Dual capillary fluid vaporizing device

Information

  • Patent Grant
  • 6568390
  • Patent Number
    6,568,390
  • Date Filed
    Friday, September 21, 2001
    22 years ago
  • Date Issued
    Tuesday, May 27, 2003
    21 years ago
Abstract
A fluid vaporizing device useful for vaporizing fluid into an aerosol and includes first and second capillary tubes connected electrically in series by providing separate electrodes at the inlet ends of each capillary tube, and connecting the outlet ends of the capillary tubes by an electrical connection that connects the outlet ends both electrically and thermally. The capillary tubes are heated by the flow of electricity therethrough, and liquid flowing through the tubes is vaporized. The outlet ends of the capillary tubes are easily maintained at a temperature for optimizing aerosol generation since there is minimal heat loss through the connection connecting the outlet ends.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates generally to fluid vaporizing devices such as aerosol generators.




2. Brief Description of the Related Art




Aerosols are useful in a wide variety of applications. For example, it is often desirable to treat respiratory ailments with, or deliver drugs by means of, aerosol sprays of finely divided particles of liquid and/or solid, e.g., powder, medicaments, etc., which are inhaled into a patient's lungs. Aerosols are also used for purposes such as providing desired scents to rooms, distributing insecticides and delivering paint and lubricant.




Various techniques are known for generating aerosols. For example, U.S. Pat. Nos. 4,811,731 and 4,627,432 disclose devices for administering medicaments to patients in which a capsule is pierced by a pin to release a medicament in powder form. A user then inhales the released medicament through an opening in the device. While such devices may be acceptable for use in delivering medicaments in powder form, they are not suited to delivering medicaments in liquid form. The devices are also, of course, not well-suited to delivery of medicaments to persons who might have difficulty in generating a sufficient flow of air through the device to properly inhale the medicaments, such as asthma sufferers. The devices are also not suited for delivery of materials in applications other than medicament delivery.




Another well-known technique for generating an aerosol involves the use of a manually operated pump which draws liquid from a reservoir and forces it through a small nozzle opening to form a fine spray. A disadvantage of such aerosol generators, at least in medicament delivery applications, is the difficulty of properly synchronizing inhalation with pumping. More importantly, however, because such aerosol generators tend to produce particles of large size, their use as inhalers is compromised because large particles tend to not penetrate deeply into the lungs.




One of the more popular techniques for generating an aerosol including liquid or powder particles involves the use of a compressed propellant, often containing a chloro-fluoro-carbon (CFC) or methylchloroform, to entrain a material, usually by the Venturi principle. For example, inhalers containing compressed propellants such as compressed gas for entraining a medicament are often operated by depressing a button to release a short charge of the compressed propellant. The propellant entrains the medicament as the propellant flows over a reservoir of the medicament so that the propellant and the medicament can be inhaled by the user.




In propellant-based arrangements, however, a medicament may not be properly delivered to the patient's lungs when it is necessary for the user to time the depression of an actuator such as a button with inhalation. Moreover, aerosols generated by propellant-based arrangements may have particles that are too large to ensure efficient and consistent deep lung penetration. Although propellant-based aerosol generators have wide application for uses such as antiperspirant and deodorant sprays and spray paint, their use is often limited because of the well-known adverse environmental effects of CFC's and methylchloroform, which are among the most popular propellants used in aerosol generators of this type.




In drug delivery applications, it is typically desirable to provide an aerosol having average mass median particle diameters of less than 2 microns to facilitate deep lung penetration. Propellant based aerosol generators are incapable of generating aerosols having average mass median particle diameters less than 2 microns. It is also desirable, in certain drug delivery applications, to deliver medicaments at high flow rates, e.g., above 1 milligram per second. Some aerosol generators suited for drug delivery are incapable of delivering such high flow rates in the 0.2 to 2.0 micron size range.




Commonly owned U.S. Pat. Nos. 5,743,251 and 6,234,167, which are hereby incorporated by reference in their entirety, disclose aerosol generators, along with certain principles of operation and materials used in an aerosol generator, as well as methods of producing an aerosol, and an aerosol.




