Dual in-series large and small droplet filters

Information

  • Patent Grant
  • 11045591
  • Patent Number
    11,045,591
  • Date Filed
    Friday, June 29, 2018
    6 years ago
  • Date Issued
    Tuesday, June 29, 2021
    3 years ago
Abstract
A surgical evacuation system having dual in-series large and small droplet filters is provided. The surgical evacuation system comprises a pump, a motor operably coupled to the pump, and a flow path fluidically coupled to the pump. the flow path comprises a first fluid filter configured to extract a large droplet in a fluid moving through the flow path and a second fluid filter configured to extract a small droplet in the fluid moving through the flow path. the first fluid filter is coupled in series with the second fluid filter. The first fluid filter is positioned upstream of the second fluid filter. An outlet port of the second fluid filter is coupled to an inlet port of a non-fluid filter.
Description
BACKGROUND

The present disclosure relates to surgical systems and evacuators thereof. Surgical smoke evacuators are configured to evacuate smoke, as well as fluid and/or particulate, from a surgical site. For example, during a surgical procedure involving an energy device, smoke can be generated at the surgical site.


SUMMARY

In one aspect, a surgical evacuation system is provided. The surgical evacuation system comprises a pump, a motor operably coupled to the pump, and a flow path fluidically coupled to the pump. The flow path comprises a first fluid filter configured to extract a large droplet in a fluid moving through the flow path and a second fluid filter configured to extract a small droplet in the fluid moving through the flow path. The first fluid filter is coupled in series with the second fluid filter. The first fluid filter is positioned upstream of the second fluid filter. An outlet port of the second fluid filter is coupled to an inlet port of a non-fluid filter.


In another aspect, a surgical evacuation system is provided. The surgical evacuation system comprises a pump, a motor operably coupled to the pump, and a flow path fluidically coupled to the pump. The flow path comprises a first fluid filter configured to extract a large droplet in a fluid moving through the flow path and a second fluid filter configured to extract a small droplet in the fluid moving through the flow path. The first fluid filter comprises at least one baffle and the second fluid filter comprises a filter selected from the group consisting of a membrane filter, a honeycomb filter, and a porous structure filter, and combinations thereof. The first fluid filter is coupled in series with the second fluid filter, and the first fluid filter is positioned upstream of the second fluid filter. An outlet port of the second fluid filter is coupled to an inlet port of a non-fluid filter.





BRIEF DESCRIPTION OF THE DRAWINGS

The features of various aspects are set forth with particularity in the appended claims. The various aspects, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.



FIG. 1 is perspective view of an evacuator housing for a surgical evacuation system, in accordance with at least one aspect of the present disclosure.



FIG. 2 is a perspective view of a surgical evacuation electrosurgical tool, in accordance with at least one aspect of the present disclosure.



FIG. 3 is an elevation view of a surgical evacuation tool releasably secured to an electrosurgical pencil, in accordance with at least one aspect of the present disclosure.



FIG. 4 is a schematic depicting internal components within an evacuator housing for a surgical evacuation system, in accordance with at least one aspect of the present disclosure.



FIG. 5 is a schematic of an electrosurgical system including a smoke evacuator, in accordance with at least one aspect of the present disclosure.



FIG. 6 is a schematic of a surgical evacuation system, in accordance with at least one aspect of the present disclosure.



FIG. 7 is a perspective view of a surgical system including a surgical evacuation system, in accordance with at least one aspect of the present disclosure.



FIG. 8 is a perspective view of an evacuator housing of the surgical evacuation system of FIG. 7, in accordance with at least one aspect of the present disclosure.



FIG. 9 is an elevation, cross-section view of a socket in the evacuator housing of FIG. 8 along the plane indicated in FIG. 8, in accordance with at least one aspect of the present disclosure.



FIG. 10 is a perspective view of a filter for an evacuation system, in accordance with at least one aspect of the present disclosure.



FIG. 11 is a perspective, cross-section view of the filter of FIG. 10 taken along a central longitudinal plane of the filter, in accordance with at least one aspect of the present disclosure.



FIG. 12 is a pump for a surgical evacuation system, such as the surgical evacuation system of FIG. 7, in accordance with at least one aspect of the present disclosure.



FIG. 13 is a perspective view of a portion of a surgical evacuation system, in accordance with at least one aspect of the present disclosure.



FIG. 14 is a front perspective view of a fluid trap of the surgical evacuation system of FIG. 13, in accordance with at least one aspect of the present disclosure.



FIG. 15 is a rear perspective view of the fluid trap of FIG. 14, in accordance with at least one aspect of the present disclosure.



FIG. 16 is an elevation, cross-section view of the fluid trap of FIG. 14, in accordance with at least one aspect of the present disclosure.



FIG. 17 is an elevation, cross-section view of the fluid trap of FIG. 14 with portions removed for clarity and depicting liquid captured within the fluid trap and smoke flowing through the fluid trap, in accordance with at least one aspect of the present disclosure.



FIG. 18 is a schematic of an evacuator housing of an evacuation system, in accordance with at least one aspect of the present disclosure.



FIG. 19 is a schematic of an evacuator housing of another evacuation system, in accordance with at least one aspect of the present disclosure.



FIG. 20 is a schematic diagram of a smoke evacuation system, in accordance with at least one aspect of the present disclosure.



FIG. 21 is a schematic diagram of a filter communication circuit of the smoke evacuation system of FIG. 20, in accordance with at least one aspect of the present disclosure.



FIG. 22 is a schematic diagram of a filter device of the smoke evacuation system of FIG. 20, in accordance with at least one aspect of the present disclosure.



FIG. 23 is a schematic of a housing of an evacuation system, in accordance with at least one aspect of the present disclosure.



FIG. 24 is a block diagram of a computer-implemented interactive surgical system, in accordance with at least one aspect of the present disclosure.



FIG. 25 is a surgical system being used to perform a surgical procedure in an operating room, in accordance with at least one aspect of the present disclosure.



FIG. 26 is a surgical hub paired with a visualization system, a robotic system, and an intelligent instrument, in accordance with at least one aspect of the present disclosure.



FIG. 27 is a partial perspective view of a surgical hub enclosure, and of a combo generator module slidably receivable in a drawer of the surgical hub enclosure, in accordance with at least one aspect of the present disclosure.



FIG. 28 is a perspective view of a combo generator module with bipolar, ultrasonic, and monopolar contacts and a smoke evacuation component, in accordance with at least one aspect of the present disclosure.



FIG. 29 illustrates individual power bus attachments for a plurality of lateral docking ports of a lateral modular housing configured to receive a plurality of modules, in accordance with at least one aspect of the present disclosure.



FIG. 30 illustrates a vertical modular housing configured to receive a plurality of modules, in accordance with at least one aspect of the present disclosure.



FIG. 31 illustrates a surgical data network comprising a modular communication hub configured to connect modular devices located in one or more operating theaters of a healthcare facility, or any room in a healthcare facility specially equipped for surgical operations, to the cloud, in accordance with at least one aspect of the present disclosure.



FIG. 32 illustrates a computer-implemented interactive surgical system, in accordance with at least one aspect of the present disclosure.



FIG. 33 illustrates a surgical hub comprising a plurality of modules coupled to the modular control tower, in accordance with at least one aspect of the present disclosure.



FIG. 34 illustrates one aspect of a Universal Serial Bus (USB) network hub device, in accordance with at least one aspect of the present disclosure.



FIG. 35 illustrates a logic diagram of a control system of a surgical instrument or tool, in accordance with at least one aspect of the present disclosure.



FIG. 36 illustrates a control circuit configured to control aspects of the surgical instrument or tool, in accordance with at least one aspect of the present disclosure.



FIG. 37 illustrates a combinational logic circuit configured to control aspects of the surgical instrument or tool, in accordance with at least one aspect of the present disclosure.



FIG. 38 illustrates a sequential logic circuit configured to control aspects of the surgical instrument or tool, in accordance with at least one aspect of the present disclosure.



FIG. 39 illustrates a surgical instrument or tool comprising a plurality of motors which can be activated to perform various functions, in accordance with at least one aspect of the present disclosure.



FIG. 40 is a schematic diagram of a robotic surgical instrument configured to operate a surgical tool described herein, in accordance with at least one aspect of the present disclosure.



FIG. 41 illustrates a block diagram of a surgical instrument programmed to control the distal translation of a displacement member, in accordance with at least one aspect of the present disclosure.



FIG. 42 is a schematic diagram of a surgical instrument configured to control various functions, in accordance with at least one aspect of the present disclosure.



FIG. 43 is a simplified block diagram of a generator configured to provide inductorless tuning, among other benefits, in accordance with at least one aspect of the present disclosure.



FIG. 44 illustrates an example of a generator, which is one form of the generator of FIG. 20, in accordance with at least one aspect of the present disclosure.



FIG. 45 is a timeline depicting situational awareness of a surgical hub, in accordance with one aspect of the present disclosure.





DETAILED DESCRIPTION

Applicant of the present application owns the following U.S. Patent Applications, filed on Jun. 29, 2018, the disclosure of each of which is herein incorporated by reference in its entirety:

    • U.S. patent application Ser. No. 16/024,090, titled CAPACITIVE COUPLED RETURN PATH PAD WITH SEPARABLE ARRAY ELEMENTS, now U.S. Patent Application No. 2019/0201090;
    • U.S. patent application Ser. No. 16/024,057, titled CONTROLLING A SURGICAL INSTRUMENT ACCORDING TO SENSED CLOSURE PARAMETERS, now U.S. Pat. No. 10,695,081;
    • U.S. patent application Ser. No. 16/024,067, titled SYSTEMS FOR ADJUSTING END EFFECTOR PARAMETERS BASED ON PERIOPERATIVE INFORMATION, now U.S. Pat. No. 10,595,887;
    • U.S. patent application Ser. No. 16/024,075, titled SAFETY SYSTEMS FOR SMART POWERED SURGICAL STAPLING, now U.S. Patent Application Publication No. 2019/0201146;
    • U.S. patent application Ser. No. 16/024,083, titled SAFETY SYSTEMS FOR SMART POWERED SURGICAL STAPLING, now U.S. Patent Application Publication No. 2019/0200984;
    • U.S. patent application Ser. No. 16/024,094, titled SURGICAL SYSTEMS FOR DETECTING END EFFECTOR TISSUE DISTRIBUTION IRREGULARITIES, now U.S. Patent Application Publication No. 2019/0201020;
    • U.S. patent application Ser. No. 16/024,138, titled SYSTEMS FOR DETECTING PROXIMITY OF SURGICAL END EFFECTOR TO CANCEROUS TISSUE, now U.S. Patent Application Publication No. 2019/0200985;
    • U.S. patent application Ser. No. 16/024,150, titled SURGICAL INSTRUMENT CARTRIDGE SENSOR ASSEMBLIES, now U.S. Patent Application Publication No. 2019/0200986;
    • U.S. patent application Ser. No. 16/024,160, titled VARIABLE OUTPUT CARTRIDGE SENSOR ASSEMBLY, now U.S. Patent Application Publication No. 2019/0200987;
    • U.S. patent application Ser. No. 16/024,124, titled SURGICAL INSTRUMENT HAVING A FLEXIBLE ELECTRODE, now U.S. Patent Application Publication No. 2019/0201079;
    • U.S. patent application Ser. No. 16/024,132, titled SURGICAL INSTRUMENT HAVING A FLEXIBLE CIRCUIT, now U.S. Patent Application No. 2019/0201021;
    • U.S. patent application Ser. No. 16/024,141, titled SURGICAL INSTRUMENT WITH A TISSUE MARKING ASSEMBLY, now U.S. Patent Application No. 2019/0201159;
    • U.S. patent application Ser. No. 16/024,162, titled SURGICAL SYSTEMS WITH PRIORITIZED DATA TRANSMISSION CAPABILITIES, now U.S. Patent Application Publication No. 2019/0200988;
    • U.S. patent application Ser. No. 16/024,066, titled SURGICAL EVACUATION SENSING AND MOTOR CONTROL, now U.S. Patent Application Publication No. 2019/0201082;
    • U.S. patent application Ser. No. 16/024,096, titled SURGICAL EVACUATION SENSOR ARRANGEMENTS, now U.S. Patent Application Publication No. 2019/0201083;
    • U.S. patent application Ser. No. 16/024,116, titled SURGICAL EVACUATION FLOW PATHS, now U.S. Patent Application Publication No. 2019/0201084;
    • U.S. patent application Ser. No. 16/024,149, titled SURGICAL EVACUATION SENSING AND GENERATOR CONTROL, now U.S. Patent Application Publication No. 2019/0201085;
    • U.S. patent application Ser. No. 16/024,180, titled SURGICAL EVACUATION SENSING AND DISPLAY, now U.S. Patent Application Publication No. 2019/0201086;
    • U.S. patent application Ser. No. 16/024,242, titled COMMUNICATION OF SMOKE EVACUATION SYSTEM PARAMETERS TO HUB OR CLOUD IN SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM, now U.S. Pat. No. 10,755,813;
    • U.S. patent application Ser. No. 16/024,258, titled SMOKE EVACUATION SYSTEM INCLUDING A SEGMENTED CONTROL CIRCUIT FOR INTERACTIVE SURGICAL PLATFORM, now U.S. Patent Application Publication No. 2019/0201087; and
    • U.S. patent application Ser. No. 16/024,265, titled SURGICAL EVACUATION SYSTEM WITH A COMMUNICATION CIRCUIT FOR COMMUNICATION BETWEEN A FILTER AND A SMOKE EVACUATION DEVICE, now U.S. Pat. No. 10,898,622.


Applicant of the present application owns the following U.S. Provisional Patent Applications, filed on Jun. 28, 2018, the disclosure of each of which is herein incorporated by reference in its entirety:

    • U.S. Provisional Patent Application Ser. No. 62/691,228, titled A METHOD OF USING REINFORCED FLEX CIRCUITS WITH MULTIPLE SENSORS WITH ELECTROSURGICAL DEVICES;
    • U.S. Provisional Patent Application Ser. No. 62/691,227, titled CONTROLLING A SURGICAL INSTRUMENT ACCORDING TO SENSED CLOSURE PARAMETERS;
    • U.S. Provisional Patent Application Ser. No. 62/691,230, titled SURGICAL INSTRUMENT HAVING A FLEXIBLE ELECTRODE;
    • U.S. Provisional Patent Application Ser. No. 62/691,219, titled SURGICAL EVACUATION SENSING AND MOTOR CONTROL;
    • U.S. Provisional Patent Application Ser. No. 62/691,257, titled COMMUNICATION OF SMOKE EVACUATION SYSTEM PARAMETERS TO HUB OR CLOUD IN SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM;
    • U.S. Provisional Patent Application Ser. No. 62/691,262, titled SURGICAL EVACUATION SYSTEM WITH A COMMUNICATION CIRCUIT FOR COMMUNICATION BETWEEN A FILTER AND A SMOKE EVACUATION DEVICE; and
    • U.S. Provisional Patent Application Ser. No. 62/691,251, titled DUAL IN-SERIES LARGE AND SMALL DROPLET FILTERS.


