGGAAGTTA



SEQ ID NO: 196
ACTATAGGGGAAAA
CATCAAACATGATAATAGCACACTGTCCCTGAATGTAATATCCATCACGGAGA



GCCATAGGAAAGGC
ACGACATTTGTGAAA
CCACCAAACTTCTCCTGACCGGCAGTGTCCCATACATTGAACCGAATAGGGC



TTCTCAAAG
CGTC
CCCTGTTTGTATGGAAGACCAGAGGATGGACTTCAACTCCCAAAGTAGCTACA





TATCTTTTTTCAAATTCACCAGTCATATGACGTTTCACAAATGTCGTTTTTCC





LD014
SEQ ID NO: 199
SEQ ID NO: 200
SEQ ID NO: 198



GCGTAATACGACTC
GCGAAATCAGCTCC
TTTCATTGAACAAGAGGCAAACGAAAAGGCAGAAGAAATCGATGCCAAGGCC



ACTATAGGTTTCATT
AGACGAGC
GAGGAAGAATTTAATATTGAAAAGGGGCGCCTTGTTCAGCAACAACGTCTCAA



GAACAAGAGGCAAA
SEQ ID NO: 202
GATTATGGAATATTATGAGAAGAAAGAGAAACAGGTCGAACTCCAGAAAAAAA



CG
GCGTAATACGACTC
TCCAATCGTCTAACATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGG



SEQ ID NO: 201
ACTATAGGGCGAAA
GAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGG



TTTCATTGAACAAGA
TCAGCTCCAGACGA
TCACAAACGACCAGGGAAAATATTCCCAAATCCTGGAAAGCCTCATTTTGCAG



GGCAAACG
GC
GGATTATATCAGCTTTTTGAGAAAGATGTTACCATTCGAGTTCGGCCCCAGGA





CCGAGAACTGGTCAAATCCATCATTCCCACCGTCACGAACAAGTATAAAGATG





CCACCGGTAAGGACATCCATCTGAAAATTGATGACGAAATCCATCTGTCCCAA





GAAACCACCGGGGGAATCGACCTGCTGGCGCAGAAAAACAAAATCAAGATCA





GCAATACTATGGAGGCTCGTCTGGAGCTGATTTCGC





LD014_F1
SEQ ID NO: 204
SEQ ID NO: 205
SEQ ID NO: 203



GCGTAATACGACTC
CGTTTGTGACCTGA
ATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCG



ACTATAGGATGTTGA
CCAAGTC
TACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACG



ATCAGGCTCGATTG
SEQ ID NO: 207




SEQ ID NO: 206
GCGTAATACGACTC




ATGTTGAATCAGGC
ACTATAGGCGTTTGT




TCGATTG
GACCTGACCAAGTC






LD014_F2
SEQ ID NO: 209
SEQ ID NO: 210
SEQ ID NO: 208



GCGTAATACGACTC
CGTTTGTGACCTGA
AAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGT



ACTATAGGAAGATC
CCAAG
CACAAACG



ACGTTCGTACCGTA
SEQ ID NO: 212




C
GCGTAATACGACTC




SEQ ID NO: 211
ACTATAGGCGTTTGT




AAGATCACGTTCGT
GACCTGACCAAG




ACCGTAC







LD014_C1


SEQ ID NO: 213





AATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTC





GTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGATGT





TGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTACC





GTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGATGTTGAAT





CAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTACCGTACT





AGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGC





LD014_C2


SEQ ID NO: 214





AAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGG





TCACAAACGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACT





TGGTCAGGTCACAAACGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGT





AAACGACTTGGTCAGGTCACAAACGAAGATCACGTTCGTACCGTACTAGAGG





AGGCGCGTAAACGACTTGGTCAGGTCACAAACGAAGATCACGTTCGTACCGT





ACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGC





LD015
SEQ ID NO: 216
SEQ ID NO: 217
SEQ ID NO: 215



GCGTAATACGACTC
CTATCGGCGTGAAG
CGCCGGAGAGTTTTTGTCAGCTTCTTCAAAAGCTTTGCGCAAGTTACTCTCAG



ACTATAGGCGCCGG
CCCCC
ACTCGCCAGCGAGTTTGCTCATGATCTCCGGCCCGTTTATCAAGAAGAAGAA



AGAGTTTTTGTCAGC
SEQ ID NO 219
CGCCCCAGTCTCATTAGCCACGGCGCGAGCAATCAGGGTCTTACCCGTACCA



SEQ ID NO: 218
GCGTAATACGACTC
GGGGGACCATACAGCAGTATACCCCTAGGGGGCTTCACGCCGATAG



CGCCGGAGAGTTTT
ACTATAGGCTATCG




TGTCAGC
GCGTGAAGCCCCC






LD016
SEQ ID NO: 221
SEQ ID NO: 222
SEQ ID NO: 220



GCGTAATACGACTC
GGTAATCCTCGAAG
GGCATAGTCAATATAGGAATCTGGGTGATGGATCCGTTACGTCCTTCAACACG



ACTATAGGGGCATA
ATGTTAAGTTCC
GCCGGCACGTTCATAGATGGTAGCTAAATCGGTGTACATGTAACCTGGGAAA



GTCAATATAGGAATC
SEQ ID NO: 224
CCACGACGACCAGGCACCTCTTCTCTGGCAGCAGATACCTCACGCAAAGCTT



TGGGTG
GCGTAATACGACTC
CTGCATACGAAGACATATCTGTCAAGATGACCAAGACGTGCTTCTCACATTGG



SEQ ID NO: 223
ACTATAGGGGTAAT
TAAGCCAAGAATTCGGCAGCTGTCAAAGCCAGACGAGGTGTAATAATTCTTTC



GGCATAGTCAATATA
CCTCGAAGATGTTA
AATGGTAGGATCGTTGGCCAAATTCAAGAACAGGCAGACATTCTCCATAGAAC



GGAATCTGGGTG
AGTTCC
CGTTCTCTTCGAAATCCTGTTTGAAGAACCTAGCTGTTTCCATGTTAACACCCA





TAGCAGCGAAAACAATAGCAAAGTTATCTTCATGATCATCAAGTACAGATTTAC





CAGGAATCTTGACTAAACCAGCCTGTCTACAGATCTGGGCAGCAATTTCATTG





TGAGGCAGACCAGCTGCAGAGAAAATGGGGATCTTCTGACCACGAGCAATGG





AGTTCATCACGTCAATAGCTGTAATACCCGTCTGGATCATTTCCTCAGGATAG





ATACGGGACCACGGATTGATTGGTTGACCCTGGATGTCCAAGAAGTCTTCAG





CCAAAATTGGGGGACCTTTGTCGATGGGTTTTCCTGATCCATTGAAAACACGT





CCCAACATATCTTCAGAAACAGGAGTCCTCAAAATATCTCCTGTGAATTCACAA





GCGGTGTTTTTGGCGTCGATTCCTGATGTGCCCTCGAACACTTGAACCACAG





CTTTTGACCCACTGACTTCCAGAACTTGTCCCGAACGTATAGTGCCATCAGCC





AGTTTGAGTTGTACGATTTCATTGTACTTGGGGAACTTAACATCTTCGAGGATT





ACC





LD018
SEQ ID NO: 226
SEQ ID NO: 227
SEQ ID NO: 225



GCGTAATACGACTC
GTAGAGGCTCCACC
GGAGTCGCAGAAATACGAGAGCACCTTCTCGAACAACCAAGCCTCCTTGAGG



ACTATAGGGGAGTC
GTCAATCGC
GTAAAACAAGCCCAGTCTGAGGACTCGGGACACTACACTTTGTTGGCGGAGA



GCAGAAATACGAGA
SEQ ID NO: 229
ACCCTCAAGGCTGCATAGTGTCATCTGCTTACTTAGCCATAGAACCGGTAACC



GCAC
GCGTAATACGACTC
ACCCAGGAAGGGTTGATCCACGAGTCCACCTTCAAGCAGCAACAGACCGAAA



SEQ ID NO: 228
ACTATAGGGTAGAG
TGGAGCAAATCGACACCAGCAAGACCTTGGCGCCTAACTTCGTCAGGGTTTG



GGAGTCGCAGAAAT
GCTCCACCGTCAAT
CGGGGATAGAGACGTGACCGAGGGCAAGATGACCCGCTTCGACTGTCGCGT



ACGAGAGCAC
CGC
CACTGGTCGTCCTTATCCAGACGTGACATGGTACATAAACGGTCGACAAGTCA





CCGACGACCACAACCACAAGATTTTGGTTAACGAATCCGGAAACCATGCCCT





GATGATCACCACCGTGAGCAGGAACGACTCAGGAGTAGTGACCTGCGTCGC





CAGGAACAAGACGGGAGAAACCTCCTTCCAGTGCAACCTTAACGTCATCGAA





AAGGAACAGGTAGTCGCGCCCAAGTTCGTGGAGAGATTTACCACAGTCAACG





TGGCAGAAGGAGAACCAGTGTCTCTGCGCGCTAGAGCTGTTGGCACGCCGG





TGCCGCGAATCACTTGGCAGAGGGACGGGGCGCCCCTAGCCAGCGGGCCC





GACGTTCGCATCGCGATTGACGGTGGAGCCTCTAC





LD027
SEQ ID NO: 231
SEQ ID NO: 232
SEQ ID NO: 230



GCGTAATACGACTC
TCGGACAGACTCGT
GGGAGCAGACGATCGGTTGGTTAAAATCTGGGACTATCAAAACAAAACGTGT



ACTATAGGGGGAGC
TCATTTCCC
GTCCAAACCTTGGAAGGACACGCCCAAAACGTAACCGCGGTTTGTTTCCACC



AGACGATCGGTTGG
SEQ ID NO: 234
CTGAACTACCTGTGGCTCTCACAGGCAGCGAAGATGGTACCGTTAGAGTTTG



SEQ ID NO: 233
GCGTAATACGACTC
GCATACGAATACACACAGATTAGAGAATTGTTTGAATTATGGGTTCGAGAGAG



GGGAGCAGACGATC
ACTATAGGTCGGAC
TGTGGACCATTTGTTGCTTGAAGGGTTCGAATAATGTTTCTCTGGGGTATGAC



GGTTGG
AGACTCGTTCATTTC
GAGGGCAGTATATTAGTGAAAGTTGGAAGAGAAGAACCGGCAGTTAGTATGG




CC
ATGCCAGTGGCGGTAAAATAATTTGGGCAAGGCACTCGGAATTACAACAAGC





TAATTTGAAGGCGCTGCCAGAAGGTGGAGAAATAAGAGATGGGGAGCGTTTA





CCTGTCTCTGTAAAAGATATGGGAGCATGTGAAATATACCCTCAAACAATCCA





ACATAATCCGAATGGAAGATTCGTTGTAGTATGCGGAGACGGCGAATATATCA





TTTACACAGCGATGGCTCTACGGAACAAGGCTTTTGGAAGCGCTCAAGAGTTT





GTCTGGGCTCAGGACTCCAGCGAGTATGCCATTCGCGAGTCTGGTTCCACAA





TTCGGATATTCAAAAACTTCAAAGAAAGGAAGAACTTCAAGTCGGATTTCAGC





GCGGAAGGAATCTACGGGGGTTTTCTCTTGGGGATTAAATCGGTGTCCGGTT





TAACGTTTTACGATTGGGAAACTTTGGACTTGGTGAGACGGATTGAAATACAA





CCGAGGGCGGTTTATTGGTCTGACAGTGGAAAATTAGTCTGTCTCGCAACGG





AGGACAGCTACTTCATCCTTTCTTATGATTCGGAGCAAGTTCAGAAGGCCAGG





GAGAACAATCAAGTCGCAGAGGATGGCGTAGAGGCCGCTTTCGATGTGTTGG





GGGAAATGAACGAGTCTGTCCGA





gfp
SEQ ID NO: 236
SEQ ID NO: 237
SEQ ID NO: 235



GCGTAATACGACTC
CAATTTGTGTCCAAG
AGATACCCAGATCATATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGA



ACTATAGGAGATAC
AATGTTTCC
AGGTTATGTACAGGAAAGAACTATATTTTTCAAAGATGACGGGAACTACAAGA



CCAGATCATATGAAA
SEQ ID NO: 239
CACGTAAGTTTAAACAGTTCGGTACTAACTAACCATACATATTTAAATTTTCAG



CGG
GCGTAATACGACTC
GTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATAGAATCGAGTTAAAA



SEQ ID NO: 238
ACTATAGGCAATTTG
GGTATTGATTTTAAAGAAGATGGAAACATTCTTGGACACAAATTG



AGATACCCAGATCA
TGTCCAAGAATGTTT




TATGAAACGG
CC



















TABLE 8-PC





Target
Primers Forward
Primers Reverse
dsRNA DNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







PC001
SEQ ID NO: 474
SEQ ID NO: 475
SEQ ID NO: 473



GCATGGATGTTGGA
GCGTAATACGACTC
GCATGGATGTTGGACAAATTGGGGGGTGTCTTCGCCCCTCGTCCATCCACCGGG



CAAATTGGG
ACTATAGGAGATTCA
CCTCACAAGTTGCGCGAATCCCTGCCTTTAGTGATTTTCCTTCGTAACAGGCTGAA



SEQ ID NO: 476
AATTTGATGTAGTCA
GTATGCCCTTACAAACAGTGAAGTCACTAAAATTGTCATGCAAAGGTTGATCAAAG



GCGTAATACGACTC
AGAATTTTAG
TTGATGGTAAAGTGAGGACTGATTCTAATTACCCTGCTGGTTTCATGGATGTCATT



ACTATAGGGCATGG
SEQ ID NO: 477
ACTATTGAGAAGACTGGTGAATTTTTCCGTCTGATCTATGATGTTAAAGGAAGATT



ATGTTGGACAAATTG
AGATTCAAATTTGAT
TGCTGTGCACCGTATTACAGCTGAAGAGGCAAAATACAAGTTGTGTAAAGTAAGG



GG
GTAGTCAAGAATTTT
AGAGTCCAAACTGGTCCCAAAGGAATCCCATTTTTGGTAACACATGATGGCAGAA




AG
CCATTCGTTACCCTGACCCCAACATCAAAGTGAATGACACAATTCAAATGGAAATT





GCTACATCTAAAATTCTTGACTACATCAAATTTGAATCT





PC003
SEQ ID NO: 479
SEQ ID NO: 480
SEQ ID NO: 478



CCCTAGACGTCCCT
GCGTAATACGACTC
CCCTAGACGTCCCTATGAAAAGGCCCGTCTGGATCAGGAATTGAAAATTATCGGC



ATGAAAAGGCCC
ACTATAGGTTGACA
GCCTTTGGTTTACGAAACAAACGTGAAGTGTGGAGAGTAAAGTACACTTTGGCTA



SEQ ID NO: 481
CGGCCAGGTCGGC
AAATCCGTAAAGCTGCTCGTGAACTGCTCACCCTAGAAGAAAAAGAGCCTAAAAG



GCGTAATACGACTC
CACC
ATTGTTTGAAGGTAATGCACTTCTACGTCGTTTGGTGCGAATTGGTGTTCTGGATG



ACTATAGGCCCTAG
SEQ ID NO: 482
AGAACAGGATGAAGCTTGATTATGTTTTGGGTCTGAAAATTGAAGATTTCTTGGAA



ACGTCCCTATGAAA
TTGACACGGCCAGG
AGAAGGCTCCAAACTCAGGTGTTCAAATCTGGTCTGGCAAAGTCAATTCATCATG



AGGCCC
TCGGCCACC
CTAGAGTACTGATTAGGCAGAGACACATCCGGGTGCGCAAGCAGGTGGTGAACA





TCCCCTCGTTCATCGTGCGGCTGGACTCGCAGAAGCACATCGACTTCTCCCTGAA





GTCGCCCTTCGGGGGTGGCCGACCTGGCCGTGTCAA





PC005
SEQ ID NO: 484
SEQ ID NO: 485
SEQ ID NO: 483



ATCCTAATGAAATCA
GCGTAATACGACTC
ATCCTAATGAAATCAACGAAATCGCCAACACCAACTCAAGACAAAACATCCGTAAG



ACGAAATCGCC
ACTATAGGTTCCCTA
CTCATCAAGGATGGTCTTATCATCAAGAAGCCAGTGGCAGTACACTCTAGGGCCC



SEQ ID NO: 486
CGTTCCCTGGCCTG
GTGTACGCAAGAACACTGAAGCTAGAAGGAAGGGAAGGCATTGTGGATTTGGAAA



GCGTAATACGACTC
CTTC
GAGGAAGGGTACGGCAAATGCCCGTATGCCTCAAAAGGAACTGTGGGTGCAGCG



ACTATAGGATCCTAA
SEQ ID NO: 487
CATGCGCGTCCTCAGGCGCCTCCTCAAAAAGTACAGGGAGGCCAAGAAAATCGA



TGAAATCAACGAAAT
TTCCCTACGTTCCCT
CCGCCATCTTTACCACGCCCTGTACATGAAAGCGAAGGGTAACGTGTTCAGGAAC



CGCC
GGCCTGCTTC
AAGAGGGTCCTTATGGAGTACATCCACAAGAAGAAGGCAGAGAAGGCCAGGGCC





AAGATGCTGTCTGACCAGGCTAACGCCAGGAGATTGAAGGTGAAGCAGGCCAGG





GAACGTAGGGAA





PC010
SEQ ID NO: 489
SEQ ID NO: 490
SEQ ID NO: 488



GCTCAGCCTATTAC
GCGTAATACGACTC
GCTCAGCCTATTACCGCCCAACGCGTTGATTGGATTGATCACGTTCGGAAAAATG



CGCCCAACGC
ACTATAGGATGGAA
GTGCAAGTCCACGAACTGGGTACCGAAGGCTGCAGCAAGTCGTACGTGTTCTGT



SEQ ID NO: 491
AATGAGTATCTGGA
GGAACGAAAGATCTCACCGCCAAGCAAGTCCAGGAGATGTTGGGCATTGGAAAA



GCGTAATACGACTC
AGAAAG
GGGTCACCAAATCCCCAACAACAGCCAGGGCAACCTGGGCGGCCAGGGCAGAAT



ACTATAGGGCTCAG
SEQ ID NO: 492
CCCCAAGCTGCCCCTGTACCACCGGGGAGCAGATTCTTGCAGCCCGTGTCAAAA



CCTATTACCGCCCA
ATGGAAAATGAGTAT
TGCGACATGAACTTGACAGATCTGATCGGGGAGTTGCAGAAAGACCCTTGGCCC



ACGC
CTGGAAGAAAG
GTACATCAGGGCAAAAGACCTCTTAGATCCACAGGCGCAGCATTGTCCATCGCTG





TCGGCCTCTTAGAATGCACCTATCCGAATACGGGTGGCAGAATCATGATATTCTTA





GGAGGACCATGCTCTCAGGGTCCCGGCCAGGTGTTGAACGACGATTTGAAGCAG





CCCATCAGGTCCCATCATGACATACACAAAGACAATGCCAAGTACATGAAGAAGG





CTATCAAACATTACGATCACTTGGCAATGCGAGCTGCCACCAACAGCCATTGCAT





CGACATTTACTCCTGCGCCCTGGATCAGACGGGACTGATGGAGATGAAGCAGTG





CTGCAATTCCACCGGAGGGCACATGGTCATGGGCGATTCCTTCAATTCCTCTCTA





TTCAAACAAACCTTCCAGCGAGTGTTCTCAAAAGACCCGAAGAACGACCTCAAGA





TGGCGTTCAACGCCACCTTGGAGGTGAAGTGTTCCAGGGAGTTAAAAGTCCAAG





GGGGCATCGGCTCGTGCGTGTCCTTGAACGTTAAAAGCCCTCTGGTTTCCGATAC





GGAACTAGGCATGGGGAATACTGTGCAGTGGAAACTTTGCACGTTGGCGCCGAG





CTCTACTGTGGCGCTGTTCTTCGAGGTGGTTAACCAGCATTCGGCGCCCATACCA





CAGGGAGGCAGGGGCTGCATCCAGCTCATCACCCAGTATCAGCACGCGAGCGG





GCAAAGGAGGATCAGAGTGACCACGATTGCTAGAAATTGGGCGGACGCTACTGC





CAACATCCACCACATTAGCGCTGGCTTCGACCAAGAAGCGGCGGCAGTTGTGAT





GGCCCGAATGGCCGGTTACAAGGCGGAATCGGACGAGACTCCCGACGTGCTCA





GATGGGTGGACAGGATGTTGATCAGGCTGTGCCAGAAGTTCGGAGAGTACAATA





AAGACGATCCGAATTCGTTCAGGTTGGGGGAGAACTTCAGTCTGTATCCGCAGTT





CATGTACCATTTGAGACGGTCGCAGTTTCTGCAGGTGTTCAATAATTCTCCTGATG





AAACGTCGTTTTATAGGCACATGCTGATGCGTGAGGATTTGACTCAGTCTTTGATC





ATGATCCAGCCGATTTTGTACAGTTACAGCTTCAACGGGCCGCCCGAGCCTGTGT





TGTTGGACACAAGCTCTATTCAGCCGGATAGAATCCTGCTCATGGACACTTTCTTC





CAGATACTCATTTTCCAT





PC014
SEQ ID NO: 494
SEQ ID NO: 495
SEQ ID NO: 493



CTGATGTTCAAAAAC
GCGTAATACGACTC
CTGATGTTCAAAAACAAATCAAACACATGATGGCTTTCATTGAACAAGAAGCCAAT



AAATCAAACACATG
ACTATAGGTGAGCG
GAGAAAGCAGAAGAAATTGATGCCAAGGCAGAGGAGGAATTCAACATTGAAAAAG



SEQ ID NO: 496
ATCAGATCCAACCTA
GGCGTTTGGTCCAGCAACAGAGACTCAAGATCATGGAGTACTACGAGAAAAAGGA



GCGTAATACGACTC
GCCTCC
GAAGCAAGTCGAACTTCAAAAGAAAATTCAGTCCTCTAATATGTTGAATCAGGCTC



ACTATAGGCTGATG
SEQ ID NO: 497
GTTTGAAGGTGCTGAAAGTGAGAGAGGACCATGTCAGAGCAGTCCTGGAGGATG



TTCAAAAACAAATCA
TGAGCGATCAGATC
CTCGTAAAAGTCTTGGTGAAGTAACCAAAGACCAAGGAAAATACTCCCAAATTTTG



AACACATG
CAACCTAGCCTCC
GAGAGCCTAATCCTACAAGGACTGTTCCAGCTGTTCGAGAAGGAGGTGACGGTC





CGCGTGAGACCGCAAGACAGGGACCTGGTCAGGTCCATCCTGCCCAACGTCGCT





GCCAAATACAAGGACGCCACCGGCAAAGACATCCTACTCAAGGTGGACGATGAG





TCGCACCTGTCTCAGGAGATCACCGGAGGCGTCGATTTGCTCGCTCAGAAGAAC





AAGATCAAGATCAGCAACACGATGGAGGCTAGGTTGGATCTGATCGCTCA





PC016
SEQ ID NO: 499
SEQ ID NO: 500
SEQ ID NO: 498



ACTGGTCATTCTTGA
GCGTAATACGACTC
ACTGGTCATTCTTGAGGATGTCAAGTTTCCAAAATTCAATGAAATTGTCCAGCTCA



GGATGTCAAGT
ACTATAGGTTGGGC
AATTGGCAGATGGAACTCTACGATCTGGACAAGTTTTGGAAGTCAGTGGATCAAA



SEQ ID NO: 501
ATAGTCAAGATGGG
GGCAGTTGTTCAGGTATTTGAAGGCACATCAGGTATTGATGCTAAGAACACGGTG



GCGTAATACGACTC
GATCTGC
TGTGAGTTCACTGGAGATATTCTAAGAACTCCAGTATCAGAAGATATGCTGGGAC



ACTATAGGACTGGT
SEQ ID NO: 502
GTGTCTTCAATGGATCAGGAAAACCCATTGATAAAGGTCCCCCGATCCTGGCTGA



CATTCTTGAGGATGT
TTGGGCATAGTCAA
GGACTACCTCGACATCCAAGGACAGCCGATCAACCCGTGGTCGCGTATTTATCCC



CAAGT
GATGGGGATCTGC
GAGGAAATGATCCAGACTGGGATCACGGCCATCGACGTGATGAACTCTATCGCCA





GAGGGCAGAAGATTCCGATCTTCTCCGCCGCTGGGCTGCCCCACAATGAGATTG





CAGCCCAGATTTGTAGGCAGGCTGGCTTGGTCAAAGTACCTGGCAAGTCTGTGCT





GGATGACCATGAAGACAACTTTGCTATTGTGTTTGCTGCTATGGGTGTCAACATG





GAAACTGCCAGGTTCTTCAAGCAGGACTTCGAAGAGAACGGCTCGATGGAGAAC





GTGTGTCTGTTCTTGAACTTGGCCAACGATCCGACCATCGAGCGCATCATCACGC





CGCGTTTGGCTCTGACGGCCGCCGAATTCTTGGCCTACCAGTGCGAGAAGCACG





TGCTGGTCATCTTGACCGACATGTCGTCGTACGCGGAGGCGTTGCGTGAGGTGT





CTGCCGCTCGAGAAGAAGTGCCCGGCCGTAGGGGTTTCCCCGGTTACATGTACA





CCGATCTGGCCACCATTTACGAGCGCGCCGGTCGTGTGGAGGGCCGCAACGGC





TCCATCACGCAGATCCCCATCTTGACTATGCCCAA





PC027
SEQ ID NO: 504
SEQ ID NO: 505
SEQ ID NO: 503



CAAGCTAACTTGAAA
GCGTAATACGACTC
CAAGCTAACTTGAAAGTACTACCAGAAGGAGCTGAAATCAGAGATGGAGAACGTT



GTACTACCAGAAGG
ACTATAGGTTTTGGA
TGCCAGTCACAGTAAAGGACATGGGAGCATGCGAGATTTACCCACAAACAATCCA



SEQ ID NO: 506
ATTGAAGGCAATACT
ACACAACCCCAATGGGCGGTTTGTAGTGGTTTGTGGTGATGGAGAATACATAATA



GCGTAATACGACTC
CGATCAG
TACACGGCTATGGCCCTTCGTAACAAAGCATTTGGTAGCGCTCAAGAATTTGTATG



ACTATAGGCAAGCT
SEQ ID NO: 507
GGCACAGGACTCCAGTGAATATGCCATCCGCGAATCCGGATCCACCATTCGAATC



AACTTGAAAGTACTA
TTTTGGAATTGAAGG
TTCAAGAATTTCAAAGAAAAAAAGAATTTCAAGTCCGACTTTGGTGCCGAAGGAAT



CCAGAAGG
CAATACTCGATCAG
CTATGGTGGTTTTCTCTTGGGTGTGAAATCAGTTTCTGGCTTAGCTTTCTATGACT





GGGAAACGCTTGAGTTAGTAAGGCGCATTGAAATACAGCCTAGAGCTATCTACTG





GTCAGATAGTGGCAAGTTGGTATGCCTTGCTACCGAAGATAGCTATTTCATATTGT





CCTATGACTCTGACCAAGTCCAGAAAGCTAGAGATAACAACCAAGTTGCTGAAGA





TGGAGTGGAGGCTGCCTTTGATGTCCTAGGTGAAATAAATGAATCCGTAAGAACA





GGTCTTTGGGTAGGAGACTGCTTCATTTACACAAACGCAGTCAACCGTATCAACTA





CTTTGTGGGTGGTGAATTGGTAACTATTGCACATCTGGACCGTCCTCTATATGTCC





TGGGCTATGTACCTAGAGATGACAGGTTATACTTGGTTGATAAAGAGTTAGGAGTA





GTCAGCTATCNAATTGCTATTATCTGTACTCGAATATCAGACTGCAGTCATGCGAC





GAGACTTCCCAACGGCTGATCGAGTATTGCCTTCAATTCCAAAA



















TABLE 8-EV





Target
Primers Forward
Primers Reverse
dsRNA DNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