SUMMARY OF THE INVENTION




The invention provides a dual capillary fluid vaporizing device that includes a fluid source, a power source, and a heater arrangement electrically heated by the power source. The heater arrangement includes first and second capillary tubes, with the capillary tubes having inlet ends in fluid communication with the fluid source and the heater arrangement being operable to vaporize fluid in the capillary tubes. A first electrode supplies electrical current to the first capillary tube such that electrical current passes along at least a portion of the first capillary tube. An electrical connection connects the capillary tubes such that the electrical current supplied to the first capillary tube passes along at least a portion of the second capillary tube, and a second electrode is electrically connected to the second capillary tube such that the capillary tubes are electrically connected in series to the power source.




The invention also provides a method of vaporizing fluid that includes supplying fluid from the fluid source to first and second capillary tubes, and heating the first and second capillary tubes by passing electrical current from the power source along the first capillary tube, through the electrical connection interconnecting the first and second capillary tubes, and along the second capillary tube, the electrical current being effective to heat the capillary tubes such that the fluid therein is volatilized and exits the capillary tubes as a vapor.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention of the present application will now be described in more detail with reference to preferred embodiments of the apparatus and method, given only by way of example, and with reference to the accompanying drawing, in which:





FIG. 1

is an illustration of a fluid vaporizing device according to a preferred embodiment of the invention.





FIG. 2

is a schematic representation of a dual capillary tube portion of the device shown in

FIG. 1

according to an embodiment of the invention.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




The invention provides a fluid vaporizing device useful for applications including aerosol generation. The device according to an embodiment of the invention includes two capillary tubes which can be heated by passing electrical current therethrough, the tubes being connected electrically in series, and through which fluid flows to be at least partially vaporized and if desired to generate an aerosol. While aerosol generation is one use of the fluid vaporizing device, other uses could include vaporizing other liquids such as fuel. In order to heat the tubes, an electrical current enters the first tube through a first electrode at the inlet end, flows along the tube and through an electrical connection which connects the first tube outlet end to the second tube outlet end, and flows along the second tube from the outlet end to a second electrode at the inlet end of the second tube. Fluid from the same or different sources can be supplied as a pressurized liquid at the inlets to the respective tubes and is converted to a vapor by the input of heat from the flow of electricity through the tubes as the fluid flows through the tubes toward the outlet ends. When used as an aerosol generator, as the vapor exits from the tubes at the respective outlet ends or tips of the capillary tubes, at least some of the vapor condenses to form droplets of aerosol as the vapor enters the surrounding atmosphere.




The capillary tubes can be made entirely from an electrically conductive material, such as stainless steel, so that as a voltage is applied to the tubes, the tubes are heated by the flow of electric current through the tubes, which are electrically connected in series, and the fluid passing through the tubes is vaporized. As an alternative, the tubes could be made from a non-conductive or semi-conductive material, such as glass or silicon, with a resistance heating material such as platinum (Pt). The capillary tubes are connected electrically in series by providing a separate electrode or joint at the outlet end of each tube which electrically connects the outlet ends of the tubes together. The electrical connection at the outlet ends or tips of the capillary tubes also provides a thermal connection, such that the temperature at the tip of the first capillary tube in the direction of the flow of electricity is the same or nearly the same as the temperature at the tip of the second capillary tube. This arrangement minimizes heat loss compared to a single capillary tube arrangement wherein an electrical lead is attached to the outlet end of the capillary tube. The parallel arrangement of the capillary tubes also provides for a very compact structure and allows generation of a greater amount of vaporized material than in the case of a single capillary tube. Of course, the tubes do not need to be arranged in parallel, as long as the outlet end of the second capillary tube in the direction of the flow of electricity is electrically and thermally connected to the outlet end of the first capillary tube. For example, the ends of the tubes could be welded, brazed or soldered together and the tubes angled apart to isolate them electrically from each other.




The coefficient of heat transfer between the tubes and the fluid flowing through the tubes decreases in the direction of flow as the liquid is converted into a vapor. Accordingly, the outlet ends of the capillary tubes are at a higher temperature than the inlet ends. By providing substantially identical capillary tubes, each carrying a substantially identical flow of fluid, the outlet ends of the tubes can be maintained at substantially the same temperature. The connection of the outlet ends of essentially identical capillary tubes carrying substantially the same flow of fluid to be vaporized and optionally aerosolized ensures that there is minimal heat loss at the outlet ends as a result of the electrical connection. If desired, the tubes can be of different diameters and/or lengths and the fluid supplied to the tubes can be the same or different fluids.