Applicant of the present application owns the following U.S. Provisional Patent Application, filed on Apr. 19, 2018, the disclosure of each of which is herein incorporated by reference in its entirety:

    • U.S. Provisional Patent Application Ser. No. 62/659,900, titled METHOD OF HUB COMMUNICATION.


Applicant of the present application owns the following U.S. Patent Applications, filed on Mar. 29, 2018, the disclosure of each of which is herein incorporated by reference in its entirety:

    • U.S. patent application Ser. No. 15/940,641, titled INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES;
    • U.S. patent application Ser. No. 15/940,648, titled INTERACTIVE SURGICAL SYSTEMS WITH CONDITION HANDLING OF DEVICES AND DATA CAPABILITIES;
    • U.S. patent application Ser. No. 15/940,656, titled SURGICAL HUB COORDINATION OF CONTROL AND COMMUNICATION OF OPERATING ROOM DEVICES;
    • U.S. patent application Ser. No. 15/940,666, titled SPATIAL AWARENESS OF SURGICAL HUBS IN OPERATING ROOMS;
    • U.S. patent application Ser. No. 15/940,670, titled COOPERATIVE UTILIZATION OF DATA DERIVED FROM SECONDARY SOURCES BY INTELLIGENT SURGICAL HUBS;
    • U.S. patent application Ser. No. 15/940,677, titled SURGICAL HUB CONTROL ARRANGEMENTS;
    • U.S. patent application Ser. No. 15/940,632, titled DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD;
    • U.S. patent application Ser. No. 15/940,640, titled COMMUNICATION HUB AND STORAGE DEVICE FOR STORING PARAMETERS AND STATUS OF A SURGICAL DEVICE TO BE SHARED WITH CLOUD BASED ANALYTICS SYSTEMS;
    • U.S. patent application Ser. No. 15/940,645, titled SELF DESCRIBING DATA PACKETS GENERATED AT AN ISSUING INSTRUMENT;
    • U.S. patent application Ser. No. 15/940,649, titled DATA PAIRING TO INTERCONNECT A DEVICE MEASURED PARAMETER WITH AN OUTCOME;
    • U.S. patent application Ser. No. 15/940,654, titled SURGICAL HUB SITUATIONAL AWARENESS;
    • U.S. patent application Ser. No. 15/940,663, titled SURGICAL SYSTEM DISTRIBUTED PROCESSING;
    • U.S. patent application Ser. No. 15/940,668, titled AGGREGATION AND REPORTING OF SURGICAL HUB DATA;
    • U.S. patent application Ser. No. 15/940,671, titled SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER;
    • U.S. patent application Ser. No. 15/940,686, titled DISPLAY OF ALIGNMENT OF STAPLE CARTRIDGE TO PRIOR LINEAR STAPLE LINE;
    • U.S. patent application Ser. No. 15/940,700, titled STERILE FIELD INTERACTIVE CONTROL DISPLAYS;
    • U.S. patent application Ser. No. 15/940,629, titled COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS;
    • U.S. patent application Ser. No. 15/940,704, titled USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT;
    • U.S. patent application Ser. No. 15/940,722, titled CHARACTERIZATION OF TISSUE IRREGULARITIES THROUGH THE USE OF MONO-CHROMATIC LIGHT REFRACTIVITY; and
    • U.S. patent application Ser. No. 15/940,742, titled DUAL CMOS ARRAY IMAGING.


Applicant of the present application owns the following U.S. Patent Applications, filed on Mar. 29, 2018, the disclosure of each of which is herein incorporated by reference in its entirety:

    • U.S. patent application Ser. No. 15/940,636, titled ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES;
    • U.S. patent application Ser. No. 15/940,653, titled ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL HUBS;
    • U.S. patent application Ser. No. 15/940,660, titled CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER;
    • U.S. patent application Ser. No. 15/940,679, titled CLOUD-BASED MEDICAL ANALYTICS FOR LINKING OF LOCAL USAGE TRENDS WITH THE RESOURCE ACQUISITION BEHAVIORS OF LARGER DATA SET;
    • U.S. patent application Ser. No. 15/940,694, titled CLOUD-BASED MEDICAL ANALYTICS FOR MEDICAL FACILITY SEGMENTED INDIVIDUALIZATION OF INSTRUMENT FUNCTION;
    • U.S. patent application Ser. No. 15/940,634, titled CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES;
    • U.S. patent application Ser. No. 15/940,706, titled DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK; and
    • U.S. patent application Ser. No. 15/940,675, titled CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES.


Applicant of the present application owns the following U.S. Patent Applications, filed on Mar. 29, 2018, the disclosure of each of which is herein incorporated by reference in its entirety:

    • U.S. patent application Ser. No. 15/940,627, titled DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS;
    • U.S. patent application Ser. No. 15/940,637, titled COMMUNICATION ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS;
    • U.S. patent application Ser. No. 15/940,642, titled CONTROLS FOR ROBOT-ASSISTED SURGICAL PLATFORMS;
    • U.S. patent application Ser. No. 15/940,676, titled AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS;
    • U.S. patent application Ser. No. 15/940,680, titled CONTROLLERS FOR ROBOT-ASSISTED SURGICAL PLATFORMS;
    • U.S. patent application Ser. No. 15/940,683, titled COOPERATIVE SURGICAL ACTIONS FOR ROBOT-ASSISTED SURGICAL PLATFORMS;
    • U.S. patent application Ser. No. 15/940,690, titled DISPLAY ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; and
    • U.S. patent application Ser. No. 15/940,711, titled SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS.


Applicant of the present application owns the following U.S. Provisional Patent Applications, filed on Mar. 28, 2018, the disclosure of each of which is herein incorporated by reference in its entirety:

    • U.S. Provisional Patent Application Ser. No. 62/649,302, titled INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES;
    • U.S. Provisional Patent Application Ser. No. 62/649,294, titled DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD;
    • U.S. Provisional Patent Application Ser. No. 62/649,300, titled SURGICAL HUB SITUATIONAL AWARENESS;
    • U.S. Provisional Patent Application Ser. No. 62/649,309, titled SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER;
    • U.S. Provisional Patent Application Ser. No. 62/649,310, titled COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS;
    • U.S. Provisional Patent Application Ser. No. 62/649,291, titled USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT;
    • U.S. Provisional Patent Application Ser. No. 62/649,296, titled ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES;
    • U.S. Provisional Patent Application Ser. No. 62/649,333, titled CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER;
    • U.S. Provisional Patent Application Ser. No. 62/649,327, titled CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES;
    • U.S. Provisional Patent Application Ser. No. 62/649,315, titled DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK;
    • U.S. Provisional Patent Application Ser. No. 62/649,313, titled CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES;
    • U.S. Provisional Patent Application Ser. No. 62/649,320, titled DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS;
    • U.S. Provisional Patent Application Ser. No. 62/649,307, titled AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; and
    • U.S. Provisional Patent Application Ser. No. 62/649,323, titled SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS.


Before explaining various aspects of surgical devices and generators in detail, it should be noted that the illustrative examples are not limited in application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative examples may be implemented or incorporated in other aspects, variations and modifications, and may be practiced or carried out in various ways. Further, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative examples for the convenience of the reader and are not for the purpose of limitation thereof. Also, it will be appreciated that one or more of the following-described aspects, expressions of aspects, and/or examples, can be combined with any one or more of the other following-described aspects, expressions of aspects and/or examples.


Energy Devices and Smoke Evacuation

The present disclosure relates to energy devices and intelligent surgical evacuation systems for evacuating smoke and/or other fluids and/or particulates from a surgical site. Smoke is often generated during a surgical procedure that utilizes one or more energy devices. Energy devices use energy to affect tissue. In an energy device, the energy is supplied by a generator. Energy devices include devices with tissue-contacting electrodes, such as an electrosurgical device having one or more radio frequency (RF) electrodes, and devices with vibrating surfaces, such as an ultrasonic device having an ultrasonic blade. For an electrosurgical device, a generator is configured to generate oscillating electric currents to energize the electrodes. For an ultrasonic device, a generator is configured to generate ultrasonic vibrations to energize the ultrasonic blade. Generators are further described herein.


Ultrasonic energy can be utilized for coagulation and cutting tissue. Ultrasonic energy coagulates and cuts tissue by vibrating an energy-delivery surface (e.g. an ultrasonic blade) in contact with tissue. The ultrasonic blade can be coupled to a waveguide that transmits the vibrational energy from an ultrasonic transducer, which generates mechanical vibrations and is powered by a generator. Vibrating at high frequencies (e.g., 55,500 times per second), the ultrasonic blade generates friction and heat between the blade and the tissue, i.e. at the blade-tissue interface, which denatures the proteins in the tissue to form a sticky coagulum. Pressure exerted on the tissue by the blade surface collapses blood vessels and allows the coagulum to form a hemostatic seal. The precision of cutting and coagulation can be controlled by the clinician's technique and by adjusting the power level, blade edge, tissue traction, and blade pressure, for example.


Ultrasonic surgical instruments are finding increasingly widespread applications in surgical procedures by virtue of the unique performance characteristics of such instruments. Depending upon specific instrument configurations and operational parameters, ultrasonic surgical instruments can provide substantially simultaneous cutting of tissue and hemostasis by coagulation, which can desirably minimize patient trauma. The cutting action is typically realized by an end effector, or blade tip, at the distal end of the ultrasonic instrument. The ultrasonic end effector transmits the ultrasonic energy to tissue brought into contact with the end effector. Ultrasonic instruments of this nature can be configured for open surgical use, laparoscopic surgical procedures, or endoscopic surgical procedures, including robotic-assisted procedures, for example.


Electrical energy can also be utilized for coagulation and/or cutting. An electrosurgical device typically includes a handpiece and an instrument having a distally-mounted end effector (e.g., one or more electrodes). The end effector can be positioned against and/or adjacent to the tissue such that electrical current is introduced into the tissue. Electrosurgery is widely-used and offers many advantages including the use of a single surgical instrument for both coagulation and cutting.


The electrode or tip of the electrosurgical device is small at the point of contact with the patient to produce an RF current with a high current density in order to produce a surgical effect of coagulating and/or cutting tissue through cauterization. The return electrode carries the same RF signal back to the electrosurgical generator after it passes through the patient, thus providing a return path for the RF signal.


Electrosurgical devices can be configured for bipolar or monopolar operation. During bipolar operation, current is introduced into and returned from the tissue by active and return electrodes, respectively, of the end effector. During monopolar operation, current is introduced into the tissue by an active electrode of the end effector and returned through a return electrode (e.g., a grounding pad) separately located on or against a patient's body. Heat generated by the current flowing through the tissue may form hemostatic seals within the tissue and/or between tissues and, thus, may be particularly useful for sealing blood vessels, for example. The end effector of an electrosurgical device also may include a cutting member that is movable relative to the tissue and the electrodes to transect the tissue.


In application, an electrosurgical device can transmit low frequency RF current through tissue, which causes ionic agitation, or friction (in effect resistive heating), thereby increasing the temperature of the tissue. Because a boundary is created between the affected tissue and the surrounding tissue, clinicians can operate with a high level of precision and control, without sacrificing un-targeted adjacent tissue. The low operating temperature of RF energy is useful for removing, shrinking, or sculpting soft tissue while simultaneously sealing blood vessels. RF energy can work particularly well on connective tissue, which is primarily comprised of collagen and shrinks when contacted by heat. Other electrosurgical instruments include, without limitation, irreversible and/or reversible electroporation, and/or microwave technologies, among others. The techniques disclosed herein are applicable to ultrasonic, bipolar and/or monopolar RF (electrosurgical), irreversible and/or reversible electroporation, and/or microwave based surgical instruments, among others.


Electrical energy applied by an electrosurgical device can be transmitted to the instrument from a generator. The generator is configured to convert electricity to high frequency waveforms comprised of oscillating electric currents, which are transmitted to the electrodes to affect tissue. The current passes through tissue to fulgurate (a form of coagulation in which a current arc over the tissue creates tissue charring), desiccate (a direct energy application that drives water of the cells), and/or cut (an indirect energy application that vaporizes cellular fluid causing cellular explosions) tissue. The tissue's response to the current is a function of the resistance of the tissue, the current density passing through the tissue, the power output, and the duration of current application. In certain instances, as further described herein, the current waveform can be adjusted to affect a different surgical function and/or accommodate tissue of different properties. For example, different types of tissue—vascular tissue, nerve tissue, muscles, skin, fat and/or bone—can respond differently to the same waveform.


The electrical energy may be in the form of RF energy that may be in a frequency range described in EN 60601-2-2:2009+A11:2011, Definition 201.3.218—HIGH FREQUENCY. For example, the frequencies in monopolar RF applications are typically restricted to less than 5 MHz to minimize the problems associated with high frequency leakage current. Frequencies above 200 kHz can be typically used for monopolar applications in order to avoid the unwanted stimulation of nerves and muscles that would result from the use of low frequency current.


In bipolar RF applications, the frequency can be almost anything. Lower frequencies may be used for bipolar techniques in certain instances, such as if a risk analysis shows that the possibility of neuromuscular stimulation has been mitigated to an acceptable level. It is generally recognized that 10 mA is the lower threshold of thermal effects on tissue. Higher frequencies may also be used in the case of bipolar techniques.


In certain instances, a generator can be configured to generate an output waveform digitally and provide it to a surgical device such that the surgical device may utilize the waveform for various tissue effects. The generator can be a monopolar generator, a bipolar generator, and/or an ultrasonic generator. For example, a single generator can supply energy to a monopolar device, a bipolar device, an ultrasonic device, or a combination electrosurgery/ultrasonic device. The generator can promote tissue-specific effects via wave-shaping, and/or can drive RF and ultrasonic energy simultaneously and/or sequentially to a single surgical instrument or multiple surgical instruments.


In one instance, a surgical system can include a generator and various surgical instruments usable therewith, including an ultrasonic surgical instrument, an RF electrosurgical instrument, and a combination ultrasonic/RF electrosurgical instrument. The generator can be configurable for use with the various surgical instruments as further described in U.S. patent application Ser. No. 15/265,279, titled TECHNIQUES FOR OPERATING GENERATOR FOR DIGITALLY GENERATING ELECTRICAL SIGNAL WAVEFORMS AND SURGICAL INSTRUMENTS, filed Sep. 14, 2016, now U.S. Patent Application Publication No. 2017/0086914, which is herein incorporated by reference in its entirety.


As described herein, medical procedures of cutting tissue and/or cauterizing blood vessels are often performed by utilizing RF electrical energy, which is produced by a generator and transmitted to a patient's tissue through an electrode that is operated by a clinician. The electrode delivers an electrical discharge to cellular matter of the patient's body adjacent to the electrode. The discharge causes the cellular matter to heat up in order to cut tissue and/or cauterize blood vessels.


