Biking is a sport enjoyed by many, as a casual experience or as a reliable means of transportation, but for those who wish to simultaneously train their arms or upper bodies while biking to allow for a more diverse, personalized, and practical bike riding experience. There have been no products available as original equipment or as an aftermarket to address this problem.
An apparatus to allow individuals to simultaneously train their arms and upper body while biking. There have been no products available as original equipment or as an aftermarket to address this problem either.
There exists a need for a hybrid energy bicycle and apparatus that is not being met by any known or disclosed device or system of present.
The main purpose of the Dual-Energy Bicycle is to provide users with a modern bike with three operating modes for transport. A Dual-Energy bicycle comprising a handle axis disposed in a steering column of the bicycle and a handle sprocket wheel configured to engage a handle chain. A plunger on a left side and on a right side of the handle axis are loaded with a spring to engage the plunger with the handle axis. A gear on the right side of the handle has 2 positions, A: push in to lock the handlebars in many locations chosen by the cyclist. B: pull out to use the handlebars to assist the foot pedals. The disclosure also enables hand pedaling by itself identified herein. Also, the spring loaded ball bearing maintains the gear in the intended position without sliding in or out.
Additionally, a left handle bar and a right handle bar are attached in a concentric rotational relation to the respective left side plunger and to the right side plunger, wherein the concentric rotation of one of the left handle bar and the right handle bar cause a proportional rotation of the handle axis and a pedal sprocket wheel via the handle chain there between. Furthermore, the left handlebar is equipped with a spring and is slotted to fit two positions on a cotter pin which can be parallel to or 180 degrees offset to the right handlebar.
Throughout the description, similar reference numbers may be used to identify similar elements depicted in multiple embodiments. Although specific embodiments of the invention have been described and illustrated, the invention is not to be limited to the specific forms or arrangements of parts so described and illustrated. The scope of the invention is to be defined by the claims appended hereto and their equivalents.
Reference will now be made to exemplary embodiments illustrated in the drawings and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended. Alterations and further modifications of the inventive features illustrated herein and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
In some embodiments of the disclosure, “L” is not implemented as part of the disclosed bicycle. The disclosure has been rider tested via various methods and operators. The average time gain using both hands & feet is 13% for a distance of ¼ mile.
Expanding on the initial design of an average bicycle, the Dual-Energy Bicycle introduces a novel bike with special mechanisms and features that allow individuals to pedal with either their feet, with just their hands, or to pedal using their feet and hands, simultaneously. To operate the bicycle, the user simply locks the handles in the designated location to either use their hands, feet or both to navigate the bike. Most bike handles can only be locked in one location, whereas the Dual Energy Bicycle has multiple places the handles may be locked. The chest rest and seat are also adjustable. Furthermore, the Dual-Energy Bicycle is strategically designed with wide range wheel angles to allow for seamless maneuverability and provide extra mobility during transport which may help speed-up distance covered as movement is generated by combined physical efforts.
The main purpose of the DUAL-ENERGY BICYCLE is to provide the user with 3 modes of transportation. Feet pedaling only, arms pedaling only and feet and arms pedaling simultaneously. This bicycle is equipped with a steering column which has a gearbox attached to the front wheel fork column. Inside and through the gearbox is a shaft to which are 2 hand pedals are attached at each outside extremity thereof.
The right hand handlebar has a spring that pushes the handlebar outward. Close to the end of the shaft is inserted a cotter pin protruding from the shaft on each side so as to engage the handlebar. The handlebar is slotted to accept the cotter pin. The slot is deep enough as to permit the outside of the handlebar to be flush with the end of the shaft. Therefore the right handlebar can be pushed inward and flipped 180 degrees making it possible to be parallel to the left handlebar or 180 degrees offset.
The left hand handlebar is equipped with a 2 positions gear: engaged or locked. It is being held in one of the 2 specific locations by a single spring loaded ball bearing to prevent the gear from sliding in or out by vibration. The spring loaded ball bearing protrudes at the left or at the right of the gear maintaining it in its intended position.
When the two position gear is in the out position, it allows both handles to move. The cyclist can use it to help the feet pedals simultaneously or pedal with their hands only. The foot pedals do not need to move and can remain stationary while hand pedaling. When in the ‘in’ position meaning pushed into the gear housing which is bolted to the gear box, the hand pedals are locked in place and cannot move. In this specific embodiment, we have 18 different positions which the handles can be locked throughout the circumference of the handlebars.
The handlebars common shaft is being held inside the gearbox by 2 double bushings attached on each side of the gearbox. The handlebars common shaft has a fixed slotted ball bearing attached to the common shaft and centered inside the gearbox. The 2 slots on that ball bearing accept 2 pins coming out of the sprocket housing. Those 2 pins engage the ball bearing and make the sprocket turn. This ball bearing has 2 slots from left to right and are 180 degrees apart. The slots are there to permit the handlebar to move the front wheel left and right without interfering the alignment of the chain and sprocket.
Inside the top of the gearbox are 2 small pivoting bearings attached to the gearbox top so as to maintain the sprocket housing constantly aligned with the chain regardless of the movement of the front wheel.
The chain is running through the center of the bicycle frame to a fixed spring loaded idler. The idler is located at the return part of the chain in reference to the handlebars sprocket and keep a steady tension to eliminate the slack in the chain. The chain goes through the foot pedal frame to a fixed sprocket identical to the handlebar sprocket. That sprocket is exactly aligned with the center of the bicycle frame and the handlebar sprocket.
Although the operations of the method(s) herein are shown and described in a particular order, the order of the operations of each method may be altered so that certain operations may be performed in an inverse order or so that certain operations may be performed, at least in part, concurrently with other operations. In another embodiment, instructions or sub-operations of distinct operations may be implemented in an intermittent and/or alternating manner.