The dual capillary aerosol generator according to an embodiment of the invention maintains the temperature at the tips of the capillary tubes sufficiently high for the generation of a quality aerosol without necessitating overheating of the capillary mid-sections. Suitable materials and dimensions can be used for the electrical connection near the tip of the capillary tubes, and the arrangement can optimize the generation of quality aerosol regardless of the fluid or fluid flow rate through the tubes.




One advantage of this invention is that by forming both an electrical and a thermal connection at the tip of a capillary tube with an identical capillary tube, the temperature at the first end of this connection (the temperature of the first capillary tip) is generally substantially matched by the temperature at the second end (the temperature of the second capillary tip). This eliminates the potential for heat loss at the tip due to thermal conduction along the electrical lead, since any temperature gradient has been substantially eliminated. Furthermore, no special effort is needed to design the electrical connection. Finally, the design is independent of fluid flow rate. Because additional energy is not needed in warming an electrical lead, the configuration can be expected to be more efficient, perhaps by 10-20%, than a capillary tube aerosol generator in which a resistance heating electrode at the outlet end of a capillary tube-type aerosol generator is used to generate heat and minimize heat loss at the capillary tip.




The present invention provides an improvement to a single capillary tube arrangement used to vaporize fluid wherein heat loss can occur at an electrical lead nearest the capillary tube exit and cause a dramatic decline in temperature along the capillary toward the tip. To compensate for such heat loss and maintain the tip at a temperature sufficiently high for the generation of a quality aerosol, the capillary midsection may be overheated. This overheating exposes the materials to be aerosolized to unnecessarily high temperatures which can, in some cases, be sufficient to cause thermal degradation of these materials.





FIG. 1

shows an embodiment of a fluid vaporizing device in the form of an aerosol generator


10


in accordance with one embodiment of the invention. As shown, the aerosol generator


10


includes a source


12


of fluid, a valve


14


, a heater arrangement


21


comprising dual parallel capillary passages


20


,


30


, a mouthpiece


18


, an optional sensor


15


and a controller


16


. The controller


16


includes suitable electrical connections and ancillary equipment such as a battery which cooperates with the controller for operating the valve


14


, the sensor


15


and supplying electricity to heat the dual parallel capillary passages


20


,


30


. In operation, the valve


14


can be opened to allow a desired volume of fluid from the source


12


to enter the passages


20


,


30


prior to or subsequent to detection by the sensor


15


of vacuum pressure applied to the mouthpiece


18


by a user attempting to inhale aerosol from the aerosol generator


10


. As fluid is supplied to the passages


20


,


30


, the controller


16


controls the amount of power provided to heat the capillary tubes sufficient to volatilize fluid in the passages


20


,


30


, i.e., the controller


16


controls the amount of electricity passed through the capillary tubes to heat the fluid to a suitable temperature for volatilizing the fluid therein. The volatilized fluid exits outlets


20




b


,


30




b


of the passages


20


,


30


, and the volatilized fluid forms an aerosol which can be inhaled by a user drawing upon the mouthpiece


18


.




The aerosol generator shown in

FIG. 1

can be modified to utilize different fluid supply arrangements. For instance, the fluid source can comprise a delivery valve which delivers a predetermined volume of fluid to the passages


20


,


30


and/or the passages


20


,


30


can include chambers of predetermined size to accommodate a predetermined volume of fluid to be volatilized during an inhalation cycle. In the case where the passages include chambers to accommodate a volume of fluid, the device can include a valve or valves downstream of the chambers for preventing flow of the fluid beyond the chambers during filling thereof. If desired, the chambers can include a preheater arranged to heat fluid in the chambers such that a vapor bubble expands and drives the remaining liquid from the chambers into the passages


20


,


30


. Details of such a preheater arrangement can be found in commonly owned U.S. application Ser. No. 09/742,395 filed on Dec. 22, 2000, the disclosure of which is hereby incorporated by reference. If desired, the valve(s) could be omitted and the fluid source


12


can include a delivery arrangement such as a syringe pump which supplies a predetermined volume of fluid to the chamber or directly to the passages


20


,


30


. The heaters can be the walls of the capillary tubes defining passages


20


,


30


, arranged to volatilize the liquid in passages


20


,


30


. In the case of manual operations, the sensor


15


can be omitted such as in the case where the aerosol generator


10


is operated manually by a mechanical switch, electrical switch or other suitable technique. Although the aerosol generator


10


illustrated in

FIG. 1

is useful for medical uses, the principles of the device can also be used to vaporize other fluids such as fuel, odorants, or the like.