The high temperatures involved in electrosurgery can cause thermal necrosis of the tissue adjacent to the electrode. The longer time at which tissue is exposed to the high temperatures involved with electrosurgery, the more likely it is that the tissue will suffer thermal necrosis. In certain instances, thermal necrosis of the tissue can decrease the speed of cutting the tissue and increase post-operative complications, eschar production, and healing time, as well as increasing incidences of heat damage to the tissue positioned away from the cutting site.


The concentration of the RF energy discharge affects both the efficiency with which the electrode is able to cut tissue and the likelihood of tissue damage away from the cutting site. With a standard electrode geometry, the RF energy tends to be uniformly distributed over a relatively large area adjacent to the intended incision site. A generally uniform distribution of the RF energy discharge increases the likelihood of extraneous charge loss into the surrounding tissue, which may increase the likelihood of unwanted tissue damage in the surrounding tissue.


Typical electrosurgical generators generate various operating frequencies of RF electrical energy and output power levels. The specific operating frequency and power output of a generator varies based upon the particular electrosurgical generator used and the needs of the physician during the electrosurgical procedure. The specific operating frequency and power output levels can be manually adjusted on the generator by a clinician or other operating room personnel. Properly adjusting these various settings requires great knowledge, skill, and attention from the clinician or other personnel. Once the clinician has made the desired adjustments to the various settings on the generator, the generator can maintain those output parameters during electrosurgery. Generally, wave generators used for electrosurgery are adapted to produce RF waves with an output power in the range of 1-300 Win a cut mode and 1-120 W in coagulation mode, and a frequency in the range of 300-600 kHz. Typical wave generators are adapted to maintain the selected settings during the electrosurgery. For example, if the clinician were to set the output power level of the generator to 50 W and then touch the electrode to the patient to perform electrosurgery, the power level of the generator would quickly rise to and be maintained at 50 W. While setting the power level to a specific setting, such as 50 W, will allow the clinician to cut through the patient's tissue, maintaining such a high power level increases the likelihood of thermal necrosis of the patient's tissue.


In some forms, a generator is configured to provide sufficient power to effectively perform electrosurgery in connection with an electrode that increases the concentration of the RF energy discharge, while at the same time limiting unwanted tissue damage, reducing post-operative complications, and facilitating quicker healing. For example, the waveform from the generator can be optimized by a control circuit throughout the surgical procedure. The subject matter claimed herein, however, is not limited to aspects that solve any disadvantages or that operate only in environments such as those described above. Rather, this background is only provided to illustrate one example of a technology area where some aspects described herein may be practiced.


As provided herein, energy devices delivery mechanical and/or electrical energy to target tissue in order to treat the tissue (e.g. to cut the tissue, cauterize blood vessels and/or coagulate the tissue within and/or near the targeted tissue). The cutting, cauterization, and/or coagulation of tissue can result in fluids and/or particulates being released into the air. Such fluids and/or particulates emitted during a surgical procedure can constitute smoke, for example, which can comprise carbon particles and/or other particles suspended in air. In other words, a fluid can comprise smoke and/or other fluidic matter. Approximately 90% of endoscopic and open surgical procedures generate some level of smoke. The smoke can be unpleasant to the olfactory senses of the clinician(s), the assistant(s), and/or the patient(s), may obstruct the clinician(s)'s view of the surgical site, and may be unhealthy to inhale in certain instances. For example, smoke generated during an electrosurgical procedure can contain toxic chemicals including acrolein, acetonitrile, acrylonitrile, acetylene, alkyl benzenes, benzene, butadiene, butene, carbon monoxide, creosols, ethane, ethylene, formaldehyde, free radicals, hydrogen cyanide, isobutene, methane, phenol, polycyclic aromatic hydrocarbons, propene, propylene, pyridene, pyrrole, styrene, toluene, and xylene, as well as dead and live cellular material (including blood fragments), and viruses. Certain material that has been identified in surgical smoke has been identified as known carcinogens. It is estimated that one gram of tissue cauterized during an electrosurgical procedure can be equivalent to the toxins and carcinogens of six unfiltered cigarettes. Additionally, exposure to the smoke released during an electrosurgical procedure has been reported to cause eye and lung irritation to health care workers.


In addition to the toxicity and odors associated with the material in surgical smoke, the size of particulate matter in surgical smoke can be harmful to the respiratory system of the clinician(s), the assistant(s), and/or the patient(s). In certain instances, the particulates can be extremely small. Repeated inhalation of extremely small particulate matter can lead to acute and chronic respiratory conditions in certain instances.


Many electrosurgical systems employ a surgical evacuation system that captures the resultant smoke from a surgical procedure, and directs the captured smoke through a filter and an exhaust port away from the clinician(s) and/or from the patient(s). For example, an evacuation system can be configured to evacuate smoke that is generated during an electrosurgical procedure. The reader will appreciate that such an evacuation system can be referred to as a “smoke evacuation system” though such evacuation systems can be configured to evacuate more than just smoke from a surgical site. Throughout the present disclosure, the “smoke” evacuated by an evacuation system is not limited to just smoke. Rather, the smoke evacuation systems disclosed herein can be used to evacuate a variety of fluids, including liquids, gases, vapors, smoke, steam, or combinations thereon. The fluids can be biologic in origin and/or can be introduced to the surgical site from an external source during a procedure. The fluids can include water, saline, lymph, blood, exudate, and/or pyogenic discharge, for example. Moreover, the fluids can include particulates or other matter (e.g. cellular matter or debris) that is evacuated by the evacuation system. For example, such particulates can be suspended in the fluid.


Evacuation systems often include a pump and a filter. The pump creates suction that draws the smoke into the filter. For example, suction can be configured to draw smoke from the surgical site into a conduit opening, through an evacuation conduit, and into an evacuator housing of the evacuation system. An evacuator housing 50018 for a surgical evacuation system 50000 is shown in FIG. 1. In one aspect of the present disclosure, a pump and a filter are positioned within the evacuator housing 50018. Smoke drawn into the evacuator housing 50018 travels to the filter via a suction conduit 50036, and harmful toxins and offensive smells are filtered out of the smoke as it moves through the filter. The suction conduit can also be referred to as vacuum and/or evacuation conduit and/or tube, for example. Filtered air may then exit the surgical evacuation system as exhaust. In certain instances, various evacuation systems disclosed herein can also be configured to deliver fluids to a desired location, such as a surgical site.


Referring now to FIG. 2, the suction conduit 50036 from the evacuator housing 50018 (FIG. 1) may terminate at a hand piece, such as the handpiece 50032. The handpiece 50032 comprises an electrosurgical instrument that includes an electrode tip 50034 and an evacuation conduit opening near and/or adjacent to the electrode tip 50034. The evacuation conduit opening is configured to capture the fluid and/or particulates that are released during a surgical procedure. In such an instance, the evacuation system 50000 is integrated into the electrosurgical instrument 50032. Referring still to FIG. 2, smoke S is being pulled into the suction conduit 50036.


In certain instances, the evacuation system 50000 can include a separate surgical tool that comprises a conduit opening and is configured to suck the smoke out into the system. In still other instances, a tool comprising the evacuation conduit and opening can be snap fit onto an electrosurgical tool as depicted in FIG. 3. For example, a portion of a suction conduit 51036 can be positioned around (or adjacent to) an electrode tip 51034. In one instance, the suction conduit 51036 can be releasably secured to a handpiece 51032 of an electrosurgical tool comprising the electrode tip 51034 with clips or other fasteners.


Various internal components of an evacuator housing 50518 are shown in FIG. 4. In various instances, the internal components in FIG. 4 can also be incorporated into the evacuator housing 50018 of FIG. 1. Referring primarily to FIG. 4, an evacuation system 50500 includes the evacuator housing 50518, a filter 50502, an exhaust mechanism 50520, and a pump 50506. The evacuation system 50500 defines a flow path 50504 through the evacuator housing 50518 having an inlet port 50522 and an outlet port 50524. The filter 50502, the exhaust mechanism 50520, and the pump 50506 are sequentially arranged in-line with the flow path 50504 through the evacuator housing 50518 between the inlet port 50522 and the outlet port 50524. The inlet port 50522 can be fluidically coupled to a suction conduit, such as the suction conduit 50036 in FIG. 1, for example, which can comprise a distal conduit opening positionable at the surgical site.


The pump 50506 is configured to produce a pressure differential in the flow path 50504 by a mechanical action. The pressure differential is configured to draw smoke 50508 from the surgical site into the inlet port 50522 and along the flow path 50504. After the smoke 50508 has moved through the filter 50502, the smoke 50508 can be considered to be filtered smoke, or air, 50510, which can continue through the flow path 50504 and is expelled through the outlet port 50524. The flow path 50504 includes a first zone 50514 and a second zone 50516. The first zone 50514 is upstream from the pump 50506; the second zone 50516 is downstream from the pump 50506. The pump 50506 is configured to pressurize the fluid in the flow path 50504 so that the fluid in the second zone 50516 has a higher pressure than the fluid in the first zone 50514. A motor 50512 drives the pump 50506. Various suitable motors are further described herein. The exhaust mechanism 50520 is a mechanism that can control the velocity, the direction, and/or other properties of the filtered smoke 50510 exiting the evacuation system 50500 at the outlet port 50524.


The flow path 50504 through the evacuation system 50500 can be comprised of a tube or other conduit that substantially contains and/or isolates the fluid moving through the flow path 50504 from the fluid outside the flow path 50504. For example, the first zone 50514 of the flow path 50504 can comprise a tube through which the flow path 50504 extends between the filter 50502 and the pump 50506. The second zone 50516 of the flow path 50504 can also comprise a tube through which the flow path 50504 extends between the pump 50506 and the exhaust mechanism 50520. The flow path 50504 also extends through the filter 50502, the pump 50506, and the exhaust mechanism 50520 so that the flow path 50504 extends continuously from the inlet port 50522 to the outlet port 50524.


In operation, the smoke 50508 can flow into the filter 50502 at the inlet port 50522 and can be pumped through the flow path 50504 by the pump 50506 such that the smoke 50508 is drawn into the filter 50502. The filtered smoke 50510 can then be pumped through the exhaust mechanism 50520 and out the outlet port 50524 of the evacuation system 50500. The filtered smoke 50510 exiting the evacuation system 50500 at the outlet port 50524 is the exhaust, and can consist of filtered gases that have passed through the evacuation system 50500.


In various instances, the evacuation systems disclosed herein (e.g. the evacuation system 50000 and the evacuation system 50500) can be incorporated into a computer-implemented interactive surgical system, such as the system 100 (FIG. 39) or the system 200 (FIG. 47), for example. In one aspect of the present disclosure, for example, the computer-implemented surgical system 100 can include at least one hub 106 and a cloud 104. Referring primarily to FIG. 41, the hub 106 includes a smoke evacuation module 126. Operation of the smoke evacuation module 126 can be controlled by the hub 106 based on its situational awareness and/or feedback from the components thereof and/or based on information from the cloud 104. The computer-implemented surgical systems 100 and 200, as well as situational awareness therefor, are further described herein.


Situational awareness encompasses the ability of some aspects of a surgical system to determine or infer information related to a surgical procedure from data received from databases and/or instruments. The information can include the type of procedure being undertaken, the type of tissue being operated on, or the body cavity that is the subject of the procedure. With the contextual information related to the surgical procedure, the surgical system can, for example, improve the manner in which it controls the modular devices (e.g. a smoke evacuation system) that are connected to it and provide contextualized information or suggestions to the clinician during the course of the surgical procedure. Situational awareness is further described herein and in U.S. Provisional Patent Application Ser. No. 62/611,341, entitled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, which is incorporated by reference herein in its entirety.


In various instances, the surgical systems and/or evacuation systems disclosed herein can include a processor. The processor can be programmed to control one or more operational parameters of the surgical system and/or the evacuation system based on sensed and/or aggregated data and/or one or more user inputs, for example. FIG. 5 is a schematic representation of an electrosurgical system 50300 including a processor 50308. The electrosurgical system 50300 is powered by an AC source 50302, which provides either 120 V or 240 V alternating current. The voltage supplied by the AC source 50302 is directed to an AC/DC converter 50304, which converts the 120 V or 240 V of alternating current to 360 V of direct current. The 360 V of direct current is then directed to a power converter 50306 (e.g., a buck converter). The power converter 50306 is a step-down DC to DC converter. The power converter 50306 is adapted to step-down the incoming 360 V to a desired level within a range between 0-150 V.


The processor 50308 can be programmed to regulate various aspects, functions, and parameters of the electrosurgical system 50300. For instance, the processor 50308 can determine the desired output power level at an electrode tip 50334, which can be similar in many respects to the electrode tip 50034 in FIG. 2 and/or the electrode tip 51034 in FIG. 3, for example, and direct the power converter 50306 to step-down the voltage to a specified level so as to provide the desired output power. The processor 50308 is coupled to a memory 50310 configured to store machine executable instructions to operate the electrosurgical system 50300 and/or subsystems thereof.


Connected between the processor 50308 and the power converter 50306 is a digital-to-analog converter (“DAC”) 50312. The DAC 50312 is adapted to convert a digital code created by the processor 50308 to an analog signal (current, voltage, or electric charge) which governs the voltage step-down performed by the power converter 50306. Once the power converter 50306 steps-down the 360 V to a level that the processor 50308 has determined will provide the desired output power level, the stepped-down voltage is directed to the electrode tip 50334 to effectuate electrosurgical treatment of a patient's tissue and is then directed to a return or ground electrode 50335. A voltage sensor 50314 and a current sensor 50316 are adapted to detect the voltage and current present in the electrosurgical circuit and communicate the detected parameters to the processor 50308 so that the processor 50308 can determine whether to adjust the output power level. As noted herein, typical wave generators are adapted to maintain the selected settings throughout an electrosurgical procedure. In other instances, the operational parameters of a generator can be optimized during a surgical procedure based on one or more inputs to the processor 5308, such as inputs from a surgical hub, cloud, and/or situational awareness module, for example, as further described herein.


The processor 50308 is coupled to a communication device 50318 to communicate over a network. The communication device includes a transceiver 50320 configured to communicate over physical wires or wirelessly. The communication device 50318 may further include one or more additional transceivers. The transceivers may include, but are not limited to cellular modems, wireless mesh network transceivers, W-Fi® transceivers, low power wide area (LPWA) transceivers, and/or near field communications transceivers (NFC). The communication device 50318 may include or may be configured to communicate with a mobile telephone, a sensor system (e.g., environmental, position, motion, etc.) and/or a sensor network (wired and/or wireless), a computing system (e.g., a server, a workstation computer, a desktop computer, a laptop computer, a tablet computer (e.g., iPad®, GalaxyTab® and the like), an ultraportable computer, an ultramobile computer, a netbook computer and/or a subnotebook computer; etc. In at least one aspect of the present disclosure, one of the devices may be a coordinator node.