EV005
SEQ ID NO: 577
SEQ ID NO: 578
SEQ ID NO: 576



GACAAAACATCCGC
GCGTAATACGACTC
GACAAAACATCCGCAAACTGATTAAAGATGGTCTTATTATTAAAAAGCCTGTCGCG



AAACTG
ACTATAGGCTCCTT
GTGCATTCTCGTGCACGTGTACGCAAAAATACTGAAGCCCGCAGGAAAGGTCGTC



SEQ ID NO: 579
GCATCAGCTTGATC
ATTGTGGATTTGGTAAAAGGAAAGGAACTGCAAATGCTAGGATGCCCAGAAAGGA



GCGTAATACGACTC
SEQ ID NO: 580
ATTATGGATTCAACGTATGAGAGTTCTCAGAAGGTTATTGAAGAAATATAGGGAAG



ACTATAGGGACAAA
CTCCTTGCATCAGC
CTAAGAAAATTGATAGGCATTTATACCATGCTTTATATATGAAAGCTAAGGGAAAT



ACATCCGCAAACTG
TTGATC
GTATTCAAGAATAAGAGAGTAATGATGGACTATATCCATAAAAAGAAGGCGGAGAA





AGCACGTACAAAGATGCTCAATGATCAAGCTGATGCAAGGAG





EV009
SEQ ID NO: 582
SEQ ID NO: 583
SEQ ID NO: 581



CAGGACTGAAGAAT
GCGTAATACGACTC
CAGGACTGAAGAATCTATAATAGGAACAAACCCAGGAATGGGTTTTAGGCCAATG



CTATAATAGG
ACTATAGGCTGGAA
CCCGACAACAACGAAGAAAGTACCCTGATTTGGTTACAGGGTTCTAATAAAACAAA



SEQ ID NO: 584
AGATGGGTAATACTT
CTACGAAAAATGGAAAATGAATCTCCTCTCATATTTAGACAAGTATTACACTCCCG



GCGTAATACGACTC
C
GAAAAATAGAAAAGGGAAATATTCCAGTAAAGCGCTGTTCATACGGAGAAAAATTG



ACTATAGGCAGGAC
SEQ ID NO: 585
ATTAGGGGACAAGTATGTGATGTAGATGTGAGGAAATGGGAGCCGTGCACCCCG



TGAAGAATCTATAAT
CTGGAAAGATGGGT
GAAAATCATTTTGATTACCTCAGAAATGCGCCTTGTATATTTCTGAAGCTGAACAG



AGG
AATACTTC
GATATATGGATGGGAACCGGAGTACTACAACGATCCAAATGATCTTCCAGATGAT





ATGCCGCAGCAGTTGAAGGACCATATACGTTATAATATCACCAATCCAGTGGAGA





GAAATACCGTCTGGGTAACATGCGCAGGTGAAAATCCGGCAGACGTGGAGTACTT





GGGCCCTGTGAAGTATTACCCATCTTTCCAG





EV010
SEQ ID NO: 587
SEQ ID NO: 588
SEQ ID NO: 586



CCAATGGAGACTTG
GCGTAATACGACTC
CCAATGGAGACTTGAAGATGTCCTTCAACGCCATATTAGAAGTGAAGTGTTCTAGA



AAGATGTC
ACTATAGGCTTCCCT
GAACTTAAAGTACAAGGAGGTATAGGTCCTTGTGTCTCTCTAAATGTCAAAAATCC



SEQ ID NO: 589
CATCAACATGTGC
TCTTGTTTCTGATTTAGAAATAGGCATGGGTAACACAGTTCAGTGGAAACTGTGTA



GCGTAATACGACTC
SEQ ID NO: 590
GCTTAAGTCCAAGCACTACGGTTGCCTTATTTTTCGAAGTTGTTAATCAGCATGCA



ACTATAGGCCAATG
CTTCCCTCATCAACA
GCACCCATTCCTCAAGGGGGACGTGGATGCATTCAGTTTATTACTCAATATCAGC



GAGACTTGAAGATG
TGTGC
ATTCAAGTGGTCAGAAAAAAATAAGGGTAACTACAATAGCAAGAAATTGGGCGGA



TC

TGCCACTGCAAATATTCACCATATTAGCGCTGGCTTTGACGAACAAACTGCGGCT





GTTTTAATGGCGAGGATCGCTGTATATAGAGCAGAAACTGATGAGAGTTCAGATG





TTCTCAGATGGGTTGACAGAATGTTGATACGATTGTGTCAGAAATTTGGAGAATAT





AACAAAGATGACACCAACAGCTTCAGGCTCAGTGAAAACTTCAGCTTATATCCACA





GTTTATGTATCATCTACGTCGTTCCCAATTTCTACAAGTGTTCAATAATTCACCAGA





TGAAACTTCATTCTATAGGCACATGTTGATGAGGGAAG





EV015
SEQ ID NO: 592
SEQ ID NO: 593
SEQ ID NO: 591



GTTAAGCCTCCAAG
GCGTAATACGACTC
GTTAAGCCTCCAAGGGGTATTCTCCTTTACGGGCCTCCCGGCACGGGGAAAACG



GGGTATTC
ACTATAGGGAGCAC
CTGATCGCCAGGGCCGTTGCCAACGAAACTGGTGCGTTCTTCTTCCTCATCAATG



SEQ ID NO: 594
AAAGAAGCCAAGTC
GGCCCGAGATTATGAGCAAGCTGGCCGGAGAATCCGAGAGCAATCTTAGAAAGG



GCGTAATACGACTC
AG
CTTTTGAAGAGGCTGATAAAAACTCTCCTGCAATCATCTTTATCGACGAATTAGAC



ACTATAGGGTTAAG
SEQ ID NO: 595
GCAATCGCTCCCAAGCGCGAGAAGACTCATGGTGAGGTAGAGAGACGCATCGTC



CCTCCAAGGGGTAT
GAGCACAAAGAAGC
TCCCAACTGTTGACTTTGATGGACGGCATGAAGAAAAGTTCCCATGTGATCGTGA



TC
CAAGTCAG
TGGCGGCCACGAACAGGCCCAATTCCATCGACCCTGCACTCAGACGTTTCGGCC





GATTCGACAGAGAGATCGACATCGGTATCCCCGACGCTACTGGAAGATTAGAAGT





ACTCAGAATACACACCAAAAACATGAAATTGGCTGACGATGTAGATTTGGAACAGA





TTGCCGCAGAGACTCACGGTCATGTAGGTGCTGACTTGGCTTCTTTGTGCTC





EV016
SEQ ID NO: 597
SEQ ID NO: 598
SEQ ID NO: 596



GGTGATCCTTGATA
GCGTAATACGACTC
GGTGATCCTTGATAGTGTTAAGTTTCCAAAATTTAACGAAATTGTACAGCTCAAGTT



GTGTTAAG
ACTATAGGCCTCAG
ATCAGATGGAACAGTTAGGTCTGGACAAGTTTTGGAAGTCAGTGGACAGAAGGCG



SEQ ID NO: 599
CATAAGATGACATG
GTTGTCCAAGTTTTTGAAGGCACCTCCGGAATTGATGCTAAAAACACTTTATGTGA



GCGTAATACGACTC
SEQ ID NO: 600
ATTTACAGGAGATATCTTAAGAACTCCAGTGTCTGAAGATATGTTGGGTCGTGTGT



ACTATAGGGGTGAT
CCTCAGCATAAGAT
TTAATGGATCTGGAAAGCCTATCGATAAAGGGCCGCCAATCTTAGCTGAAGATTTT



CCTTGATAGTGTTAA
GACATG
CTTGACATTCAAGGTCAACCTATAAATCCTTGGTCTCGTATCTATCCAGAAGAAAT



G

GATCCAGACTGGTATTTCTGCGATTGATGTGATGAATTCCATTGCCAGAGGACAAA





AGATTCCAATTTTCTCTGCAGCTGGTTTACCCCACAATGAAATCGCTGCTCAAATC





TGTAGACAAGCTGGTCTTGTCAAAATCCCAGGGAAATCTGTCTTAGATGATCATGA





AGACAACTTTGCTATCGTTTTCGCCGCTATGGGTGTCAATATGGAAACAGCCAGAT





TCTTCAAGCAAGATTTTGAAGAGAATGGCTCTATGGAAAATGTGTGCCTATTTTTG





AACTTGGCCAATGATCCTACCATTGAAAGAATTATAACACCCCGTTTGACTTTAAC





AGCGGCTGAATTTATGGCATATCAATGTGAGAAGCATGTGTTAGTCATATTGACTG





ACATGTCATCTTATGCTGAGG



















TABLE 8-AG





Target
Primers Forward
Primers Reverse
dsRNA DNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







AG001
SEQ ID NO: 769
SEQ ID NO: 770
SEQ ID NO: 768



GCGTAATACGACTC
GATTTCCAGTTGGAT
GCATGGATGTTGGACAAATTGGGGGGTGTGTTCGCCCCCAGGCCCTCCACCGGG



ACTATAGGGCATGG
GGTGTCG
CCACACAAGCTCAGGGAGTCCCTTCCATTAGTGATTTTCTTGCGTAACAGGTTGAA



ATGTTGGACAAATTG
SEQ ID NO: 772
GTACGCCCTGACAAACTGTGAGGTGACCAAGATCGTTATGCAGAGACTTATTAAG



G
GCGTAATACGACTC
GTCGACGGCAAAGTCAGGACTGATCCTAACTATCCTGCTGGATTCATGGATGTGA



SEQ ID NO: 771
ACTATAGGGATTTCC
TCACCATTGAAAAAACTGGTGAATTCTTCCGTTTGATCTATGATGTTAAGGGAAGA



GCATGGATGTTGGA
AGTTGGATGGTGTC
TTCACTATTCACAGGATCACTGCTGAAGAAGCAAAATACAAATTGTGCAAAGTCCG



CAAATTGG
G
CAAGGTGCAAACCGGACCAAAAGGTATTCCATTCTTGGTCACCCACGATGGTAGG





ACCATTAGGTACCCTGACCCAATGATCAAGGTAAACGACACCATCCAACTGGAAA





TC





AG005
SEQ ID NO: 774
SEQ ID NO: 775
SEQ ID NO: 773



GCGTAATACGACTC
CCTTTTGCCTTCTGG
CAACACCAACTCGAGGCAAAACATCCGTAAATTGATCAAGGATGGTTTGATCATTA



ACTATAGGCAACAC
CGTTAG
AGAAACCGGTGGCAGTGCACTCTAGGGCTCGTGTCCGTAAAAACACAGAAGCTC



CAACTCGAGGCAAA
SEQ ID NO: 777
GCAGGAAGGGAAGGCACTGCGGTTTCGGTAAGAGGAAAGGTACAGCGAACGCTC



AC
GCGTAATACGACTC
GTATGCCTCAAAAGGAACTATGGATCCAAAGGATGCGTGTCTTGAGGCGTCTCCT



SEQ ID NO: 776
ACTATAGGCCTTTTG
GAAAAAATACAGGGAAGCCAAAAAGATCGACAGGCATCTGTACCACGCCCTGTAC



CAACACCAACTCGA
CCTTCTGGCGTTAG
ATGAAGGCCAAGGGTAACGTGTTCAAGAACAAGAGAGTGTTGATGGAATACATCC



GGCAAAAC

ACAAGAAGAAGGCTGAGAAGGCCCGTGCCAAGATGTTGGCCGACCAAGCTAACG





CCAGAAGGCAAAAGG





AG010
SEQ ID NO: 779
SEQ ID NO: 780
SEQ ID NO: 778



GCGTAATACGACTC
GAAGGATGCCTGGT
CAAACTTTCCAAAGGGTGTTCGCGAAGGACCAGAATGGACATTTGAAGATGGCTT



ACTATAGGCAAACTT
CATCTTTG
TCAACGGTACTTTGGAGGTGAAGTGCTCTAGGGAATTAAAAGTTCAAGGCGGTAT



TCCAAAGGGTGTTC
SEQ ID NO: 782
TGGCTCATGCGTGTCGCTAAATGTAAAAAGTCCTTTGGTAGCGGACACGGAAATA



G
GCGTAATACGACTC
GGCATGGGAAACACCGTGCAATGGAAGATGTGCACCTTCAACCCTAGCACGACG



SEQ ID NO: 781
ACTATAGGGAAGGA
ATGGCGCTGTTTTTCGAGGTGGTCAATCAGCATTCGGCCCCCATTCCTCAAGGTG



CAAACTTTCCAAAG
TGCCTGGTCATCTTT
GTAGAGGATGTATACAGTTTATTACACAATATCAGCACTCGAGTGGCCAAAGGAG



GGTGTTCG
G
GATAAGGGTGACGACGATAGCGAGAAATTGGGCGGACGCATCGGCGAATATTCA





CCACATCAGCGCGGGTTTCGATCAGGAACGTGCCGCGGTGATTATGGCCCGGAT





GGCTGTTTATAGAGCGGAGACCGATGAGAGTCCCGATGTTTTAAGATGGGTCGAT





CGGATGCTGATTCGTTTGTGTCAAAAGTTTGGAGAATATAACAAAGATGACCAGG





CATCCTTC





AG014
SEQ ID NO: 784
SEQ ID NO: 785
SEQ ID NO: 783



GCGTAATACGACTC
CAACTGTTGCGAAA
GAAAAGGCCGAGGAAATTGATGCCAAGGCGGAAGAAGAATTTAACATTGAAAAGG



ACTATAGGGAAAAG
TCAGGTCC
GCCGCCTTGTGCAACAACAAAGATTGAAGATCATGGAATACTATGAGAAGAAGGA



GCCGAGGAAATTGA
SEQ ID NO: 787
GAAGCAAGTCGAACTACAAAAGAAAATTCAATCCTCCAACATGCTGAACCAAGCC



TG
GCGTAATACGACTC
CGTCTTAAGGTTCTGAAAGTCCGCGAAGATCATGTTAGAGCTGTATTGGATGAGG



SEQ ID NO: 786
ACTATAGGCAACTG
CTCGCAAGAAGCTTGGTGAAGTCACCAGGGATCAAGGCAAATATGCCCAGATTCT



GAAAAGGCCGAGGA
TTGCGAAATCAGGT
GGAATCTTTGATCCTTCAGGGACTCTACCAGCTTTTCGAGGCAAACGTGACCGTA



AATTGATG
CC
CGCGTCCGCCCACAAGACAGAACCTTAGTCCAATCAGTGCTGCCAACCATCGCAA





CCAAATACCGTGACGTCACCGGCCGAGATGTACACCTGTCCATCGATGACGAAAC





TCAACTGTCCGAATCCGTAACCGGCGGAATCGAACTTTTGTGCAAACAAAACAAA





ATTAAGGTCTGCAACACCCTGGAGGCACGTTTGGACCTGATTTCGCAACAGTTG





AG016
SEQ ID NO: 789
SEQ ID NO: 790
SEQ ID NO: 788



GCGTAATACGACTC
CGACCGGCTCTTTC
GTGTTCAACGGATCAGGAAAACCCATTGACAAAGGTCCTCCAATCTTAGCCGAAG



ACTATAGGGTGTTC
GTAAATG
ATTTCTTGGACATCCAAGGTCAACCCATCAACCCATGGTCGCGTATCTACCCGGA



AACGGATCAGGAAA
SEQ ID NO: 792
AGAAATGATCCAGACCGGTATCTCCGCCATCGACGTGATGAACTCCATCGCGCGT



ACC
GCGTAATACGACTC
GGGCAAAAAATCCCCATTTTCTCCGCGGCCGGTTTACCGCACAACGAAATCGCCG



SEQ ID NO: 791
ACTATAGGCGACCG
CCCAAATCTGTAGACAGGCCGGTTTAGTCAAACTGCCGGGCAAATCGGTAATCGA



GTGTTCAACGGATC
GCTCTTTCGTAAATG
CGATCACGAGGACAATTTCGCCATCGTGTTCGCCGCCATGGGTGTCAACATGGAA



AGGAAAACC

ACCGCCCGTTTCTTCAAGCAGGACTTCGAAGAAAACGGTTCCATGGAGAACGTGT





GTCTCTTCTTGAATTTGGCCAACGATCCCACCATCGAGAGAATCATCACGCCCCG





TTTGGCTCTGACCGCCGCCGAATTTTTGGCTTATCAATGCGAGAAACACGTGCTG





GTTATCTTAACTGATATGTCTTCTTACGCCGAGGCTTTGCGTGAAGTATCCGCCGC





CAGAGAAGAAGTACCCGGACGTCGTGGGTTCCCCGGTTACATGTACACCGATTTG





GCCACCATTTACGAAAGAGCCGGTCG



















TABLE 8-TC





Target
Primers Forward
Primers Reverse
dsRNA DNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







TC001
SEQ ID NO: 864
SEQ ID NO: 865
SEQ ID NO: 863



GCGTAATACGACTC
GGTGTGCCCATTTG
CTGCGAAACAGGCTGAAGTATGCCTTGACCAACTCAGAAGTGACGAAGATTGTTA



ACTATAGGCTGCGA
CATCCT
TGCAAAGATTGATTAAAGTTGACGGAAAAGTTAGGACAGACCCCAACTACCCCGC



AACAGGCTGAAGTA
SEQ ID NO: 867
GGGTTTCATGGATGTTGTGACTATTGAGAAAACTGGGGAATTCTTCCGCTTGATTT



TGC
GCGTAATACGACTC
ATGATGTTAAGGGAAGGTTCACAATCCATCGCATTACTGGAGAAGAGGCCAAATA



SEQ ID NO: 866
ACTATAGGGGTGTG
TAAATTGTGCAAAGTGAAGAAAGTACAGACAGGCCCCAAGGGCATTCCCTTCTTG



CTGCGAAACAGGCT
CCCATTTGCATCCT
GTGACCCGCGACGGACGCACTATCAGATACCCAGACCCCATGATCAAAGTGAAT



GAAGTATGC

GACACCATTCAATTGGAGATTGCCACTTCGAAAATTCTTGATTTTATCAAATTTGAG





TCCGGTAATTTGTGTATGATTACTGGAGGTCGTAACTTGGGGCGTGTCGGTACAG





TGGTGAGCCGAGAACGTCACCCAGGTTCCTTCGACATCGTTCATATTAAGGATGC





AAATGGGCACACC





TC002
SEQ ID NO: 869
SEQ ID NO: 870
SEQ ID NO: 868



GCGTAATACGACTC
CTTTGTGAACAGCG
CATCCATGTTGAGGTGGGCATTTTTGAGGGCGTCCGCTGCGTTTTTCATCGTTTT



ACTATAGGCATCCAT
GCCATC
GAGTACGGCTGTGTTGGTGTTGGCCCCCTCGAGGGCCTCCCGCTGCATCTCGAT



GTTGAGGTGGGCA
SEQ ID NO: 872
GGTGCTGAGGGTGCCATCGATCTGCTGGAGCTGCTTTTCGTAGCGTTTCTTCCTC



SEQ ID NO: 871
GCGTAATACGACTC
TTGATGGCCTGGATGGCCGCTGTTCACAAAG



CATCCATGTTGAGG
ACTATAGGCTTTGTG




TGGGCA
AACAGCGGCCATC






TC010
SEQ ID NO: 874
SEQ ID NO: 875
SEQ ID NO: 873



GCGTAATACGACTC
ATGTCCTGGTACTT
ATGTCCTGGTACTTGAGGTTCCTCCATTGGGCGATTGTCTCACCGTGGAAAATCA



ACTATAGGATGTAC
GAGGTTCCTCC
AAATTTGGAAAAATGTGTCCATGAGAAGGATCCGATCGGGTTGAATGGAACTAGT



CATTTGCGCCGCTC
SEQ ID NO: 877
GTCGAGGAGGACGGGTTCAGGGGGGCCGTTGAAACTATAACTGTACAAAATCGG



SEQ ID NO: 876
GCGTAATACGACTC
CTGGATCATAATGAGACTTTGGGTGAGGTCCTCCCGCATCAGCATGTGGCGGTAG



ATGTACCATTTGCG
ACTATAGGATGTCCT
AACGAGGTCTCGTCTGGGGAGTTGTTGAAAACTTGGAGGAATTGGGAGCGGCGC



CCGCTC
GGTACTTGAGGTTC
AAATGGTACAT




CTCC






TC014
SEQ ID NO: 879
SEQ ID NO: 880
SEQ ID NO: 878



GCGTAATACGACTC
ACAAGGCCGTACGA
CAACAGCGCTTGAAGATCATGGAATATTACGAGAAGAAGGAGAAACCGGTGGAAT



ACTATAGGCAACAG
ATTTCTGG
TGCAGAAGAAAATTCAGTCGTCAAACATGCTGAACCAAGCCCGTTTGAAAGTATTA



CGCTTGAAGATCAT
SEQ ID NO: 882
AAAGTGCGTGAAGACCACGTCCACAATGTGCTGGATGACGCCCGCAAACGTCTG



GG
GCGTAATACGACTC
GGCGAAATCACCAATGACCAGGCGAGATATTCACAACTTTTGGAGTCTCTTATCCT



SEQ ID NO: 881
ACTATAGGACAAGG
CCAGAGTCTCTACCAGTACTTGGGAATCAGTGATGAGTTGTTTGAGAACAATATAG



CAACAGCGCTTGAA
CCGTACGAATTTCT
TGGTGAGAGTCAGGCAACAGGACAGGAGTATAATCCAGGGCATTCTCCCAGTTGT



GATCATGG
GG
TGCGACGAAATACAGGGACGCCACTGGTAAAGACGTTCATCTTAAAATCGACGAT





GAGAGCCACTTGCCATCCGAAACCACCGGAGGAGTGGTTTTGTATGCGCAAAAG





GGTAAAATCAAGATTGACAACACCTTGGAGGCTCGTTTGGATTTAATTGCACAGCA





ACTTGTGCCAGAAATTCGTACGGCCTTGT





TC015
SEQ ID NO: 884
SEQ ID NO: 885
SEQ ID NO: 883



GCGTAATACGACTC
TCGGATTCGCCGGC
CGATACAGTGTTGCTGAAAGGGAAGCGGCGGAAAGAGACCGTCTGCATTGTGCT



ACTATAGGCGATAC
TAATTTAC
GGCCGACGAAAACTGCCCCGATGAGAAGATCCGGATGAACAGGATCGTCAGGAA



AGTGTTGCTGAAAG
SEQ ID NO: 887
TAATCTACGGGTTAGGCTCTCTGACGTCGTCTGGATCCAGCCCTGTCCCGACGTC



GGAAG
GCGTAATACGACTC
AAATACGGGAAGAGGATCCACGTTTTGCCCATCGATGACACGGTCGAAGGGCTC



SEQ ID NO: 886
ACTATAGGTCGGAT
GTCGGAAATCTCTTCGAGGTGTACTTAAAACCATACTTCCTCGAAGCTTATCGACC



CGATACAGTGTTGC
TCGCCGGCTAATTT
AATCCACAAAGGCGACGTTTTCATCGTCCGTGGTGGCATGCGAGCCGTTGAATTC



TGAAAGGGAAG
AC
AAAGTGGTGGAAACGGAACCGTCACCATATTGTATCGTCGCCCCCGATACCGTCA





TCCATTGTGACGGCGATCCGATCAAACGAGAAGAAGAGGAGGAAGCCTTGAACG





CCGTCGGCTACGACGATATCGGCGGTTGTCGCAAACAACTCGCACAAATCAAAGA





AATGGTCGAATTACCTCTACGCCACCCGTCGCTCTTCAAGGCCATTGGCGTGAAA





CCACCACGTGGTATCCTCTTGTACGGACCTCCAGGTACCGGTAAAACTTTAATCG





CACGTGCAGTGGCCAACGAAACCGGTGCTTTCTTCTTCTTAATCAACGGTCCCGA





AATTATGAGTAAATTAGCCGGCGAATCCGA



















TABLE 8-MP





Target
Primers Forward
Primers Reverse
dsRNA DNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