A dual capillary tube aerosol generator according to an embodiment of the invention includes two capillary tubes that are arranged to receive fluid flow from a single fluid source and that are connected electrically in series. A fluid, generally in the form of a pressurized liquid and/or predetermined volume of fluid, enters through the inlets of the two capillary tubes and flows through the tubes to the exit ends or tips of the capillary tubes. The capillary tubes are connected electrically in series by providing separate electrodes at the inlet ends of each capillary tube and by electrically connecting the tip ends of the capillary tubes together with a conductive element such as a copper wire, a metallurgical joint such as a welded portion of the tubes, or the like. The capillary tubes are heated as a result of the electrical current flowing through the tubes, and the liquid entering the inlet ends of each tube is heated within the tubes to form a vapor. As the vapor exits from the tips of the capillary tubes and comes into contact with the surrounding ambient air, the vapor is condensed into tiny droplets that form an aerosol. The electrical connection between the tubes at the tip end also serves as a thermal connection such that the temperature of the first capillary tube tip is substantially the same as the temperature of the second capillary tube tip. If a simple braze or other type of metallurgical connection is used to connect the two capillary tubes at the exit tips, the electrical resistance across the connection is low and the exit may be cooler than the vapor zones within the capillary tubes. In a preferred embodiment of the invention, the electrical resistance of the connection between the capillary tube tips is controlled by geometry and material selection to regulate exit temperature. In arrangements where the tips of the capillary tubes may be connected to further structure and heat may be transferred to the structure, the electrical resistance of the interconnection can be higher per unit length than the capillary tubes so as to balance the heat transfer and maintain the desired tip temperature.




As shown in

FIG. 2

, a fluid vaporizing device


22


includes a first capillary tube


20


arranged essentially in parallel to a second capillary tube


30


, with a fluid from a fluid source


60


passing through both capillary tubes in parallel. The fluid enters the first capillary tube


20


at inlet end


20




a


and the second capillary tube


30


at inlet


30




a


, and exits as a vapor from the tip


20




b


of capillary tube


20


and the tip


30




b


of capillary tube


30


. A first electrode


50


is connected near the inlet end


20




a


of capillary tube


20


, and a second electrode


52


is connected near the inlet end


30




a


of second capillary tube


30


. The tip


20




b


of capillary tube


20


and tip


30




b


of capillary tube


30


are also connected electrically by a conductive element such as a short electrode.




The arrangement shown in

FIG. 2

provides for fluid flow in parallel through the capillary tubes and electrical flow in series. The electrical connection


54


at the tip ends of the capillary tubes also provides a thermal connection such that tip


20




b


of capillary tube


20


is maintained at the same temperature as tip


30




b


of capillary tube


30


. The electrical flow through the capillary tubes heats up the tubes, with the temperature profiles along the tubes being determined at least in part by the amount of voltage applied across the tubes and the fluid flow rate through the tubes.




A liquid entering at the inlet


20




a


of capillary tube


20


and inlet


30




a


of capillary tube


30


is heated as it passes through the capillary tubes in parallel. Sufficient heat is input to the fluid passing through the tubes to vaporize the fluid and maintain it in a vaporized state as it exits from the tips


20




b


and


30




b


of the capillary tubes. Since the tips


20




b


and


30




b


can be maintained at substantially the same temperature as a result of the electrical and thermal connection


54


, there is no potential for heat loss due to thermal conduction along the electrical connection


54


, and it is easier to maintain the tips


20




b


,


30




b


at the necessary temperature for generation of a quality aerosol.




The dual capillary tube arrangement is designed to accommodate a variety of liquid flow rates through the capillary tubes, is highly energy efficient and provides a compact arrangement. In inhaler applications, the heating zones of the capillary tubes can be 5 to 40 mm, or more preferably 10 to 25 mm, and the inner diameters of the tubes can be 0.1 to 0.5 mm, or more preferably 0.2 to 0.4 mm. In implementing the capillary heater in an inhaler, the capillary tube arrangement is preferably insulated and/or isolated from ambient air and the vapor emitted from the capillary tubes. For example, a body of insulating material or a metal foil, such as stainless steel foil, could be used to support the capillary tip within a mouthpiece such that the vapor exiting the capillary tubes does not contact the outer surface of the capillary tubes upstream of the metal foil.