The transceivers 50320 may be configured to receive serial transmit data via respective UARTs from the processor 50308, to modulate the serial transmit data onto an RF carrier to produce a transmit RF signal and to transmit the transmit RF signal via respective antennas. The transceiver(s) are further configured to receive a receive RF signal via respective antennas that includes an RF carrier modulated with serial receive data, to demodulate the receive RF signal to extract the serial receive data and to provide the serial receive data to respective UARTs for provision to the processor. Each RF signal has an associated carrier frequency and an associated channel bandwidth. The channel bandwidth is associated with the carrier frequency, the transmit data and/or the receive data. Each RF carrier frequency and channel bandwidth are related to the operating frequency range(s) of the transceiver(s) 50320. Each channel bandwidth is further related to the wireless communication standard and/or protocol with which the transceiver(s) 50320 may comply. In other words, each transceiver 50320 may correspond to an implementation of a selected wireless communication standard and/or protocol, e.g., IEEE 802.11 a/b/g/n for W-Fi® and/or IEEE 802.15.4 for wireless mesh networks using Zigbee routing.


The processor 50308 is coupled to a sensing and intelligent controls device 50324 that is coupled to a smoke evacuator 50326. The smoke evacuator 50326 can include one or more sensors 50327, and can also include a pump and a pump motor controlled by a motor driver 50328. The motor driver 50328 is communicatively coupled to the processor 50308 and a pump motor in the smoke evacuator 50326. The sensing and intelligent controls device 50324 includes sensor algorithms 50321 and communication algorithms 50322 that facilitate communication between the smoke evacuator 50326 and other devices to adapt their control programs. The sensing and intelligent controls device 50324 is configured to evaluate extracted fluids, particulates, and gases via an evacuation conduit 50336 to improve smoke extraction efficiency and/or reduce device smoke output, for example, as further described herein. In certain instances, the sensing and intelligent controls device 50324 is communicatively coupled to one or more sensors 50327 in the smoke evacuator 50326, one or more internal sensors 50330 and/or one or more external sensors 50332 of the electrosurgical system 50300.


In certain instances, a processor can be located within an evacuator housing of a surgical evacuation system. For example, referring to FIG. 6, a processor 50408 and a memory 50410 therefor are positioned within an evacuator housing 50440 of a surgical evacuation system 50400. The processor 50408 is in signal communication with a motor driver 50428, various internal sensors 50430, a display 50442, the memory 50410, and a communication device 50418. The communication device 50418 is similar in many respects to the communication device 50318 described above with respect to FIG. 5. The communication device 50418 can allow the processor 50408 in the surgical evacuation system 50400 to communicate with other devices within a surgical system. For example, the communication device 50418 can allow wired and/or wireless communication to one or more external sensors 50432, one or more surgical devices 50444, one or more hubs 50448, one or more clouds 50446, and/or one or more additional surgical systems and/or tools. The reader will readily appreciate that the surgical evacuation system 50400 of FIG. 6 can be incorporated into the electrosurgical system 50300 of FIG. 5 in certain instances. The surgical evacuation system 50400 also includes a pump 50450, including a pump motor 50451 thereof, an evacuation conduit 50436, and an exhaust 50452. Various pumps, evacuation conduits and exhausts are further described herein. The surgical evacuation system 50400 can also include a sensing and intelligent controls device, which can be similar in many respects to the sensing and intelligent controls device 50324, for example. For example, such a sensing and intelligent controls device can be in signal communication with the processor 50408 and/or one or more of the sensors 50430 and/or external sensors 50432.


The electrosurgical system 50300 (FIG. 5) and/or the surgical evacuation system 50400 (FIG. 6) can be programmed to monitor one or more parameters of a surgical system and can affect a surgical function based on one or more algorithms stored in a memory in signal communication with the processor 50308 and/or 50408. Various exemplary aspects disclosed herein can be implemented by such algorithms, for example.


In one aspect of the present disclosure, a processor and sensor system, such as the processors 50308 and 50408 and respective sensor systems in communication therewith (FIGS. 5 and 6), are configured to sense the airflow through a vacuum source in order to adjust parameters of the smoke evacuation system and/or external devices and/or systems that are used in tandem with the smoke evacuation system, such as an electrosurgical system, energy device, and/or generator, for example. In one aspect of the present disclosure, the sensor system may include multiple sensors positioned along the airflow path of the surgical evacuation system. The sensors can measure a pressure differential within the evacuation system, in order to detect a state or status of the system between the sensors. For example, the system between two sensors can be a filter, and the pressure differential can be used to increase the speed of the pump motor as flow through the filter is reduced, in order to maintain a flow rate through the system. As another example, the system can be a fluid trap of the evacuation system, and the pressure differential can be used to determine an airflow path through the evacuation system. In still another example, the system can be the inlet and outlet (or exhaust) of the evacuation system, and the pressure differential can be used to determine the maximum suction load in the evacuation system in order to maintain the maximum suction load below a threshold value.


In one aspect of the present disclosure, a processor and sensor system, such as the processors 50308 and 50408 and respective sensor systems in communication therewith (FIGS. 5 and 6), are configured to detect the ratio of an aerosol or carbonized particulate, i.e. smoke, in the fluid extracted from a surgical site. For example, the sensing system may include a sensor that detects the size and/or the composition of particles, which is used to select an airflow path through the evacuation system. In such instances, the evacuation system can include a first filtering path, or first filtering state, and a second filtering path, or second filtering state, which can have different properties. In one instance, the first path includes only a particulate filter, and the second path includes both a fluid filter and the particulate filter. In certain instances, the first path includes a particulate filter, and the second path includes the particulate filter and a finer particulate filter arranged in series. Additional and/or alternative filtering paths are also envisioned.


In one aspect of the present disclosure, a processor and sensor system, such as the processors 50308 and 50408 and respective sensor systems in communication therewith (FIGS. 5 and 6), are configured to perform a chemical analysis on the particles evacuated from within the abdomen cavity of a patient. For example, the sensing and intelligent controls device 50324 may sense the particle count and type in order to adjust the power level of the ultrasonic generator in order to induce the ultrasonic blade to produce less smoke. In another example, the sensor systems may include sensors for detecting the particle count, the temperature, the fluid content, and/or the contamination percentage of the evacuated fluid, and can communicate the detected property or properties to a generator in order to adjust its output. For example, the smoke evacuator 50326 and/or the sensing and intelligent controls device 50324 therefor can be configured to adjust the evacuation flow rate and/or the pump's motor speed and, at a predefined particulate level, may operably affect the output power or waveform of the generator to lower the smoke generated by the end effector.


In one aspect of the present disclosure, a processor and sensor system, such as the processors 50308 and 50408 and respective sensor systems therewith (FIGS. 5 and 6), are configured to evaluate particle count and contamination in the operating room by evaluating one or more properties in the ambient air and/or the exhaust from the evacuator housing. The particle count and/or the air quality can be displayed on the smoke evacuation system, such as on the evacuator housing, for example, in order to communicate the information to a clinician and/or to establish the effectiveness of the smoke evacuation system and filter(s) thereof.


In one aspect of the present disclosure, a processor, such as the processor 50308 or the processor 50408 (FIGS. 5 and 6), for example, is configured to compare a sample rate image obtained from an endoscope to the evacuator particle count from the sensing system (e.g. the sensing and intelligent controls device 50324) in order to determine a correlation and/or to adjust the rate of the pump's revolutions-per-minute (RPM). In one instance, the activation of the generator can be communicated to the smoke evacuator such that an anticipated, required rate of smoke evacuation can be implemented. The generator activation can be communicated to the surgical evacuation system through a surgical hub, cloud communication system, and/or direct connection, for example.


In one aspect of the present disclosure, sensor systems and algorithms for a smoke evacuation system (see, e.g. FIGS. 5 and 6) can be configured to control the smoke evacuator, and can adapt motor parameters thereof to adjust the filtering efficiency of the smoke evacuator based on the needs of the surgical field at a given time. In one instance, an adaptive airflow pump speed algorithm is provided to automatically change the motor pump speed based on the sensed particulate into the inlet of the smoke evacuator and/or out of the outlet or exhaust of the smoke evacuator. For example, the sensing and intelligent controls device 50324 (FIG. 5) can include a user-selectable speed and an auto-mode speed, for example. In the auto-mode speed, the airflow through the evacuation system can be scalable based on the smoke into the evacuation system and/or a lack of filtered particles out of the smoke evacuation system. The auto-mode speed can provide automatic sensing and compensation for laparoscopic mode in certain instances.


In one aspect of the present disclosure, the evacuation system can include an electrical and communication architecture (see, e.g. FIGS. 5 and 6) that provides data collection and communication features, in order to improve interactivity with a surgical hub and a cloud. In one example, a surgical evacuation system and/or processor therefor, such as the processor 50308 (FIG. 5) and the processor 50408 (FIG. 6), for example, can include a segmented control circuit that is energized in a staged method to check for errors, shorts, and/or safety checks of the system. The segmented control circuit may also be configured to have a portion energized and a portion not energized until the energized portion performs a first function. The segmented control circuit can include circuit elements to identify and display status updates to the user of attached components. The segmented control circuit also includes circuit elements for running the motor in a first state, in which the motor is activated by the user, and in a second state, in which the motor has not been activated by the user but runs the pump in a quieter manner and at a slower rate. A segmented control circuit can allow the smoke evacuator to be energized in stages, for example.


The electrical and communication architecture for the evacuation system (see, e.g. FIGS. 5 and 6) can also provide interconnectivity of the smoke evacuator with other components within the surgical hub for interactions, as well as communication of data with a cloud. Communication of surgical evacuation system parameters to a surgical hub and/or cloud can be provided to affect the output or operation of other attached devices. The parameters can be operational or sensed. Operational parameters include airflow, pressure differentials, and air quality. Sensed parameters include particulate concentration, aerosol percentage, and chemical analysis.


In one aspect of the present disclosure, the evacuation system, such as the surgical evacuation system 50400, for example, can also include an enclosure and replaceable components, controls, and a display. Circuit elements are provided for communicating the security identification (ID) between such replaceable components. For example, communication between a filter and the smoke evacuation electronics can be provided to verify authenticity, remaining life of the component, to update parameters in the component, to log errors, and/or to limit the number and/or the type of components that can be identified by the system. In various instances, the communication circuit can authenticate features for enabling and/or disabling of configuration parameters. The communication circuit can employ encryption and/or error handling schemes to manage security and proprietary relationships between the component and the smoke evacuation electronics. Disposable/re-useable components are included in certain instances.


In one aspect of the present disclosure, the evacuation systems can provide fluid management and extraction filters and airflow configurations. For example, a surgical evacuation system including a fluid capture mechanism is provided where the fluid capture mechanism has a first and a second set of extraction or airflow control features, which are in series with each other to extract large and small fluid droplets, respectively. In certain instances, the airflow path can contain a recirculation channel or secondary fluid channel back to the primary reservoir from downstream of the exhaust port of the main fluid management chamber.


In one aspect of the present disclosure, an advanced pad can be coupled to the electrosurgical system. For example, the ground electrode 50335 of the electrosurgical system 50300 (FIG. 5) can include an advanced pad having localized sensing that is integrated into the pad while maintaining the capacitive coupling. For example, the capacitive coupling return path pad can have small separable array elements, which can be used to sense nerve control signals and/or movement of select anatomic locations, in order to detect the proximity of the monopolar tip to a nerve bundle.


An electrosurgical system can includes a signal generator, an electrosurgical instrument, a return electrode, and a surgical evacuation system. The generator may be an RF wave generator that produces RF electrical energy. Connected to the electrosurgical instrument is a utility conduit. The utility conduit includes a cable that communicates electrical energy from the signal generator to the electrosurgical instrument. The utility conduit also includes a vacuum hose that conveys captured/collected smoke and/or fluid away from a surgical site. Such an exemplary electrosurgical system 50601 is shown in FIG. 7. More specifically, the electrosurgical system 50601 includes a generator 50640, an electrosurgical instrument 50630, a return electrode 50646, and an evacuation system 50600. The electrosurgical instrument 50630 includes a handle 50632 and a distal conduit opening 50634 that is fluidically coupled to a suction hose 50636 of the evacuation system 50600. The electrosurgical instrument 50630 also includes an electrode that is powered by the generator 50640. A first electrical connection 50642, e.g., a wire, extends from the electrosurgical instrument 50630 to the generator 50640. A second electrical connection 50644, e.g., a wire, extends from the electrosurgical instrument 50630 to electrode, i.e., the return electrode 50646. In other instances, the electrosurgical instrument 50630 can be a bipolar electrosurgical instrument. The distal conduit opening 50634 on the electrosurgical instrument 50630 is fluidically coupled to the suction hose 50636 that extends to a filter end cap 50603 of a filter that is installed in an evacuator housing 50618 of the evacuation system 50600.


In other instances, the distal conduit opening 50634 for the evacuation system 50600 can be on a handpiece or tool that is separate from the electrosurgical instrument 50630. For example, the evacuation system 50600 can include a surgical tool that is not coupled to the generator 50640 and/or does not include tissue-energizing surfaces. In certain instances, the distal conduit opening 50634 for the evacuation system 50600 can be releasably attached to an electrosurgical tool. For example, the evacuation system 50600 can include a clip-on or snap-on conduit terminating at a distal conduit opening, which can be releasably attached to a surgical tool (see, e.g., FIG. 3).


The electrosurgical instrument 50630 is configured to deliver electrical energy to target tissue of a patient to cut the tissue and/or cauterize blood vessels within and/or near the target tissue, as described herein. Specifically, an electrical discharge is provided by the electrode tip to the patient in order to cause heating of cellular matter of the patient that is in close contact with or adjacent to electrode tip. The tissue heating takes place at an appropriately high temperature to allow the electrosurgical instrument 50630 to be used to perform electrosurgery. The return electrode 50646 is either applied to or placed in close proximity to the patient (depending on the type of return electrode), in order to complete the circuit and provide a return electrical path to the generator 50640 for energy that passes into the patient's body.


The heating of cellular matter of the patient by the electrode tip, or cauterization of blood vessels to prevent bleeding, often results in smoke being released where the cauterization takes place, as further described herein. In such instances, because the evacuation conduit opening 50634 is near the electrode tip, the evacuation system 50600 is configured to capture the smoke that is released during a surgical procedure. Vacuum suction may draw the smoke into the conduit opening 50634, through the electrosurgical instrument 50630, and into the suction hose 50636 toward the evacuator housing 50618 of the evacuation system 50600.


Referring now to FIG. 8, the evacuator housing 50618 of the evacuation system 50600 (FIG. 7) is depicted. The evacuator housing 50618 includes a socket 50620 that is dimensioned and structured to receive a filter. The evacuator housing 50618 can completely or partially encompass the internal components of the evacuator housing 50618. The socket 50620 includes a first receptacle 50622 and a second receptacle 50624. A transition surface 50626 extends between the first receptacle 50622 and the second receptacle 50624.


Referring primarily now to FIG. 9, the socket 50620 is depicted along a cross sectional plane indicated in FIG. 8. The socket 50620 includes a first end 50621 that is open to receive a filter and a second end 50623 in communication with a flow path 50699 through the evacuator housing 50618. A filter 50670 (FIGS. 10 and 11) may be removably positioned with the socket 50620. For example, the filter 50670 can be inserted and removed from the first end 50621 of the socket 50620. The second receptacle 50624 is configured to receive a connection nipple of the filter 50670.