MP001
SEQ ID NO: 1042
SEQ ID NO: 1043
SEQ ID NO: 1041



GCGTAATACGACTC
CAATACCAACACGC
GTTTAAACGCACCCAAAGCATGGATGTTGGACAAATCGGGGGGTGTCTTCGCTCC



ACTATAGGGTTTAAA
CCTAAATTGC
ACGTCCAAGCACCGGTCCACACAAACTTCGTGAATCACTACCGTTATTGATCTTCT



CGCACCCAAAGCAT
SEQ ID NO: 1045
TGCGTAATCGTTTGAAGTATGCACTTACTGGTGCCGAAGTCACCAAGATTGTCATG



GG
GCGTAATACGACTC
CAAAGATTAATCAAGGTTGATGGCAAAGTCCGTACCGACCCTAATTATCCAGCCG



SEQ ID NO: 1044
ACTATAGGCAATAC
GTTTTATGGATGTTATATCTATCCAAAAGACCAGTGAGCACTTTAGATTGATCTATG



GTTTAAACGCACCC
CAACACGCCCTAAA
ATGTGAAAGGTCGTTTCACCATCCACAGAATTACTCCTGAAGAAGCAAAATACAAG



AAAGCATGG
TTGC
TTGTGTAAAGTAAAGAGGGTACAAACTGGACCCAAAGGTGTGCCATTTTTAACTAC





TCATGATGGCCGTACTATTCGCTACCCTGACCCTAACATCAAGGTTAATGACACTA





TTAGATACGATATTGCATCATCTAAAATTTTGGATCATATCCGTTTTGAAACTGGAA





ACTTGTGCATGATAACTGGAGGTCGCAATTTAGGGCGTGTTGGTATTG





MP002
SEQ ID NO: 1047
SEQ ID NO: 1048
SEQ ID NO: 1046



GCGTAATACGACTC
GCTGATTTAAGTGC
GGTGGCAAAAAGGAAGAGAAGGGACCATCAACCGAAGATGCGATACAAAAGCTT



ACTATAGGGGTGGC
ATCTGCTGC
CGATCCACTGAAGAGATGCTGATAAAGAAACAAGAATTTTTAGAAAAAAAAATTGA



AAAAAGGAAGAGAA
SEQ ID NO: 1050
ACAAGAAGTAGCGATAGCCAAAAAAAATGGTACAACTAATAAACGAGCTGCATTG



GG
GCGTAATACGACTC
CAAGCATTGAAGCGTAAGAAACGGTACGAACAACAATTAGCCCAAATTGATGGTA



SEQ ID NO: 1049
ACTATAGGGCTGAT
CCATGTTAACTATTGAACAACAGCGGGAGGCATTAGAAGGTGCCAACACAAATAC



GGTGGCAAAAAGGA
TTAAGTGCATCTGCT
AGCAGTATTGACTACCATGAAAACTGCAGCAGATGCACTTAAATCAGC



AGAGAAGG
GC






MP010
SEQ ID NO: 1052
SEQ ID NO: 1053
SEQ ID NO: 1051



GCGTAATACGACTC
GCATTGGGAATCGA
CAGACCCTGTTCAGAATATGATGCATGTTAGTGCTGCATTTGATCAAGAAGCATCT



ACTATAGGCAGACC
GTTTTGAG
GCCGTTTTAATGGCTCGTATGGTAGTGAACCGTGCTGAAACTGAGGATAGTCCAG



CTGTTCAGAATATG
SEQ ID NO: 1055
ATGTGATGCGTTGGGCTGATCGTACGCTTATACGCTTGTGTCAAAAATTTGGTGAT



SEQ ID NO: 1054
GCGTAATACGACTC
TATCAAAAAGATGATCCAAATAGTTTCCGATTGCCAGAAAACTTCAGTTTATATCCA



CAGACCCTGTTCAG
ACTATAGGGCATTG
CAGTTCATGTATCATTTAAGAAGGTCTCAATTTCTACAAGTTTTTAATAATAGTCCT



AATATG
GGAATCGAGTTTTG
GATGAAACATCATATTATAGGCACATGTTGATGCGTGAAGATGTTACCCAAAGTTT




AG
AATCATGATACAGCCAATTCTGTATAGCTATAGTTTTAATGGTAGGCCAGAACCTG





TACTTTTGGATACCAGTAGTATTCAACCTGATAAAATATTATTGATGGACACATTTT





TCCATATTTTGATATTCCATGGAGAGACTATTGCTCAATGGAGAGCAATGGATTAT





CAAAATAGACCAGAGTATAGTAACCTCAAGCAGTTGCTTCAAGCCCCCGTTGATG





ATGCTCAGGAAATTCTCAAAACTCGATTCCCAATGC





MP016
SEQ ID NO: 1057
SEQ ID NO: 1058
SEQ ID NO: 1056



GCGTAATACGACTC
CGTGGTGTAATGAT
GTTTTCAATGGCAGTGGAAAGCCGATAGATAAAGGACCTCCTATTTTGGCTGAAG



ACTATAGGGTTTTCA
ACGCTC
ATTATTTGGATATTGAAGGCCAACCTATTAATCCATACTCCAGAACATATCCTCAAG



ATGGCAGTGGAAAG
SEQ ID NO: 1060
AAATGATTCAAACTGGTATTTCAGCTATTGATATCATGAACTCTATTGCTCGTGGAC



C
GCGTAATACGACTC
AAAAAATTCCAATATTTTCAGCTGCAGGTTTACCACATAATGAGATTGCTGCTCAAA



SEQ ID NO: 1059
ACTATAGGCGTGGT
TTTGTAGACAAGCTGGTCTCGTTAAAAAACCTGGTAAATCAGTTCTTGACGATCAT



GTTTTCAATGGCAGT
GTAATGATACGCTC
GAAGACAATTTTGCTATAGTATTTGCTGCTATGGGTGTTAATATGGAAACAGCCAG



GGAAAGC

ATTCTTTAAACAAGATTTTGAGGAAAATGGTTCAATGGAGAATGTTTGTTTGTTCTT





GAATTTAGCTAATGATCCTACTATTGAGCGTATCATTACACCACG





MP027
SEQ ID NO: 1062
SEQ ID NO: 1063
SEQ ID NO: 1061



GCGTAATACGACTC
CCAAAAATACCATCT
GCTCGTTTGTTTCCATCCAGAACTTCCCATCGTGTTAACTGGCTCAGAAGATGGTA



ACTATAGGGCTCGT
GCTCCACC
CCGTCAGAATTTGGCATTCTGGTACTTATCGATTAGAATCATCATTAAACTATGGG



TTGTTTCCATCCAGA
SEQ ID NO: 1065
TTAGAACGTGTATGGACAATCTGTTGCTTACGGGGATCTAATAATGTAGCTCTAGG



AC
GCGTAATACGACTC
TTATGATGAAGGAAGTATAATGGTTAAAGTTGGTCGTGAAGAGCCAGCAATGTCAA



SEQ ID NO: 1064
ACTATAGGCCAAAA
TGGATGTTCATGGGGGTAAAATTGTTTGGGCACGTCATAGTGAAATTCAACAAGCT



GCTCGTTTGTTTCCA
ATACCATCTGCTCCA
AACCTTAAAGCGATGCTTCAAGCAGAAGGAGCCGAAATCAAAGATGGTGAACGTT



TCCAGAAC
CC
TACCAATACAAGTTAAAGACATGGGTAGCTGTGAAATTTATCCACAGTCAATATCT





CATAATCCGAATGGTAGATTTTTAGTAGTATGTGGTGATGGAGAGTATATTATATAT





ACATCAATGGCTTTGCGTAATAAAGCATTTGGCTCCGCTCAGGATTTTGTATGGTC





TTCTGATTCTGAGTATGCCATTAGAGAAAATTCTTCTACAATCAAAGTTTTTAAAAA





TTTTAAAGAAAAAAAGTCTTTTAAACCAGAAGGTGGAGCAGATGGTATTTTTGG



















TABLE 8-NL





Target
Primers Forward
Primers
Reverse dsRNA DNA Sequence


ID
5′ → 3′
5′ → 3′
5′ → 3′







NL001
SEQ ID NO: 1573
SEQ ID NO: 1574
SEQ ID NO: 1572



GCGTAATACGACTCA
ACTGAGCTTCACA
GAAATCATGGATGTTGGACAAATTGGGTGGTGTGTATGCACCCCGACCCAGCACA



CTATAGGGAAATCAT
CCCTTGCCC
GGTCCACACAAGCTGCGAGAATCTCTCCCACTTGTCATATTTTTGCGTAATCGGCT



GGATGTTGGACAAAT
SEQ ID NO: 1576
CAAGTACGCTTTAACTAACTGTGAAGTGAAGAAAATTGTGATGCAGCGTCTCATCA



TGG
GCGTAATACGACT
AGGTTGACGGCAAAGTGAGGACTGACCCCAACTATCCTGCAGGTTTTATGGACGT



SEQ ID NO: 1575
CACTATAGGACTG
TGTTCAAATCGAAAAGACAAACGAGTTCTTCCGTTTGATCTATGATGTTAAGGGAC



GAAATCATGGATGTT
AGCTTCACACCCT
GTTTCACCATCCACAGGATCACAGCTGAAGAAGCTAAGTACAAGCTGTGCAAAGT



GGACAAATTGG
TGCCC
GAAGAGGGTTCAGACAGGACCCAAGGGCATTCCATTTTTGACCACTCACGATGGA





CGCACCATCAGGTATCCAGACCCCTTAGTAAAAGTCAATGACACCATCCAATTGG





ACATTGCCACATCCAAAATCATGGACTTCATCAGATTCGACTCTGGTAACCTGTGT





ATGATCACTGGAGGTCGTAACTTGGGTCGTGTGGGCACTGTCGTGAACAGGGAG





CGACACCCGGGGTCTTTCGACATCGTGCACATCAAGGACGTGTTGGGACACACTT





TTGCCACTAGGTTGAACAACGTTTTCATCATCGGCAAGGGTAGTAAAGCATACGT





GTCTCTGCCCAAGGGCAAGGGTGTGAAGCTCAGT





NL002
SEQ ID NO: 1578
SEQ ID NO: 1579
SEQ ID NO: 1577



GCGTAATACGACTCA
CTGATCCACATCC
GATGAAAAGGGCCCTACAACTGGCGAAGCCATTCAGAAACTACGCGAAACAGAG



CTATAGGGATGAAAA
ATGTGTTGATGAG
GAAATGCTGATAAAGAAACAAGACTTTTTAGAAAAGAAAATTGAAGTTGAAATTGG



GGGCCCTACAACTGG
SEQ ID NO: 1581
AGTTGCCAGGAAGAATGGAACAAAAAACAAAAGAGCCGCGATCCAGGCACTCAAA



C
GCGTAATACGACT
AGGAAGAAGAGGTATGAAAAGCAATTGCAGCAGATCGATGGAACGTTATCAACAA



SEQ ID NO: 1580
CACTATAGGCTGA
TTGAGATGCAGAGAGAGGCCCTCGAAGGAGCCAACACGAATACGGCCGTACTGC



GATGAAAAGGGCCCT
TCCACATCCATGT
AAACTATGAAGAACGCAGCAGATGCTCTCAAAGCGGCTCATCAACACATGGATGT



ACAACTGGC
GTTGATGAG
GGATCAG





NL003
SEQ ID NO: 1583
SEQ ID NO: 1584
SEQ ID NO: 1582



GCGTAATACGACTCA
TTGACGCGACCAG
TCCGCGTCGTCCTTACGAGAAGGCACGTCTCGAACAGGAGTTGAAGATCATCGG



CTATAGGTCCGCGTC
GTCGGCCAC
AGAGTATGGACTCCGTAACAAGCGTGAGGTGTGGAGAGTCAAATACGCCCTGGC



GTCCTTACGAGAAGG
SEQ ID NO: 1586
CAAGATTCGTAAGGCCGCTCGTGAGCTGTTGACTCTGGAAGAGAAGGACCAGAA



C
GCGTAATACGACT
ACGTTTGTTTGAAGGTAACGCCCTGCTGCGTCGCCTGGTGCGTATTGGAGTGTTG



SEQ ID NO: 1585
CACTATAGGTTGA
GACGAAGGAAGAATGAAGCTCGATTACGTCTTGGGTTTAAAAATTGAAGATTTCCT



TCCGCGTCGTCCTTA
CGCGACCAGGTCG
TGAACGTCGTCTACAGACTCAGGTGTACAAACTCGGTTTGGCCAAGTCCATCCAT



CGAGAAGGC
GCCAC
CACGCCCGTGTACTCATCAGACAAAGACATATCAGAGTGCGCAAACAAGTAGTGA





ACATTCCGAGCTTTGTGGTGCGCCTGGACTCGCAGAAGCACATTGACTTCTCGCT





GAAGTCGCCGTTCGGCGGTGGCCGACCTGGTCGCGTCAA





NL004
SEQ ID NO: 1588
SEQ ID NO: 1589
SEQ ID NO: 1587



GCGTAATACGACTCA
CTGTTGTTGACTGT
GGAGTTGGCTGCTGTAAGAACTGTCTGCTCTCACATCGAAAACATGCTGAAGGGA



CTATAGGGGAGTTGG
TGGATGAGG
GTCACAAAGGGATTCCTGTACAAGATGCGTGCCGTGTACGCCCATTTCCCCATCA



CTGCTGTAAGAACTG
SEQ ID NO: 1591
ACTGTGTGACGACCGAGAACAACTCTGTGATCGAGGTGCGTAACTTCCTGGGCG



SEQ ID NO: 1590
GCGTAATACGACT
AGAAGTACATCCGACGGGTGAGGATGGCGCCCGGCGTCACTGTTACCAACTCGA



GGAGTTGGCTGCTGT
CACTATAGGCTGT
CAAAGCAGAAGGACGAGCTCATCGTCGAAGGAAACAGCATAGAGGACGTGTCAA



AAGAACTG
TGTTGACTGTTGG
GATCAGCTGCCCTCATCCAACAGTCAACAACAG




ATGAGG






NL005
SEQ ID NO: 1593
SEQ ID NO: 1594
SEQ ID NO: 1592



GCGTAATACGACTCA
CCTTCGCTTCTTG
CGCAAACACAAATTCACGTCAAAGCATCAGGAAGCTGATCAAAGACGGTCTTATC



CTATAGGCGCAAACA
GCCTCCTTGAC
ATCAAGAAACCGGTTGCAGTACATTCACGTGCTCGCGTTCGTAAAAACACTGAAG



CAAATTCACGTCAAAG
SEQ ID NO: 1596
CCAGGAGGAAAGGCAGACATTGTGGCTTTGGTAAGAGGAAAGGTACAGCCAACG



C
GCGTAATACGACT
CCCGTATGCCACAAAAGGTTCTATGGGTGAATCGTATGCGTGTCTTGAGAAGACT



SEQ ID NO: 1595
CACTATAGGCCTT
GTTGAAAAAATACAGACAAGATAAGAAAATCGACAGGCATCTGTACCATCACCTTT



CGCAAACACAAATTCA
CGCTTCTTGGCCT
ACATGAAGGCTAAGGGTAACGTATTCAAGAACAAGCGTGTATTGATGGAGTTCATT



CGTCAAAGC
CCTTGAC
CATAAGAAGAAGGCCGAGAAAGCAAGAATGAAGATGTTGAACGACCAGGCTGAA





GCTCGCAGACAAAAGGTCAAGGAGGCCAAGAAGCGAAGG





NL006
SEQ ID NO: 1598
SEQ ID NO: 1599
SEQ ID NO: 1597



GCGTAATACGACTCA
CGAGATGGGATAG
GTGCTTGTGTCAAGTGGTGTGGTGGAGTACATTGACACCCTGGAGGAGGAGACG



CTATAGGGTGCTTGT
CGTGAGG
ACCATGATAGCGATGTCGCCGGATGACCTGCGTCAGGACAAGGAGTATGCCTAC



GTCAAGTGGTGTGG
SEQ ID NO: 1601
TGTACCACCTACACGCACTGCGAGATCCACCCGGCCATGATACTCGGTGTGTGC



SEQ ID NO: 1600
GCGTAATACGACT
GCCTCTATTATTCCCTTCCCCGATCACAACCAAAGTCCCAGGAACACCTATCAGA



GTGCTTGTGTCAAGT
CACTATAGGCGAG
GCGCTATGGGGAAACAGGCGATGGGCGTGTACATCACCAACTTCCACGTGCGAA



GGTGTGG
ATGGGATAGCGTG
TGGACACGCTGGCTCACGTGCTGTTCTACCCGCACAAGCCACTGGTCACCACTC




AGG
GCTCCATGGAGTACCTGCGCTTCAGGGAGCTTCCTGCCGGCATCAACTCTGTGG





TCGCCATCGCCTGCTACACTGGATACAACCAGGAGGACAGTGTCATTCTCAACGC





CTCCGCTGTCGAGCGCGGATTCTTCAGATCGGTTTTCTTCCGATCTTACAAAGAT





GCAGAATCGAAGCGTATTGGCGACCAAGAGGAGCAATTCGAGAAGCCCACCAGA





CAGACGTGTCAGGGAATGAGGAATGCCATTTATGACAAATTGGACGATGATGGCA





TCATTGCTCCCGGTCTGAGAGTGTCTGGTGACGATGTGGTTATTGGCAAAACCAT





AACACTGCCCGATAATGATGACGAGCTGGAAGGTACAACAAAGAGGTTCACGAAG





AGAGATGCCAGTACTTTCCTGCGTAACAGTGAGACGGGAATCGTCGACCAAGTCA





TGTTAACCTTGAACTCTGAGGGTTACAAGTTCTGCAAAATTCGAGTCAGGTCTGTG





CGTATCCCGCAGATTGGCGATAAGTTCGCTTCCCGACATGGCCAAAAAGGAACGT





GTGGAATACAGTATCGTCAAGAGGACATGCCTTTTACAAGCGAGGGAATCGCACC





GGATATTATTATCAATCCTCACGCTATCCCATCTCG





NL007
SEQ ID NO: 1603
SEQ ID NO: 1604
SEQ ID NO: 1602



GCGTAATACGACTCA
CCACGGTGAATAG
TGAGAGCAATCCTTGACTGTGGTTTTGAACATCCATCTGAAGTACAACATGAATGC



CTATAGGTGAGAGCA
CCACTGC
ATTCCTCAAGCTGTACTTGGAATGGACATATTGTGTCAAGCGAAATCCGGTATGG



ATCCTTGACTGTGG
SEQ ID NO: 1606
GAAAAACTGCTGTATTTGTGTTGGCGACATTACAGCAAATTGAACCAACTGACAAC



SEQ ID NO: 1605
GCGTAATACGACT
CAAGTCAGTGTATTGGTCATGTGTCATACCAGAGAGCTTGCATTCCAAATCAGCAA



TGAGAGCAATCCTTG
CACTATAGGCCAC
AGAGTATGAACGATTTTCGAAATGTATGCCAAATATCAAGGTTGGAGTTTTCTTCG



ACTGTGG
GGTGAATAGCCAC
GCGGACTGCCGATTCAGAGGGATGAGGAGACGTTGAAATTGAACTGTCCTCACAT




TGC
CGTGGTTGGAACACCCGGACGAATTTTGGCGTTGGTACGCAACAAGAAGCTGGA





CCTCAAGCATCTCAAGCACTTTGTCCTTGACGAATGTGACAAAATGTTGGAACTGT





TAGATATGCGAAGAGATGTGCAGGAAATATTCCGAAACACGCCGCACAGCAAACA





AGTCATGATGTTCAGTGCAACTCTCAGCAAAGAAATTCGTCCAGTCTGCAAGAAAT





TCATGCAAGATCCGATGGAAGTGTACGTTGATGACGAGGCCAAGCTGACGCTTCA





CGGCCTGCAGCAGCACTATGTCAAACTCAAAGAAAACGAAAAGAACAAAAAGTTA





TTTGAATTACTTGACATACTTGAATTCAACCAGGTTGTTATATTTGTGAAGTCAGTG





CAGCGCTGCATGGCCCTATCGCAACTCCTAACAGAGCAGAACTTCCCTGCAGTG





GCTATTCACCGTGG





NL008
SEQ ID NO: 1608
SEQ ID NO: 1609
SEQ ID NO: 1607



GCGTAATACGACTCA
GAGCGAGTCTACA
GATGCTGGAGACCTGGAGGTGTATTAGATGTTTCAAACAGTTTTGCAGTTCCATTT



CTATAGGGATGCTGG
AAATTGCCG
GATGAGGACGACAAAGAAAAGAATGTTTGGTTCTTAGACCATGATTACTTGGAAAA



AGACCTGGAGGTG
SEQ ID NO: 1611
CATGTTCGGGATGTTCAAGAAAGTTAATGCTAGAGAAAAGGTTGTGGGTTGGTAC



SEQ ID NO: 1610
GCGTAATACGACT
CATACTGGACCCAAACTCCACCAAAACGATGTTGCAATCAATGAGTTGATTCGTCG



GATGCTGGAGACCTG
CACTATAGGGAGC
TTACTGTCCAAACTGTGTCTTAGTCATAATCGATGCCAAGCCTAAAGATTTGGGTC



GAGGTG
GAGTCTACAAAATT
TACCTACAGAGGCATACAGAGTCGTTGAAGAAATCCATGATGATGGATCGCCAAC




GCCG
ATCAAAAACATTTGAACATGTGATGAGTGAGATTGGGGCAGAAGAGGCTGAGGAG





ATTGGCGTTGAACATCTGTTGAGAGACATCAAAGATACAACAGTCGGGTCACTGT





CACAGCGCGTCACAAATCAGCTGATGGGCTTGAAGGGCTTGCATCTGCAATTACA





GGATATGCGAGACTATTTGAATCAGGTTGTCGAAGGAAAGTTGCCAATGAACCAT





CAAATCGTTTACCAACTGCAAGACATCTTCAACCTTCTACCCGATATCGGCCACGG





CAATTTTGTAGACTCGCTC





NL009
SEQ ID NO: 1613
SEQ ID NO: 1614
SEQ ID NO: 1612



GCGTAATACGACTCA
GTGTAAGGGTAGA
GCGACTATGATCGACCGCCGGGACGCGGTCAGGTGTGCGACGTCGACGTCAAG



CTATAGGGCGACTAT
AGTAGCCCGG
AACTGGTTTCCCTGCACCTCTGAGAACAATTTCAACTACCATCAATCGAGCCCTTG



GATCGACCGCC
SEQ ID NO: 1616
TGTTTTTCTCAAACTGAACAAGATAATTGGTTGGCAACCGGAGTACTACAATGAGA



SEQ ID NO: 1615
GCGTAATACGACT
CTGAAGGCTTTCCAGATAATATGCCAGGTGACCTCAAGCGACACATTGCCCAACA



GCGACTATGATCGAC
CACTATAGGGTGT
GAAGAGTATCAACAAGCTGTTTATGCAAACAATCTGGATAACTTGCGAAGGAGAG



CGCC
AAGGGTAGAAGTA
GGTCCTCTAGACAAGGAGAATGCAGGGGAGATCCAGTACATCCCTAGACAGGGA




GCCCGG
TTTCCGGGCTACTTCTACCCTTACAC





NL010
SEQ ID NO: 1618
SEQ ID NO: 1619
SEQ ID NO: 1617



GCGTAATACGACTCA
GCAACTCCAGTAG
GCTTGTTGTTCCCGTTGGATGTCTGTATCAACCTTTGAAGGAGAGACCTGATCTAC



CTATAGGGCTTGTTGT
ATCGGAGAGGTC
CGCCTGTACAGTACGATCCAGTTCTTTGTACTAGGAATACTTGTCGTGCAATTCTG



TCCCGTTGGATGTC
SEQ ID NO: 1621
AATCCATTGTGCCAAGTCGACTATCGAGCCAAGCTATGGGTCTGCAACTTTTGTTT



SEQ ID NO: 1620
GCGTAATACGACT
CCAGAGGAATCCTTTCCCCCCTCAATATGCAGCTATTTCGGAGCAGCATCAACCA



GCTTGTTGTTCCCGTT
CACTATAGGGCAA
GCAGAACTGATACCTTCATTTTCCACCATCGAATACATCATTACCAGAGCGCAAAC



GGATGTC
CTCCAGTAGATCG
GATGCCGCCGATGTTCGTGCTGGTGGTGGACACATGTCTGGACGACGAGGAGCT




GAGAGGTC
GGGAGCTTTGAAGGACTCACTGCAGATGTCGCTGTCGCTGCTGCCGCCCAATGC





ACTCATCGGTCTCATCACGTTCGGCAAAATGGTGCAGGTGCACGAGCTTGGCTGC





GACGGCTGCTCGAAGAGCTACGTGTTCCGTGGCGTGAAGGACCTGACTGCCAAG





CAGATCCAGGACATGTTGGGCATTGGCAAGATGGCCGCCGCTCCACAGCCCATG





CAACAGCGCATTCCCGGCGCCGCTCCCTCCGCACCTGTCAACAGATTTCTTCAGC





CTGTCGGAAAGTGCGATATGAGTTTAACTGATCTGCTTGGGGAATTGCAAAGAGA





TCCATGGAATGTGGCTCAGGGCAAGAGACCTCTCCGATCTACTGGAGTTGC





NL011
SEQ ID NO: 1623
SEQ ID NO: 1624
SEQ ID NO: 1622



CCCACTTTCAAGTGY
GTCCATTGTGACC
GTTGCCACCCTTGGAGTTGAAGTTCACCCCCTTGTATTTCACACAAACAGAGGTG



GTRYTRGTCGG
TCGGGAGG
TGATTAGGTTCAATGTGTGGGACACAGCTGGCCAGGAAAAGTTCGGTGGACTTCG



SEQ ID NO: 1625
SEQ ID NO: 1626
TGATGGATATTACATTCAGGGACAATGCGCCATCATTATGTTTGACGTAACGTCAA



GTTGCCACCCTTGGA
GCGTAATACGACT
GAGTCACCTACAAGAACGTTCCCAACTGGCACAGAGATTTAGTGAGGGTTTGCGA



GTTGAAG
CACTATAGGGTCC
AAACATTCCCATTGTACTATGCGGCAACAAAGTAGACATCAAGGACAGGAAAGTC




ATTGTGACCTCGG
AAGGCCAAGAGCATAGTCTTCCATAGGAAGAAGAACCTTCAGTACTACGACATCA




GAGG
GTGCGAAAAGCAACTACAACTTCGAGAAGCCGTTCCTGTGGTTGGCAAAGAAGCT





GATCGGTGACCCCAACCTGGAGTTCGTCGCCATGCCCGCCCTCCTCCCACCCGA





GGTCACAATGGAC





NL012
SEQ ID NO: 1628
SEQ ID NO: 1629
SEQ ID NO: 1627



GCGTAATACGACTCA
GAATTTCCTCTTGA
GCAGCAGACGCAGGCACAGGTAGACGAGGTTGTCGATATAATGAAAACAAACGTT



CTATAGGGCAGCAGA
GTTTGCCAGCTTG
GAGAAAGTATTGGAGAGGGATCAAAAACTATCAGAATTGGATGATCGAGCAGATG



CGCAGGCACAGGTAG
SEQ ID NO: 1631
CTCTACAGCAAGGCGCTTCACAGTTTGAACAGCAAGCTGGCAAACTCAAGAGGAA



SEQ ID NO: 1630
GCGTAATACGACT
ATTC



GCAGCAGACGCAGGC
CACTATAGGGAAT




ACAGGTAG
TTCCTCTTGAGTTT





GCCAGCTTG






NL013
SEQ ID NO: 1633
SEQ ID NO: 1634
SEQ ID NO: 1632



GCGTAATACGACTCA
GGCAACGGCTCTC
CGCAGAGCAAGTCTACATCTCTTCACTGGCCTTATTGAAAATGCTTAAGCACGGTC



CTATAGGCGCAGAGC
TTGGATAG
GCGCCGGTGTTCCCATGGAAGTTATGGGCCTAATGCTGGGCGAATTTGTAGACG



AAGTCTACATCTCTTC
SEQ ID NO: 1636
ACTACACTGTGCGTGTCATTGATGTATTCGCTATGCCACAGAGTGGAACGGGAGT



SEQ ID NO: 1635
GCGTAATACGACT
GAGTGTGGAGGCTGTAGACCCGGTGTTCCAAGCGAAGATGTTGGACATGCTAAA



CGCAGAGCAAGTCTA
CACTATAGGGGCA
GCAGACAGGACGGCCCGAGATGGTGGTGGGCTGGTACCACTCGCACCCGGGCT



CATCTCTTC
ACGGCTCTCTTGG
TCGGCTGCTGGCTGTCGGGTGTCGACATCAACACGCAGGAGAGCTTCGAGCAAC




ATAG
TATCCAAGAGAGCCGTTGCC





NL014
SEQ ID NO: 1638
SEQ ID NO: 1639
SEQ ID NO: 1637



GCGTAATACGACTCA
GAGCGCGACTCTA
CATTGAGCAAGAAGCCAATGAGAAAGCCGAAGAGATCGATGCCAAGGCCGAGGA



CTATAGGCATTGAGC
ATCTCGG
AGAATTCAACATTGAAAAGGGAAGGCTCGTACAGCACCAGCGCCTTAAAATCATG



AAGAAGCCAATGAG
SEQ ID NO: 1641
GAGTACTATGACAGGAAAGAGAAGCAGGTTGAGCTCCAGAAAAAAATCCAATCGT



SEQ ID NO: 1640
GCGTAATACGACT
CAAACATGCTGAACCAAGCGCGTCTGAAGGCACTGAAGGTGCGCGAAGATCACG



CATTGAGCAAGAAGC
CACTATAGGGAGC
TGAGAAGTGTGCTCGAAGAATCCAGAAAACGTCTTGGAGAAGTAACCAGAAACCC



CAATGAG
GCGACTCTAATCT
AGCCAAGTACAAGGAAGTCCTCCAGTATCTAATTGTCCAAGGACTCCTGCAGCTG




CGG
CTAGAATCAAACGTAGTACTGCGCGTGCGCGAGGCTGACGTGAGTCTGATCGAG





GGCATTGTTGGCTCATGCGCAGAGCAGTACGCGAAGATGACCGGCAAAGAGGTG





GTGGTGAAGCTGGACGCTGACAACTTCCTGGCCGCCGAGACGTGTGGAGGCGTC





GAGTTGTTCGCCCGCAACGGCCGCATCAAGATCCCCAACACCCTCGAGTCCAGG





CTCGACCTCATCTCCCAGCAACTTGTGCCCGAGATTAGAGTCGCGCTC





NL015
SEQ ID NO: 1643
SEQ ID NO: 1644
SEQ ID NO: 1642



GCGTAATACGACTCA
GGCCAAAGCGCCT
CTGCGAGTGCGCTTGTCCGACATTGTCTCGATCCAGCCTTGCCCAGACGTCAAGT



CTATAGGCTGCGAGT
AAGCGC
ATGGAAAGCGTATCCATGTGCTGCCCATTGATGATACCGTTGAGGGTCTTACAGG



GCGCTTGTCCG
SEQ ID NO: 1646
AAATCTGTTCGAAGTGTATTTGAAGCCATACTTCCTGGAAGCATACAGGCCAATTC



SEQ ID NO: 1645
GCGTAATACGACT
ACAAGGATGATGCATTCATTGTTCGCGGAGGTATGAGAGCGGTCGAATTCAAGGT



CTGCGAGTGCGCTTG
CACTATAGGGGCC
GGTTGAAACAGATCCATCGCCCTACTGCATTGTCGCGCCAGACACCGTCATCCAT



TCCG
AAAGCGCCTAAGC
TGTGAGGGAGACCCCATCAAACGTGAGGATGAAGAAGACGCAGCAAACGCAGTC




GC
GGCTACGACGACATTGGAGGCTGCAGAAAGCAGCTGGCGCAGATCAAAGAGATG





GTGGAGTTGCCGCTGAGACATCCCAGTCTGTTCAAGGCGATCGGCGTGAAGCCG





CCACGAGGCATCCTGCTGTACGGACCACCGGGAACCGGAAAGACGTTGATAGCG





CGCGCCGTCGCCAACGAAACGGGCGCCTTCTTCTTCCTCATCAACGGACCCGAG





ATTATGAGCAAATTGGCCGGCGAGTCGGAGAGTAACCTGCGCAAAGCTTTCGAG





GAAGCGGACAAAAACGCACCGGCCATCATCTTCATCGATGAGCTGGACGCAATC





GCGCCAAAACGCGAGAAGACGCACGGCGAGGTGGAGCGACGCATCGTGTCGCA





GCTGCTGACGCTGATGGACGGTCTCAAGCAGAGCTCGCACGTGATTGTCATGGC





CGCCACCAATCGGCCCAACTCGATCGATGCCGCGCTTAGGCGCTTTGGCC





NL016
SEQ ID NO: 1648
SEQ ID NO: 1649
SEQ ID NO: 1647



GCGTAATACGACTCA
GATGGAGCCGTTG
GACGCCAGTATCAGAAGACATGCTTGGTCGTGTATTCAACGGAAGTGGTAAGCCC



CTATAGGGACGCCAG
CGACC
ATCGACAAAGGACCTCCCATTCTTGCTGAGGATTATCTCGACATTCAAGGTCAACC



TATCAGAAGACATGC
SEQ ID NO: 1651
CATCAATCCTTGGTCGCGTATCTATCCCGAGGAAATGATCCAGACTGGAATTTCA



SEQ ID NO: 1650
GCGTAATACGACT
GCCATCGACGTCATGAACTCGATTGCTCGTGGCCAGAAAATCCCCATCTTTTCAG



GACGCCAGTATCAGA
CACTATAGGGATG
CTGCCGGTCTACCTCACAACGAAATTGCTGCTCAAATCTGTAGACAGGCTGGTCT



AGACATGC
GAGCCGTTGCGAC
TGTCAAACTGCCAGGAAAGTCAGTTCTCGATGACTCTGAGGACAACTTTGCTATTG




C
TATTCGCAGCCATGGGAGTCAACATGGAAACTGCTCGATTCTTCAAACAGGATTTC





GAGGAGAACGGCTCTATGGAGAACGTGTGCCTGTTCTTGAACCTGGCGAACGAC





CCGACGATCGAGCGTATCATCACACCACGCCTGGCGCTGACGGCCGCCGAGTTC





CTGGCCTACCAGTGCGAGAAGCACGTGCTCGTCATCCTCACCGACATGAGCTCC





TACGCCGAGGCGCTGCGAGAGGTGTCCGCCGCCCGCGAGGAGGTGCCCGGCC





GTCGTGGTTTCCCCGGTTACATGTACACCGATCTGGCCACCATCTACGAGCGCGC