While this invention has been illustrated and described in accordance with a preferred embodiment, it is recognized that variations and changes may be made therein without departing from the invention as set forth in the claims.



Claims
  • 1. A dual capillary fluid vaporizing device comprising:at least one fluid source; a power source; a heater arrangement electrically heated by the power source, the heater arrangement comprising first and second capillary tubes, the capillary tubes having inlet ends in fluid communication with the fluid source and the heater arrangement being operable to vaporize fluid in the capillary tubes; a first electrode supplying electrical current to the first capillary tube such that electrical current passes along at least a portion of the first capillary tube; an electrical connection connecting the capillary tubes such that the electrical current supplied to the first capillary tube passes along at least a portion of the second capillary tube; and a second electrode electrically connected to the second capillary tube such that the capillary tubes are electrically connected in series to the power source.
  • 2. The fluid vaporizing device of claim 1, wherein the first and second capillary tubes comprise stainless steel tubes having inner diameters of 0.1 to 0.5 mm.
  • 3. The fluid vaporizing device of claim 1, wherein the first and second capillary tubes are parallel to each other with the outlet ends thereof spaced apart by at least 1 mm.
  • 4. The fluid vaporizing device of claim 1, wherein the fluid vaporizing device comprises an inhaler having a mouthpiece, the capillary tubes having outlets which direct vaporized fluid into the mouthpiece.
  • 5. The fluid vaporizing device of claim 1, wherein the power source comprises a battery, the first electrode being electrically connected to one terminal of the battery and the second electrode being connected to the other terminal of the battery.
  • 6. The fluid vaporizing device of claim 1, wherein the device comprises an inhaler having a controller, a valve and a sensor, the sensor detecting a delivery condition corresponding to delivery of a predetermined volume of aerosol, the controller being programmed to open the valve so as to deliver liquid from the fluid source to the first and second capillary tubes when the delivery condition is sensed by the sensor and to pass electrical current through the first and second capillary tubes to volatilize liquid therein.
  • 7. The fluid vaporizing device of claim 1, wherein the first and second capillary tubes are of the same material, have the same length and have the same internal diameter.
  • 8. The fluid vaporizing device of claim 1, wherein the first and second electrodes are located at least 5 mm from the electrical connection.
  • 9. The fluid vaporizing device of claim 1, wherein the outlet ends of the capillary tubes are exposed to ambient air.
  • 10. The fluid vaporizing device of claim 1, wherein the electrical connection comprises a joint between outer surfaces of the capillary tubes.
  • 11. A method of vaporizing fluid comprising:supplying fluid from a fluid source to first and second capillary tubes; heating the first and second capillary tubes by passing electrical current from a power source along the first capillary tube, through an electrical connection interconnecting the first and second capillary tubes, and along the second capillary tube, the electrical current being effective to heat the capillary tubes such that the fluid therein is volatilized and exits the capillary tubes as a vapor.