Surgical evacuation systems often use filters to remove unwanted pollutants from the smoke before the smoke is released as exhaust. In certain instances, the filters can be replaceable. The reader will appreciate that the filter 50670 depicted in FIGS. 10 and 11 can be employed in various evacuation systems disclosed herein. The filter 50670 can be a replaceable and/or disposable filter.


The filter 50670 includes a front cap 50672, a back cap 50674, and a filter body 50676 disposed therebetween. The front cap 50672 includes a filter inlet 50678, which, in certain instances, is configured to receive smoke directly from the suction hose 50636 (FIG. 7) or other smoke source. In some aspects of the present disclosure, the front cap 50672 can be replaced by a fluid trap (e.g. the fluid trap 50760 depicted in FIGS. 14-17) that directs the smoke directly from the smoke source, and after removing at least a portion of the fluid therefrom, passes the partially processed smoke into the filter body 50676 for further processing. For example, the filter inlet 50678 can be configured to receive smoke via a fluid trap exhaust port, such as a port 50766 in a fluid trap 50760 (FIGS. 14-17) to communicate partially processed smoke into the filter 50670.


Once the smoke enters the filter 50670, the smoke can be filtered by components housed within the filter body 50676. The filtered smoke can then exit the filter 50670 through a filter exhaust 50680 defined in the back cap 50674 of the filter 50670. When the filter 50670 is associated with an evacuation system, suction generated in the evacuator housing 50618 of the evacuation system 50600 can be communicated to the filter 50670 through the filter exhaust 50680 to pull the smoke through the internal filtering components of the filter 50670. A filter often includes a particulate filter and a charcoal filter. The particulate filter can be a high-efficiency particulate air (HEPA) filter or an ultra-low penetration air (ULPA) filter, for example. ULPA filtration utilizes a depth filter that is similar to a maze. The particulate can be filtered using at least one of the following methods: direct interception (in which particles over 1.0 micron are captured because they are too large to pass through the fibers of the media filter), inertial impaction (in which particles between 0.5 and 1.0 micron collide with the fibers and remain there, and diffusional interception (in which particles less than 0.5 micron are captured by the effect of Brownian random thermal motion as the particles “search out” fibers and adhere to them).


The charcoal filter is configured to remove toxic gases and/or odor generated by the surgical smoke. In various instances, the charcoal can be “activated” meaning it has been treated with a heating process to expose the active absorption sites. The charcoal can be from activated virgin coconut shells, for example.


Referring now to FIG. 11, the filter 50670 includes a coarse media filter layer 50684 followed by a fine particulate filter layer 50686. In other instances, the filter 50670 may consist of a single type of filter. In still other instances, the filter 50670 can include more than two filter layers and/or more than two different types of filter layers. After the particulate matter is removed by the filter layers 50684 and 50686, the smoke is drawn through a carbon reservoir 50688 in the filter 50670 to remove gaseous contaminants within the smoke, such as volatile organic compounds, for example. In various instances, the carbon reservoir 50688 can comprise a charcoal filter. The filtered smoke, which is now substantially free of particulate matter and gaseous contaminants, is drawn through the filter exhaust 50680 and into the evacuation system 50600 for further processing and/or elimination.


The filter 50670 includes a plurality of dams between components of the filter body 50676. For example, a first dam 50690 is positioned intermediate the filter inlet 50678 (FIG. 10) and a first particulate filter, such as the coarse media filter 50684, for example. A second dam 50692 is positioned intermediate a second particulate filter, such as the fine particulate filter 50686, for example, and the carbon reservoir 50688. Additionally, a third dam 50694 is positioned intermediate the carbon reservoir 50688 and the filter exhaust 50680. The dams 50690, 50692, and 50694 can comprise a gasket or O-ring, which is configured to prevent movement of the components within the filter body 50676. In various instances, the size and shape of the dams 50690, 50692, and 50694 can be selected to prevent distention of the filter components in the direction of the applied suction.


The coarse media filter 50684 can include a low-air-resistant filter material, such as fiberglass, polyester, and/or pleated filters that are configured to remove a majority of particulate matter larger than 10 μm, for example. In some aspects of the present disclosure, this includes filters that remove at least 85% of particulate matter larger than 10 μm, greater than 90% of particulate matter larger than 10 μm, greater than 95% of particular matter larger than 10 μm, greater than 99% of particular matter larger than 10 μm, greater than 99.9% particulate matter larger than 10 μm, or greater than 99.99% particulate matter larger than 10 μm.


Additionally or alternatively, the coarse media filter 50684 can include a low-air-resistant filter that removes the majority of particulate matter greater than 1 μm. In some aspects of the present disclosure, this includes filters that remove at least 85% particulate matter larger than 1 μm, greater than 90% of particulate matter larger than 1 μm, greater than 95% of particular matter larger than 1 μm, greater than 99% of particular matter larger than 1 μm, greater than 99.9% particulate matter larger than 1 μm, or greater than 99.99% particulate matter larger than 1 μm.


The fine particulate filter 50686 can include any filter of higher efficiency than the coarse media filter 50684. This includes, for example, filters that are capable of filtering a higher percentage of the same sized particles as the coarse media filter 50684 and/or capable of filtering smaller sized particles than the coarse media filter 50684. In some aspects of the present disclosure, the fine particulate filter 50686 can include a HEPA filter or an ULPA filter. Additionally or alternatively, the fine particulate filter 50686 can be pleated to increase the surface area thereof. In some aspects of the present disclosure, the coarse media filter 50684 includes a pleated HEPA filter and the fine particulate filter 50686 includes a pleated ULPA filter.


Subsequent to particulate filtration, smoke enters a downstream section of the filter 50670 that includes the carbon reservoir 50688. The carbon reservoir 50688 is bounded by porous dividers 50696 and 50698 disposed between the intermediate and terminal dams 50692 and 50694, respectively. In some aspects of the present disclosure, the porous dividers 50696 and 50698 are rigid and/or inflexible and define a constant spatial volume for the carbon reservoir 50688.


The carbon reservoir 50688 can include additional sorbents that act cumulatively with or independently from the carbon particles to remove gaseous pollutants. The additional sorbents can include, for example, sorbents such as magnesium oxide and/or copper oxide, for example, which can act to adsorb gaseous pollutants such as carbon monoxide, ethylene oxide, and/or ozone, for example. In some aspects of the present disclosure, additional sorbents are dispersed throughout the reservoir 50688 and/or are positioned in distinct layers above, below, or within the reservoir 50688.


Referring again to FIG. 4, the evacuation system 50500 includes the pump 50506 within the evacuator housing 50518. Similarly, the evacuation system 50600 depicted in FIG. 7 can include a pump located in the evacuator housing 50618, which can generate suction to pull smoke from the surgical site, through the suction hose 50636 and through the filter 50670 (FIGS. 10 and 11). In operation, the pump can create a pressure differential within the evacuator housing 50618 that causes the smoke to travel into the filter 50670 and out an exhaust mechanism (e.g. exhaust mechanism 50520 in FIG. 4) at the outlet of the flow path. The filter 50670 is configured to extract harmful, foul, or otherwise unwanted particulates from the smoke.


The pump can be disposed in-line with the flow path through the evacuator housing 50618 such that the gas flowing through the evacuator housing 50618 enters the pump at one end and exits the pump at the other end. The pump can provide a sealed positive displacement flow path. In various instances, the pump can produce the sealed positive displacement flow path by trapping (sealing) a first volume of gas and decreasing that volume to a second smaller volume as the gas moves through the pump. Decreasing the volume of the trapped gas increases the pressure of the gas. The second pressurized volume of gas can be released from the pump at a pump outlet. For example, the pump can be a compressor. More specifically, the pump can comprise a hybrid regenerative blower, a claw pump, a lobe compressor, and/or a scroll compressor. Positive displacement compressors can provide improved compression ratios and operating pressures while limiting vibration and noise generated by the evacuation system 50600. Additionally or alternatively, the evacuation system 50600 can include a fan for moving fluid therethrough.


An example of a positive displacement compressor, e.g. a scroll compressor pump 50650, is depicted in FIG. 12. The scroll compressor pump 50650 includes a stator scroll 50652 and a moving scroll 50654. The stator scroll 50652 can be fixed in position while the moving scroll 50654 orbits eccentrically. For example, the moving scroll 50654 can orbit eccentrically such that it rotates about the central longitudinal axis of the stator scroll 50652. As depicted in FIG. 12, the central longitudinal axes of the stator scroll 50652 and the moving scroll 50654 extend perpendicular to the viewing plane of the scrolls 50652, 50654. The stator scroll 50652 and the moving scroll 50654 are interleaved with each other to form discrete sealed compression chambers 50656.


In use, a gas can enter the scroll compressor pump 50650 at an inlet 50658. As the moving scroll 50654 orbits relative to the stator scroll 50652, the inlet gas is first trapped in the compression chamber 50656. The compression chamber 50656 is configured to move a discrete volume of gas along the spiral contour of the scrolls 50652 and 50654 toward the center of the scroll compressor pump 50650. The compression chamber 50656 defines a sealed space in which the gas resides. Moreover, as the moving scroll 50654 moves the captured gas toward the center of the stator scroll 50652, the compression chamber 50656 decreases in volume. This decrease in volume increases the pressure of the gas inside the compression chamber 50656. The gas inside the sealed compression chamber 50656 is trapped while the volume decreases, thus pressurizing the gas. Once the pressurized gas reaches the center of the scroll compressor pump 50650, the pressurized gas is released through an outlet 50659.


Referring now to FIG. 13, a portion of an evacuation system 50700 is depicted. The evacuation system 50700 can be similar in many respects to the evacuation system 50600 (FIG. 7). For example, the evacuation system 50700 includes the evacuator housing 50618 and the suction hose 50636. Referring again to FIG. 7, the evacuation system 50600 is configured to produce suction and thereby draw smoke from the distal end of the suction hose 50636 into the evacuator housing 50618 for processing. Notably, the suction hose 50636 is not connected to the evacuator housing 50618 through the filter end cap 50603 in FIG. 13. Rather, the suction hose 50636 is connected to the evacuator housing 50618 through the fluid trap 50760. A filter, similar to the filter 50670 can be positioned within the socket of the evacuator housing 50618 behind the fluid trap 50760.


The fluid trap 50760 is a first processing point that extracts and retains at least a portion of the fluid (e.g. liquid) from the smoke before relaying the partially-processed smoke to the evacuation system 50700 for further processing and filtration. The evacuation system 50700 is configured to process, filter, and otherwise clean the smoke to reduce or eliminate unpleasant odors or other problems associated with smoke generation in the surgical theater (or other operating environment), as described herein. By extracting liquid droplets and/or aerosol from the smoke before it is further processed by the evacuation system 50700, the fluid trap 50760 can, among other things, increase the efficiency of the evacuation system 50700 and/or increase the life of filters associated therewith, in certain instances.


Referring primarily to FIGS. 14-17, the fluid trap 50760 is depicted detached from the evacuator housing 50618 (FIG. 13). The fluid trap 50760 includes an inlet port 50762 defined in a front cover or surface 50764 of the fluid trap 50760. The inlet port 50762 can be configured to releasably receive the suction hose 50636 (FIG. 13). For example, an end of the suction hose 50636 can be inserted at least partially within the inlet port 50762 and can be secured with an interference fit therebetween. In various instances, the interference fit can be a fluid tight and/or airtight fit so that substantially all of the smoke passing through the suction hose 50636 is transferred into the fluid trap 50760. In some instances, other mechanisms for coupling or joining the suction hose 50636 to the inlet port 50762 can be employed such as a latch-based compression fitting, an O-ring, threadably coupling the suction hose 50636 with the inlet port 50762, for example, and/or other coupling mechanisms.


In various instances, a fluid tight and/or airtight fit between the suction hose 50636 and the fluid trap 50760 is configured to prevent fluids and/or other materials in the evacuated smoke from leaking at or near the junction of these components. In some instances, the suction hose 50636 can be associated with the inlet port 50762 through an intermediate coupling device, such as an O-ring and/or adaptor, for example, to further ensure an airtight and/or fluid tight connection between the suction hose 50636 and the fluid trap 50760.


As discussed above, the fluid trap 50760 includes the exhaust port 50766. The exhaust port extends away from a rear cover or surface 50768 of the fluid trap 50760. The exhaust port 50766 defines an open channel between an interior chamber 50770 of the fluid trap 50760 and the exterior environment. In some instances, the exhaust port 50766 is sized and shaped to tightly associate with a surgical evacuation system or components thereof. For example, the exhaust port 50766 can be sized and shaped to associate with and communicate at least partially processed smoke from the fluid trap 50760 to a filter housed within an evacuator housing 50618 (FIG. 13). In certain instances, the exhaust port 50766 can extend away from the front plate, a top surface, or a side surface of the fluid trap 50760.


In certain instances, the exhaust port 50766 includes a membrane, which spaces the exhaust port 50766 apart from the evacuator housing 50618. Such a membrane can act to prevent water or other liquid collected in the fluid trap 50760 from being passed through the exhaust port 50766 and into the evacuator housing 50618 while permitting air, water and/or vapor to freely pass into the evacuator housing 50618. For example, a high flow rate microporous polytetrafluoroethylene (PTFE) can be positioned downstream of the exhaust port 50766 and upstream of a pump to protect the pump or other components of the evacuation system 50700 from damage and/or contamination.


The fluid trap 50760 also includes a gripping region 50772, which is positioned and dimensioned to assist a user in handling the fluid trap 50760 and/or connecting the fluid trap 50760 with the suction hose 50636 and/or the evacuator housing 50618. The gripping region 50772 is depicted as being an elongate recess; however, the reader will readily appreciate that the gripping region 50772 may include at least one recess, groove, protrusion, tassel, and/or ring, for example, which can be sized and shaped to accommodate a user's digits or to otherwise provide a gripping surface.


Referring primarily now to FIGS. 16 and 17, the interior chamber 50770 of the fluid trap 50760 is depicted. The relative positioning of the inlet port 50762 and the exhaust port 50766 is configured to promote the extraction and the retention of fluid from the smoke as it passes into the fluid trap 50760. In certain instances, the inlet port 50762 can comprise a notched cylindrical shape, which can direct the smoke and the accompanying fluid towards a fluid reservoir 50774 of the fluid trap 50760 or otherwise directionally away from the exhaust port 50766. An example of such a fluid flow is depicted with arrows A, B, C, D, and E in FIG. 17.


As shown, smoke enters the fluid trap 50760 through the inlet port 50762 (illustrated by the arrow A) and exits the fluid trap 50760 through the exhaust port 50766 (illustrated by the arrow E). At least partially due to the geometry of the inlet port (e.g., a longer, upper sidewall 50761 and a shorter, lower sidewall 50763), the smoke entering the inlet port 50762 is initially directed primarily downward into the fluid reservoir 50774 of the fluid trap 50760 (illustrated by the arrows B). As smoke continues to be pulled downward into the fluid trap 50760 along the arrows A and B, the smoke that was initially directed downward, tumbles downward, and is directed laterally away from its source to travel in a substantially opposite but parallel path towards the upper portion of the fluid trap 50760 and out of the exhaust port 50766 (illustrated by the arrows D and E).