CGGACGAGTCGAGGGTCGCAACGGCTCCATC





NL018
SEQ ID NO: 1653
SEQ ID NO: 1654
SEQ ID NO: 1652



GCGTAATACGACTCA
GCAATACAGCCGA
GCAAATGCCTGTGCCACGCCCACAAATAGAAAGCACACAACAGTTTATTCGATCC



CTATAGGGCAAATGC
CCACTCCG
GAGAAAACAACATACTCGAATGGATTCACCACCATTGAGGAGGACTTCAAAGTAG



CTGTGCCACGC
SEQ ID NO: 1656
ACACTTTCGAATACCGTCTTCTGCGCGAGGTGTCGTTCCGCGAATCTCTGATCAG



SEQ ID NO: 1655
GCGTAATACGACT
AAACTACTTGCACGAGGCGGACATGCAGATGTCGACGGTGGTGGACCGAGCATT



GCAAATGCCTGTGCC
CACTATAGGGCAA
GGGTCCCCCCTCGGCGCCACACATCCAGCAGAAGCCGCGCAACTCAAAAATCCA



ACGC
TACAGCCGACCAC
GGAGGGCGGCGATGCCGTCTTTTCCATCAAGCTCAGCGCCAACCCCAAGCCTCG




TCCG
GCTGGTCTGGTTCAAGAACGGTCAGCGCATCGGTCAGACGCAGAAACACCAGGC





CTCCTACTCCAATCAGACCGCCACGCTCAAGGTCAACAAAGTCAGCGCTCAAGAC





TCCGGCCACTACACGCTGCTTGCTGAAAATCCGCAAGGATGTACTGTGTCCTCAG





CTTACCTAGCTGTCGAATCAGCTGGCACTCAAGATACAGGATACAGTGAGCAATA





CAGCAGACAAGAGGTGGAGACGACAGAGGCGGTGGACAGCAGCAAGATGCTGG





CACCGAACTTTGTTCGCGTGCCGGCCGATCGCGACGCGAGCGAAGGCAAGATGA





CGCGGTTTGACTGCCGCGTGACGGGCCGACCCTACCCGGACGTGGCCTGGTTC





ATCAACGGCCAACAGGTGGCTGACGACGCCACGCACAAGATCCTCGTCAACGAG





TCTGGCAACCACTCGCTCATGATCACCGGCGTCACTCGCTTGGACCACGGAGTG





GTCGGCTGTATTGC





NL019
SEQ ID NO: 1658
SEQ ID NO: 1659
SEQ ID NO: 1657



GCGTAATACGACTCA
GAACGCCTGCTCC
GCTTCAGATTTGGGACACGGCCGGCCAGGAGCGGTTCCGCACGATCACATCGAG



CTATAGGGCTTCAGA
ACATTGG
CTACTACCGGGGCGCCCACGGCATCATTGTGGTGTACGACTGCACCGACCAGGA



TTTGGGACACGGC
SEQ ID NO: 1661
GTCGTTCAACAACCTCAAACAGTGGCTCGAGGAGATTGACCGCTACGCCTGTGAT



SEQ ID NO: 1660
GCGTAATACGACT
AATGTCAACAAACTGCTCGTCGGCAACAAGTGTGATCAGACCAACAAAAAGGTCG



GCTTCAGATTTGGGA
CACTATAGGGAAC
TCGACTATACACAGGCTAAGGAATACGCCGACCAGCTGGGCATTCCGTTCCTGGA



CACGGC
GCCTGCTCCACAT
GACGTCGGCGAAGAACGCGACCAATGTGGAGCAGGCGTTC




TGG






NL021
SEQ ID NO: 1663
SEQ ID NO: 1664
SEQ ID NO: 1662



GCGTAATACGACTCA
CTTCTAGTTCATCC
CGTCAGTCTCAATTCTGTCACCGATATCAGCACCACGTTCATTCTCAAGCCACAAG



CTATAGGCGTCAGTC
AGGTCGCG
AGAACGTGAAGATAACGCTTGAGGGCGCACAGGCCTGTTTCATTTCACACGAACG



TCAATTCTGTCACCG
SEQ ID NO: 1666
ACTTGTGATCTCACTGAAGGGAGGAGAACTCTATGTTCTAACTCTCTATTCCGATA



SEQ ID NO: 1665
GCGTAATACGACT
GTATGCGCAGTGTGAGGAGTTTTCATCTGGAGAAAGCTGCTGCCAGTGTCTTGAC



CGTCAGTCTCAATTCT
CACTATAGGCTTCT
TACTTGTATCTGTGTTTGTGAGGAGAACTATCTGTTCCTTGGTTCCCGTCTTGGAA



GTCACCG
AGTTCATCCAGGT
ACTCACTGTTGCTCAGGTTTACTGAGAAGGAATTGAACCTGATTGAGCCGAGGGC




CGCG
CATCGAAAGCTCACAGTCCCAGAATCCGGCCAAGAAGAAAAAGCTGGATACTTTG





GGAGATTGGATGGCATCTGACGTCACTGAAATACGCGACCTGGATGAACTAGAAG





NL022
SEQ ID NO: 1668
SEQ ID NO: 1669
SEQ ID NO: 1667



GCGTAATACGACTCA
CAGACGGAAGCAC
CTCACGAGAGGACGTTGCACACTGATATACTGTTCGGTTTGGTGAAAGATGTCGC



CTATAGGCTCACGAG
TTGCCG
CCGATTCAGACCTGACTTGAAGCTGCTCATATCAAGCGCCACACTGGATGCTCAG



AGGACGTTGCACAC
SEQ ID NO: 1671
AAATTCTCCGAGTTTTTCGACGATGCACCCATCTTCAGGATTCCGGGCCGTAGATT



SEQ ID NO: 1670
GCGTAATACGACT
TCCGGTGGACATCTACTACACAAAGGCGCCCGAGGCTGACTACGTGGACGCATG



CTCACGAGAGGACGT
CACTATAGGCAGA
TGTCGTTTCGATCCTGCAGATCCACGCCACTCAGCCGCTGGGAGACATCCTGGTC



TGCACAC
CGGAAGCACTTGC
TTCCTCACCGGTCAGGAGGAGATCGAAACCTGCCAGGAGCTGCTGCAGGACAGA




CG
GTGCGCAGGCTTGGGTCTCGTATCAAGGAGCTGCTCATATTGCCCGTCTATTCCA





ACCTACCCAGTGATATGCAGGCAAAGATTTTCCTGCCCACTCCACCAAATGCTAG





AAAGGTAGTATTGGCCACAAATATTGCAGAAACCTCATTGACCATCGACAATATAA





TCTACGTGATTGATCCTGGTTTTTGTAAGCAGAATAACTTCAATTCAAGGACTGGA





ATGGAATCGCTTGTTGTAGTGCCTGTTTCAAAGGCATCGGCCAATCAGCGAGCAG





GGCGGGCGGGACGGGTGGCGGCCGGCAAGTGCTTCCGTCTG





NL023
SEQ ID NO: 1673
SEQ ID NO: 1674
SEQ ID NO: 1672



GCGTAATACGACTCA
GCAATGTTGTCCTT
GTCCTCGGACGGGAGGTCCACGTGTTTACCGGGATTCCGTTTGCGAAACCTCCC



CTATAGGGTCCTCGG
GAGCCAGC
ATCGGTCCGTTGCGATTCCGTAAACCGGTTCCCGTCGACCCGTGGCACGGCGTT



ACGGGAGGTCC
SEQ ID NO: 1676
CTGGATGCGACCGCGCTTCCCAACAGCTGCTACCAGGAACGGTACGAGTATTTC



SEQ ID NO: 1675
GCGTAATACGACT
CCGGGCTTCGAGGGAGAGGAAATGTGGAATCCGAATACGAATTTGTCCGAAGATT



GTCCTCGGACGGGAG
CACTATAGGGCAA
GTCTGTATTTGAACATATGGGTGCCGCACCGGTTGAGAATCCGACACAGAGCCAA



GTCC
TGTTGTCCTTGAG
CAGCGAGGAGAATAAACCAAGAGCGAAGGTGCCGGTGCTGATCTGGATCTACGG




CCAGC
CGGGGGTTACATGAGCGGCACAGCTACACTGGACGTGTACGATGCTGACATGGT





GGCCGCCACGAGTGACGTCATCGTCGCCTCCATGCAGTACCGAGTGGGTGCGTT





CGGCTTCCTCTACCTCGCACAGGACTTGCCTCGAGGCAGCGAGGAGGCGCCGG





GCAACATGGGGCTCTGGGACCAGGCCCTTGCCATCCGCTGGCTCAAGGACAACA





TTGC





NL027
SEQ ID NO: 1678
SEQ ID NO: 1679
SEQ ID NO: 1677



GCGTAATACGACTCA
CAATCCAGTTTTTA
AGAAGACGGCACGGTGCGTATTTGGCACTCGGGCACCTACAGGCTGGAGTCCTC



CTATAGGAGAAGACG
CAGTTTCGTGC
GCTGAATTATGGCCTCGAAAGAGTGTGGACCATTTGCTGCATGCGAGGATCCAAC



GCACGGTGCG
SEQ ID NO: 1681
AATGTGGCTCTTGGCTACGACGAAGGCAGCATAATGGTGAAGGTGGGTCGGGAG



SEQ ID NO: 1680
GCGTAATACGACT
GAGCCGGCCATCTCGATGGATGTGAACGGTGAGAAGATTGTGTGGGCGCGCCAC



AGAAGACGGCACGGT
CACTATAGGCAAT
TCGGAGATACAACAGGTCAACCTCAAGGCCATGCCGGAGGGCGTCGAAATCAAA



GCG
CCAGTTTTTACAGT
GATGGCGAACGACTGCCGGTCGCCGTTAAGGATATGGGCAGCTGTGAAATATAT




TTCGTGC
CCGCAGACCATCGCTCATAATCCCAACGGCAGATTCCTAGTCGTTTGTGGAGATG





GAGAGTACATAATTCACACATCAATGGTGCTAAGAAATAAGGCGTTTGGCTCGGC





CCAAGAGTTCATTTGGGGACAGGACTCGTCCGAGTATGCTATCAGAGAAGGAACA





TCCACTGTCAAAGTATTCAAAAACTTCAAAGAAAAGAAATCATTCAAGCCAGAATTT





GGTGCTGAGAGCATATTCGGCGGCTACCTGCTGGGAGTTTGTTCGTTGTCTGGAC





TGGCGCTGTACGACTGGGAGACCCTGGAGCTGGTGCGTCGCATCGAGATCCAAC





CGAAACACGTGTACTGGTCGGAGAGTGGGGAGCTGGTGGCGCTGGCCACTGAT





GACTCCTACTTTGTGCTCCGCTACGACGCACAGGCCGTGCTCGCTGCACGCGAC





GCCGGTGACGACGCTGTCACGCCGGACGGCGTCGAGGATGCATTCGAGGTCCTT





GGTGAAGTGCACGAAACTGTAAAAACTGGATTG



















TABLE 8-CS





Target
Primers Forward
Primers Reverse
dsRNA DNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







CS001
SEQ ID NO: 2041
SEQ ID NO: 2042
SEQ ID NO: 2040



TAAAGCATGGATGTT
GCGTAATACGACTC
TAAAGCATGGATGTTGGACAAACTGGGTGGCGTGTACGCGCCGCGGCCGTCGAC



GGACAAACTGGG
ACTATAGGGGTGAG
CGGCCCCCACAAGTTGCGCGAGTGCCTGCCGCTGGTGATCTTCCTCAGGAACCG



SEQ ID NO: 2043
TCGCACGCCCTTGC
GCTCAAGTACGCGCTCACCGGAAATGAAGTGCTTAAGATTGTAAAGCAGCGACTT



GCGTAATACGACTC
C
ATCAAAGTTGACGGCAAAGTCAGGACAGACCCCACATATCCCGCTGGATTTATGG



ACTATAGGTAAAGC
SEQ ID NO: 2044
ATGTTGTTTCCATTGAAAAGACAAATGAGCTGTTCCGTCTTATATATGATGTCAAAG



ATGGATGTTGGACA
GGTGAGTCGCACGC
GCAGATTTACTATTCACCGTATTACTCCTGAGGAGGCTAAATACAAGCTGTGCAAG



AACTGGG
CCTTGCC
GTGCGGCGCGTGGCGACGGGCCCCAAGAACGTGCCTTACCTGGTGACCCACGA





CGGACGCACCGTGCGATACCCCGACCCACTCATCAAGGTCAACGACTCCATCCA





GCTCGACATCGCCACCTCCAAGATCATGGACTTCATCAAGTTTGAATCTGGTAAC





CTATGTATGATCACGGGAGGCCGTAACTTGGGGCGCGTGGGCACCATCGTGTCC





CGCGAGCGACATCCCGGGTCCTTCGACATCGTGCATATACGGGACTCCACCGGA





CATACCTTCGCTACCAGATTGAACAACGTGTTCATAATCGGCAAGGGCACGAAGG





CGTACATCTCGCTGCCGCGCGGCAAGGGCGTGCGACTCACC





CS002
SEQ ID NO: 2046
SEQ ID NO: 2047
SEQ ID NO: 2045



CAAGAAGGAGGAGA
GCGTAATACGACTC
CAAGAAGGAGGAGAAGGGTCCATCAACACACGAAGCTATACAGAAATTACGCGAA



AGGGTCCATCAAC
ACTATAGGCTTGTCT
ACGGAAGAGTTATTGCAGAAGAAACAAGAGTTTCTAGAGCGAAAGATCGACACTG



SEQ ID NO: 2048
ACATCGATATCCTTG
AATTACAAACGGCGAGAAAACATGGCACAAAGAATAAGAGAGCTGCCATTGCGGC



GCGTAATACGACTC
TGGGC
ACTGAAGCGCAAGAAGCGTTATGAAAAGCAGCTTACCCAGATTGATGGCACGCTT



ACTATAGGCAAGAA
SEQ ID NO: 2049
ACCCAAATTGAGGCCCAAAGGGAAGCGCTAGAAGGAGCTAACACCAATACACAG



GGAGGAGAAGGGTC
CTTGTCTACATCGAT
GTGCTTAACACTATGCGAGATGCTGCTACCGCTATGAGACTCGCCCACAAGGATA



CATCAAC
ATCCTTGTGGGC
TCGATGTAGACAAG





CS003
SEQ ID NO: 2051
SEQ ID NO: 2052
SEQ ID NO: 2050



TGGTCTCCGCAACA
GCGTAATACGACTC
TGGTCTCCGCAACAAGCGTGAGGTGTGGAGGGTGAAGTACACGCTGGCCAGGAT



AGCGTGAGG
ACTATAGGCGAACG
CCGTAAGGCTGCCCGTGAGCTGCTCACACTCGAGGAGAAAGACCCTAAGAGGTT



SEQ ID NO: 2053
GAGACTTCAGCGAG
ATTCGAAGGTAATGCTCTCCTTCGTCGTCTGGTGAGGATCGGTGTGTTGGATGAG



GCGTAATACGACTC
AAGTCA
AAGCAGATGAAGCTCGATTATGTACTCGGTCTGAAGATTGAGGACTTCTTGGAAC



ACTATAGGTGGTCT
SEQ ID NO: 2054
GTCGTCTCCAGACTCAGGTGTTCAAGGCTGGTCTAGCTAAGTCTATCCATCATGC



CCGCAACAAGCGTG
CGAACGGAGACTTC
CCGTATTCTTATCAGACAGAGGCACATCCGTGTCCGCAAGCAAGTTGTGAACATC



AGG
AGCGAGAAGTCA
CCTTCGTTCATCGTGCGGCTGGACTCTGGCAAGCACATTGACTTCTCGCTGAAGT





CTCCGTTCG





CS006
SEQ ID NO: 2056
SEQ ID NO: 2057
SEQ ID NO: 2055



GGATGATGATGGTA
GCGTAATACGACTC
GGATGATGATGGTATAATTGCACCAGGGATTCGTGTATCTGGTGACGATGTAGTC



TAATTGCACCAGGG
ACTATAGGCGTTAAA
ATTGGAAAAACTATAACTTTGCCAGAAAACGATGATGAGCTGGAAGGAACATCAA



SEQ ID NO: 2058
TGGTGTAGCATCAC
GACGATACAGTAAGAGAGATGCCTCTACATTCTTGCGAAACAGTGAAACTGGTATT



GCGTAATACGACTC
CTATTTCACC
GTTGACCAAGTTATGCTTACACTTAACAGCGAAGGATACAAATTTTGTAAAATACG



ACTATAGGGGATGA
SEQ ID NO: 2059
TGTGAGATCTGTGAGAATCCCACAAATTGGAGACAAATTTGCTTCTCGTCATGGTC



TGATGGTATAATTGC
CGTTAAATGGTGTA
AAAAAGGGACTTGTGGTATTCAATATAGGCAAGAAGATATGCCTTTCACTTGTGAA



ACCAGGG
GCATCACCTATTTCA
GGATTGACACCAGATATTATCATCAATCCACATGCTATCCCCTCTCGTATGACAAT




CC
TGGTCACTTGATTGAATGTATTCAAGGTAAGGTCTCCTCAAATAAAGGTGAAATAG





GTGATGCTACACCATTTAACG





CS007
SEQ ID NO: 2061
SEQ ID NO: 2062
SEQ ID NO: 2060



CTTGTTGAAACCAG
GCGTAATACGACTC
CTTGTTGAAACCAGAGATTTTGAGGGCTATCGTCGATTGCGGTTTCGAGCACCCT



AGATTTTGAGGGC
ACTATAGGCGGCAT
TCAGAAGTTCAACATGAATGTATTCCCCAAGCTGTTTTGGGAATGGATATTCTTTG



SEQ ID NO: 2063
GTCATAATTGAAGAC
TCAAAGCTAAATCCGGAATGGGAAAAACCGCCGTATTTGTTTTAGCAACACTGCAA



GCGTAATACGACTC
TATGTTGACTC
CAGCTAGAACCTTCAGAAAACCATGTTTACGTATTAGTAATGTGCCATACAAGGGA



ACTATAGGCTTGTTG
SEQ ID NO: 2064
ACTCGCTTTCCAAATAAGCAAGGAATATGAGAGGTTCTCTAAATATATGGCTGGTG



AAACCAGAGATTTTG
CGGCATGTCATAATT
TTAGAGTATCTGTATTCTTTGGTGGGATGCCAATTCAGAAAGATGAAGAAGTATTG



AGGGC
GAAGACTATGTTGA
AAGACAGCCTGCCCGCACATCGTTGTTGGTACTCCTGGCAGAATATTAGCATTGG




CTC
TTAACAACAAGAAACTGAATTTAAAACACCTGAAACACTTCATCCTGGATGAATGT





GACAAAATGCTTGAATCTCTAGACATGAGACGTGATGTGCAGGAAATATTCAGGA





ACACCCCTCACGGTAAGCAGGTCATGATGTTTTCTGCAACATTGAGTAAGGAGAT





CAGACCAGTCTGTAAGAAATTTATGCAAGATCCTATGGAAGTTTATGTGGATGATG





AAGCTAAACTTACATTGCACGGTTTGCAGCAACATTATGTTAAACTCAAGGAAAAT





GAAAAGAATAAGAAGTTATTTGAACTTTTGGATGTACTGGAGTTCAACCAAGTTGT





CATATTTGTAAAGTCAGTGCAGCGCTGCATAGCTCTCGCACAGCTGCTGACAGAC





CAAAACTTCCCAGCTATTGGTATACACCGAAATATGACTCAAGATGAGCGTCTCTC





CCGCTATCAGCAGTTCAAAGATTTCCAGAAGAGGATCCTTGTTGCGACAAATCTTT





TTGGACGGGGTATGGACATTGAAAGAGTCAACATAGTCTTCAATTAT





GACATGCCG





CS009
SEQ ID NO: 2066
SEQ ID NO: 2067
SEQ ID NO: 2065



ACGTTTCTGCAGCG
GCGTAATACGACTC
ACGTTTCTGCAGCGGCTGGACTCACGGGAGCCCATGTGGCAGCTGGACGAGAGC



GCTGGACTC
ACTATAGGGATAATT
ATCATCGGCACCAACCCCGGGCTCGGCTTCCGGCCCACGCCGCCAGAGGTCGC



SEQ ID NO: 2068
CTTATCGTACGCTGT
CAGCAGCGTCATCTGGTATAAAGGCAACGACCCCAACAGCCAACAATTCTGGGTG



GCGTAATACGACTC
CATATTCCTG
CAAGAAACCTCCAACTTTCTAACCGCGTACAAACGAGACGGTAAGAAAGCAGGAG



ACTATAGGACGTTTC
SEQ ID NO: 2069
CAGGCCAGAACATCCACAACTGTGATTTCAAACTGCCTCCTCCGGCCGGTAAGGT



TGCAGCGGCTGGAC
GATAATTCTTATCGT
GTGCGACGTGGACATCAGCGCCTGGAGTCCCTGTGTAGAGGACAAGCACTTTGG



TC
ACGCTGTCATATTCC
ATACCACAAGTCCACGCCCTGCATCTTCCTCAAACTCAACAAGATCTTCGGCTGG




TG
AGGCCGCACTTCTACAACAGCTCCGACAGCCTGCCCACTGACATGCCCGACGAC





TTGAAGGAGCACATCAGGAATATGACAGCGTACGATAAGAATTATC





CS011
SEQ ID NO 2071
SEQ ID NO: 2072
SEQ ID NO: 2070



CGACACTTGACTGG
GCGTAATACGACTC
CGACACTTGACTGGAGAGTTCGAGAAAAGATATGTCGCCACATTAGGTGTCGAGG



AGAGTTCGAGA
ACTATAGGCTCTAG
TGCATCCCTTAGTATTCCACACAAATAGAGGCCCTATAAGGTTTAATGTATGGGAT



SEQ ID NO: 2073
GTTACCATCACCGA
ACTGCTGGCCAAGAAAAGTTTGGTGGTCTCCGAGATGGTTACTATATCCAAGGTC



GCGTAATACGACTC
TCAACT
AATGTGCCATCATCATGTTCGATGTAACGTCTCGTGTCACCTACAAAAATGTACCC



ACTATAGGCGACAC
SEQ ID NO: 2074
AACTGGCACAGAGATTTAGTGCGAGTCTGTGAAGGCATTCCAATTGTTCTTTGTG



TTGACTGGAGAGTT
CTCTAGGTTACCATC
GCAACAAAGTAGATATCAAGGACAGAAAAGTCAAAGCAAAAACTATTGTTTTCCAC



CGAGA
ACCGATCAACT
AGAAAAAAGAACCTTCAGTATTATGACATCTCTGCCAAGTCAAACTACAATTTCGA





GAAACCCTTCCTCTGGTTAGCGAGAAAGTTGATCGGTGATGGTAACCTAGAG





CS013
SEQ ID NO: 2076
SEQ ID NO: 2077
SEQ ID NO: 2075



TGCCGAACAGGTAT
GCGTAATACGACTC
TGCCGAACAGGTATACATCTCGTCTTTGGCCCTGTTGAAGATGTTAAAACACGGG



ACATCTCGTCTTTGG
ACTATAGGCCACTA
CGCGCCGGTGTTCCAATGGAAGTTATGGGACTTATGTTAGGTGAATTTGTTGATG



SEQ ID NO: 2078
CAGCTACAGCACGT
ATTACACGGTGCGTGTCATAGACGTATTTGCCATGCCTCAAACTGGCACAGGAGT



GCGTAATACGACTC
TCAGAC
GTCGGTTGAAGCTGTAGATCCTGTCTTCCAAGCAAAGATGTTGGATATGTTGAAG



ACTATAGGTGCCGA
SEQ ID NO: 2079
CAAACTGGACGACCTGAGATGGTAGTGGGATGGTACCACTCGCATCCTGGCTTTG



ACAGGTATACATCTC
CCACTACAGCTACA
GATGTTGGTTATCTGGAGTCGACATTAATACTCAGCAGTCTTTCGAAGCTTTGTCT



GTCTTTGG
GCACGTTCAGAC
GAACGTGCTGTAGCTGTAGTGG





CS014
SEQ ID NO: 2081
SEQ ID NO: 2082
SEQ ID NO: 2080



CAGATCAAGCATAT
GCGTAATACGACTC
AGATCAAGCATATGATGGCCTTCATCGAACAAGAGGCTAATGAAAAGGCCGAGGA



GATGGCCTTCATCG
ACTATAGGGAACAA
AATCGATGCAAAGGCCGAAGAGGAGTTCAACATTGAAAAAGGCCGCCTGGTGCA



A
TGCGGTACGTATTT
GCAGCAGCGGCTCAAGATCATGGAATACTACGAAAAGAAAGAGAAACAAGTGGAA



SEQ ID NO: 2083
CGGGC
CTCCAGAAAAAGATCCAATCTTCGAACATGCTGAATCAAGCCCGTCTGAAGGTGC



GCGTAATACGACTC
SEQ ID NO: 2084
TCAAAGTGCGTGAGGACCACGTACGCAACGTTCTCGACGAGGCTCGCAAGCGCC



ACTATAGGCAGATC
GAACAATGCGGTAC
TGGCTGAGGTGCCCAAAGACGTGAAACTTTACACAGATCTGCTGGTCACGCTCGT



AAGCATATGATGGC
GTATTTCGGGC
CGTACAAGCCCTATTCCAGCTCATGGAACCCACAGTAACAGTTCGCGTTAGGCAG



CTTCATCGA

GCGGACGTCTCCTTAGTACAGTCCATATTGGGCAAGGCACAGCAGGATTACAAAG





CAAAGATCAAGAAGGACGTTCAATTGAAGATCGACACCGAGAATTCCCTGCCCGC





CGATACTTGTGGCGGAGTGGAACTTATTGCTGCTAGAGGGCGTATTAAGATCAGC





AACACTCTGGAGTCTCGTCTGGAGCTGATAGCCCAACAACTGTTGCCCGAAATAC





GTACCGCATTGTTC





CS015
SEQ ID NO: 2086
SEQ ID NO: 2087
SEQ ID NO: 2085



ATCGTGCTTTCAGA
GCGTAATACGACTC
ATCGTGCTTTCAGACGATAACTGCCCCGATGAGAAGATCCGCATGAACCGCGTCG



CGATAACTGCCCC
ACTATAGGCCATTAC
TGCGAAACAACTTGCGTGTACGCCTGTCAGACATAGTCTCCATAGCGCCTTGTCC



SEQ ID NO: 2088
GATCACGTGCGATG
ATCGGTCAAATATGGGAAACGGGTACATATATTGCCCATTGATGATTCTGTCGAG



GCGTAATACGACTC
ACTTC
GGTTTGACTGGAAATTTATTCGAAGTCTACTTGAAACCATACTTCATGGAAGCTTA



ACTATAGGATCGTG
SEQ ID NO: 2089
TCGGCCTATCCATCGCGATGACACATTCATGGTTCGCGGGGGCATGAGGGCTGT



CTTTCAGACGATAAC
CCATTACGATCACG
TGAATTCAAAGTGGTGGAGACTGATCCGTCGCCGTATTGCATCGTCGCTCCCGAC



TGCCCC
TGCGATGACTTC
ACAGTGATACACTGCGAAGGAGACCCTATCAAACGAGAGGAAGAAGAAGAAGCC





CTAAACGCCGTAGGGTACGACGACATCGGTGGCTGTCGTAAACAGCTCGCTCAG





ATCAAAGAGATGGTCGAGTTGCCTCTAAGGCATCCGTCGCTGTTCAAGGCAATTG





GTGTGAAGCCGCCACGTGGAATCCTCATGTATGGGCCGCCTGGTACCGGCAAAA





CTCTCATTGCTCGGGCAGTGGCTAATGAAACTGGTGCATTCTTCTTTCTGATCAAC





GGGCCGGAGATCATGTCCAAACTCGCGGGCGAGTCCGAATCGAACCTTCGCAAG





GCATTCGAGGAAGCGGACAAGAACTCCCCGGCTATAATCTTCATCGATGAACTGG





ATGCCATCGCACCAAAGAGGGAGAAGACTCACGGTGAAGTGGAGCGTCGTATTG





TGTCGCAACTACTTACTCTTATGGATGGAATGAAGAAGTCATCGCACGTGATCGTA





ATGG





CS016
SEQ ID NO: 2091
SEQ ID NO: 2092
SEQ ID NO: 2090



AGGATGGAAGCGGG
GCGTAATACGACTC
AGGATGGAAGCGGGGATACGTTTGAGCATCTCCTTGGGGAAGATACGGAGCAGC



GATACGTTTGAG
ACTATAGGGCACCC
TGCCAGCCGATGTCCAGCGACTCGAATACTGTGCGGTTCTCGTAGTTGCCCTGTG



SEQ ID NO: 2093
CTGTCTCCGAAGAC
TGATGAAGTTCTTCTCGAACTTGGTGAGGAACTCGAGGTAGAGCAGATCGTCGGG



GCGTAATACGACTC
ATGTT
TGTCAGGGCTTCCTCACCGACGACAGCCTTCATGGCCTGCACGTCCTTACCGATG



ACTATAGGAGGATG
SEQ ID NO: 2094
GCGTAGCAGGCGTACAGCTGGTTGGAAACATCAGAGTGGTCCTTGCGGGTCATT



GAAGCGGGGATACG
GCACCCCTGTCTCC
CCCTCACCGATGGCAGACTTCATGAGACGAGACAGGGAAGGCAGCACGTTTACA



TTTGAG
GAAGACATGTT
GGCGGGTAGATCTGTCTGTTGTGGAGCTGACGGTCTACGTAGATCTGTCCCTCAG





TGATGTAGCCCGTTAAATCGGGAATAGGATGGGTGATGTCGTCGTTGGGCATAGT





CAAGATGGGGATCTGCGTGATGGATCCGTTTCTACCCTCTACACGCCCGGCTCTC





TCGTAGATGGTGGCCAAATCGGTGTACATGTAACCTGGGAAACCACGTCGTCCG





GGCACCTCCTCACGGGCGGCGGACACTTCACGCAGAGCCTCCGCGTACGAAGA





CATGTCAGTCAAGATTACCAGCACGTGTTTCTCACACTGGTAGGCCAAGAACTCA





GCAGCAGTCAAGGCCAAACGTGGTGTGATGATTCTCTCAATAGTGGGATCGTTGG





CCAGATTCAAGAACAGGCACACGTTCTCCATGGAGCCGTTCTCCTCGAAGTCCTG





CTTGAAGAACCGGGCCGTCTCCATGTTCACACCCATGGCGGCGAACACGATGGC





AAAGTTGTCCTCGTGGTCGTCCAGCACAGATTTGCCGGGGATCTTTACAAGACCG





GCTTGCCTACAGATCTGGGCGGCAATTTCGTTGTGTGGCAGACCGGCAGCCGAG





AAAATGGGGATCTTTTGCCCGCGAGCAATGGAGTTCATCACGTCGATAGCGGAGA





TACCAGTCTGGATCATTTCCTCAGGGTAGATACGGGACCAGGGGTTGATGGGCT





GTCCCTGGATGTCCAAAAAGTCTTCAGCAAGGATTGGGGGACCTTTGTCAATGGG





TTTTCCAGAGCCGTTGAATACGCGACCCAACATGTCTTCGGAGACAGGGGTGC





CS018
SEQ ID NO: 2096
SEQ ID NO: 2097
SEQ ID NO: 2095



CGTCCCTGTACCTG
GCGTAATACGACTC
CGTCCCTGTACCTGCTCAGCAATCCCAACAGCAGCAGAGTTACCGCCACGTCAG



CTCAGCAATCCCA
ACTATAGGCAGCGT
CGAGAGCGTCGAACACAAATCCTACGGCACGCAAGGGTACACCACTTCGGAACA



SEQ ID NO: 2098
CGAGGCCCCACCTT
GACCAAGCAGACACAGAAGGTGGCGTACACCAACGGTTCCGACTACTCTTCCAC



GCGTAATACGACTC
SEQ ID NO: 2099
GGACGACTTTAAGGTGGATACGTTCGAATACAGACTCCTCCGAGAAGTTTCGTTC



ACTATAGGCGTCCC
CAGCGTCGAGGCCC
AGGGAATCCATCACGAAGCGGTACATTGGCGAGACAGACATTCAGATCAGCACG



TGTACCTGCTCAGC
CACCTT
GAGGTCGACAAGTCTCTCGGTGTGGTGACCCCTCCTAAGATAGCACAAAAGCCTA



AATCCCA

GGAATTCCAAGCTGCAGGAGGGAGCCGACGCTCAGTTTCAAGTGCAGCTGTCGG





GTAACCCGCGGCCACGGGTGTCATGGTTCAAGAACGGGCAGAGGATAGTCAACT





CGAACAAACACGAAATCGTCACGACACATAATCAAACAATACTTAGGGTAAGAAAC





ACACAAAAGTCTGATACTGGCAACTACACGTTGTTGGCTGAAAATCCTAACGGAT





GCGTCGTCACATCGGCATACCTGGCCGTGGAGTCGCCTCAAGAAACTTACGGCC





AAGATCATAAATCACAATACATAATGGACAATCAGCAAACAGCTGTAGAAGAAAGA





GTAGAAGTTAATGAAAAAGCTCTCGCTCCGCAATTCGTAAGAGTCTGCCAAGACC





GCGATGTAACGGAGGGGAAAATGACGCGATTCGATTGCCGCGTCACGGGCAGAC





CTTACCCAGAAGTCACGTGGTTCATTAACGATAGACAAATTCGAGACGATTATWAT





CATAAGATATTAGTAAACGAATCGTGTAATCATGCACTTATGATTACAAACGTCGAT





CTCAGTGATAGTGGCGTAGTATCATGTATAGCACGCAACAAGACCGGCGAAACTT





CGTTTCAGTGTAGGCTGAACGTGATAGAGAAGGAGCAAGTGGTCGCTCCCAAATT





CGTGGAGCGGTTCAGCACGCTCAACGTGCGCGAGGGCGAGCCCGTGCAGCTGC





ACGCGCGCGCCGTCGGCACGCCTACGCCACGCATCACATGGCAGAAGGACGGC





GTTCAAGTTATACCCAATCCAGAGCTACGAATAAATACCGAAGGTGGGGCCTCGA





CGCTG



















TABLE 8-PX





Target
Primers Forward
Primers Reverse
dsRNA DNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