  • 12. The method of claim 11, wherein the power source comprises a battery and the electric current is direct current which travels in series from the battery, through the first capillary tube, through the electrical connection, through the second capillary tube, and returns to the battery.
  • 13. The method of claim 11, wherein the capillary tubes are of resistance heating material, the fluid being heated as a result of resistance heating the capillary tubes.
  • 14. The method of claim 11, wherein the electrical connection is located at outlet ends of the capillary tubes, the outlet ends being heated to substantially the same temperature during heating of the capillary tubes.
  • 15. The method of claim 11, wherein the capillary tubes are parallel to each other, are of the same material, have the same length and have the same inner diameters.
  • 16. The method of claim 11, wherein the capillary tubes are in fluid communication with the same source of fluid.
  • 17. The method of claim 11, wherein the fluid vaporizing device comprises an inhaler having a mouthpiece, the capillary tubes having outlets in the mouthpiece such that the vapor exiting the outlets condenses into an aerosol within the mouthpiece.
  • 18. The method of claim 17, wherein the inhaler includes a controller, a valve and a sensor, the method including sensing a delivery condition with the sensor, sending a signal to the controller corresponding to the delivery condition, opening the valve for delivery of a predetermined volume of fluid from the fluid source to the first and second capillary tubes, supplying power to the first and second capillary tubes, and closing the valve after a predetermined volume of fluid has been delivered to the first and second capillary tubes.
  • 19. The method of claim 11, wherein the first and second capillary tubes have outlets thereof in close proximity and the vapor exiting the outlets condenses in ambient air.
  • 20. The method of claim 11, wherein the fluid source contains a solution of medicated material and the vapor exiting the capillary tubes forms an aerosol containing the medicated material.
US Referenced Citations (211)
Number Name Date Kind
2896856 Kravits Jul 1959 A
3084698 Smith Apr 1963 A
3157179 Paullus et al. Nov 1964 A
3162324 Houser Dec 1964 A
3431393 Katsuda Mar 1969 A
3486663 Humphrey Dec 1969 A
3658059 Steil Apr 1972 A
3716416 Adlhart et al. Feb 1973 A
3750961 Franz Aug 1973 A
3847304 Cohen Nov 1974 A
3859398 Havstad Jan 1975 A
3902635 Jinotti Sep 1975 A
3903883 Pecina et al. Sep 1975 A
3904083 Little Sep 1975 A
3967001 Almaula et al. Jun 1976 A
3987941 Blessing Oct 1976 A
3993246 Erb et al. Nov 1976 A
3995371 O'Keefe Dec 1976 A
4042153 Callahan et al. Aug 1977 A
4060082 Lindberg et al. Nov 1977 A
4077542 Petterson Mar 1978 A
4161282 Erb et al. Jul 1979 A
4162501 Mitchell et al. Jul 1979 A
4215708 Bron Aug 1980 A
4231492 Rios Nov 1980 A
4258073 Payne Mar 1981 A
4259409 Arnold Mar 1981 A
4261356 Turner et al. Apr 1981 A
4289003 Yang Sep 1981 A
4291838 Williams Sep 1981 A
4303083 Burruss, Jr. Dec 1981 A
4383171 Sinha et al. May 1983 A
4391308 Steiner Jul 1983 A
4395303 Weir Jul 1983 A
4433797 Galia Feb 1984 A
4471892 Coleman Sep 1984 A
4512341 Lester Apr 1985 A
4575609 Fassel et al. Mar 1986 A
4627432 Newell et al. Dec 1986 A
4649911 Knight et al. Mar 1987 A
4682010 Drapeau et al. Jul 1987 A
4695625 Macdonald Sep 1987 A
4700657 Butland Oct 1987 A
4730111 Vestal et al. Mar 1988 A
4735217 Gerth et al. Apr 1988 A
4744932 Browne May 1988 A
4749778 Fukuzawa et al. Jun 1988 A
4762995 Browner et al. Aug 1988 A
4776515 Michalchik Oct 1988 A