The directional flow of smoke through the fluid trap 50760 can ensure that liquids within the smoke are extracted and retained within the lower portion (e.g. the fluid reservoir 50774) of the fluid trap 50760. Furthermore, the relative positioning of the exhaust port 50766 vertically above the inlet port 50762 when the fluid trap 50760 is in an upright position is configured to discourage liquid from inadvertently being carried through the exhaust port 50766 by the flow of smoke while not substantially hindering fluid flow into and out of the fluid trap 50760. Additionally, in certain instances, the configuration of the inlet port 50762 and the outlet port 50766 and/or the size and shape of the fluid trap 50760 itself, can enable the fluid trap 50760 to be spill resistant.


In various instances, an evacuation system can include a plurality of sensors and intelligent controls, as further described herein with respect to FIGS. 5 and 6, for example. In one aspect of the present disclosure, an evacuation system can include one or more temperatures sensors, one or more fluid detection sensors, one or more pressure sensors, one or more particle sensors, and/or one or more chemical sensors. A temperature sensor can be positioned to detect the temperature of a fluid at the surgical site, moving through a surgical evacuation system, and/or being exhaust into a surgical theater from a surgical evacuation system. A pressure sensor can be positioned to detect a pressure within the evacuation system, such as within the evacuator housing. For example, a pressure sensor can be positioned upstream of the filter, between the filter and the pump, and/or downstream of the pump. In certain instances, a pressure sensor can be positioned to detect a pressure in the ambient environment outside of the evacuation system. Similarly, a particle sensor can be positioned to detect particles within the evacuation system, such as within the evacuator housing. A particle sensor can be upstream of the filter, between the filter and the pump, and/or downstream of the pump, for example. In various instances, a particle sensor can be positioned to detect particles in the ambient environment in order to determine the air quality in the surgical theater, for example.


An evacuator housing 50818 for an evacuation system 50800 is schematically depicted in FIG. 18. The evacuator housing 50818 can be similar in many respects to the evacuator housings 50018 and/or 50618, for example, and/or can be incorporated into various evacuation systems disclosed herein. The evacuator housing 50818 includes numerous sensors, which are further described herein. The reader will appreciate that certain evacuator housings may not include each sensor depicted in FIG. 18 and/or may include additional sensor(s). Similar to the evacuator housings 50018 and 50618 disclosed herein, the evacuator housing 50818 of FIG. 18 includes an inlet 50822 and an outlet 50824. A fluid trap 50860, a filter 50870, and a pump 50806 are sequentially aligned along a flow path 50804 through the evacuator housing 50818 between the inlet 50822 and the outlet 50824.


An evacuator housing can include modular and/or replaceable components, as further described herein. For example, an evacuator housing can include a socket or a receptacle 50871 dimensioned to receive a modular fluid trap and/or a replaceable filter. In certain instances, a fluid trap and a filter can be incorporated into a single interchangeable module 50859, as depicted in FIG. 18. More specifically, the fluid trap 50860 and the filter 50870 form the interchangeable module 50859, which can be modular and/or replaceable, and can be removably installed in the receptacle 50871 in the evacuator housing 50818. In other instances, the fluid trap 50860 and the filter 50870 can be separate and distinct modular components, which can be assembled together and/or separately installed in the evacuator housing 50818.


Referring still to the evacuator housing 50818, the evacuator housing 50818 includes a plurality of sensors for detecting various parameters therein and/or parameters of the ambient environment. Additionally or alternatively, one or more modular components installed in the evacuator housing 50818 can include one or more sensors. For example, referring still to FIG. 18, the interchangeable module 50859 includes a plurality of sensors for detecting various parameters therein.


In various instances, the evacuator housing 50818 and/or a modular component(s) compatible with the evacuator housing 50818 can include a processor, such as the processor 50308 and 50408 (FIGS. 5 and 6, respectively), which is configured to receive inputs from one or more sensors and/or to communicate outputs to one more systems and/or drivers. Various processors for use with the evacuator housing 50818 are further described herein.


In operation, smoke from a surgical site can be drawn into the inlet 50822 to the evacuator housing 50818 via the fluid trap 50860. The flow path 50804 through the evacuator housing 50818 in FIG. 18 can comprise a sealed conduit or tube 50805 extending between the various in-line components. In various instances, the smoke can flow past a fluid detection sensor 50830 and a chemical sensor 50832 to a diverter valve 50834, which is further described herein. A fluid detection sensor, such as the sensor 50830, can detect fluid particles in the smoke. In one instance, the fluid detection sensor 50830 can be a continuity sensor. For example, the fluid detection sensor 50830 can include two spaced-apart electrodes and a sensor for detecting the degree of continuity therebetween. When no fluid is present, the continuity can be zero, or substantially zero, for example. The chemical sensor 50832 can detect the chemical properties of the smoke.


At the diverter valve 50834, fluid can be directed into a condenser 50835 of the fluid trap 50860 and the smoke can continue toward the filter 50870. Baffles 50864 are positioned within the condenser 50835 to facilitate the condensation of fluid droplets from the smoke into a reservoir in the fluid trap 50860. A fluid detection sensor 50836 can ensure any fluid in the evacuator housing is entirely, or at least substantially, captured within the fluid trap 50860.


Referring still to FIG. 18, the smoke can then be directed to flow into the filter 50870 of the interchangeable module 50859. At the inlet to the filter 50870, the smoke can flow past a particle sensor 50838 and a pressure sensor 50840. In one form, the particle sensor 50838 can comprise a laser particle counter, as further described herein. The smoke can be filtered via a pleated ultra-low penetration air (ULPA) filter 50842 and a charcoal filter 50844, as depicted in FIG. 18.


Upon exiting the filter, the filtered smoke can flow past a pressure sensor 50846 and can then continue along the flow path 50804 within the evacuator housing 50818 toward the pump 50806. Upon moving through the pump 50806, the filtered smoke can flow past a particle sensor 50848 and a pressure sensor 50850 at the outlet to the evacuator housing 50818. In one form, the particle sensor 50848 can comprise a laser particle counter, as further described herein. The evacuator housing 50818 in FIG. 18 also includes an air quality particle sensor 50852 and an ambient pressure sensor 50854 to detect various properties of the ambient environment, such as the environment within the surgical theater. The air quality particle sensor, or external/ambient air particle sensor, 50852 can comprise a laser particle counter in at least one form. The various sensors depicted in FIG. 18 are further described herein. Moreover, in various instances, alternative sensing means can be utilized in the smoke evacuation systems disclosed herein. For example, alternative sensors for counting particles and/or determining particulate concentration in a fluid are further disclosed herein.


In various instances, the fluid trap 50860 depicted in FIG. 18 can be configured to prevent spillage and/or leakage of the captured fluid. For example, the geometry of the fluid trap 50860 can be selected to prevent the captured fluid from spilling and/or leaking. In certain instances, the fluid trap 50860 can include baffles and/or splatter screens, such as the screen 50862, for preventing the captured fluid from splashing out of the fluid trap 50860. In one or more instances, the fluid trap 50860 can include sensors for detecting the volume of fluid within the fluid trap and/or determining if the fluid trap 50860 is filled to capacity. The fluid trap 50860 may include a valve for empty the fluid therefrom. The reader will readily appreciate that various alternative fluid trap arrangements and geometries can be employed to capture fluid drawn into the evacuator housing 50818.


In certain instances, the filter 50870 can include additional and/or fewer filtering levels. For example, the filter 50870 can include one or more filtering layers selected from the following group of filters: a course media filter, a fine media filter, and a sorbent-based filter. The course media filter can be a low-air-resistant filter, which can be comprised of fiberglass, polyester, and/or pleated filters, for example. The fine media filter can be a high efficiency particulate air (HEPA) filter and/or ULPA filter. The sorbent-based filter can be an activated-carbon filter, for example. The reader will readily appreciate that various alternative filter arrangements and geometries can be employed to filter smoke drawn along the flow path through the evacuator housing 50818.


In one or more instances, the pump 50806 depicted in FIG. 18 can be replaced by and/or used in combination with another compressor and/or pump, such as a hybrid regenerative blower, a claw pump, and/or a lobe compressor, for example. The reader will readily appreciate that various alternative pumping arrangements and geometries can be employed to generate suction within the flow path 50804 to draw smoke into the evacuator housing 50818.


The various sensors in an evacuation system, such as the sensors depicted in FIG. 18, can communicate with a processor. The processor can be incorporated into the evacuation system and/or can be a component of another surgical instrument and/or a surgical hub. Various processors are further described herein. An on-board processor can be configured to adjust one or more operational parameters of the evacuator system (e.g. a motor for the pump 50806) based on input from the sensor(s). Additionally or alternatively, an on-board processor can be configured to adjust one or more operational parameters of another device, such as an electrosurgical tool and/or imaging device based on input from the sensor(s).


Referring now to FIG. 19, another evacuator housing 50918 for an evacuation system 50900 is depicted. The evacuator housing 50918 in FIG. 19 can be similar in many respects to the evacuator housing 50818 in FIG. 18. For example, the evacuator housing 50918 defines a flow path 50904 between an inlet 50922 to the evacuator housing 50918 and an outlet 50924 to the evacuator housing 50918. Intermediate the inlet 50922 and the outlet 50924, a fluid trap 50960, a filter 50970, and a pump 50906 are sequentially arranged. The evacuator housing 50918 can include a socket or a receptacle 50971 dimensioned to receive a modular fluid trap and/or a replaceable filter, similar to the receptacle 50871, for example. At a diverter valve 50934, fluid can be directed into a condenser 50935 of the fluid trap 50960 and the smoke can continue toward the filter 50970. In certain instances, the fluid trap 50960 can include baffles, such as the baffles 50964, and/or splatter screens, such as the screen 50962, for example, for preventing the captured fluid from splashing out of the fluid trap 50960. The filter 50970 includes a pleated ultra-low penetration air (ULPA) filter 50942 and a charcoal filter 50944. A sealed conduit or tube 50905 extends between the various in-line components. The evacuator housing 50918 also includes the sensors 50830, 50832, 50836, 50838, 50840, 50846, 50848, 50850, 50852, and 50854 which are further described herein and shown in FIG. 18 and FIG. 19.


Referring still to FIG. 19, the evacuator housing 50918 also includes a centrifugal blower arrangement 50980 and a recirculating valve 50990. The recirculating valve 50990 can selectively open and close to recirculate fluid through the fluid trap 50960. For example, if the fluid detection sensor 50836 detects a fluid, the recirculating valve 50990 can be opened such that the fluid is directed back away from the filter 50970 and back into the fluid trap 50960. If the fluid detection sensor 50836 does not detect a fluid, the valve 50990 can be closed such that the smoke is directed into the filter 50970. When fluid is recirculated via the recirculating valve 50990, the fluid can be drawn through a recirculation conduit 50982. The centrifugal blower arrangement 50980 is engaged with the recirculation conduit 50982 to generate a recirculating suction force in the recirculation conduit 50982. More specifically, when the recirculating valve 50990 is open and the pump 50906 is activated, the suction force generated by the pump 50906 downstream of the filter 50970 can generate rotation of the first centrifugal blower, or squirrel cage, 50984, which can be transferred to the second centrifugal blower, or squirrel cage, 50986, which draws the recirculated fluid through the recirculating valve 50990 and into the fluid trap 50960.


In various aspects of the present disclosure, the control schematics of FIGS. 5 and 6 can be utilized with the various sensor systems and evacuator housings of FIGS. 18 and 19.


Surgical Evacuation System with a Communication Circuit for Communication Between a Filter and a Smoke Evacuation Device

Generally, providing network services to medical devices may expose vulnerabilities of the medical devices to malicious attacks. Although there may be network-wide firewall services provided in the network system, these services may be vulnerable to security attacks from components inside the medical devices. That is, the firewall services may not have information with respect to the types, products, configurations, or authenticity of the components of the medical devices and, thus, may not be able to protect the medical device system from malicious attacks coming from unauthentic/unauthorized components of the medical devices. For example, an unauthentic/unauthorized component (e.g., filter device) may include ransomware, which may deny access of the medical device user to the medical device or the data in the medical device until a ransom payment is paid. Moreover, the unauthentic/unauthorized component may not be compatible with other authentic/authorized components of the medical device, which may result in reduction in the lifetime and/or performance of the overall medical components. This may also lead to an unexpected interruption in operation of the medical devices.


Aspects of the present disclosure may address the above-noted deficiencies. In some examples, a surgical evacuation system may include a communication circuit that may facilitate communication between a smoke evacuation device and a replaceable filter device having a plurality of filter components. The communication circuit may authenticate the filter device (including the plurality of filter components), verify a remaining life of the filter device, update parameters output from the filter device, and record errors output from the filter device. The communication circuit may limit a number or a type of a filter component that can be identified by the surgical evacuation system, and may enable/disable the plurality of filter components based on a result of the authentication. In some examples, the communication circuit may authenticate the filter device/components by using filter component information, which may include a product type, a product name, a unique device identifier, a product trademark, a serial number, or a configuration parameter of the filter device/components. In some examples, the filter device and/or the communication circuit may encrypt or decrypt data/parameters communicated between the filter device and the communication circuit.


In this way, the surgical evacuation system according to an example embodiment of the present disclosure may be able to detect an unauthentic/unauthorized component of a medical device, protect data/parameters of the medical device by encryption, and check possible issues in the filter device in advance by checking the remaining life and errors of the filter components. This may advantageously allow the surgical system to prevent possible malicious attacks and degradation in performance that may be caused by the unauthentic/unauthorized component and to continue to operate the surgical evacuation system without an unexpected interruption in the medical device operation.



FIG. 20 depicts a high-level component diagram of an example smoke evacuation system 58100 in accordance with one or more aspects of the present disclosure. The smoke evacuation system 58100 may include a smoke evacuation device 58105 having a pump 58160 and a motor 58165 operably coupled to the pump 58160, a display device 58170, a communication device 58180, a processor 58110, a memory 58120, and one or more sensors 58140A-B. In some examples, the smoke evacuation device 58105 may include a filter device 58150 and a filter communication circuit 58130. The filter device 58150 may be in communication with the smoke evacuation device 58105 (e.g., processor 58110) through the filter communication circuit 58130.


The smoke evacuation system 58100 may be similar to the smoke evacuation system depicted in FIG. 6. For example, the processor 58110 may be in signal communication with a motor driver or the motor 58165, various sensors 58140A-B, the display device 58170, the memory 58120, and the communication device 58180. The communication device 58180 may be similar to the communication device described above with respect to FIGS. 5 and 6. That is, the communication device 58180 may allow the processor 58110 in the smoke evacuation system 58100 to communicate with other devices within the surgical system. For example, the communication device 58180 may allow wired and/or wireless communication to external sensors, surgical devices, hubs, clouds, and/or various additional surgical systems and/or tools. The reader will readily appreciate that the smoke evacuation system of FIG. 20 can be incorporated into the surgical system of FIG. 5 in certain instances.