PX001
SEQ ID NO: 2340
SEQ ID NO: 2341
SEQ ID NO: 2339



GCGTAATACGACTC
CTTGCCGATGATGA
CGAGGTGCTGAAGATCGTGAAGCAGCGCCTCATCAAGGTGGACGGCAAGGTCCG



ACTATAGGCGAGGT
ACACGTTG
CACCGACCCCACCTACCCGGCTGGATTCATGGATGTTGTGTCGATTGAAAAGACC



GCTGAAGATCGTGA
SEQ ID NO: 2343
AATGAGCTGTTCCGTCTGATCTACGATGTGAAGGGACGCTTCACCATCCACCGCA



AG
GCGTAATACGACTC
TCACTCCCGAGGAGGCCAAGTACAAGCTGTGCAAGGTGAAGCGCGTGGCGACG



SEQ ID NO: 2342
ACTATAGGCTTGCC
GGCCCCAAGAACGTGCCGTACATCGTGACGCACAACGGCCGCACGCTGCGCTAC



CGAGGTGCTGAAGA
GATGATGAACACGT
CCCGACCCGCTCATCAAGGTCAACGACTCCATCCAGCTCGACATCGCCACCTGC



TCGTGAAG
TG
AAGATCATGGACATCATCAAGTTCGACTCAGGTAACCTGTGCATGATCACGGGAG





GGCGTAACTTGGGGCGAGTGGGCACCATCGTGTCCCGCGAGAGGCACCCCGGG





AGCTTCGACATCGTCCACATCAAGGACACCACCGGACACACCTTCGCCACCAGGT





TGAACAACGTGTTCATCATCGGCAAG





PX009
SEQ ID NO: 2345
SEQ ID NO: 2346
SEQ ID NO: 2344



GCGTAATACGACTC
TGTTGATCACTATGC
CAGCTACAAGTATTGGGAGAACCAGCTCATTGACTTTTTGTCAGTATACAAGAAGA



ACTATAGGCAGCTA
CGGTCCT
AGGGTCAGACAGCGGGTGCTGGTCAGAACATCTTCAACTGTGACTTCCGCAACC



CAAGTATTGGGAGA
SEQ ID NO: 2348
CGCCCCCACACGGCAAGGTGTGCGACGTGGACATCCGCGGCTGGGAGCCCTGC



ACCAG
GCGTAATACGACTC
ATTGATGAGAACCACTTCTCTTTCCACAAGTCTTCGCCTTGCATCTTCTTGAAGCT



SEQ ID NO: 2347
ACTATAGGTGTTGAT
GAATAAGATCTACGGCTGGCGTCCAGAGTTCTACAACGACACGGCTAACCTGCCT



CAGCTACAAGTATT
CACTATGCCGGTCC
GAAGCCATGCCCGTGGACTTGCAGACCCACATTCGTAACATTACTGCCTTCAACA



GGGAGAACCAG
T
GAGACTATGCGAACATGGTGTGGGTGTCGTGCCACGGCGAGACGCCGGCGGAC





AAGGAGAACATCGGGCCGGTGCGCTACCTGCCCTACCCGGGCTTCCCCGGGTAC





TTCTACCCGTACGAGAACGCCGAGGGGTATCTGAGCCCGCTGGTCGCCGTGCAT





TTGGAGAGGCCGAGGACCGGCATAGTGATCAACA





PX010
SEQ ID NO: 2350
SEQ ID NO: 2351
SEQ ID NO: 2349



GCGTAATACGACTC
CTGTATCAATGTACC
ACCAGCACTCTAGTGGACAACGTCGCGTTCGGGTCACCACTGTCGCGCGCAATT



ACTATAGGACCAGC
GCGGCAC
GGGGCGACGCAGCCGCCAACTTACACCACATATCGGCGGGCTTCGACCAGGAG



ACTCTAGTGGACAA
SEQ ID NO: 2353
GCGGCGGCGGTGGTGATGGCGCGGCTGGTGGTGTACCGCGCGGAGCAGGAGG



CGTC
GCGTAATACGACTC
ACGGGCCCGACGTGCTGCGCTGGCTCGACCGCATGCTCATACGCCTGTGCCAGA



SEQ ID NO: 2352
ACTATAGGCTGTATC
AGTTCGGCGAGTACGCGAAGGACGACCCGAACAGCTTCCGTCTGTCGGAGAACT



ACCAGCACTCTAGT
AATGTACCGCGGCA
TCAGCCTGTACCCGCAGTTCATGTACCACCTGCGCCGCTCGCAGTTCCTGCAGGT



GGACAACGTC
C
CTTCAACAACTCGCCCGACGAGACCACCTTCTACAGACACATGCTGATGCGCGAA





GACCTGACCCAATCCCTCATCATGATCCAGCCGATCCTCTACTCGTACAGCTTCG





GAGGCGCGCCCGAACCCGTGCTGTTAGACACCAGCTCCATCCAGCCCGACCGCA





TCCTGCTCATGGACACCTTCTTCCAGATCCTCATCTACCATGGAGAGACAATGGC





GCAATGGCGCGCTCTCCGCTACCAAGACATGGCTGAGTACGAGAACTTCAAGCA





GCTGCTGCGAGCGCCCGTGGACGACGCGCAGGAGATCCTGCAGACCAGGTTCC





CCGTGCCGCGGTACATTGATACAG





PX015
SEQ ID NO: 2355
SEQ ID NO: 2356
SEQ ID NO: 2354



GCGTAATACGACTC
GATGATGGCCGGAG
GACGAGAAGATCCGCATGAACCGCGTCGTCCGGAACAACCTGCGAGTGCGCCTG



ACTATAGGGACGAG
AGTTCTTG
TCAGACATTGTGTCCATCGCTCCTTGCCCGTCAGTGAAGTACGGCAAGAGAGTTC



AAGATCCGCATGAA
SEQ ID NO: 2358
ATATTCTGCCCATTGATGACTCTGTTGAGGGTTTGACTGGAAACCTGTTCGAAGTC



CC
GCGTAATACGACTC
TACCTGAAGCCGTACTTCATGGAGGCGTACCGGCCCATCCACCGCGACGACACG



SEQ ID NO: 2357
ACTATAGGGATGAT
TTCATGGTGCGCGGCGGCATGCGCGCCGTCGAGTTCAAGGTGGTGGAGACCGA



GACGAGAAGATCCG
GGCCGGAGAGTTCT
CCCCTCGCCCTACTGCATCGTGGCCCCCGACACGGTCATTCATTGTGAGGGAGA



CATGAACC
TG
GCCGATTAAACGCGAGGAAGAAGAGGAGGCTCTCAACGCCGTCGGCTACGACGA





CATCGGCGGGTGCCGCAAGCAGCTGGCGCAGATCAAGGAGATGGTGGAGCTGC





CGCTGCGCCACCCCTCGCTGTTCAAGGCCATCGGGGTCAAGCCGCCGCGGGGG





ATACTGATGTACGGGCCCCCGGGGACGGGGAAGACCTTGATCGCTAGGGCTGTC





GCTAATGAGACGGGCGCATTCTTCTTCCTCATCAACGGCCCCGAGATCATGTCGA





AACTCGCCGGTGAATCCGAGTCGAACCTGCGCAAGGCGTTCGAGGAGGCGGACA





AGAACTCTCCGGCCATCATC





PX016
SEQ ID NO: 2360
SEQ ID NO: 2361
SEQ ID NO: 2359



GCGTAATACGACTC
AGTGATGTACCCGG
CTGGGTCGTATTTTCAACGGCTCCGGCAAGCCCATCGACAAGGGGCCCCCGATC



ACTATAGGCTGGGT
TCAAGTCG
CTGGCCGAGGAGTACCTGGACATCCAGGGGCAGCCCATCAACCCGTGGTCCCGT



CGTATTTTCAACGG
SEQ ID NO: 2363
ATCTACCCGGAGGAGATGATCCAGACTGGTATCTCCGCTATCGACGTGATGAACT



CTC
GCGTAATACGACTC
CCATCGCCCGTGGTCAGAAGATCCCCATCTTCTCCGCCGCCGGTCTGCCCCACA



SEQ ID NO: 2362
ACTATAGGAGTGAT
ACGAGATTGCTGCTCAGATCTGTAGGCAGGCTGGTCTTGTCAAGGTCCCCGGAAA



CTGGGTCGTATTTTC
GTACCCGGTCAAGT
ATCCGTGTTGGACGACCACGAAGACAACTTCGCCATCGTGTTCGCCGCCATGGG



AACGGCTC
CG
AGTCAACATGGAGACCGCCAGGTTCTTCAAGCAGGACTTCGAGGAGAACGGTTC





CATGGAGAACGTCTGTCTGTTCTTGAACTTGGCCAATGACCCGACCATTGAGAGG





ATTATCACGCCGAGGTTGGCGCTGACTGCTGCCGAGTTCTTGGCCTACCAGTGC





GAGAAACACGTGTTGGTAATCTTGACCGACATGTCTTCATACGCGGAGGCTCTTC





GTGAAGTGTCAGCCGCCCGTGAGGAGGTGCCCGGACGACGTGGTTTCCCAGGTT





ACATGTACACGGATTTGGCCACAATCTACGAGCGCGCCGGGCGAGTCGAGGGCC





GCAACGGCTCCATCACGCAGATCCCCATCCTGACCATGCCCAACGACGACATCA





CCCACCCCATCCCCGACTTGACCGGGTACATCACT



















TABLE 8-AD





Target
Primers Forward
Primers Reverse
dsRNA DNA Sequence (sense strand)


ID
5′ → 3′
5′ → 3′
5′ → 3′







AD001
SEQ ID NO: 2462
SEQ ID NO: 2463
SEQ ID NO: 2461



GCGTAATACGACTC
CAATATCAAACGAG
GCTCCTAAAGCATGGATGTTGGACAAACTCGGAGGAGTATTCGCTCCTCGCCCCAG



ACTATAGGGCTCCT
CCTGGGTG
TACTGGCCCCCACAAATTGCGTGAATGTTTACCTTTGGTGATTTTTCTTCGCAATCG



AAAGCATGGATGTT
SEQ ID NO: 2465
GCTCAAGTATGCTCTGACGAACTGTGAAGTAACGAAGATTGTTATGCAGCGACTTAT



GG
GCGTAATACGACTC
CAAAGTTGACGGCAAGGTGCGAACCGATCCGAATTATCCCGCTGGTTTCATGGATG



SEQ ID NO: 2464
ACTATAGGCAATATC
TTGTCACCATTGAGAAGACTGGAGAGTTCTTCAGGCTGGTGTATGATGTGAAAGGC



GCTCCTAAAGCATG
AAACGAGCCTGGGT
CGTTTCACAATTCACAGAATTAGTGCAGAAGAAGCCAAGTACAAGCTCTGCAAGGTC



GATGTTGG
G
AGGAGAGTTCAAACTGGGCCAAAAGGTATTCCATTCTTGGTGACCCATGATGGCCG





TACTATCCGTTATCCTGACCCAGTCATTAAAGTTAATGACTCAATCCAATTGGATATT





GCCACTTGTAAAATCATGGACCACATCAGATTTGAATCTGGCAACCTGTGTATGATT





ACTGGTGGACGTAACTTGGGTCGAGTGGGGACTGTTGTGAGTCGAGAACGTCACC





CAGGCTCGTTTGATATTG





AD002
SEQ ID NO: 2467
SEQ ID NO: 2468
SEQ ID NO: 2466



GCGTAATACGACTC
CATCCATGTGCTGA
GAAGAAAGATGGAAAGGCTCCGACCACTGGTGAGGCCATTCAGAAACTCAGAGAAA



ACTATAGGGAAGAA
TGAGCTGC
CAGAAGAAATGTTAATCAAAAAGCAGGAATTTTTAGAGAAGAAAATCGAACAAGAAA



AGATGGAAAGGCTC
SEQ ID NO: 2470
TCAATGTTGCAAAGAAAAATGGAACGAAAAATAAGCGAGCTGCTATTCAGGCTCTGA



CGAC
GCGTAATACGACTC
AAAGGAAAAAGAGGTATGAAAAACAATTGCAGCAAATTGATGGCACCTTATCCACAA



SEQ ID NO: 2469
ACTATAGGCATCCAT
TTGAAATGCAAAGAGAAGCTTTGGAGGGTGCTAATACTAATACAGCTGTATTACAAA



GAAGAAAGATGGAA
GTGCTGATGAGCTG
CAATGAAATCAGCAGCAGATGCCCTTAAAGCAGCTCATCAGCACATGGATG



AGGCTCCGAC
C






AD009
SEQ ID NO: 2472
SEQ ID NO: 2473
SEQ ID NO: 2471



GCGTAATACGACTC
CGTGTTCATCTCCCT
GTCTTCTTCCAGACACTGGATCCTCGTATTCCCACCTGGCAGTTAGATTCTTCTATC



ACTATAGGGTCTTCT
CGAGTTG
ATTGGCACATCACCTGGCCTAGGTTTCCGGCCAATGCCAGAAGATAGCAATGTAGA



TCCAGACACTGGAT
SEQ ID NO: 2475
GTCAACTCTCATCTGGTACCGTGGAACAGATCGTGATGACTTCCGTCAGTGGACAG



CCTC
GCGTAATACGACTC
ACACCCTTGATGAATTTCTTGCTGTGTACAAGACTCCTGGTCTGACCCCTGGTCGAG



SEQ ID NO: 2474
ACTATAGGCGTGTT
GTCAGAACATCCACAACTGTGACTATGATAAGCCGCCAAAGAAAGGCCAAGTTTGC



GTCTTCTTCCAGACA
CATCTCCCTCGAGT
AATGTGGACATCAAGAATTGGCATCCCTGCATTCAAGAGAATCACTACAACTACCAC



CTGGATCCTC
TG
AAGAGCTCTCCATGCATATTCATCAAGCTCAACAAGATCTACAATTGGATCCCTGAA





TACTACAATGAGAGTACGAATTTGCCTGAGCAGATGCCAGAAGACCTGAAGCAGTA





CATCCACAACCTGGAGAGTAACAACTCGAGGGAGATGAACACG





AD015
SEQ ID NO: 2477
SEQ ID NO: 2478
SEQ ID NO: 2476



GCGTAATACGACTC
AGAATTTCAAGGCG
GTTGAAGGACTAACCGGGAATTTGTTTGAGGTGTACTTAAAACCGTACTTTCTCGAA



ACTATAGGGTTGAA
ACCAGTGG
GCATACCGACCCATTCACAAAGATGATGCGTTTATTGTTCGTGGTGGTATGCGAGCA



GGACTAACCGGGAA
SEQ ID NO: 2480
GTAGAATTCAAAGTAGTGGAAACAGATCCTTCACCATATTGTATTGTTGCTCCTGATA



TTTG
GCGTAATACGACTC
CTGTTATTCACTGTGAAGGTGATCCAATAAAACGTGAAGAGGAAGAAGAAGCATTAA



SEQ ID NO: 2479
ACTATAGGAGAATTT
ATGCTGTTGGTTATGATGACATTGGGGGTTGCCGAAAACAGCTAGCACAGATCAAG



GTTGAAGGACTAAC
CAAGGCGACCAGTG
GAAATGGTGGAATTGCCATTACGGCACCCCAGTCTCTTTAAGGCTATTGGTGTTAAG



CGGGAATTTG
G
CCACCGAGGGGAATACTGCTGTATGGACCCCCTGGAACTGGTAAAACCCTCATTGC





CAGGGCTGTGGCTAATGAAACTGGTGCATTCTTCTTTTTAATAAATGGTCCTGAAATT





ATGAGCAAGCTTGCTGGTGAATCTGAAAGCAACTTACGTAAGGCATTTGAAGAAGCT





GATAAGAATGCTCCGGCAATTATATTTATTGATGAACTAGATGCAATTGCCCCTAAAA





GAGAAAAAACTCATGGAGAGGTGGAACGTCGCATAGTTTCACAACTACTAACTTTAA





TGGATGGTCTGAAGCAAAGTTCACATGTTATTGTTATGGCTGCCACAAATAGACCCA





ACTCTATTGATGGTGCCTTGCGCCGCTTTGGCAGATTTGATAGGGAAATTGATATTG





GTATACCAGATGCCACTGGTCGCCTTGAAATTCT





AD016
SEQ ID NO: 2482
SEQ ID NO: 2483
SEQ ID NO: 2481



GCGTAATACGACTC
ATGTAGCCTGGGAA
ACCCGGAAGAAATGATCCAGACGGGGATCTCGACCATCGACGTGATGACGTCCATC



ACTATAGGACCCGG
GCCTCTTC
GCGCGAGGGCAGAAGATCCCCATCTTCTCGGGCGCAGGGCTGCCACACAACGAGA



AAGAAATGATCCAG
SEQ ID NO: 2485
TCGCTGCGCAGATCTGCCGACAGGCGGGGCTGGTGCAGCACAAGGAGAACAAGGA



AC
GCGTAATACGACTC
CGACTTCGCCATCGTGTTCGCGGCGATGGGCGTCAACATGGAGACGGCGCGCTTC



SEQ ID NO: 2484
ACTATAGGATGTAG
TTCAAGCGCGAGTTCGCGCAGACGGGCGCGTGCAACGTGGTGCTGTTCCTCAACC



ACCCGGAAGAAATG
CCTGGGAAGCCTCT
TGGCCAACGACCCCACCATCGAGCGCATCATCACCCCGCGCCTCGCGCTCACCGT



ATCCAGAC
TC
GGCCGAGTTCCTGGCCTACCAGTGCAACAAGCACGTGCTCGTCATCATGACCGACA





TGACCTCCTACGCGGAGGCGCTGCGCGAGGTGAGCGCGGCGCGCGAGGAGGTTC





CTGGGCGAAGAGGCTTCCCAGGCTACAT



















TABLE 9-LD







Target
Hairpin Sequence



ID
5′ → 3′









LD002
SEQIDNO: 240




GCCCTTGCAATGTCATCCATCATGTCGTGTACATTGTCCACGTCCAAGTTTTTATGGGCTTTCTTAAGAGCTTCAGCTGCATTTTTCAT




AGATTCCAATACTGTGGTGTTCGTACTAGCTCCCTCCAGAGCTTCTCGTTGAAGTTCAATAGTAGTTAAAGTGCCATCTATTTGCAACT




GATTTTTTTCTAATCGCTTCTTCCGCTTCAGCGCTTGCATGGCCGCTCAAGGGCGAATTCACCAGCTTTCTTGTACAAAGTGGTATATC




ACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGA




CCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACT




CATTAACTAATATCACCTCTAGAGTATAATATAATCAAATTCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTC




TACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAG




CTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTT




CAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTT




TTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATA




TGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCC




GGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTT




TTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCAT




GGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGG




CAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATA




AAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAG




ACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTA




TGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTCAGCACACCAGAGCATATATATTGGTGGCTCAAATCA




TAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGA




TCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCCTTGAGCGGCCATGCAAGCGCTGAAGCGGAAGAAGCG




ATTAGAAAAAAATCAGTTGCAAATAGATGGCACTTTAACTACTATTGAACTTCAACGAGAAGCTCTGGAGGGAGCTAGTACGAACACC




ACAGTATTGGAATCTATGAAAAATGCAGCTGAAGCTCTTAAGAAAGCCCATAAAAACTTGGACGTGGACAATGTACACGACATGATGG




ATGACATTGCAAGGGC







LD006
SEQIDNO: 241




GCCCTTGGAGCGAGACTACAACAACTATGGCTGGCAGGTGTTGGTTGCTTCTGGTGTGGTGGAATACATCGACACTCTTGAAGAAGA




AACTGTCATGATTGCGATGAATCCTGAGGATCTTCGGCAGGACAAAGAATATGCTTATTGTACGACCTACACCCACTGCGAAATCCAC




CCGGCCATGATCTTGGGCGTTTGCGCGTCTATTATACCTTTCCCCGATCATAACCAGAGCCCAAGGAACACCTACCAGAGCGCTATG




GGTAAGCAAGCTATGGGGGTCTACATTACGAATTTCCACGTGCGGATGGACACCCTGGCCCACGTGCTATACTACCCGCACAAACCT




CTGGTCACTACCAGGTCTATGGAGTATCTGCGGTTCAGAGAATTACCAGCCGGGATCAACAGTATAGTTGCTATTGCTTGTTATACTG




GTTATAATCAAGAAGATTCTGTTATTCTGAACGCGTCTGCTGTGGAAAGAGGATTTTTCCGATCCGTGTTTTATCGTTCCTATAAAGAT




GCCGAATCGAAGCGAATTGGCGATCAAGAAGAGCAGTTCGAGAAGGGCGAATTCACCAGCTTTCTTGTACAAAGTGGTATATCACTA




GTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTG




CAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATT




AACTAATATCACCTCTAGAGTATAATATAATCAAATTCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACA




ATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAA




GGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGT




CAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTAT




CCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGG




GATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGC




AGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTC




GTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGG




GCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCA




GAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAA




GTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGAC




GATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATG




CTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTCAGCACACCAGAGCATATATATTGGTGGCTCAAATCATA




GAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATC




CCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGGCCCTTCTCGAACTGCTCTTCTTGATCGCCAATTCGCTTCGATTCGGC




ATCTTTATAGGAACGATAAAACACGGATCGGAAAAATCCTCTTTCCACAGCAGACGCGTTCAGAATAACAGAATCTTCTTGATTATAAC




CAGTATAACAAGCAATAGCAACTATACTGTTGATCCCGGCTGGTAATTCTCTGAACCGCAGATACTCCATAGACCTGGTAGTGACCAG




AGGTTTGTGCGGGTAGTATAGCACGTGGGCCAGGGTGTCCATCCGCACGTGGAAATTCGTAATGTAGACCCCCATAGCTTGCTTACC




CATAGCGCTCTGGTAGGTGTTCCTTGGGCTCTGGTTATGATCGGGGAAAGGTATAATAGACGCGCAAACGCCCAAGATCATGGCCG




GGTGGATTTCGCAGTGGGTGTAGGTCGTACAATAAGCATATTCTTTGTCCTGCCGAAGATCCTCAGGATTCATCGCAATCATGACAGT




TTCTTCTTCAAGAGTGTCGATGTATTCCACCACACCAGAAGCAACCAACACCTGCCAGCCATAGTTGTTGTAGTCTCGCTCCAAGGGC







LD007
SEQIDNO: 242




GCCCTTCCGAAGAAGGATGTGAAGGGTACTTACGTATCCATACACAGTTCAGGCTTCAGAGATTTTTTATTGAAACCAGAAATTCTAA




GAGCTATAGTTGACTGCGGTTTTGAACACCCTTCAGAAGTTCAGCACGAATGTATTCCTCAAGCTGTCATTGGCATGGACATTTTATGT




CAAGCCAAATCTGGTATGGGCAAAACGGCAGTGTTTGTTCTGGCGACACTGCAACAATTGGAACCAGCGGACAATGTTGTTTACGTTT




TGGTGATGTGTCACACTCGTGAACTGGCTTTCCAAATCAGCAAAGAGTACGAGAGGTTCAGTAAATATATGCCCAGTGTCAAGGTGG




GCGTCTTTTTCGGAGGAATGCCTATTGCTAACGATGAAGAAGTATTGAAAAACAAATGTCCACACATTGTTGTGGGGACGCCTGGGC




GTATTTTGGCGCTTGTCAAGTCTAGGAAGCTAGTCCTCAAGAACCTGAAACACTTCATTCTTGATGAGTGCGATAAAATGTTAGAACTG




TTGGATATGAGGAGAGACGTCCAGGAAATCTACAGAAACACCCCTCACACCAAGCAAGTGATGATGTTCAGTGCCACACTCAGCAAA




GAAATCAGGCCGGTGTGCAAGAAATTCATGCAAGATCCAATGGAGGTGTATGTAGACGATGAAGCCAAATTGACGTTGCACGGATTA




CAACAGCATTACGTTAAACTCAAAGAAAATGAAAAGAATAAAAAATTATTTGAGTTGCTCGATGTTCTCGAATTTAATCAGGTGGTCATT




TTTGTGAAGTCCGTTCAAAGGTGTGTGGCTTTGGCACAGTTGCTGACTGAACAGAATTTCCCAGCCATAGGAATTCACAGAGGAATG




GACCAGAAAGAGAGGTTGTCTCGGTATGAGCAGTTCAAAGATTTCCAGAAGAGAATATTGGTAGCTACGAATCTCTTTGGGCGTGGC




ATGGACATTGAAAGGGTCAACATTGTCTTCAACTATGATATGCCAGAGGACTCCGACACCTACTTGCATCGAAGGGCGAATTCACCAG




CTTTCTTGTACAAAGTGGTATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGC




TGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAG




CTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGAGTATAATATAATCAAATTCGACAATTTGACTTTCAAGAGTAGGC




TAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCT




GATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATC




GTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACC




GTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAAT




GAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGG




AGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTA




AAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAAC




TTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCC




GTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAAACGCGTGG




ATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAAGCCAAAATTTATGCTACTC




TAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGATCGGTGTGATAC




AAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTCAGCACACCAGAG




CATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAGAGTATGAAACCTTACCTCA




TCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCGACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCCTTCGATGCAAGTA




GGTGTCGGAGTCCTCTGGCATATCATAGTTGAAGACAATGTTGACCCTTTCAATGTCCATGCCACGCCCAAAGAGATTCGTAGCTACC




AATATTCTCTTCTGGAAATCTTTGAACTGCTCATACCGAGACAACCTCTCTTTCTGGTCCATTCCTCTGTGAATTCCTATGGCTGGGAA




ATTCTGTTCAGTCAGCAACTGTGCCAAAGCCACACACCTTTGAACGGACTTCACAAAAATGACCACCTGATTAAATTCGAGAACATCG




AGCAACTCAAATAATTTTTTATTCTTTTCATTTTCTTTGAGTTTAACGTAATGCTGTTGTAATCCGTGCAACGTCAATTTGGCTTCATCGT




CTACATACACCTCCATTGGATCTTGCATGAATTTCTTGCACACCGGCCTGATTTCTTTGCTGAGTGTGGCACTGAACATCATCACTTGC




TTGGTGTGAGGGGTGTTTCTGTAGATTTCCTGGACGTCTCTCCTCATATCCAACAGTTCTAACATTTTATCGCACTCATCAAGAATGAA




GTGTTTCAGGTTCTTGAGGACTAGCTTCCTAGACTTGACAAGCGCCAAAATACGCCCAGGCGTCCCCACAACAATGTGTGGACATTT




GTTTTTCAATACTTCTTCATCGTTAGCAATAGGCATTCCTCCGAAAAAGACGCCCACCTTGACACTGGGCATATATTTACTGAACCTCT




CGTACTCTTTGCTGATTTGGAAAGCCAGTTCACGAGTGTGACACATCACCAAAACGTAAACAACATTGTCCGCTGGTTCCAATTGTTG




CAGTGTCGCCAGAACAAACACTGCCGTTTTGCCCATACCAGATTTGGCTTGACATAAAATGTCCATGCCAATGACAGCTTGAGGAATA




CATTCGTGCTGAACTTCTGAAGGGTGTTCAAAACCGCAGTCAACTATAGCTCTTAGAATTTCTGGTTTCAATAAAAAATCTCTGAAGCC




TGAACTGTGTATGGATACGTAAGTACCCTTCACATCCTTCTTCGGAAGGGC







LD010
SEQIDNO: 243




GCCCTTCGCCATTGGGCGATGGTTTCGCCATGGAATATCAGAATCTGGAAGAACGTGTCCATGAGCAGAATTCTATCGGGTTGGATG




GAACTCGTATCCAAAAGCACAGGTTCTGGTGGTCCATTGAAACTGTAGCTGTAGAGTATCGGCTGGATCATGATCAGCGACTGCGTG




AGGTCTTCGCGCATAAGCATGTGCCTGTAGAAGGACGTTTCGTCGGGAGAATTGTTAAACACCTGCAGGAACTGTGACCTTCTCAAA




TGGTACATGAACTGCGGGTAGAGGCTGAAGTTTTCGCCCAAGCGGAACGAATTCGGGTCGTCCTTGTTATATTCGCCGAATTTCTGG




CACAGACGTATCAACATCCTATCGACCCATCTCAAAACATCAGGGCTATCGTCTGATTCCGCTCTGTAAACTGCCATCCTCGCCATTA




TCACTGCGGCTGCCTCCTGATCGAATCCAGCACTGACATGATGTATATTAGCGGAAGCATCGGCCCAGTTTCTAGCAACTGTCGTTA




CTCGGATCCTCTTCTGGCCACTAGCATGCTGATATTGCGTGATGAACTGTATGCAGCCCCTTCCCCCTTGAGGTATGGGAGCGGAAT




GTTGGTTGACGACCTCGAAGAACAAGGCCATGGTAGTACTTGGAGTTACCGTACACATTTTCCACTGGACCGTGTTACCCATTCCTAT




TTCGGTGTCGGAAACCAAAGGATTCTTCACATTCAACGAAACACAAGATCCAATACCGCCTTGAATTTTCAACTCCCTGGAACACTTG




ACCCTCCAGAGTACCATTAAATGCCATCTTCAGCTCGTTTTTCTGATCTTTCGAAAATATGCGCTGGAACGTTTGCTTGAACAGGGAA




GAATTGAACGAGTCGCCCATGACCATATGTCCCCCTGTTGAATTACAACACTGTTTCATCTCCATCAATCCTGTCTGATCCAAAGCGC




ATGAATATATGTCAACGCAGTGGCCATTCGTTGCTGCTCTCATCGCTAAATTATCATAGTGCTTGATTGCTTTCTTCATGTATTTGGCAT




TGTCTTTTTGGATGTCGTGGTGAGATCTGATAGGTTGCTTCAGATCATCATTCAAGACTTGACCAGGGCCTTGAGAGCAAGGTCCTCC




AACGAATAGCATGACCCTGGCACCAGTATTGGCGTATGTGCACTCCAACAACCCAATGGCTATCGATAAAGCTGTCCCGGTCGATCT




AAGGGCGCATTTGCCTTGGTGGACAGGCCATGGGTCTCTTTGCAACTCTCCAATAAGATCAGTGAGGTTCATGTCGCATTTCGAGAT




GGGTTGAAGGAACCTGCTTCCTGGTGGCGTAGGAGCTTGCTGGAGTGCTCCAGGCCTCATGGGTTGTCCTGGTTGTTGAGGAGCAG




GTTGAGCACTTACTGCGGCTCTGCCCACTTCCAACATCTCTTGAACTTGCTTAGCTGTGAGGTCTTTCGTCCCTCGGAAAACGTAAGA




TTTGCTGCAGCCCTCGGTACCTAGTTCGTGCACTTGGACCATCTTCCCAAAGGTAATCAACCCTATCAAGGCATTCGGGGGCAACAA




GCTCAAAGACATCTGCAACGAATCCTTGAGAGAAGGGCGAATTCACCAGCTTTCTTGTACAAAGTGGTATATCACTAGTGCGGCCGC




CTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTA




AATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCAC




CTCTAGAGTATAATATAATCAAATTCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAA




ACAGTTGCATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAAT




GGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAAT




GTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATT




CACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCAC




CCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACAT




ATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATC




CCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATAC




GCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGA




ATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAAC




AAGTGCCACCTTATTCAACCATCAAGAAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTT




TTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCAT




AATTTTACCCACTAAGCGTGACCAGATAAACATAACTCAGCACACCAGAGCATATATATTGGTGGCTCAAATCATAGAAACTTACAGTG




AAGACACAGAAAGCCGTAAGAAGAGGCAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATC




GACCACTTTGTACAAGAAAGCTGGTCGAATTCGCCCTTCTCTCAAGGATTCGTTGCAGATGTCTTTGAGCTTGTTGCCCCCGAATGCC




TTGATAGGGTTGATTACCTTTGGGAAGATGGTCCAAGTGCACGAACTAGGTACCGAGGGCTGCAGCAAATCTTACGTTTTCCGAGGG




ACGAAAGACCTCACAGCTAAGCAAGTTCAAGAGATGTTGGAAGTGGGCAGAGCCGCAGTAAGTGCTCAACCTGCTCCTCAACAACCA




GGACAACCCATGAGGCCTGGAGCACTCCAGCAAGCTCCTACGCCACCAGGAAGCAGGTTCCTTCAACCCATCTCGAAATGCGACAT




GAACCTCACTGATCTTATTGGAGAGTTGCAAAGAGACCCATGGCCTGTCCACCAAGGCAAATGCGCCCTTAGATCGACCGGGACAGC




TTTATCGATAGCCATTGGGTTGTTGGAGTGCACATACGCCAATACTGGTGCCAGGGTCATGCTATTCGTTGGAGGACCTTGCTCTCAA




GGCCCTGGTCAAGTCTTGAATGATGATCTGAAGCAACCTATCAGATCTCACCACGACATCCAAAAAGACAATGCCAAATACATGAAGA




AAGCAATCAAGCACTATGATAATTTAGCGATGAGAGCAGCAACGAATGGCCACTGCGTTGACATATATTCATGCGCTTTGGATCAGAC




AGGATTGATGGAGATGAAACAGTGTTGTAATTCAACAGGGGGACATATGGTCATGGGCGACTCGTTCAATTCTTCCCTGTTCAAGCAA




ACGTTCCAGCGCATATTTTCGAAAGATCAGAAAAACGAGCTGAAGATGGCATTTAATGGTACTCTGGAGGGTCAAGTGTTCCAGGGA




GTTGAAAATTCAAGGCGGTATTGGATCTTGTGTTTCGTTGAATGTGAAGAATCCTTTGGTTTCCGACACCGAAATAGGAATGGGTAAC




ACGGTCCAGTGGAAAATGTGTACGGTAACTCCAAGTACTACCATGGCCTTGTTCTTCGAGGTCGTCAACCAACATTCCGCTCCCATAC




CTCAAGGGGGAAGGGGCTGCATACAGTTCATCACGCAATATCAGCATGCTAGTGGCCAGAAGAGGATCCGAGTAACGACAGTTGCT




AGAAACTGGGCCGATGCTTCCGCTAATATACATCATGTCAGTGCTGGATTCGATCAGGAGGCAGCCGCAGTGATAATGGCGAGGATG




GCAGTTTACAGAGCGGAATCAGACGATAGCCCTGATGTTTTGAGATGGGTCGATAGGATGTTGATACGTCTGTGCCAGAAATTCGGC




GAATATAACAAGGACGACCCGAATTCGTTCCGCTTGGGCGAAAACTTCAGCCTCTACCCGCAGTTCATGTACCATTTGAGAAGGTCA




CAGTTCCTGCAGGTGTTTAACAATTCTCCCGACGAAACGTCCTTCTACAGGCACATGCTTATGCGCGAAGACCTCACGCAGTCGCTG




ATCATGATCCAGCCGATACTCTACAGCTACAGTTTCAATGGACCACCAGAACCTGTGCTTTTGGATACGAGTTCCATCCAACCCGATA




GAATTCTGCTCATGGACACGTTCTTCCAGATTCTGATATTCCATGGCGAAACCATCGCCCAATGGCGAAGGGC







LD011
SEQIDNO: 244




GCCCTTGTGGAAGCAGGGCTGGCATGGCGACAAATTCTAGATTGGGATCACCAATAAGCTTCCTAGCTAGCCATAGGAAAGGCTTCT




CAAAGTTGTAGTTAGATTTGGCAGAGATATCATAGTACTGCAAATTCTTCTTCCTATGAAAGACAATACTTTTCGCTTTTACTTTTCTGT




CTTTGATGTCAACCTTGTTCCCGCAAAGTACTATCGGGATATTTTCACAGACTCTGACAAGATCTCTGTGCCAATTTGGTACATTCTTG




TATGTAACTCTGGAAGTTACATCAAACATGATAATAGCACACTGTCCCTGAATGTAATATCCATCACGGAGACCACCAAACTTCTCCTG




ACCGGCAGTGTCCCATACATTGAACCGAATAGGGCCCCTGTTTGTATGGAAGACCAGAGGATGGACTTCAACTCCCAAAGTAGCTAC




ATATCTTTTTTCAAATTCACCAGTCATATGACGTTTCACAAATGTCGTTTTTCCAGTACCTCCATCTCCGACCAACACACACTTGAAAGT




GGGAAGGGCGAATTCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACC




TGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAG




ACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGAGTATAATATAATCAAATTC




GACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGC




CATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACC




ACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCT




GGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATG




CTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCA




AACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTAC




GGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGA




TTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCG




CTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGG




CAGGGCGGGGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAG




AAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTA




AACAACTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGAT




AAACATAACTCAGCACACCAGAGCATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGG




CAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCGGACCACTTTGTACAAGAAAGCTGGGT




CGAATTCGCCCTTCCCACTTTCAAGTGTGTGTTGGTCGGAGATGGAGGTACTGGAAAAACGACATTTGTGAAACGTCATATGACTGGT




GAATTTGAAAAAAGATATGTAGCTACTTTGGGAGTTGAAGTCCATCCTCTGGTCTTCCATACAAACAGGGGCCCTATTCGGTTCAATG




TATGGGACACTGCCGGTCAGGAGAAGTTTGGTGGTCTCCGTGATGGATATTACATTCAGGGACAGTGTGCTATTATCATGTTTGATGT




AACTTCCAGAGTTACATACAAGAATGTACCAAATTGGCACAGAGATCTTGTCAGAGTCTGTGAAAATATCCCGATAGTACTTTGCGGG




AACAAGGTTGACATCAAAGACAGAAAAGTAAAAGCGAAAAGTATTGTCTTTCATAGGAAGAAGAATTTGCAGTACTATGATATCTCTGC




CAAATCTAACTACAACTTTGAGAAGCCTTTCCTATGGCTAGCTAGGAAGCTTATTGGTGATCCCAATCTAGAATTTGTCGCCATGCCAG




CCCTGCTTCCACAAGGGC







LD014
SEQIDNO: 245




GCCCTTCGCAGATCAAGCATATGATGGCTTTCATTGAACAAGAGGCAAACGAAAAGGCAGAAGAAATCGATGCCAAGGCCGAGGAAG




AATTTAATATTGAAAAGGGGCGCCTTGTTCAGCAACAACGTCTCAAGATTATGGAATATTATGAGAAGAAAGAGAAACAGGTCGAACT




CCAGAAAAAAATCCAATCGTCTAACATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTACCGTACTA




GAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGACCAGGGAAAATATTCCCAAATCCTGGAAAGCCTCATTTTGCAGGGATTA




TATCAGCTTTTTGAGAAAGATGTTACCATTCGAGTTCGGCCCCAGGACCGAGAACTGGTCAAATCCATCATTCCCACCGTCACGAACA




AGTATAAAGATGCCACCGGTAAGGACATCCATCTGAAAATTGATGACGAAATCCATCTGTCCCAAGAAACCACCGGGGGAATCGACC




TGCTGGCGCAGAAAAACAAAATCAAGATCAGCAATACTATGGAGGCTCGTCTGGAGCTGATTTCGCAGCAACTTCTGCCCGAGATCC




GAAGGGCGAATTCACCAGCTTTCTTGTACAAAGTGGTATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGG




CGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGT




TAACTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGAGTATAATATAATCAAATTCGACAAT




TTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAA




ATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTT




GATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATAT




TACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATC




CGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGA




AACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAA




AACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAA




CGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGC




GATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGG




CGGGGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAA




AGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAA




CTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACA




TAACTCAGCACACCAGAGCATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAGA




GTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCGACCACTTTGTACAAGAAAGCTGGGTCGAATT




CGCCCTTCGGATCTCGGGCAGAAGTTGCTGCGAAATCAGCTCCAGACGAGCCTCCATAGTATTGCTGATCTTGATTTTGTTTTTCTGC




GCCAGCAGGTCGATTCCCCCGGTGGTTTCTTGGGACAGATGGATTTCGTCATCAATTTTCAGATGGATGTCCTTACCGGTGGCATCTT




TATACTTGTTCGTGACGGTGGGAATGATGGATTTGACCAGTTCTCGGTCCTGGGGCCGAACTCGAATGGTAACATCTTTCTCAAAAAG




CTGATATAATCCCTGCAAAATGAGGCTTTCCAGGATTTGGGAATATTTTCCCTGGTCGTTTGTGACCTGACCAAGTCGTTTACGCGCC




TCCTCTAGTACGGTACGAACGTGATCTTCCCTAACCTTCAATACTTTCAATCGAGCCTGATTCAACATGTTAGACGATTGGATTTTTTT




CTGGAGTTCGACCTGTTTCTCTTTCTTCTCATAATATTCCATAATCTTGAGACGTTGTTGCTGAACAAGGCGCCCCTTTTCAATATTAAA




TTCTTCCTCGGCCTTGGCATCGATTTCTTCTGCCTTTTCGTTTGCCTCTTGTTCAATGAAAGCCATCATATGCTTGATCTGCGAAGGGC







LD016
SEQIDNO: 246




GCCCTTGGAATAGGATGGGTAATGTCGTCGTTGGGCATAGTCAATATAGGAATCTGGGTGATGGATCCGTTACGTCCTTCAACACGG




CCGGCACGTTCATAGATGGTAGCTAAATCGGTGTACATGTAACCTGGGAAACCACGACGACCAGGCACCTCTTCTCTGGCAGCAGAT




ACCTCACGCAAAGCTTCTGCATACGAAGACATATCTGTCAAGATGACCAAGACGTGCTTCTCACATTGGTAAGCCAAGAATTCGGCAG




CTGTCAAAGCCAGACGAGGTGTAATAATTCTTTCAATGGTAGGATCGTTGGCCAAATTCAAGAACAGGCAGACATTCTCCATAGAACC




GTTCTCTTCGAAATCCTGTTTGAAGAACCTAGCTGTTTCCATGTTAACACCCATAGCAGCGAAAACAATAGCAAAGTTATCTTCATGAT




CATCAAGTACAGATTTACCAGGAATCTTGACTAAACCAGCCTGTCTACAGATCTGGGCAGCAATTTCATTGTGAGGCAGACCAGCTGC




AGAGAAAATGGGGATCTTCTGACCACGAGCAATGGAGTTCATCACGTCAATAGCTGTAATACCCGTCTGGATCATTTCCTCAGGATAG




ATACGGGACCACGGATTGATTGGTTGACCCTGGATGTCCAAGAAGTCTTCAGCCAAAATTGGGGGACCTTTGTCGATGGGTTTTCCT




GATCCATTGAAAACACGTCCCAACATATCTTCAGAAACAGGAGTCCTCAAAATATCTCCTGTGAATTCACAAGCGGTGTTTTTGGCGT




CGATTCCTGATGTGCCCTCGAACACTTGAACCACAGCTTTTGACCCACTGACTTCCAGAACTTGTCCCGAACGTATAGTGCCATCAGC




CAGTTTGAGTTGTACGATTTCATTGTACTTGGGGAACTTAACATCTTCGAGGATTACCAGAGGACCGTTCACACCAGACACAGTCAAG




GGCGAATTCACCAGCTTTCTTGTACAAAGTGGTATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGG




CCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAA




CTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGAGTATAATATAATCAAATTCGACAATTTG




ACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAAATT




CAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGAT




ATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTAC




GGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGG




AATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAAC




GTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAAC




CTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGT




GGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGAT




TCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGG




GGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAAGC




CAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTA




AAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAA




CTCAGCACACCAGAGCATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAGAGT




ATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGC




CCTTGACTGTGTCTGGTGTGAACGGTCCTCTGGTAATCCTCGAAGATGTTAAGTTCCCCAAGTACAATGAAATCGTACAACTCAAACT




GGCTGATGGCACTATACGTTCGGGACAAGTTCTGGAAGTCAGTGGGTCAAAAGCTGTGGTTCAAGTGTTCGAGGGCACATCAGGAAT




CGACGCCAAAAACACCGCTTGTGAATTCACAGGAGATATTTTGAGGACTCCTGTTTCTGAAGATATGTTGGGACGTGTTTTCAATGGA




TCAGGAAAACCCATCGACAAAGGTCCCCCAATTTTGGCTGAAGACTTCTTGGACATCCAGGGTCAACCAATCAATCCGTGGTCCCGT




ATCTATCCTGAGGAAATGATCCAGACGGGTATTACAGCTATTGACGTGATGAACTCCATTGCTCGTGGTCAGAAGATCCCCATTTTCT




CTGCAGCTGGTCTGCCTCACAATGAAATTGCTGCCCAGATCTGTAGACAGGCTGGTTTAGTCAAGATTCCTGGTAAATCTGTACTTGA




TGATCATGAAGATAACTTTGCTATTGTTTTCGCTGCTATGGGTGTTAACATGGAAACAGCTAGGTTCTTCAAACAGGATTTCGAAGAGA




ACGGTTCTATGGAGAATGTCTGCCTGTTCTTGAATTTGGCCAACGATCCTACCATTGAAAGAATTATTACACCTCGTCTGGCTTTGACA




GCTGCCGAATTCTTGGCTTACCAATGTGAGAAGCACGTCTTGGTCATCTTGACAGATATGTCTTCGTATGCAGAAGCTTTGCGTGAGG




TATCTGCTGCCAGAGAAGAGGTGCCTGGTCGTCGTGGTTTCCCAGGTTACATGTACACCGATTTAGCTACCATCTATGAACGTGCCG




GCCGTGTTGAAGGACGTAACGGATCCATCACCCAGATTCCTATATTGACTATGCCCAACGACGACATTACCCATCCTATTCCAAGGGC







LD027
SEQIDNO 2486




GGGAGCAGACGATCGGTTGGTTAAAATCTGGGACTATCAAAACAAAACGTGTGTCCAAACCTTGGAAGGACACGCCCAAAACGTAAC




CGCGGTTTGTTTCCACCCTGAACTACCTGTGGCTCTCACAGGCAGCGAAGATGGTACCGTTAGAGTTTGGCATACGAATACACACAG




ATTAGAGAATTGTTTGAATTATGGGTTCGAGAGAGTGTGGACCATTTGTTGCTTGAAGGGTTCGAATAATGTTTCTCTGGGGTATGAC




GAGGGCAGTATATTAGTGAAAGTTGGAAGAGAAGAACCGGCAGTTAGTATGGATGCCAGTGGCGGTAAAATAATTTGGGCAAGGCAC




TCGGAATTACAACAAGCTAATTTGAAGGCGCTGCCAGAAGGTGGAGAAATAAGAGATGGGGAGCGTTTACCTGTCTCTGTAAAAGAT




ATGGGAGCATGTGAAATATACCCTCAAACAATCCAACATAATCCGAATGGAAGATTCGTTGTAGTATGCGGAGACGGCGAATATATCA




TTTACACAGCGATGGCTCTACGGAACAAGGCTTTTGGAAGCGCTCAAGAGTTTGTCTGGGCTCAGGACTCCAGCGAGTATGCCATTC




GCGAGTCTGGTTCCACAATTCGGATATTCAAAAACTTCAAAGAAAGGAAGAACTTCAAGTCGGATTTCAGCGCGGAAGGAATCTACG




GGGGTTTTCTCTTGGGGATTAAATCGGTGTCCGGTTTAACGTTTTACGATTGGGAAACTTTGGACTTGGTGAGACGGATTGAAATACA




ACCGAGGGCGGTTTATTGGTCTGACAGTGGAAAATTAGTCTGTCTCGCAACGGAGGACAGCTACTTCATCCTTTCTTATGATTCGGAG




CAAGTTCAGAAGGCCAGGGAGAACAATCAAGTCGCAGAGGATGGCGTAGAGGCCGCTTTCGATGTGTTGGGGGAAATGAACGAGTC




TGTCCGAACCCAGCTTTCTTGTACAAAGTGGTGATATCCCGCGGGATCAGAAGCAACCTCATGGAAATGATGAGGTAAGGTTTCATAC




TCTTGCCTCTTCTTACGGCTTTCTGTGTCTTCACTGTAAGTTTCTATGATTTGAGCCACCAATATATATGCTCTGGTGTGCTGAGTTATG




TTTATCTGGTCACGCTTAGTGGGTAAAATTATGCTTATTTTAGCATAAACTTTAATGAGATTAGGTTTTGTATCACACCGATCTTTAGTT




GTTTAGTAAGATGACAGAAATTCTTGGTAAAACACTCTAAATCGTCTTCTTTAGTGAAGTTTTCCTTAGAGTAGCATAAATTTTGGCTTT




TTTCTTGATGGTTGAATAAGGTGGCACTTGTTGGTATGAGACTTTATTGAGAGTCATATTAAGCTGATCCACGCGTTTACGCCCCGCC




CTGCCACTCATCGCAGTACTGTTGTAATTCATTAAGCATTCTGCCGACATGGAAGCCATCACAGACGGCATGATGAACCTGAATCGCC




AGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAAACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTT




AAATCAAAACTGGTGAAACTCACCCAGGGATTGGCTGAGACGAAAAACATATTCTCAATAAACCCTTTAGGGAAATAGGCCAGGTTTT




CACCGTAACACGCCACATCTTGCGAATATATGTGTAGAAACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTC




AGTTTGCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCACCGTCTTTCATTGCCATACGGAATTCCGGA




TGAGCATTCATCAGGCGGGCAAGAATGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAGGCCGTAAT




ATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAAATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAA




CGGTGGTATATCCAGTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGCCGGATCAGCTTAGCGTTCATTGAATTTG




ATGGCCATAGGGGTTTAGATGCAACTGTTTCTTTGAACATTGTAGAAATATATAAAGATTTTACATTAGCCTACTCTTGAAAGTCAAATT




GTCGAATTTGATTATATTATACTCTAGAGGTGATATTAGTTAATGAGTTTATACTCGGTTATTTACAGCTTATTCATATACCAGTTAACGT




GTCTCATATATTCTAACTTCTTAGCATTTAACGTGTTTGCAGGTCAGCTTGACACTGAACATAACAGCATCACTAGTGCGGCCGCCTG




CAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATATACCACTTTGTACAAGAAAGCTGGTCGAATTCGCCCTTTCGG




ACAGACTCGTTCATTTCCCCCAACACATCGAAAGCGGCCTCTACGCCATCCTCTGCGACTTGATTGTTCTCCCTGGCCTTCTGAACTT




GCTCCGAATCATAAGAAAGGATGAAGTAGCTGTCCTCCGTTGCGAGACAGACTAATTTTCCACTGTCAGACCAATAAACCGCCCTCG




GTTGTATTTCAATCCGTCTCACCAAGTCCAAAGTTTCCCAATCGTAAAACGTTAAACCGGACACCGATTTAATCCCCAAGAGAAAACCC




CCGTAGATTCCTTCCGCGCTGAAATCCGACTTGAAGTTCTTCCTTTCTTTGAAGTTTTTGAATATCCGAATTGTGGAACCAGACTCGCG




AATGGCATACTCGCTGGAGTCCTGAGCCCAGACAAACTCTTGAGCGCTTCCAAAAGCCTTGTTCCGTAGAGCCATCGCTGTGTAAAT




GATATATTCGCCGTCTCCGCATACTACAACGAATCTTCCATTCGGATTATGTTGGATTGTTTGAGGGTATATTTCACATGCTCCCATAT




CTTTTACAGAGACAGGTAAACGCTCCCCATCTCTTATTTCTCCACCTTCTGGCAGCGCCTTCAAATTAGCTTGTTGTAATTCCGAGTGC




CTTGCCCAAATTATTTTACCGCCACTGGCATCCATACTAACTGCCGGTTCTTCTCTTCCAACTTTCACTAATATACTGCCCTCGTCATA




CCCCAGAGAAACATTATTCGAACCCTTCAAGCAACAAATGGTCCACACTCTCTCGAACCCATAATTCAAACAATTCTCTAATCTGTGTG




TATTCGTATGCCAAACTCTAACGGTACCATCTTCGCTGCCTGTGAGAGCCACAGGTAGTTCAGGGTGGAAACAAACCGCGGTTACGT




TTTGGGCGTGTCCTTCCAAGGTTTGGACACACGTTTTGTTTTGATAGTCCCAGATTTTAACCAACCGATCGTCTGCTCCC


















TABLE 9-PC





Target
Hairpin Sequence


ID
5′ → 3′







PC001
SEQ ID NO: 508



AGATTCAAATTTGATGTAGTCAAGAATTTTAGATGTAGCAATTTCCATTTGAATTGTGTCATTCACTTTGATGTTGGGGTCAGGGTAACGA



ATGGTTCTGCCATCATGTGTTACCAAAAATGGGATTCCTTTGGGACCAGTTTGGACTCTCCTTACTTTACACAACTTGTATTTTGCCTCTT



CAGCTGTAATACGGTGCACAGCAAATCTTCCTTTAACATCATAGATCAGACGGAAAAATTCACCAGTCTTCTCAATAGTAATGACATCCA



TGAAACCAGCAGGGTAATTAGAATCAGTCCTCACTTTACCATCAACTTTGATCAACCTTTGCATGACAATTTTAGTGACTTCACTGTTTGT



AAGGGCATACTTCAGCCTGTTACGAAGGAAAATCACTAAAGGCAGGGATTCGCGCAACTTGTGAGGCCCGGTGGATGGACGAGGGGC



GAAGACACCCCCCAATTTGTCCAACATCCATGCAAGGGCGAATTCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCC



GCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTT



AAATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCAC



CTCTAGAGTATAATATAATCAAATTCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAA



CAGTTGCATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGG



AGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTA



CCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACA



TTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGT



TACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCG



CAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGT



GAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGA



CAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGT



ACTGCGATGAGTGGCAGGGCGGGGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTT



ATTCAACCATCAAGAAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTC



TGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAG



CGTGACCAGATAAACATAACTCAGCACACCAGAGCATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCG



TAAGAAGAGGCAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAA



GCTGGGTCGAATTCGCCCTTGCATGGATGTTGGACAAATTGGGGGGTGTCTTCGCCCCTCGTCCATCCACCGGGCCTCACAAGTTGCG



CGAATCCCTGCCTTTAGTGATTTTCCTTCGTAACAGGCTGAAGTATGCCCTTACAAACAGTGAAGTCACTAAAATTGTCATGCAAAGGTT



GATCAAAGTTGATGGTAAAGTGAGGACTGATTCTAATTACCCTGCTGGTTTCATGGATGTCATTACTATTGAGAAGACTGGTGAATTTTT



CCGTCTGATCTATGATGTTAAAGGAAGATTTGCTGTGCACCGTATTACAGCTGAAGAGGCAAAATACAAGTTGTGTAAAGTAAGGAGAG



TCCAAACTGGTCCCAAAGGAATCCCATTTTTGGTAACACATGATGGCAGAACCATTCGTTACCCTGACCCCAACATCAAAGTGAATGAC



ACAATTCAAATGGAAATTGCTACATCTAAAATTCTTGACTACATCAAATTTGAATCT





PC010
SEQ ID NO: 509



CTCTCAAGGATTCTTTGCAGATGTCGCTCAGCCTATTACCGCCCAACGCGTTGATTGGATTGATCACGTTCGGAAAAATGGTGCAAGTC



CACGAACTGGGTACCGAAGGCTGCAGCAAGTCGTACGTGTTCTGTGGAACGAAAGATCTCACCGCCAAGCAAGTCCAGGAGATGTTG



GGCATTGGAAAAGGGTCACCAAATCCCCAACAACAGCCAGGGCAACCTGGGCGGCCAGGGCAGAATCCCCAAGCTGCCCCTGTACCA



CCGGGGAGCAGATTCTTGCAGCCCGTGTCAAAATGCGACATGAACTTGACAGATCTGATCGGGGAGTTGCAGAAAGACCCTTGGCCC



GTACATCAGGGCAAAAGACCTCTTAGATCCACAGGCGCAGCATTGTCCATCGCTGTCGGCCTCTTAGAATGCACCTATCCGAATACGG



GTGGCAGAATCATGATATTCTTAGGAGGACCATGCTCTCAGGGTCCCGGCCAGGTGTTGAACGACGATTTGAAGCAGCCCATCAGGTC



CCATCATGACATACACAAAGACAATGCCAAGTACATGAAGAAGGCTATCAAACATTACGATCACTTGGCAATGCGAGCTGCCACCAACA



GCCATTGCATCGACATTTACTCCTGCGCCCTGGATCAGACGGGACTGATGGAGATGAAGCAGTGCTGCAATTCCACCGGAGGGCACAT



GGTCATGGGCGATTCCTTCAATTCCTCTCTATTCAAACAAACCTTCCAGCGAGTGTTCTCAAAAGACCCGAAGAACGACCTCAAGATGG



CGTTCAACGCCACCTTGGAGGTGAAGTGTTCCAGGGAGTTAAAAGTCCAAGGGGGCATCGGCTCGTGCGTGTCCTTGAACGTTAAAAG



CCCTCTGGTTTCCGATACGGAACTAGGCATGGGGAATACTGTGCAGTGGAAACTTTGCACGTTGGCGCCGAGCTCTACTGTGGCGCTG



TTCTTCGAGGTGGTTAACCAGCATTCGGCGCCCATACCACAGGGAGGCAGGGGCTGCATCCAGCTCATCACCCAGTATCAGCACGCG



AGCGGGCAAAGGAGGATCAGAGTGACCACGATTGCTAGAAATTGGGCGGACGCTACTGCCAACATCCACCACATTAGCGCTGGCTTC



GACCAAGAAGCGGCGGCAGTTGTGATGGCCCGAATGGCCGGTTACAAGGCGGAATCGGACGAGACTCCCGACGTGCTCAGATGGGT



GGACAGGATGTTGATCAGGCTGTGCCAGAAGTTCGGAGAGTACAATAAAGACGATCCGAATTCGTTCAGGTTGGGGGAGAACTTCAGT



CTGTATCCGCAGTTCATGTACCATTTGAGACGGTCGCAGTTTCTGCAGGTGTTCAATAATTCTCCTGATGAAACGTCGTTTTATAGGCAC



ATGCTGATGCGTGAGGATTTGACTCAGTCTTTGATCATGATCCAGCCGATTTTGTACAGTTACAGCTTCAACGGGCCGCCCGAGCCTGT



GTTGTTGGACACAAGCTCTATTCAGCCGGATAGAATCCTGCTCATGGACACTTTCTTCCAGATACTCATTTTCCATGGAGAGACCATTGC



CCAATGGCGAAGGGCGAATTCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTC



GACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATAT



GAGACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGAGTATAATATAATCAAAT



TCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGG



CCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACC



ACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTG



GATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCT



CATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAAC



TGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTG



AAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAA



CGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCG



ATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGG



GGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAAGCCA



AAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAG



ATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTCA



GCACACCAGAGCATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAGAGTATGAAA



CCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCCTTCGC



CATTGGGCAATGGTCTCTCCATGGAAAATGAGTATCTGGAAGAAAGTGTCCATGAGCAGGATTCTATCCGGCTGAATAGAGCTTGTGTC



CAACAACACAGGCTCGGGCGGCCCGTTGAAGCTGTAACTGTACAAAATCGGCTGGATCATGATCAAAGACTGAGTCAAATCCTCACGC



ATCAGCATGTGCCTATAAAACGACGTTTCATCAGGAGAATTATTGAACACCTGCAGAAACTGCGACCGTCTCAAATGGTACATGAACTG



CGGATACAGACTGAAGTTCTCCCCCAACCTGAACGAATTCGGATCGTCTTTATTGTACTCTCCGAACTTCTGGCACAGCCTGATCAACA



TCCTGTCCACCCATCTGAGCACGTCGGGAGTCTCGTCCGATTCCGCCTTGTAACCGGCCATTCGGGCCATCACAACTGCCGCCGCTTC



TTGGTCGAAGCCAGCGCTAATGTGGTGGATGTTGGCAGTAGCGTCCGCCCAATTTCTAGCAATCGTGGTCACTCTGATCCTCCTTTGCC



CGCTCGCGTGCTGATACTGGGTGATGAGCTGGATGCAGCCCCTGCCTCCCTGTGGTATGGGCGCCGAATGCTGGTTAACCACCTCGA



AGAACAGCGCCACAGTAGAGCTCGGCGCCAACGTGCAAAGTTTCCACTGCACAGTATTCCCCATGCCTAGTTCCGTATCGGAAACCAG



AGGGCTTTTAACGTTCAAGGACACGCACGAGCCGATGCCCCCTTGGACTTTTAACTCCCTGGAACACTTCACCTCCAAGGTGGCGTTG



AACGCCATCTTGAGGTCGTTCTTCGGGTCTTTTGAGAACACTCGCTGGAAGGTTTGTTTGAATAGAGAGGAATTGAAGGAATCGCCCAT



GACCATGTGCCCTCCGGTGGAATTGCAGCACTGCTTCATCTCCATCAGTCCCGTCTGATCCAGGGCGCAGGAGTAAATGTCGATGCAA



TGGCTGTTGGTGGCAGCTCGCATTGCCAAGTGATCGTAATGTTTGATAGCCTTCTTCATGTACTTGGCATTGTCTTTGTGTATGTCATGA



TGGGACCTGATGGGCTGCTTCAAATCGTCGTTCAACACCTGGCCGGGACCCTGAGAGCATGGTCCTCCTAAGAATATCATGATTCTGC



CACCCGTATTCGGATAGGTGCATTCTAAGAGGCCGACAGCGATGGACAATGCTGCGCCTGTGGATCTAAGAGGTCTTTTGCCCTGATG



TACGGGCCAAGGGTCTTTCTGCAACTCCCCGATCAGATCTGTCAAGTTCATGTCGCATTTTGACACGGGCTGCAAGAATCTGCTCCCCG



GTGGTACAGGGGCAGCTTGGGGATTCTGCCCTGGCCGCCCAGGTTGCCCTGGCTGTTGTTGGGGATTTGGTGACCCTTTTCCAATGC



CCAACATCTCCTGGACTTGCTTGGCGGTGAGATCTTTCGTTCCACAGAACACGTACGACTTGCTGCAGCCTTCGGTACCCAGTTCGTG



GACTTGCACCATTTTTCCGAACGTGATCAATCCAATCAACGCGTTGGGCGGTAATAGGCTGAGCGACATCTGCAAAGAATCCTTGAGAG





PC014
SEQ ID NO: 510



CGCAGATCAAACATATGATGGCTTTCATTGAACAAGAAGCCAATGAGAAAGCAGAAGAAATCGATGCCAAGGCAGAGGAGGAATTCAAC



ATTGAAAAAGGGCGTTTAGTCCAGCAACAGAGACTCAAGATCATGGAGTACTACGAGAAAAAGGAGAAGCAAGTCGAACTTCAAAAGAA



AATTCAGTCCTCTAATATGTTGAATCAGGCTCGTTTGAAGGTGCTGAAAGTGAGAGAGGACCATGTCAGAGCAGTCCTGGAGGATGCTC



GTAAAAGTCTTGGTGAAGTAACCAAAGACCAAGGAAAATACTCCCAAATTTTGGAGAGCCTAATCCTACAAGGACTGTTCCAGCTGTTC



GAGAAGGAGGTGACGGTCCGCGTGAGACCGCAAGATAGGGACTTGGTTAGGTCCATCCTGCCCAACGTCGCTGCCAAATACAAGGAC



GCCACCGGCAAAGACATCCTACTCAAGGTGGACGATGAGTCGCACCTGTCTCAGGAGATCACCGGAGGCGTCGATCTGCTCGCTCAG



AAGAACAAGATCAAGATCAGCAACACGATGGAGGCTAGGTTGGATCTGATCGCTCAGCAATTGGTGCCCGAGATCCGAAGGGCGAATT



CGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACT



AGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGTATAT



GAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGAGTATAATATAATCAAATTCGACAATTTGACTTTCAAGAG



TAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTA



AGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGC



ATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGA



CCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAA



TGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGG



AGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAA



GGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTC



TTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCT



GTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAAACGCGTGGATCAGC



TTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAAGCCAAAATTTATGCTACTCTAAGGAA



AACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAA



TCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTCAGCACACCAGAGCATATATATTG



GTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAGAGTATGAAACCTTACCTCATCATTTCCATGA



GGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCCTTCGGATCTCGGGCACCAATTGCTGA



GCGATCAGATCCAACCTAGCCTCCATCGTGTTGCTGATCTTGATCTTGTTCTTCTGAGCGAGCAGATCGACGCCTCCGGTGATCTCCTG



AGACAGGTGCGACTCATCGTCCACCTTGAGTAGGATGTCTTTGCCGGTGGCGTCCTTGTATTTGGCAGCGACGTTGGGCAGGATGGAC



CTAACCAAGTCCCTATCTTGCGGTCTCACGCGGACCGTCACCTCCTTCTCGAACAGCTGGAACAGTCCTTGTAGGATTAGGCTCTCCAA



AATTTGGGAGTATTTTCCTTGGTCTTTGGTTACTTCACCAAGACTTTTACGAGCATCCTCCAGGACTGCTCTGACATGGTCCTCTCTCAC



TTTCAGCACCTTCAAACGAGCCTGATTCAACATATTAGAGGACTGAATTTTCTTTTGAAGTTCGACTTGCTTCTCCTTTTTCTCGTAGTAC



TCCATGATCTTGAGTCTCTGTTGCTGGACTAAACGCCCTTTTTCAATGTTGAATTCCTCCTCTGCCTTGGCATCGATTTCTTCTGCTTTCT



CATTGGCTTCTTGTTCAATGAAAGCCATCATATGTTTGATCTGCG





PC016
SEQ ID NO: 511



TTGGGCATAGTCAAGATGGGGATCTGCGTGATGGAGCCGTTGCGGCCCTCCACACGACCGGCGCGCTCGTAAATGGTGGCCAGATCG



GTGTACATGTAACCGGGGAAACCCCTACGGCCGGGCACTTCTTCTCGAGCGGCAGACACCTCACGCAACGCCTCCGCGTACGACGAC



ATGTCGGTCAAGATGACCAGCACGTGCTTCTCGCACTGGTAGGCCAAGAATTCGGCGGCCGTCAGAGCCAAACGCGGCGTGATGATG



CGCTCGATGGTCGGATCGTTGGCCAAGTTCAAGAACAGACACACGTTCTCCATCGAGCCGTTCTCTTCGAAGTCCTGCTTGAAGAACCT



GGCAGTTTCCATGTTGACACCCATAGCAGCAAACACAATAGCAAAGTTGTCTTCATGGTCATCCAGCACAGACTTGCCAGGTACTTTGA



CCAAGCCAGCCTGCCTACAAATCTGGGCTGCAATCTCATTGTGGGGCAGCCCAGCGGCGGAGAAGATCGGAATCTTCTGCCCTCTGG



CGATAGAGTTCATCACGTCGATGGCCGTGATCCCAGTCTGGATCATTTCCTCGGGATAAATACGCGACCACGGGTTGATCGGCTGTCC



TTGGATGTCGAGGTAGTCCTCAGCCAGGATCGGGGGACCTTTATCAATGGGTTTTCCTGATCCATTGAAGACACGTCCCAGCATATCTT



CTGATACTGGAGTTCTTAGAATATCTCCAGTGAACTCACACACCGTGTTCTTAGCATCAATACCTGATGTGCCTTCAAATACCTGAACAA



CTGCCTTTGATCCACTGACTTCCAAAACTTGTCCAGATCGTAGAGTTCCATCTGCCAATTTGAGCTGGACAATTTCATTGAATTTTGGAA



ACTTGACATCCTCAAGAATGACCAGTAAGGGCGAATTCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCA



GGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCT



AAGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGA



GTATAATATAATCAAATTCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACAGTTGC



ATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAA



AATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAA



CCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGC



CCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACC



GTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGAT



GTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTC



ACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGT



GCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCG



ATGAGTGGCAGGGCGGGGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAAC



CATCAAGAAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATC



TTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGAC



CAGATAAACATAACTCAGCACACCAGAGCATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAA



GAGGCAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGG



TCGAATTCGCCCTTACTGGTCATTCTTGAGGATGTCAAGTTTCCAAAATTCAATGAAATTGTCCAGCTCAAATTGGCAGATGGAACTCTA



CGATCTGGACAAGTTTTGGAAGTCAGTGGATCAAAGGCAGTTGTTCAGGTATTTGAAGGCACATCAGGTATTGATGCTAAGAACACGGT



GTGTGAGTTCACTGGAGATATTCTAAGAACTCCAGTATCAGAAGATATGCTGGGACGTGTCTTCAATGGATCAGGAAAACCCATTGATA



AAGGTCCCCCGATCCTGGCTGAGGACTACCTCGACATCCAAGGACAGCCGATCAACCCGTGGTCGCGTATTTATCCCGAGGAAATGAT



CCAGACTGGGATCACGGCCATCGACGTGATGAACTCTATCGCCAGAGGGCAGAAGATTCCGATCTTCTCCGCCGCTGGGCTGCCCCA



CAATGAGATTGCAGCCCAGATTTGTAGGCAGGCTGGCTTGGTCAAAGTACCTGGCAAGTCTGTGCTGGATGACCATGAAGACAACTTT



GCTATTGTGTTTGCTGCTATGGGTGTCAACATGGAAACTGCCAGGTTCTTCAAGCAGGACTTCGAAGAGAACGGCTCGATGGAGAACG



TGTGTCTGTTCTTGAACTTGGCCAACGATCCGACCATCGAGCGCATCATCACGCCGCGTTTGGCTCTGACGGCCGCCGAATTCTTGGC



CTACCAGTGCGAGAAGCACGTGCTGGTCATCTTGACCGACATGTCGTCGTACGCGGAGGCGTTGCGTGAGGTGTCTGCCGCTCGAGA



AGAAGTGCCCGGCCGTAGGGGTTTCCCCGGTTACATGTACACCGATCTGGCCACCATTTACGAGCGCGCCGGTCGTGTGGAGGGCCG



CAACGGCTCCATCACGCAGATCCCCATCTTGACTATGCCCAA





PC027
SEQ ID NO: 512



GGGCCAAGCACAGCGAAATGCAGCAAGCTAACTTGAAAGCACTACCAGAAGGAGCTGAAATCAGAGATGGAGAACGTTTGCCAGTCAC



AGTAAAGGACATGGGAGCATGCGAGATTTACCCACAAACAATCCAACACAACCCCAATGGGCGGTTTGTAGTGGTTTGTGGTGATGGA



GAATACATAATATACACGGCTATGGCCCTTCGTAACAAAGCATTTGGTAGCGCTCAAGAATTTGTATGGGCACAGGACTCCAGTGAATA



TGCCATCCGCGAATCCGGATCCACCATTCGAATCTTCAAGAATTTCAAAGAAAAAAAGAATTTCAAGTCCGACTTTGGTGCCGAAGGAAT



CTATGGTGGTTTTCTCTTGGGTGTGAAATCAGTGTCTGGCTTAGCTTTCTATGACTGGGAAACGCTTGAGTTAGTAAGGCGCATTGAAAT



ACAGCCTAGAGCTATCTACTGGTCAGATAGTGGCAAGTTGGTATGCCTTGCTACCGAAGATAGCTATTTCATATTGTCCTATGACTCTGA



CCAAGTCCAGAAAGCTAGAGATAACAACCAAGTTGCCGAAGATGGAGTGGAGGCTGCCTTTGATGTCCTAGGTGAAATAAATGAATCC



GTAAGAACAGGTCTTTGGGTAGGAGACTGCTTCATTTACACAAACGCAGTCAACCGTATCAACTACTTTGTGGGTGGTGAATTGGTAAC



TATTGCACATCTGGACCGTCCTCTATATGTCCTGGGCTATGTACCTAGAGATGACAGGTTATACTTGGTTGATAAAGAGTTAGGAGTAGT



CAGCTATCAATTGCTATTATCTGTACTCGAATATCAGACTGCAGTCATGCGACGAGACTTCCCAACGGCTGATCGAGTATTGCCTTCAAT



TCCAAAAGAACACCGCACTAGGGTGGCACAAAGGGCGAATTCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGC



CTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAA



ATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCT



CTAGAGTATAATATAATCAAATTCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACA



GTTGCATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAG



AAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACC



TATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTC



TTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTAC



ACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAA



GATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAG



TTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAA



GGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACT



GCGATGAGTGGCAGGGCGGGGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATT



CAACCATCAAGAAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGT



CATCTTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCG



TGACCAGATAAACATAACTCAGCACACCAGAGCATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAA



GAAGAGGCAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCT



GGGTCGAATTCGCCCTTTGTGCCACCCTAGTGCGGTGTTCTTTTGGAATTGAAGGCAATACTCGATCAGCCGTTGGGAAGTCTCGTCG



CATGACTGCAGTCTGATATTCGAGTACAGATAATAGCAATTGATAGCTGACTACTCCTAACTCTTTATCAACCAAGTATAACCTGTCATCT



CTAGGTACATAGCCCAGGACATATAGAGGACGGTCCAGATGTGCAATAGTTACCAATTCACCACCCACAAAGTAGTTGATACGGTTGAC



TGCGTTTGTGTAAATGAAGCAGTCTCCTACCCAAAGACCTGTTCTTACGGATTCATTTATTTCACCTAGGACATCAAAGGCAGCCTCCAC



TCCATCTTCGGCAACTTGGTTGTTATCTCTAGCTTTCTGGACTTGGTCAGAGTCATAGGACAATATGAAATAGCTATCTTCGGTAGCAAG



GCATACCAACTTGCCACTATCTGACCAGTAGATAGCTCTAGGCTGTATTTCAATGCGCCTTACTAACTCAAGCGTTTCCCAGTCATAGAA



AGCTAAGCCAGACACTGATTTCACACCCAAGAGAAAACCACCATAGATTCCTTCGGCACCAAAGTCGGACTTGAAATTCTTTTTTTCTTT



GAAATTCTTGAAGATTCGAATGGTGGATCCGGATTCGCGGATGGCATATTCACTGGAGTCCTGTGCCCATACAAATTCTTGAGCGCTAC



CAAATGCTTTGTTACGAAGGGCCATAGCCGTGTATATTATGTATTCTCCATCACCACAAACCACTACAAACCGCCCATTGGGGTTGTGTT



GGATTGTTTGTGGGTAAATCTCGCATGCTCCCATGTCCTTTACTGTGACTGGCAAACGTTCTCCATCTCTGATTTCAGCTCCTTCTGGTA



GTGCTTTCAAGTTAGCTTGCTGCATTTCGCTGTGCTTGGCCC

















TABLE 9-MP





Target
Hairpin Sequence


ID
5′ → 3′







MP001
SEQ ID NO: 1066



GTTTAAACGCACCCAAAGCATGGATGTTGGACAAATCGGGGGGTGTCTTCGCTCCACGTCCAAGCACCGGTCCACACAAACTTCGTG



AATCACTACCGTTATTGATCTTCTTGCGTAATCGTTTGAAGTATGCACTTACTGGTGCCGAAGTCACCAAGATTGTCATGCAAAGATTA



ATCAAGGTTGATGGCAAAGTCCGTACCGACCCTAATTATCCAGCCGGTTTTATGGATGTTATATCTATCCAAAAGACCAGTGAGCACT



TTAGATTGATCTATGATGTGAAAGGTCGTTTCACCATCCACAGAATTACTCCTGAAGAAGCAAAATACAAGTTGTGTAAAGTAAAGAGG



GTACAAACTGGACCCAAAGGTGTGCCATTTTTAACTACTCATGATGGCCGTACTATTCGCTACCCTGACCCTAACATCAAGGTTAATG



ACACTATTAGATACGATATTGCATCATCTAAAATTTTGGATCATATCCGTTTTGAAACTGGAAACTTGTGCATGATAACTGGAGGTCGC



AATTTAGGGCGTGTTGGTATTGAAGGGCGAATTCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCAGG



TCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTA



AGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGA



GTATAATATAATCAAATTCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACAGTTG



CATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAA



AAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTA



TAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTC



TTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTT



ACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCG



CAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGG



TGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGC



GACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAA



CAGTACTGCGATGAGTGGCAGGGCGGGGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCC



ACCTTATTCAACCATCAAGAAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAA



GAATTTCTGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTAC



CCACTAAGCGTGACCAGATAAACATAACTCAGCACACCAGAGCATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACAC



AGAAAGCCGTAAGAAGAGGCAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTT



GTACAAGAAAGCTGGGTCGAATTCGCCCTTCAATACCAACACGCCCTAAATTGCGACCTCCAGTTATCATGCACAAGTTTCCAGTTTC



AAAACGGATATGATCCAAAATTTTAGATGATGCAATATCGTATCTAATAGTGTCATTAACCTTGATGTTAGGGTCAGGGTAGCGAATAG



TACGGCCATCATGAGTAGTTAAAAATGGCACACCTTTGGGTCCAGTTTGTACCCTCTTTACTTTACACAACTTGTATTTTGCTTCTTCA



GGAGTAATTCTGTGGATGGTGAAACGACCTTTCACATCATAGATCAATCTAAAGTGCTCACTGGTCTTTTGGATAGATATAACATCCAT



AAAACCGGCTGGATAATTAGGGTCGGTACGGACTTTGCCATCAACCTTGATTAATCTTTGCATGACAATCTTGGTGACTTCGGCACCA



GTAAGTGCATACTTCAAACGATTACGCAAGAAGATCAATAACGGTAGTGATTCACGAAGTTTGTGTGGACCGGTGCTTGGACGTGGA



GCGAAGACACCCCCCGATTTGTCCAACATCCATGCTTTGGGTGCGTTTAAAC





MP002
SEQ ID NO: 1067



GCTGATTTAAGTGCATCTGCTGCAGTTTTCATGGTAGTCAATACTGCTGTATTTGTGTTGGCACCTTCTAATGCCTCCCGCTGTTGTTC



AATAGTTAACATGGTACCATCAATTTGGGCTAATTGTTGTTCGTACCGTTTCTTACGCTTCAATGCTTGCAATGCAGCTCGTTTATTAGT



TGTACCATTTTTTTTGGCTATCGCTACTTCTTGTTCAATTTTTTTTTCTAAAAATTCTTGTTTCTTTATCAGCATCTCTTCAGTGGATCGAA



GCTTTTGTATCGCATCTTCGGTTGATGGTCCCTTCTCTTCCTTTTTGCCACCAAGGGCGAATTCGACCCAGCTTTCTTGTACAAAGTG



GTGATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGT



CAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGAG



TATAAACTCATTAACTAATATCACCTCTAGAGTATAATATAATCAAATTCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTA



TATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTT



TCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTG



AGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAG



CACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGC



TGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGA



CGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAG



AATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGT



TTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTT



CCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAAACGCGTGGATCAGCTTAATATGA



CTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCA



CTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAATCTCAT



TAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTCAGCACACCAGAGCATATATATTGGTGG



CTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGT



TGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCCTTGGTGGCAAAAAGGAAGAGAAGGGACC



ATCAACCGAAGATGCGATACAAAAGCTTCGATCCACTGAAGAGATGCTGATAAAGAAACAAGAATTTTTAGAAAAAAAAATTGAACAAG



AAGTAGCGATAGCCAAAAAAAATGGTACAACTAATAAACGAGCTGCATTGCAAGCATTGAAGCGTAAGAAACGGTACGAACAACAATT



AGCCCAAATTGATGGTACCATGTTAACTATTGAACAACAGCGGGAGGCATTAGAAGGTGCCAACACAAATACAGCAGTATTGACTACC



ATGAAAACTGCAGCAGATGCACTTAAATCAGC





MP010
SEQ ID NO: 1068



CAGACCCTGTTCAGAATATGATGCATGTTAGTGCTGCATTTGATCAAGAAGCATCTGCCGTTTTAATGGCTCGTATGGTAGTGAACCG



TGCTGAAACTGAGGATAGTCCAGATGTGATGCGTTGGGCTGATCGTACGCTTATACGCTTGTGTCAAAAATTTGGTGATTATCAAAAA



GATGATCCAAATAGTTTCCGATTGCCAGAAAACTTCAGTTTATATCCACAGTTCATGTATCATTTAAGAAGGTCTCAATTTCTACAAGTT



TTTAATAATAGTCCTGATGAAACATCATATTATAGGCACATGTTGATGCGTGAAGATGTTACCCAAAGTTTAATCATGATACAGCCAATT



CTGTATAGCTATAGTTTTAATGGTAGGCCAGAACCTGTACTTTTGGATACCAGTAGTATTCAACCTGATAAAATATTATTGATGGACAC



ATTTTTCCATATTTTGATATTCCATGGAGAGACTATTGCTCAATGGAGAGCAATGGATTATCAAAATAGACCAGAGTATAGTAACCTCA



AGCAGTTGCTTCAAGCCCCCGTTGATGATGCTCAGGAAATTCTCAAAACTCGATTCCCAATGCAAGGGCGAATTCGACCCAGCTTTCT



TGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTT



ATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAGCTGT



AAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGAGTATAATATAATCAAATTCGACAATTTGACTTTCAAGAGTAGGCTAAT



GTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATC



CGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAA



AGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAA



AGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAA



GACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTG



AATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGG



GTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCT



TCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCT



GTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAAACGCGTGGATCA



GCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAAGCCAAAATTTATGCTACTCTAAG



GAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAA



CCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTCAGCACACCAGAGCATA



TATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAGAGTATGAAACCTTACCTCATCAT



TTCCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCCTTGCATTGGGAATCGAG



TTTTGAGAATTTCCTGAGCATCATCAACGGGGGCTTGAAGCAACTGCTTGAGGTTACTATACTCTGGTCTATTTTGATAATCCATTGCT



CTCCATTGAGCAATAGTCTCTCCATGGAATATCAAAATATGGAAAAATGTGTCCATCAATAATATTTTATCAGGTTGAATACTACTGGTA



TCCAAAAGTACAGGTTCTGGCCTACCATTAAAACTATAGCTATACAGAATTGGCTGTATCATGATTAAACTTTGGGTAACATCTTCACG



CATCAACATGTGCCTATAATATGATGTTTCATCAGGACTATTATTAAAAACTTGTAGAAATTGAGACCTTCTTAAATGATACATGAACTG



TGGATATAAACTGAAGTTTTCTGGCAATCGGAAACTATTTGGATCATCTTTTTGATAATCACCAAATTTTTGACACAAGCGTATAAGCGT



ACGATCAGCCCAACGCATCACATCTGGACTATCCTCAGTTTCAGCACGGTTCACTACCATACGAGCCATTAAAACGGCAGATGCTTCT



TGATCAAATGCAGCACTAACATGCATCATATTCTGAACAGGGTCTG





MP016
SEQ ID NO: 1069



GTTTTCAATGGCAGTGGAAAGCCGATAGATAAAGGACCTCCTATTTTGGCTGAAGATTATTTGGATATTGAAGGCCAACCTATTAATCC



ATACTCCAGAACATATCCTCAAGAAATGATTCAAACTGGTATTTCAGCTATTGATATCATGAACTCTATTGCTCGTGGACAAAAAATTCC



AATATTTTCAGCTGCAGGTTTACCACATAATGAGATTGCTGCTCAAATTTGTAGACAAGCTGGTCTCGTTAAAAAACCTGGTAAATCAG



TTCTTGACGATCATGAAGACAATTTTGCTATAGTATTTGCTGCTATGGGTGTTAATATGGAAACAGCCAGATTCTTTAAACAAGATTTTG



AGGAAAATGGTTCAATGGAGAATGTTTGTTTGTTCTTGAATTTAGCTAATGATCCTACTATTGAGCGTATCATTACACCACGAAGGGCG



AATTCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCC



GCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAACT



GGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGAGTATAATATAATCAAATTCGACAATTTGAC



TTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAAATTCA



ATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATAT



ATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACG



GCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGA



ATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACG



TTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACC



TGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTG



GCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATT



CAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGG



GCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAAGCC



AAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAA



AGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAAC



TCAGCACACCAGAGCATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAGAGTAT



GAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCC



TTCGTGGTGTAATGATACGCTCAATAGTAGGATCATTAGCTAAATTCAAGAACAAACAAACATTCTCCATTGAACCATTTTCCTCAAAAT



CTTGTTTAAAGAATCTGGCTGTTTCCATATTAACACCCATAGCAGCAAATACTATAGCAAAATTGTCTTCATGATCGTCAAGAACTGATT



TACCAGGTTTTTTAACGAGACCAGCTTGTCTACAAATTTGAGCAGCAATCTCATTATGTGGTAAACCTGCAGCTGAAAATATTGGAATT



TTTTGTCCACGAGCAATAGAGTTCATGATATCAATAGCTGAAATACCAGTTTGAATCATTTCTTGAGGATATGTTCTGGAGTATGGATT



AATAGGTTGGCCTTCAATATCCAAATAATCTTCAGCCAAAATAGGAGGTCCTTTATCTATCGGCTTTCCACTGCCATTGAAAAC





MP027
SEQ ID NO: 1070



CCAAAAATACCATCTGCTCCACCTTCTGGTTTAAAAGACTTTTTTTCTTTAAAATTTTTAAAAACTTTGATTGTAGAAGAATTTTCTCTAA



TGGCATACTCAGAATCAGAAGACCATACAAAATCCTGAGCGGAGCCAAATGCTTTATTACGCAAAGCCATTGATGTATATATAATATAC



TCTCCATCACCACATACTACTAAAAATCTACCATTCGGATTATGAGATATTGACTGTGGATAAATTTCACAGCTACCCATGTCTTTAACT



TGTATTGGTAAACGTTCACCATCTTTGATTTCGGCTCCTTCTGCTTGAAGCATCGCTTTAAGGTTAGCTTGTTGAATTTCACTATGACG



TGCCCAAACAATTTTACCCCCATGAACATCCATTGACATTGCTGGCTCTTCACGACCAACTTTAACCATTATACTTCCTTCATCATAACC



TAGAGCTACATTATTAGATCCCCGTAAGCAACAGATTGTCCATACACGTTCTAACCCATAGTTTAATGATGATTCTAATCGATAAGTAC



CAGAATGCCAAATTCTGACGGTACCATCTTCTGAGCCAGTTAACACGATGGGAAGTTCTGGATGGAAACAAACGAGCAAGGGCGAAT



TCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGC



ACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGT



ATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGAGTATAATATAATCAAATTCGACAATTTGACTTTC



AAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAAATTCAATGA



ACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCC



CAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCT



TTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTC



CGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTT



CATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGG



CCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCC



AATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAG



GTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCG



TAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAAGCCAAAA



TTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGAT



CGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTCA



GCACACCAGAGCATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAGAGTATGA



AACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCCTT



GCTCGTTTGTTTCCATCCAGAACTTCCCATCGTGTTAACTGGCTCAGAAGATGGTACCGTCAGAATTTGGCATTCTGGTACTTATCGAT



TAGAATCATCATTAAACTATGGGTTAGAACGTGTATGGACAATCTGTTGCTTACGGGGATCTAATAATGTAGCTCTAGGTTATGATGAA



GGAAGTATAATGGTTAAAGTTGGTCGTGAAGAGCCAGCAATGTCAATGGATGTTCATGGGGGTAAAATTGTTTGGGCACGTCATAGT



GAAATTCAACAAGCTAACCTTAAAGCGATGCTTCAAGCAGAAGGAGCCGAAATCAAAGATGGTGAACGTTTACCAATACAAGTTAAAG



ACATGGGTAGCTGTGAAATTTATCCACAGTCAATATCTCATAATCCGAATGGTAGATTTTTAGTAGTATGTGGTGATGGAGAGTATATT



ATATATACATCAATGGCTTTGCGTAATAAAGCATTTGGCTCCGCTCAGGATTTTGTATGGTCTTCTGATTCTGAGTATGCCATTAGAGA



AAATTCTTCTACAATCAAAGTTTTTAAAAATTTTAAAGAAAAAAAGTCTTTTAAACCAGAAGGTGGAGCAGATGGTATTTTTGG
















TABLES 10-NL





(a)


















Mean % survival (days post start)
Survival

















RNAi
0
1
2
3
4
5
6
7
8
analysis1





gfp
100
98
90
82
68
60
44
32
20



diet only
100
98
96
86
74
68
58
54
38



NL002
100
98
90
76
68
34
6
0
0
+


NL003
100
98
74
48
36
22
12
2
0
+


NL005
100
100
74
56
40
20
16
6
4
+


NL010
100
96
74
56
48
30
18
12
8
+














Chi squared
P value
Sig. Dif.2





diet versus:





NL002
29.06
<0.0001
Yes


NL003
39.59
<0.0001
Yes


NL005
29.55
<0.0001
Yes


NL010
21.04
<0.0001
Yes


gfp dsRNA versus:





NL002
15.09
0.0001
Yes


NL003
22.87
<0.0001
Yes


NL005
15.12
<0.0001
Yes


NL010
8.838
0.0029
Yes


diet versus gfp dsRNA
4.030
0.0447 (~0.05)
No






1= Data were analysed using Kaplan-Meier survival curve analysis




2alpha < 0.05














TABLES 10-NL





(b)


















Mean % survival (days post start)
Survival

















RNAi
0
1
2
3
4
5
6
7
8
analysis1





gfp
100
96
84
82
76
70
54
50
44



diet only
100
96
88
82
76
70
54
50
44



NL009
100
94
75
63
42
30
24
22
14
+


NL016
100
94
84
78
54
44
36
18
14
+
















Chi squared
P value
Sig. Dif.2






diet versus:






NL009
11.98
0.0005
Yes



NL016
8.98
0.0027
Yes



gfp dsRNA versus:






NL009
13.69
0.0002
Yes



NL016
11.37
0.0007
Yes



diet versus gfp dsRNA
0.03317
0.8555
No






1= Data were analysed using Kaplan-Meier survival curve analysis




2alpha < 0.05














TABLES 10-NL





(c)


















Mean % survival (days post start)
Survival

















RNAi
0
1
2
3
4
5
6
7
8
analysis1





gfp
100
92
84
78
72
62
58
56
48



diet only
100
84
72
68
64
58
52
42
42



NL014
100
86
68
60
46
32
24
18
14
+


NL018
100
82
70
54
40
30
18
14
12
+
















Chi squared
P value
Sig. Dif.2






diet versus:






NL014
8.088
0.0045
Yes



NL018
10.47
0.0012
Yes



gfp dsRNA versus:






NL014
14.55
0.0001
Yes



NL018
17.64
<0.0001
Yes



diet versus gfp dsRNA
0.6548
0.4184
No






1= Data were analysed using Kaplan-Meier survival curve analysis




2alpha < 0.05














TABLES 10-NL





(d)


















Mean % survival (days post start)
Survival


















RNAi
0
1
2
3
4
5
6
7
8
9
analysis1





gfp
100
96
84
84
72
68
68
66
66
62



diet
100
96
86
82
74
72
70
70
66
58



only













NL013
100
94
82
68
50
40
30
28
20
20
+


NL015
100
100
72
30
18
12
 8
 6
6
6
+


NL021
100
100
84
58
50
44
40
34
34
22
+
















Chi squared
P value
Sig. Dif.2






diet versus:






NL013
15.73
<0.0001
Yes



NL015
39.44
<0.0001
Yes



NL021
12.75
0.0004
Yes



gfp dsRNA versus:






NL013
16.42
<0.0001
Yes



NL015
39.15
<0.0001
Yes



NL021
14.1
0.0002
Yes



diet versus gfp dsRNA
0.1031
0.7481
No






1= Data were analysed using Kaplan-Meier survival curve analysis




2alpha < 0.05
















TABLE 11-NL








Mean % survival (days post start)
Survival
















NL002 RNAi
0
1
2
3
4
5
6
7
analysis1





diet only
100
100
96
90
86
78
78
78



1 μg/μl
100
84
80
44
26
8
6
6
+


0.2 μg/μl
100
84
60
12
8
4
2
2
+


0.08 μg/μl
100
84
62
18
14
6
6
6
+


0.04 μg/μl
100
84
48
24
22
22
22
22
+















diet versus:
Chi squared
P value
Sig. Dif.2






NL002 1 μg/μl
57.53
<0.0001
Yes



NL002 0.2 μg/μl
74.54
<0.0001
Yes



NL002 0.08 μg/μl
64
<0.0001
Yes



NL002 0.04 μg/μl
39.49
<0.0001
Yes






1= Data were analysed using Kaplan-Meier survival curve analysis




2alpha < 0.05






Claims
  • 1. An isolated double stranded RNA molecule comprising annealed complementary strands, wherein at least one of said strands comprises a polyribonucleotide selected from the group consisting of: (i) polyribonucleotides complementary to at least 50 contiguous nucleotides of the target gene of SEQ ID NO: 3,(ii) polyribonucleotides complementary to at least 50 contiguous nucleotides of a target gene encoding the amino acid sequence of SEQ ID NO: 4, and(iii) polyribonucleotides having at least 90% sequence identity with the polyribonucleotides of (i) or (ii),wherein said double stranded RNA molecule has pesticidal activity.
  • 2. A polynucleotide or set of polynucleotides encoding a double stranded RNA molecule according to claim 1.
  • 3. The double stranded RNA molecule of claim 1, wherein ingestion of said double stranded RNA molecule by a plant insect pest inhibits the growth of said insect pest.
  • 4. The double stranded RNA molecule of claim 1, wherein ingestion of said double stranded RNA molecule inhibits expression of a nucleotide sequence substantially complementary to said polyribonucleotide.
  • 5. A cell transformed with a polynucleotide encoding a double stranded RNA molecule according to claim 1.
  • 6. The cell of claim 5, wherein said cell is a plant cell.
  • 7. A plant transformed with a polynucleotide encoding a double stranded RNA molecule according to claim 1.
  • 8. The plant of claim 7, wherein said double stranded RNA molecule inhibits a pest biological activity.
  • 9. The plant of claim 7, wherein said double stranded RNA molecule inhibits expression of a target gene.
  • 10. The plant of claim 9 wherein said target gene is an insect, nematode or fungal gene.
  • 11. The plant of claim 7, wherein said plant is cytoplasmic male sterile.
  • 12. The plant of claim 7, wherein said plant further comprises or expresses a pesticidal agent selected from the group consisting of a patatin, a Bacillus thuringiensis insecticidal protein, a Xenorhabdus insecticidal protein, a Photorhabdus insecticidal protein, a Bacillus laterosporous insecticidal protein, and a Bacillus sphearicus insecticidal protein.
  • 13. The plant of claim 12 wherein said Bacillus thuringiensis insecticidal protein is selected from the group consisting of a Cry1, a Cry3, a TIC851, a CryET170, a Cry22, a binary insecticidal protein CryET33 and CryET34, a binary insecticidal protein CryET80 and CryET76, a binary insecticidal protein TIC100 and TIC101, and a binary insecticidal protein PS149B1.
  • 14. The plant of claim 7, wherein said plant selected from the group consisting of alfalfa, apple, apricot, artichoke, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, Brussels sprouts, cabbage, canola, carrot, cassava, cauliflower, a cereal, celery, cherry, citrus, clementine, coffee, corn, cotton, cucumber, eggplant, endive, eucalyptus, figs, grape, grapefruit, groundnuts, ground cherry, kiwifruit, lettuce, leek, lemon, lime, pine, maize, mango, melon, millet, mushroom, nut, oat, okra, onion, orange, an ornamental plant or flower or tree, papaya, parsley, pea, peach, peanut, peat, pepper, persimmon, pineapple, plantain, plum, pomegranate, potato, pumpkin, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, soy, soybean, spinach, strawberry, sugar beet, sugarcane, sunflower, sweet potato, tangerine, tea, tobacco, tomato, a vine, watermelon, wheat, yams and zucchini.
  • 15. The plant of claim 6, wherein said plant is resistant against infestation by an insect selected from the group consisting of Leptinotarsa spp., Lema spp., Epitrix spp., Epicauta spp., Epilachna spp., Phaedon spp., Nilaparvata spp., Laodelphax spp., Nephotettix spp., Sogatella spp., Acheta spp., Blissus spp., Scotinophora spp., Acrosternum spp., Parnara spp., Chilo spp., Chilotraea spp., Sesamia spp., Tryporyza spp., Cnaphalocrocis spp., Agromyza spp., Diatraea spp., Narnaga spp., Xanthodes spp., Spodoptera spp., Mythimna spp., Helicoverpa spp., Colaspis spp., Lissorhoptrus spp., Echinocnemus spp., Diclodispa spp., Oulema spp., Sitophilus spp., Pachydiplosis spp., Hydrellia spp., Chlorops spp., Diabrotica spp., Ostrinia spp., Agrotis spp., Elasmopalpus spp., Melanotos spp., Cyclocephala spp., Popillia spp., Chaetocnema spp., Sphenophorus spp., Rhopalosiphum spp., Anuraphis spp., Melanoplus spp., Hylemya spp., Anaphothrips spp., Solenopsis spp., Helicoverpa spp., Pectinophora spp., lianas spp., Heliothis spp., Anthonomus spp., Pseudatomoscelis spp., Trialeurodes spp., Bemisia spp., Aphis spp., Lygus spp., Euschistus spp., Chlorochroa spp., Nezara spp., Thrips spp., Frankliniella spp., Empoasca spp., Myzus spp., Paratrioza spp., Conoderus spp., Phthorimaea spp., Macrosiphum spp., Thyanta spp., Phthorimaea spp., Helicoverpa spp., Keiferia spp., Limonius spp., Manduca spp., Liriomyza spp., Drosophilia spp., Carabus spp., Chironomus spp., Ctenocephalides spp., Diaprepes spp., Ips spp., Tribolium spp., Glossina spp., Anopheles spp., Helicoverpa spp., Acyrthosiphon spp., Apis spp., Homalodisca spp., Aedes spp., Bombyx spp., Locusta spp., Boophilus spp., Acanthoscurria spp., Diploptera spp., Heliconius spp., Curculio spp., Plutella spp., Amblyomma spp., Anteraea spp., and Armigeres spp..
  • 16. A seed, part, tissue, or cell of the plant of claim 7, wherein said seed, part, tissue or cell comprises a double stranded RNA molecule according to claim 1.
  • 17. A product produced from the plant of claim 7, wherein said product comprises said double stranded RNA molecule.
  • 18. The product of claim 17, wherein said product is selected from the group consisting of food, feed, fiber, paper, meal, protein, starch, flour, silage, coffee, tea, and oil.
  • 19. A pesticide comprising the product of claim 17, said product expressing said double stranded RNA molecule.
  • 20. A method for controlling or preventing insect growth comprising providing an insect pest with a product of a plant transformed with a polynucleotide encoding the double stranded RNA molecule of claim 1.
  • 21. A method for producing a plant resistant against a plant pathogenic organism comprising: a) transforming a plant cell with a polynucleotide encoding the double stranded RNA molecule of claim 1,b) regenerating a plant from the transformed plant cell; andc) growing the transformed plant under conditions suitable for the expression of said double stranded RNA molecule,wherein said grown transformed plant is resistant to said plant pathogenic organism compared to an untransformed plant.
  • 22. A method for improving yield, comprising: a) transforming a plant cell with a polynucleotide encoding the double stranded RNA molecule of claim 1,b) regenerating a plant from the transformed plant cell; andc) growing the transformed plant under conditions suitable for the expression of said double stranded RNA molecule from said polynucleotide,wherein said expression inhibits feeding by a plant pathogenic organism and reduces loss of yield due to pest infestation.
  • 23. A transgenic plant resistant to an insect pest comprising the double stranded RNA molecule of claim 1.
  • 24. The transgenic plant according to claim 23 further comprising or expressing a pesticidal agent selected from the group consisting of a patatin, a Bacillus thuringiensis insecticidal protein, a Xenorhabdus insecticidal protein, a Photorhabdus insecticidal protein, a Bacillus laterosporous insecticidal protein, and a Bacillus sphearicus insecticidal protein.
  • 25. The transgenic plant of claim 24 wherein said Bacillus thuringiensis insecticidal protein is selected from the group consisting of a Cry1, a Cry3, a TIC851, a CryET170, a Cry22, a binary insecticidal protein CryET33 and CryET34, a binary insecticidal protein CryET80 and CryET76, a binary insecticidal protein TIC100 and TIC101, and a binary insecticidal protein PS149B1.
  • 26. A pesticide comprising a plant of claim 7 or a seed, part, tissue, or cell thereof, wherein said plant, seed, part, tissue or cell thereof expresses said double stranded RNA molecule.
  • 27. A method for controlling or preventing insect growth comprising providing an insect pest with a plant transformed with a polynucleotide encoding the double stranded RNA molecule of claim 1.
  • 28. The method according to claim 27, wherein the insect pest is selected from the group consisting of Leptinotarsa spp., Tribolium spp., Myzus spp., Nilaparvata spp., Chilo spp., and Acheta spp.
  • 29. The method according to claim 28, wherein the insect pest is selected from the group consisting of Leptinotarsa decemlineata, Tribolium castaneum, Myzus persicae, Nilaparvata lugens, Chilo suppressalis, and Acheta domesticus.
  • 30. The plant of claim 15, wherein said plant is resistant against infestation by an insect selected from the group consisting of Leptinotarsa decemlineata (Colorado potato beetle), Leptinotarsa juncta (false potato beetle), Leptinotarsa texana (Texan false potato beetle), Lema trilineata (three-lined potato beetle), Epitrix cucumeris (potato flea beetle), Epitrix hirtipennis (flea beetle), Epitrix tuberis (tuber flea beetle), Epicauta vittata (striped blister beetle),Epilachna varivetis (mexican bean beetle), Phaedon cochieariae (mustard leaf beetle), Nitaparvata lugens (brownplanthopper), Laodelphax striatellus (small brown planthopper), Nephoteltix virescens, Nephotettix cincticeps (green leafhopper), Nephotettik nigropictus (rice leafhopper), Sogatella furcifera (white-backed planthopper), Acheta domesticus (house cricket), Blissus leucopterus leucopterus (chinch bug), Scotinophora vermidulate (rice blackbug), Acrosternum hilare (green stink bug), Parnara guttata (rice skipper), Chilo suppressalis (rice striped stem borer), Chilo auricilius (gold-fringed stem borer), Chilo polychrysus (dark-headed stem borer), Chilotraea polychrysa (rice stalk borer), Sesamia inferens (pink rice borer), Tryporyza innotata (white rice borer), Tryporyza incertulas (yellow rice borer), Cnaphalocrocis medinalis (rice leafroller), Agromyza oryzae (leafminer), Agromyza parvicornis (corn blot leafminer), Diatraea saccharalis (sugarcane borer), Diatraea grandiosella (southwestern corn borer), Narnaga aenescens (green rice caterpillar), Xanthodes transversa (green caterpillar), Spodoptera frugiperda (fall armyworm), Spodoptera exigua (beet armyworm), Spodoptera littoralis (climbing cutworm), Spodoptera praefica (western yellowstriped armyworm), Helicoverpa zea (corn earworm), Colaspis brunnea (grape colaspis), Lissorhoptrus oryzophilus (rice water weevil), Echinocnemus squamos (rice plant weevil), Diciodispa armigera (rice hispa), Oulema oryzae (leaf beetle), Sitophilus oryzae (rice weevil), Pachydiplosis oryzae (rice gall midge), Hydrellia griseola (small rice leafminer), and Hydrellia sasakil (rice stem maggot), Chlorops oryzae (stem maggot), Diabrotica virgifera virgifera (western corn rootworm), Diabrotica barberi (northern corn rootworm), Diabrotica undecimpunctala howardi (southern corn rootworm), Diabrotica virgifera zeae (Mexican corn rootworm); Diabrotica balteata (banded cucumber beetle), Ostrinia nubilalis (European corn borer), Agrotis ipsilon (black cutworm), Elasmopalpus lignosellus (lesser cornstalk borer), Melanotus wireworms, Cyclocephaia borealis (northern masked chafer), Cyclocephala immaculata (southern masked chafer), Popillia japonica (Japanese beetle), Chaetocnema pulicaria (corn flea beetle), Sphenophorus maidis (maize billbua), Rhopalosiphum maidis (corn leaf aphid), Anuraphis maidiradicis (corn root aphid), Melanoplus femurrubrum (redlegged grasshopper), Melanoplus differentialis (differential grasshopper), Melanoplus sanguinipes (migratory grasshopper), Hylemya platura (seedcorn maggot), Anaphothrips obscrurus (grass thrips), Solenopsis milesta (thief ant), Helicoverpa zea (cotton bollworm), Helicoverpa armigera (American bollworm)), Pectinophora gossypiella (pink bollworm), Heliothis virescens (tobacco budworm), Anthonomus grandis (boll weevil), Pseudatomoscelis seriatus (cotton fleahopper), Trialeurodes abutiloneus (banded-winged whitefly), Trialeurodes vaporariorum (greenhouse whitefly), Bemisia argentifoln (silverleaf whitefly), Aphis gossypii (cotton aphid), Lygus lineolaris (tarnished plant bug), Lygus hesperus (western tarnished plant bug), Euschistus conspersus (consperse stink bug), Chlorochroa sayi (Say stinkbug), Nezara viridula (southern green stinkbug), Thrips tabaci (onion thrips), Frankliniella fusca (tobacco thrips), Frankliniella occidentalis (western flower thrips), Empoasca fabae (potato leafhopper), Myzus persicae (green peach aphid), Paratrioza cockerelli, Conoderus falli (southern potato wireworm), and C. vespertinus (tobacco wireworm), Phthorimaea operculella (potato tuberworm), Macrosiphum euphorbiae (potato aphid), Thyanta pallidovirens (redshouldered stinkbug), Phthorimaea operculella (potato tuberworm), Helicoverpa zea (tomato fruitworm), Keiferia lycopersicella (tomato pinworm), Limonius wireworms, Manduca sexta (tobacco hornworm), and M. quinquemaculata (tomato hornworm), Liriomyza sativae, L. trifolli, L. huldobrensis (leafminer), Drosophilla melanogaster, D. yakuba, D. pseudoobscura, D. simulans), Carabus granulatus, Chironomus tentanus, Ctenocephalides felis (cat flea), Diaprepes abbreviates (root weevil), Ips pini (pine engraver), Tribolium castaneum (red floor beetle), Glossina morsitans (tsetse fly), Anopheles gambiae (malaria mosquito), Helicoverpa armigera (African Bollworm), Acyrthosiphon pisum (pea aphid), Apis melifera (honey bee), Homalodisca coagulate (glassy-winged sharpshooter), Aedes aegypti (yellow fever mosquito), Bombyx mori (silkworm)), Locusta migratoria (migratory locust), Boophilus microlus (cattle tick), Acanthoscurria gomesiane (red-haired chololate bird eater). Diploptera punctala (pacific beetle cockroach), Heliconius erato (red passion flower butterfly), H. melpomene (postman butterfly)), Curculio glandium (acorn weevil), Plutella xylostella (diamontback moth), Amblyomma variegatum (cattle tick), Anteraea yamamai (silkmoth), and Armigeres subalbatus.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of, and claims priority to U.S. patent application Ser. No. 12/087,536 filed on Jan. 13, 2009 which is a national stage filing under 35 U.S.C. §371 of International Application No. PCT/EP2007/000286, filed on Jan. 12, 2007, which claims benefit of 60/758,191, filed on Jan. 12, 2006, and claims benefit of 60/771,160, filed on Feb. 7, 2006, and claims benefit of 60/837,910, filed on Aug. 16, 2006, and claims benefit of 60/875,356, filed on Dec. 18, 2006, the contents of each of which are herein incorporated by reference in their entireties.

US Referenced Citations (7)
Number Name Date Kind
6703491 Homburger et al. Mar 2004 B1
20030150017 Mesa et al. Aug 2003 A1
20050287570 Mounts Dec 2005 A1
20060021087 Baum et al. Jan 2006 A1
20060272049 Waterhouse et al. Nov 2006 A1
20080113351 Naito et al. May 2008 A1
20090285784 Raemaekers et al. Nov 2009 A1
Foreign Referenced Citations (18)
Number Date Country
9932619 Jul 1999 WO
9953050 Oct 1999 WO
0001846 Jan 2000 WO
WO 0055376 Sep 2000 WO
WO 0109301 Feb 2001 WO
0134815 May 2001 WO
0137654 May 2001 WO
WO 0171042 Sep 2001 WO
0188121 Nov 2001 WO
0246432 Jun 2002 WO
03004644 Jan 2003 WO
2004001013 Dec 2003 WO
2005019408 Mar 2005 WO
2005047300 May 2005 WO
2005049841 Jun 2005 WO
2005110068 Nov 2005 WO
WO 2005116204 Dec 2005 WO
WO 2007083193 Jul 2007 WO
Non-Patent Literature Citations (29)
Entry
Stapleton et al (2003). Accession No. AY069131; deposited Jan. 2003.
Genbank Submission; NCBI; Accession No. ABL02283. Newton et al.; Nov. 19, 2010.
Genbank Submission; NCBI; Accession No. AM106685. Dillon et al.; Dec. 23, 2005.
Genbank Submission; NCBI; Accession No. AR508074. Homburger et al.; Sep. 22, 2004.
Genbank Submission; NCBI; Accession No. BT001619. Stapleton et al.; Nov. 15, 2002.
Genbank Submission; NCBI; Accession No. CB602554. Srinivasan et al.; Apr. 4, 2003.
Genbank Submission; NCBI; Accession No. CK811880. Siviero et al.; Dec. 1, 2004.
Genbank Submission; NCBI; Accession No. DN200332. Hunter et al.; Feb. 25, 2005.
Genbank Submission; NCBI; Accession No. FW658194. Naito et al.; Apr. 18, 2001.
Baumann et al., Sequence analysis of DNA fragments from the genome of the primary endosymbiont of the whitefly Bemisia tabaci. Curr Microbiol. Jan. 2004;48(1):77-81.
Roberts et al., Loss of SEC-23 in Caenorhabditis elegans causes defects in oogenesis, morphogenesis, and extracellular matrix secretion. Mol Biol Cell. Nov. 2003;14(11):4414-26. Epub Aug. 7, 2003.
Robertson et al., Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol Biol. Nov. 1999;8(4):501-18.
Severson et al., Linkage map organization of expressed sequence tags and sequence tagged sites in the mosquito, Aedes aegypti. Insect Mol Biol. Aug. 2002;11(4):371-8.
Soares et al., Capillary feeding of specific dsRNA induces silencing of the isac gene in ymphal Ixodes scapularis ticks. Insect Mol Biol. Aug. 2005;14(4):443-52.
Timmons et al., Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene. Jan. 24, 2001;263(1-2):103-12.
Zhu et al., Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag Sci. Feb. 2011;67(2):175-82. Epub Nov. 8, 2010.
Genbank Submission; NCBI, Accession No. AM048926; Longhorn; Jul. 16, 2005.
Genbank Submission; NCBI, Accession No. Q4GXU7; Longhorn et al.; Nov. 28, 2006.
Clough et al., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. Dec. 1998;16(6):735-43.
Febvay et al., Influence of the amino acid balance on the improvement of an artificial diet for a biotype of Acyrthosiphon pisum (Homoptera: Aphididae). Can. J. Zool. 1988;66(11):2449-2453.
Fire, RNA-triggered gene silencing. TIG. Sep. 1999;15(9):358-63.
Koyama, Artificial rearing and nutritional physiology of the planthoppers and leafhoppers (Hemiptera: Delphacidae and Deltocephalidae) on a holidic diet. Japan Agricultural Research Quarterly. 1988;22(1):20-27.
Rice et al., EMBOSS: the European Molecular Biology Open Software Suite. TIG. Jun. 2000;16(6):276-7.
Sharp, RNA interference—2001. Genes Dev. Mar. 1, 2001;15(5):485-90.
Whyard et al., Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol. Nov. 2009;39(11):824-32. Epub Oct. 6, 2009.
Thomas et al. The Plant Journal (2001) 25(4), pp. 417-425.
Genbank Submission; NCBI; Accession No. CO334556, 2004.
Hamada et al., Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3′-ends of siRNAs. Antisense Nucleic Acid Drug Dev. Oct. 2002;12(5):301-9.
Qiu et al., A computational study of off-target effects of RNA interference. Nucleic Acids Res. Mar. 30, 2005;33(6):1834-47.
Related Publications (1)
Number Date Country
20140373197 A1 Dec 2014 US
Provisional Applications (4)
Number Date Country
60875356 Dec 2006 US
60837910 Aug 2006 US
60771160 Feb 2006 US
60758191 Jan 2006 US
Divisions (1)
Number Date Country
Parent 12087536 US
Child 14470868 US