4790305 Zoltan et al. Dec 1988 A
4811731 Newell et al. Mar 1989 A
4819625 Howe Apr 1989 A
4819834 Thiel Apr 1989 A
4829996 Noakes et al. May 1989 A
4837260 Sato et al. Jun 1989 A
4848374 Chard et al. Jul 1989 A
4871115 Hessey Oct 1989 A
4871623 Hoopman et al. Oct 1989 A
4877989 Drews et al. Oct 1989 A
4911157 Miller Mar 1990 A
4917119 Potter et al. Apr 1990 A
4922901 Brooks et al. May 1990 A
4926852 Zoltan et al. May 1990 A
4935624 Henion et al. Jun 1990 A
4941483 Ridings et al. Jul 1990 A
4947875 Brooks et al. Aug 1990 A
4974754 Wirz Dec 1990 A
4982097 Slivon et al. Jan 1991 A
4992206 Waldrop Feb 1991 A
5021802 Allred Jun 1991 A
5044565 Alexander Sep 1991 A
5056511 Ronge Oct 1991 A
5060671 Counts et al. Oct 1991 A
5063921 Howe Nov 1991 A
5096092 Devine Mar 1992 A
5125441 Mette Jun 1992 A
5133343 Johnson, IV et al. Jul 1992 A
5134993 van der Linden et al. Aug 1992 A
5135009 Müller et al. Aug 1992 A
5144962 Counts et al. Sep 1992 A
5151827 Ven et al. Sep 1992 A
5178305 Keller Jan 1993 A
5184776 Minier Feb 1993 A
5217004 Blasnik et al. Jun 1993 A
5226441 Dunmire et al. Jul 1993 A
5228444 Burch Jul 1993 A
5230445 Rusnak Jul 1993 A
5231983 Matson et al. Aug 1993 A
5259370 Howe Nov 1993 A
5290540 Prince et al. Mar 1994 A
5298744 Mimura et al. Mar 1994 A
5299565 Brown Apr 1994 A
5322057 Raabe et al. Jun 1994 A
5327915 Porenski et al. Jul 1994 A
5342180 Daoud Aug 1994 A
5342645 Eisele et al. Aug 1994 A
5349946 McComb Sep 1994 A
5395445 Bohanan Mar 1995 A
5421489 Holzner, Sr. et al. Jun 1995 A
5454059 Regehr Sep 1995 A
5462597 Jubran Oct 1995 A
5474059 Cooper Dec 1995 A
5509557 Jimarez et al. Apr 1996 A
5515842 Ramseyer et al. May 1996 A
5522385 Lloyd et al. Jun 1996 A
5556964 Hofstraat et al. Sep 1996 A
5564442 MacDonald et al. Oct 1996 A
5565677 Wexler Oct 1996 A
5575929 Yu et al. Nov 1996 A
5585045 Heinonen et al. Dec 1996 A
5617844 King Apr 1997 A
5642728 Andersson et al. Jul 1997 A
5666977 Higgins et al. Sep 1997 A
5674860 Carling et al. Oct 1997 A
5682874 Grabenkort et al. Nov 1997 A
5730158 Collins et al. Mar 1998 A
5743251 Howell et al. Apr 1998 A
5756995 Maswadeh et al. May 1998 A
5765724 Amberg et al. Jun 1998 A
5809210 Moore et al. Sep 1998 A
5823178 Lloyd et al. Oct 1998 A
5839430 Cama Nov 1998 A
5855202 Andrade Jan 1999 A
5856671 Henion et al. Jan 1999 A
5863652 Matsumura et al. Jan 1999 A
5865185 Collins et al. Feb 1999 A
5869133 Anthony et al. Feb 1999 A
5872010 Karger et al. Feb 1999 A
5878752 Adams et al. Mar 1999 A
5881714 Yokoi et al. Mar 1999 A
5906202 Schuster et al. May 1999 A
5914122 Otterbeck et al. Jun 1999 A
5932249 Gruber et al. Aug 1999 A
5932315 Lum et al. Aug 1999 A
5934272 Lloyd et al. Aug 1999 A
5934273 Andersson et al. Aug 1999 A
5944025 Cook et al. Aug 1999 A
5954979 Counts et al. Sep 1999 A
5957124 Lloyd et al. Sep 1999 A
5970973 Gonda et al. Oct 1999 A
5970974 Van Der Linden et al. Oct 1999 A
5978548 Holmstrand et al. Nov 1999 A
5993633 Smith et al. Nov 1999 A
6014970 Ivri et al. Jan 2000 A
6053176 Adams et al. Apr 2000 A
6054032 Haddad et al. Apr 2000 A
6069214 McCormick et al. May 2000 A
6069219 McCormick et al. May 2000 A
6070575 Gonda et al. Jun 2000 A
6071428 Franks et al. Jun 2000 A
6071554 Isomura et al. Jun 2000 A
6076522 Dwivedi et al. Jun 2000 A
6077543 Gordon et al. Jun 2000 A
6080721 Patton Jun 2000 A
6085740 Ivri et al. Jul 2000 A
6085753 Gonda et al. Jul 2000 A
6089228 Smith et al. Jul 2000 A
6095134 Sievers et al. Aug 2000 A
6095153 Kessler et al. Aug 2000 A
6098615 Lloyd et al. Aug 2000 A
6098620 Lloyd et al. Aug 2000 A
6103270 Johnson et al. Aug 2000 A
6116516 Gañán-Calvo Sep 2000 A
6116893 Peach Sep 2000 A