In some examples, the filter device 58150 may be coupled to a sucking conduit 58155. An exhaust mechanism 58190 may be coupled to the pump 58160. The exhaust mechanism 58190 may be similar to the exhaust mechanism 50520. In some examples, the suction conduit 58155, the filter device 58150, the pump 58160, and the exhaust mechanism 58190 may be sequentially arranged in-line with a flow path (e.g., the flow path 50504) between an inlet port (e.g., inlet port 50522) and an outlet port (e.g., outlet port 50524). The inlet may be fluidically coupled to the suction conduit 58155 comprising a distal conduit opening at the surgical site. Although the exhaust mechanism 58190 is depicted as located outside of the smoke evacuation device 58105, in some examples, the exhaust mechanism 58190 may be located in the smoke evacuation device 58105.


In some examples, the processor 58110 may be in signal communication with the filter communication circuit 58130 for communication between the filter device 58150 and the smoke evacuation device 58105. In some examples, the filter communication circuit 58130 may be located in the smoke evacuation device 58105 or the filter device 58150. In other examples, the communication circuit 58130 may be located outside of the smoke evacuation device 58105. In some examples, the communication circuit 58130 may be part of the sensing and intelligent controls device depicted in FIG. 5.



FIG. 21 illustrates a filter communication circuit 58130 according to an example embodiment of the present disclosure. The filter communication circuit 58220 may include a master controller 58210, an authentication unit 58220, an error logging unit 58230, an updating unit 58240, an encryption/description unit 58250, a remaining life verification unit 58260, and a data storage unit 58270. In some examples, the master controller 58210 may be in signal communication with the processor 58110 and control other units 58220-58270 in the filter communication circuit 58130. In other examples, the processor 58110 may act as the master controller 58210.



FIG. 22 illustrates a filter device 58150 according to an example embodiment of the present disclosure. The filter device 58150 may include a plurality of filter components. The filter components may include a controller 58310, a filter element unit 58320, and a filter sensor unit 58330. The filter element unit 58320 may include one or more filter elements 58325A-C. The filter sensor unit 58330 may include one or more filter sensors 58335A-C. The controller 58310 may control and be in communication with the filter element unit 58320 and the filter sensor unit 58330. The filter device 58150 may be similar to the examples (e.g., filter 50670) depicted in FIGS. 10, 11, 18, and 19. In some examples, the one or more filter elements 58325A-C may be the fluid filter, coarse media filter 50684, fine particulate filter 50686, particulate filter, carbon reservoir 50688, or charcoal filter depicted in FIGS. 10, 11, 18, and 19 or any other filters in the filter device 58150. The filter elements 58325A-C may also include the diverter valve, the baffles, the squirrel cage, or any other elements (e.g., dams 50690, 50692, 50694, back cap 50674, etc.) in the filter device other than the sensors. In some examples, the one or more filter sensors 58335A-C may be similar to the examples (e.g., fluid detect sensors 50830, chemical sensor 50832, fluid sensor 50836, pressure sensor 50840, laser particle counter 50838, etc.) depicted in FIGS. 18 and 19.


In some examples, the controller 58310 in the filter device 58150 may be in signal communication with the master controller 58210 of the filter communication circuit 58130. In some examples, the filter device 58150 may encrypt the parameters output from the plurality of filter components before sending the parameters to the communication circuit 58130. Upon receiving the encrypted parameters, the communication circuit (e.g., encryption/description unit 58250) may decrypt the encrypted parameters as discussed below.


Referring to FIG. 21 again, the authentication unit 58220 may authenticate/verify the filter device 58150 or the plurality of filter components. In some examples, the authentication unit 58220 may identify the number of filter components that is attached in the filter device 58150. The authentication unit 58220 may also limit the number or type of a filter component that can be identified by the communication circuit. For example, if the filter component is not the type of a component authorized to be used in the filter device 58150, or the number of filter components used in the filter device 58150 is equal to or greater than a predetermined value (e.g., 10, 20, 50, etc.), the authentication unit 58220 may disable the filter component or the filter device 58150. The authentication unit 58220 may also enable or disable the filter device 58150 or the plurality of filter components based on a result of the authentication.


The error logging unit 58230 may record errors or error messages from the plurality of filter components or the filter device 58150. In some examples, the error logging unit 58230 may record the errors and error messages in the data storage unit 58270. The filter communication circuit 58130 may read the error messages and use the error messages to figure out what happened in the filter device 58150. Examples of the errors and error messages may include errors that occur due to sensor/filter failures, strange/dangerous chemicals detected by sensors/filters, moisture detected in particulate filters; clogged filters, pressure differential (e.g., between the pressure sensors 50840 and 50846) over a predetermined value, and unauthentic/unauthorized filter device/component.


The updating unit 58240 may update parameters output from the plurality of filter components. The parameters updated may be operational or sensed. Operational parameters may include airflow, pressure differentials, air quality, or any other parameters related to the operation of the filter device 58150. Sensed parameters may include particulate concentration, aerosol percentage, chemical analysis, or any other values sensed by the sensors (e.g., pressure, fluid, chemical, particle) in the filter device 58150. These parameters may be stored in the data storage unit 58270, and automatically or manually updated by the updating unit 58240. For example, the updating unit 58240 may update the pressure differential values stored in the data storage unit 58270 when a change in the pressure differentials is detected by the pressure sensors (e.g., 50840, 50846). The filter communication circuit 58130 may receive these parameters directly from each of the filter components (e.g., filter elements 58325A-C/filter sensors 58335A-C) or through the slave controller 58310.


The encryption/description unit 58250 may encrypt or decrypt the parameters output from the plurality of filter components. The encryption/description unit 58250 may encrypt or decrypt any data or packet received from the filter device 58150. In some examples, the filter device 58150 may also include an encryption/description unit similar to the encryption/description unit 58250. The encryption/description unit of the filter device 58150 may encrypt the parameters output from the plurality of filter components before sending the parameters to the filter communication circuit 58130 and decrypt the data from the filter communication circuit 58130. The encrypted data/parameters communicated between the filter device 58150 and the filter communication circuit 58130 may not be visible/readable to filter components, filter device 58150, and the smoke evacuation device 58105 unless the encrypted data/parameters are decrypted.


In some examples, the encryption/description unit 58250 and the filter device 58150 may encrypt or decrypt the data/parameters by symmetrical encryption, which uses the same (secret) key to encrypt and decrypt the data. In other examples, the encryption/description unit 58250 and the filter device 58150 may encrypt or decrypt the data/parameters by asymmetrical encryption, which uses public and private keys to encrypt and decrypt data. In the asymmetrical encryption, one of the private/public key may be used to encrypt the data, and the other key may be used to decrypt the data.


The remaining life verification unit 58260 may verify/predict the remaining life of the plurality of filter components. In some examples, the remaining life verification unit 58260 may use usage information about the plurality of filter components to verify the remaining life of the filter components. The filter component usage information may include time of use data, the number of times each filter component was used, the number or type of errors that each filter component generated, a standard lifetime of each filter component, and pressure differentials between the pressure sensors located upstream (e.g., 50840) and downstream (e.g., 50846) of the filter elements 58325A-C. In some examples, if the pressure differential value of a filter element 58325A (e.g., ULPA filter) exceeds a predetermined value, which may indicate that the filter element 58325A is clogged, the remaining life verification unit 58260 may determine that the remaining life of the filter element 58325A is zero or will become zero soon, for example, within a predetermined time period (e.g., 1-5 hours, 1-5 days, 1-5 weeks, or 1-5 months) and it should be replaced. If the filter component usage information indicates that a significant amount of moisture was entered into a particulate or charcoal filter, the remaining life verification unit 58260 may determine that the remaining life of the particulate or charcoal filter is zero or will become zero soon, for example, within a predetermined time period (e.g., 1-5 hours, 1-5 days, 1-5 weeks, or 1-5 months) and it should be replaced. If the filter component usage information indicates that there is an error in a filter sensor 58335A or filter element 58325A (e.g., not operate properly), the remaining life verification unit 58260 may determine that the filter sensor 58335A or filter element 58325A is zero or will become zero soon, for example, within a predetermined time period (e.g., 1-5 hours, 1-5 days, 1-5 weeks, or 1-5 months) and it should be replaced. In some examples, the filter component usage information may be stored in the data storage unit 58270.


The data storage unit 58270 may store information about the filter components. The filter component information may include a product type, a product name, a unique device identifier, a product trademark, a serial number, and a configuration parameter of the plurality of filter components. In some examples, the information about the filter components may be generated, for example, from the filter component when the authentication unit 58220 authenticates/verifies the filter components. In some examples, the data storage unit 58270 may also include information about authentic/authorized filter components. The authentic filter component information may include a list of product types, product names, unique device identifiers, product trademarks, serial numbers, and configuration parameters of authentic/authorized filter components. In some examples, the filter component information and/or the authentic filter component information may be stored in plain text. In other examples, the filter component information and/or the authentic filter component information may be stored in an encrypted form. In some examples, the data storage unit 58270 may also store information about features disabled and enabled and algorithm or instructions for how the smoke evacuation device 58105 may use the filter components.


In some examples, the data/parameters from the filter device 58150 may be delivered to the smoke evacuation device 58105 (e.g., data storage unit 58270) nonsequentially, for example, as a data packet. As used herein, a data packet may refer to the unit of data that is communicated between two devices (e.g., filter device 58150 and smoke evacuation device 58105). The smoke evacuation device 58105 (e.g., processor 58110, master controller 58210) may know how to combine the received data packets into the original data/parameters.


In some examples, the authentication unit 58220 may authenticate/verify the plurality of filter components in the filter device 58150 by using the filter component information and/or the authentic filter component information. For example, the authentication unit 58220 may compare the filter component information of the filter components with the authentic filter component information. That is, the authentication unit 58220 may check whether the filter component information (e.g., unique device identifier/trademark/serial number of a filter in the filter device 58150) matches the prestored authentic filter component information (e.g., in the list of unique device identifiers/trademarks/serial numbers of authentic filter components). If it is determined that the filter component information of a filter component does not match the authentic filter component information, the authentication unit 58220 may determine that the filter component is not authentic/authorized. If it is determined that a filter component is not authentic, the authentication unit 58220 may disable part or the whole filter device functions (e.g., smoke filtering, smoke sensing, data processing, etc.) or the filter device/components. In some examples, the authentication unit 58220 may disable the filter device/components or filter device functions by stopping the pump 58160/motor 58165 or closing an input port of one of the filters.


In some examples, the serial number may be located in a chip, such as Erasable Programmable Read-Only Memory (EPROM) or Electrically Erasable Programmable Read-Only Memory (EEPROM) of the filter device/components (e.g., slave controller 58310). For example, in some cases, only certain family of chips may be used for authentic filter devices/components and the serial numbers on those chips may indicate that the filter devices/components having the chips are authentic. In some examples, when the filter device 58150 is connected to the smoke evacuation device 58105, the authentication unit 58220 may read the serial number of the chip (e.g., EPROM/EEPROM) in the filter components and check whether it is authentic. In some examples, the authentication unit 58220 may be programmed to accept a set serial number range.


In some examples, the filter communication circuit 58130 (e.g., master controller 58210) may act as a master device and the filter device 58150 (e.g., plurality of filter components, including the slave controller 58310) may act as a slave device. In some examples, the communication between the master device and the slave device may be unidirectional from the master device to the slave device when performing the authentication step. That is, it may be only the master device that is able to authenticate/verify the slave device, and the slave device cannot authenticate/verify the master device. In this case, the slave device may only provide information (e.g., filter component information, including a product type, a product name, a unique device identifier, a product trademark, a serial number, and a configuration parameter of the filter components) requested from the master device. In some examples, the communication between the master device and the slave device may be bidirectional.


In some examples, the plurality of filter components may have a tiered structure. For example, one (e.g., slave controller 58310) of the filter components may act as a master component and the rest of the filter components may act as a slave component. In this case, the rest of the filter components may report data/parameters directly to the master component, which in turn may report the received data/parameters to the master device (master controller 58210). In other examples, each of the filter components may report data/parameters directly to the master device.


In some examples, the smoke evacuation device 58105 and the filter device 58150 may communicate with each other, for example, through the filter communication circuit 58130, using a (bidirectional or unidirectional) wireless connection. Examples of the wireless connection may include RFID (read only or read/write), Bluetooth, Zigbee, IR, or any other suitable wireless protocols. In other examples, the smoke evacuation device 58105 and the filter device 58150 may communicate with each other using a wire connection. In this case, an electrical connector is provided between the smoke evacuation device 58105 and the filter device 58150. For example, referring back to FIGS. 13-14, the electrical connector may be located on the socket 2120 that is configured to receive the filter device 58150. In some examples, the first receptacle 2122 and/or the second receptacle 2124 may act as the electrical connector electrically connecting the smoke evacuation device 58105 (e.g., processor 58110, master controller 58210) and the filter device 58150 (e.g., slave controller 58310 or other filter components 58325A-C, 58335A-C). In some examples, the electrical connector may be a pogo pin or a plug type connector.


Referring back to FIG. 7, in some examples, there may be a cable connector, e.g., a wire, extends from the smoke evacuation device 50600, 58100 to the generator 50640. The cable connector may deliver activation signals and information about the energy delivery, and the smoke evacuation device 50600, 58100 may control the components in the smoke evacuation device 50600, 58100 based on the activation signals and the energy delivery information. For example, the smoke evacuation device 50600 may lower the suction force/rate or stop the suction, for example, by lowering the pump power/motor speed or by stopping the pump 58160/motor 58165 in response to receiving energy delivery information/signal indicating that the generator is not activated or not activated fully. The smoke evacuation device 50600 may also increase the suction force/rate in response to receiving energy delivery information/signal indicating that the generator is activated or activated fully. In this way, the smoke evacuation device 50600 may be able to change the level of the suction force/rate as the generator 50640 is activated or deactivated.


In some examples, the filter communication circuit 58130 may include a Trusted Platform Module (TPM), which may be used to protect unencrypted keys and authentication information from malicious software attacks. In some examples, the TPM may be a specialized microprocessor or chip that provides a protected space for key operations and other security related tasks. In some examples, the TPM may use a monotonic counter for anti-replay protection, for example, to limit the number of failed accesses. For example, the TPM, using the monotonic counter, may prevent attempts to transmit data that is maliciously or fraudulently repeated by an unauthorized component of the filter device 58150. The TPM may provide a decentralized and enhanced security to the system 58100.