6119953 Gañán-Calvo et al. Sep 2000 A
6123068 Lloyd et al. Sep 2000 A
6123936 Platz et al. Sep 2000 A
6131567 Gonda et al. Oct 2000 A
6131570 Schuster et al. Oct 2000 A
6136346 Eljamal et al. Oct 2000 A
6138668 Patton et al. Oct 2000 A
6155268 Takeuchi Dec 2000 A
6158431 Poole Dec 2000 A
6158676 Hughes Dec 2000 A
6159188 Laibovitz et al. Dec 2000 A
6164630 Birdsell et al. Dec 2000 A
6165463 Platz et al. Dec 2000 A
6167880 Gonda et al. Jan 2001 B1
6174469 Gañán-Calvo Jan 2001 B1
6182712 Stout et al. Feb 2001 B1
6187214 Gañán-Calvo Feb 2001 B1
6187344 Eljamal et al. Feb 2001 B1
6189803 Gañán-Calvo Feb 2001 B1
6192882 Gonda Feb 2001 B1
6197835 Gañán-Calvo Mar 2001 B1
6205999 Ivri et al. Mar 2001 B1
6206242 Amberg et al. Mar 2001 B1
6207135 Rössling et al. Mar 2001 B1
6223746 Jewett et al. May 2001 B1
6230706 Gonda et al. May 2001 B1
6231851 Platz et al. May 2001 B1
6234167 Cox et al. May 2001 B1
6234402 Gañán-Calvo May 2001 B1
6235177 Borland et al. May 2001 B1
6250298 Gonda et al. Jun 2001 B1
6257233 Burr et al. Jul 2001 B1
6258341 Foster et al. Jul 2001 B1
6263872 Schuster et al. Jul 2001 B1
6267155 Parks et al. Jul 2001 B1
6275650 Lambert Aug 2001 B1
6276347 Hunt Aug 2001 B1
6284525 Mathies et al. Sep 2001 B1
6288360 Beste Sep 2001 B1
6290685 Insley et al. Sep 2001 B1
6294204 Rössling et al. Sep 2001 B1
6295986 Patel et al. Oct 2001 B1
6318361 Sosiak Nov 2001 B1
6443146 Voges Sep 2002 B1
6491233 Nichols Dec 2002 B2
6501052 Cox et al. Dec 2002 B2
20010032647 Schuster et al. Oct 2001 A1
Foreign Referenced Citations (12)
Number Date Country
354004 Sep 1928 BE
354094 Sep 1928 BE
1036470 Aug 1958 DE
0358114 Mar 1990 EP
0642802 May 1996 EP
667979 Oct 1929 FR
168128 Nov 1977 HU
216121 Mar 1991 HU
207457 Apr 1993 HU
P953409 Jun 1994 HU
9409842 May 1994 WO
9817131 Apr 1998 WO
Non-Patent Literature Citations (9)
Entry
Barry, P.W. et al. “In Vitro Comparison of the Amount of Salbutamol Available for Inhalation From Different Formulations Used with Different Spacer Devices” Eur Respir J 1997; 10: 1345-1348.
Byron, Peter R. Ph.D., Chairman, “Recommendations of the USP Advisory Panel on Aerosols on the USP General Chapters on Aerosols (601) and Uniformity of Dosage Units (905)”, Pharmacopeial Forum, vol. 20, No. 3, pp. 7477-7505, May-Jun. 1994 (023).
Hindle, Michael et al., “High Efficiency Aerosol Production Using the Capillary Aerosol Generator” PharmSci 1998; 1: (1: suppl) S211.
Hindle, Michael et al., “High Efficiency Fine Particle Generation Using Novel Condensation Technology”, Respiratory Drug Delivery VI (eds Dalby, R.N., Byron, P.R. & Farr, S.J.) Interpharm Press, Buffalo Grove, IL 1998 pp 97-102.
Hou, Shuguang et al. Solution Stability of Budensonide in Novel Aerosol Formulations Abstract No. 2582, Solid State Physical Pharmacy, Nov. 17, 1998, p. S-307.
Kousaka, Yasuo et al., “Generation of Aerosol Particles by Boiling of Suspensions”, Aerosol Science and Technology, 21:236-240 (1994) (023).
Morén, Folke “Drug Deposition of Pressurized Inhalation Aerosols I. Influence of Actuator Tube Design” AB Draco (Subsidiary of AB Astra, Sweden) Research and Development Laboratories Pack, S-221 01 Lund (Sweden), International Journal of Pharmaceutrics, 1 (1978) 205-212.
Newman, Stephen P. et al. “Deposition of Pressurized Suspension Aerosols Inhaled Through Extension Devices1-3” Am Rev Respir Dis 1981; 124:317-320.
Roth, G. et al. High Performance Liquid Chromatographic Determination of Epimers, Impurities, and Content of the Glucocorticoid Budesonide and Preparation of Primary Standard, Journal of Pharmaceutical Sciences, vol. 69, No. 7, pp. 776-770, Jul. 1980.