In some examples, the display device 58170 may act as an interactive data point, receiving inputs and displaying outputs for the smoke evacuation system 58100. In some examples, the display device 58170 may include a touch screen. In some examples, the display device 58170 may display a smoke evacuation console having keys/buttons to control (e.g., activate/deactivate) or check the status of the components in the smoke evacuation system 58100. For example, using the keys/buttons, a user may check the activation status or the data/parameters (e.g., magnitude of the fan/motor speed) output from the components in the smoke evacuation system 58100. In other examples, the evacuation system may include a mechanical console having keys/buttons to control or check the status of the components in the smoke evacuation system 58100. In some examples, the smoke evacuation console on the display device 58170 may look similar to the mechanical console, for example, by a default setting. In this case, the display device 58170 may display a (small) icon that, for example, on a corner of the display device 58170 that may allow the user to access a menu structure, which when activated, showing more adjustment options.


In some examples, the display device 58170 may operate interactively with other display devices (e.g., hub display 135) in the surgical system 100. For example, the display device 58170 may act as a primary display device when the smoke evacuation device 58105 is not connected to the hub 106. When the smoke evacuation device 58105 is connected to the hub 106, the display device 58170 may act as a secondary display device while the hub display 135 acts as a primary display device. In this case, the display device 58170 may also include control buttons to control not only the smoke evacuation device 58105, but also the hub 106. In some examples, the hub display 135 and/or the display device 58170 may include an icon that may allow one of the hub display 135 and the display device 58170 to become an input device for the other.


In some examples, one or more components in the surgical system may be disposable/re-useable, including the filter device 58150, filter components in the filter device 58150, fluid trap 50760 (e.g., including fluid reservoir 50774), air hose 50636, electrosurgical instrument 50630 (e.g., Zip Pen®), blade in the surgical instrument, or any other components in the smoke evacuation system 58100.


Dual in-Series Large and Small Droplet Filters

The fluid extracted from a surgical site by a smoke evacuation system may contain liquid (e.g., large and small droplets) and various particulates in addition to smoke, which may be generated during a surgical procedure. The combination of different types and/or states of matter in the evacuated fluid may make it difficult to filter the fluid output from the surgical site. Moreover, certain types of matter in the fluid may be detrimental to certain filters in the smoke evacuation system. For example, the presence of liquid droplets in the fluid may damage certain filters, such as particulate/charcoal filters, which may be very expensive. Also, these filters may be easily damaged/blocked by not only large droplets, but also relatively small droplets. Aspects of the present disclosure may address the above-noted deficiencies. In certain instances, a surgical evacuation system may include a pump, a motor operably coupled to the pump, and a flow path fluidically coupled to the pump. The flow path may include a first fluid filter configured to extract a large droplet in a fluid moving through the flow path, and a second fluid filter configured to extract a small droplet in the fluid. The first fluid filter may be coupled in series with the second fluid filter and positioned upstream of the second fluid filter. An outlet port of the second fluid filter may be coupled to an inlet port of a non-fluid filter, which can be damaged when a moisture/droplet is entered therein. In certain instances, the surgical evacuation system may also include one or more recirculation channels configured to recirculate the fluid output from the first fluid filter or the second fluid filter.


In this way, the present disclosure may allow the smoke evacuation system to extract not only large droplets, but also small droplets before the fluid enters a non-fluid filter, which may be damaged by the large and small droplets. Also, the second fluid filter may use a filter element that may be more sophisticated and more expensive than the components used in the first fluid filter, and this filter element in the second fluid filter may tend to be easily and quickly clogged by large droplets. In the present disclosure, by providing the first fluid filter configured to extract large droplets upstream of the second fluid filter, the evacuation system may effectively protect the second fluid filter from damages and/or blockages, saving pump power and money. Finally, by providing one or more recirculation channels, the present disclosure allows the evacuation system to ensure that no droplet that may possibly damage the non-fluid filters enters the non-fluid filter.



FIG. 23 depicts a schematic of a housing of a smoke evacuation system 59100, in accordance with at least one aspect of the present disclosure. The smoke evacuation system 59100 may include an evacuation housing 59105 and a fluid trap 59110 coupled to the evacuation housing 59105. The evacuation system 59100 may also include a first fluid filter device 59120, a second fluid filter device 59130, a non-fluid filter device 59140, and a pump 59170. The pump 59170 may be operably coupled to a motor. The smoke evacuation system 59100 may further include a plurality of sensors 59190A-K and intelligent controls. The fluid trap 59110, the non-fluid filter device 59140, the pump 59170 may be similar to the examples (e.g., fluid trap, ULPA filter, charcoal filter, scroll pump) depicted in FIGS. 18-19. The fluid trap 59110, the filter devices 59120, 59130, 59140, and the pump 59170 may be sequentially aligned along a flow path through the evacuator housing 59105 between the inlet 59112 and the outlet 59175. As used herein, a non-fluid filter device 59140 may refer to a filter device or a filter (e.g., particulate/charcoal filters) that may be vulnerable to droplets and can be damaged when droplets are entered therein.


In various instances, the plurality of sensors may include one or more fluid detection sensors, one or more pressure sensors, one or more particle sensors, and/or one or more chemical sensors. The plurality of sensors 59190A-K may be similar to the sensors (e.g., sensors 50830, 50832, 50836, 50840, 50838, 50846, 50848, 50850, 50854, 50852) depicted in FIGS. 18 and 19. For example, a pressure sensor may be positioned to detect pressure within the evacuation system 59100, such as within the evacuator housing 59105. For example, a pressure sensor may be positioned upstream of one of the filter devices 59120, 59130, 59140 (e.g., sensor 59190E), between the filter devices 59120, 59130, 59140 and the pump 59170 (e.g., sensor 59190G), and/or downstream of the pump 59170 (e.g., sensor 59190I). In certain instances, a pressure sensor 59190K may be positioned outside the evacuation system 59100 to detect pressure in the ambient environment.


Similarly, a particle sensor 59190F, 59190H may be positioned to detect particles within the evacuation system 59100, such as within the evacuator housing 59105. A particle sensor may be positioned upstream of one of the filter devices 59120, 59130, 59140 (e.g., sensor 59190F), between the filter devices 59120, 59130, 59140 and the pump 59170, and/or downstream of the pump 59170 (e.g., sensor 59190H), for example. In various instances, a particle sensor 59190J may be positioned to detect particles in the ambient environment to determine the air quality in the surgical theater, for example.


In various instances, a fluid detection sensor may be positioned upstream of one of the filter devices 59120, 59130, 59140 (e.g., sensor 59190A, 59190C, 59190D), between the filter devices 59120, 59130, 59140 and the pump 59170, downstream of the pump 59170, or outside of the evacuation housing 59106. Similarly, a chemical sensor may be positioned upstream of one of the filter devices 59120, 59130, 59140 (e.g., sensor 59190B), between the filter devices 59120, 59130, 59140 and the pump 59170, downstream of the pump 59170, or outside of the evacuation housing 59106.


Those skilled in the art will appreciate that certain evacuation systems may not include each sensor depicted in FIG. 23 and/or may include additional sensor(s). The components in the evacuation system 59100 may be modular and/or replaceable. For example, the fluid trap 59110, filter devices 59120, 59130, 59140, the pump 59170, the plurality of sensors 59190A-K may be modular and/or replaceable.


The plurality of sensors 59190A-K may detect various parameters of the fluid moving through the fluid path in the evacuation housing 59105 and/or of the ambient environment. In various instances, the evacuation housing 59105 and/or a modular component compatible with the housing 59105 may include a processor, which may be configured to receive inputs from one or more sensors (e.g., 59190A-K) and/or to communicate outputs to one more drivers.


As used herein, fluid may refer to any material coming into the inlet 59112, for example, from a suction conduit, including liquids, gases, vapors, smoke, or combinations thereon. The fluids may be biologic in origin and/or can be introduced to the surgical site from an external source during a procedure. The fluids may also include water, saline, lymph, blood, exudate, and/or pyogenic discharge. Moreover, the fluids may also include particulates or other matter (e.g. cellular matter or debris) that is evacuated by the evacuation system. In an example, such particulates may be suspended in the fluid.


In operation, fluid from a surgical site can be drawn into the inlet 59112 of the evacuator housing 59105 via the fluid trap 59110. The flow path through the housing 59105 in FIG. 23 may be a sealed conduit or tube extending between the various in-line components. In various instances, the fluid may flow past a fluid detection sensor 59190A and chemical sensor 59190B to the first fluid filter device 59120. A fluid detection sensor 59190A may detect fluid particles in the fluid/smoke and the chemical sensor 59190B may detect chemical properties of the fluid. The fluid detection sensor 59190A may also detect the concentration (e.g., liquid-to-gas ratio) and/or size of droplets in the fluid near the fluid detection sensor 59190A. The first fluid filter device 59120 may extract large droplets in the fluid. Then, the fluid may be directed to flow into the second fluid filter 59130. In the second fluid filter 59130, small droplets in the fluid output from the first fluid filter device 59120 may be extracted. The fluid may then flow past the second fluid filter device 59130 and may be directed to flow into the non-fluid filter device 59140.


At the inlet of the non-fluid filter device 59140, the fluid may flow past a laser particle counter 59190F and a pressure sensor 59190E. The fluid may be filtered via one or more non-fluid type filters 59144, 59146. In certain instances, the non-fluid filter device 59140 depicted in FIG. 23 may include additional and/or fewer filtering levels. For example, the non-fluid filter device 59140 may include one or more filtering layers selected from the following group of filters: a course media filter, a fine media filter, and a sorbent-based filter. The course media filter may be a low air resistant filter, which may be comprised of fiberglass, polyester, and/or pleated filters, for example. The fine media filter may be a high efficiency particulate air (HEPA) filter and/or ULPA filter. The sorbent-based filter may be an activated-carbon filter (e.g., charcoal filter), for example. In certain instances, the non-fluid filter device 59140 may also include one or more baffles 59142 or similar structures, upon which the fluid input into the non-fluid filter device 59140 may condensate. In certain instances, the baffle 59142 may be located near the inlet port of the non-fluid filter device 59140. In certain other instances, the baffle 59142 may be positioned in any other suitable location in the non-fluid filter device 59140.


Upon exiting the non-fluid filter device 59140, the fluid may flow past a pressure sensor 59190G and then continue along the flow path 59148 within the evacuator housing 59105 toward the pump 59170. Upon moving through the pump 59170, the filtered fluid may flow past a laser particle sensor 59190H and a pressure sensor 59190I at the outlet 59175 of the evacuator housing 59105. The evacuator housing 59105 may also include an air quality particle sensor 59190J and an ambient pressure sensor 59190K to detect various properties of the ambient environment such as the environment within the surgical theater.


In various instances, the fluid trap 59110 or the first fluid filter device 59120 may be configured to prevent spillage and/or leakage of the captured fluid. For example, the geometry of the fluid trap 59110 or the first fluid filter device 59120 may be selected to prevent the captured fluid from spilling and/or leaking. In certain instances, the fluid trap 59110 or first fluid filter device 59120 may include one or more baffles 59126 and/or splatter screens for preventing the captured fluid from splashing out of the fluid trap 59110 or first fluid filter device 59120. In one or more instances, the fluid trap 59110/first fluid filter device 59120 may include sensors for detecting the volume of fluid within the fluid trap 59110/first fluid filter device 59120 and/or if the fluid trap 59110/first fluid filter device 59120 is filled to capacity. The fluid trap 59110/first fluid filter device 59120 may include a valve for empty the fluid in the fluid reservoir 59114 of the fluid trap 59110 or in the fluid reservoir 59125 of the first fluid filter device 59120.


The various sensors in the evacuation system 59100 may communicate with a controller, which may be incorporated into the evacuation system 59100 and/or may be a component of another surgical instrument and/or a surgical hub. The controller may adjust one or more operational parameters of the evacuator system (e.g. a motor for the evacuator pump) based on input from the sensor(s) or operational parameters of another device, such as an electrosurgical tool and/or imaging device based on input from the sensor(s).


Referring to FIG. 23 again, in certain instances, the first fluid filter device 59120 may be configured to extract a large droplet in the fluid moving through the flow path, and the second fluid filter device 59130 may be configured to extract a small droplet in the fluid. As illustrated in FIG. 23, the first fluid filter device 59120 may be coupled in series with the second fluid filter device 59130. The first fluid filter device 59120 may be positioned upstream of the second fluid filter device 59130. In certain instances, an outlet port of the second fluid filter device 59130 may be coupled to an inlet port of a non-fluid filter device 59140.


As used herein, a droplet larger than 10-20 μm may be considered as a large droplet. Also, a droplet smaller than 10-20 μm may be considered as a small droplet. In certain instances, the first fluid filter device 59120 may remove a majority of droplets larger than 20 μm. In certain instances, the first fluid filter device 59120 may remove at least 85% of droplets larger than 20 μm, greater than 90% of droplets larger than 20 μm, greater than 95% of droplets larger than 20 μm, greater than 99% of droplets larger than 20 μm, greater than 99.9% of droplets larger than 20 μm, or greater than 99.99% droplets larger than 20 μm.


Additionally or alternatively, the first fluid filter device 59120 may remove the majority of droplets greater than 10 μm. In certain instances, the first fluid filter device 59120 may remove at least 85% droplets larger than 10 μm, greater than 90% of droplets larger than 10 μm, greater than 95% of droplets larger than 10 μm, greater than 99% of droplets larger than 10 μm, greater than 99.9% droplets larger than 10 μm, or greater than 99.99% droplets larger than 10 μm.


The second fluid filter device 59130 may remove a majority of droplets larger than 1 μm, for example. In certain instances, the second fluid filter device 59130 may remove at least 85% of droplets larger than 1 μm, greater than 90% of droplets larger than 1 μm, greater than 95% of droplets larger than 1 μm, greater than 99% of droplets larger than 1 μm, greater than 99.9% of droplets larger than 1 μm, or greater than 99.99% droplets larger than 1 μm.


Additionally or alternatively, the second fluid filter device 59130 may remove a majority of droplets larger than 0.1 μm, for example. In certain instances, the second fluid filter device 59130 may remove at least 85% of droplets larger than 0.1 μm, greater than 90% of droplets larger than 0.1 μm, greater than 95% of droplets larger than 0.1 μm, greater than 99% of droplets larger than 0.1 μm, greater than 99.9% of droplets larger than 0.1 μm, or greater than 99.99% droplets larger than 0.1 μm.


In certain instances, the first fluid filter device 59120 may include a diverter valve 59122. The diverter valve 59122 may be similar to the diverter valve 50834, 50934 depicted in FIGS. 18-19. For example, when the diverter valve 59122 is in a first position, the fluid intake through the diverter valve 59122 may be directed along a first path 59123. When the diverter valve 59122 is in a second position, as illustrated in FIG. 23, fluid intake through the diverter valve 59122 may be directed along a second path 59124. In certain instances, the first path 59123 may correspond to a flow path when almost no liquid/droplet has been detected within the fluid or when the detected liquid-to-gas ratio is below a threshold value. In certain other instances, the first path 59123 may correspond to a flow path when the size of the majority of the detected droplets (e.g., 80%, 90%, 95%, or 99%) is smaller than a predetermined threshold value (e.g., 10-20 μm).


In certain instances, the second path 59124 may correspond to a flow path when liquid/droplet has been detected within the fluid, e.g. aerosol, or when the detected liquid-to-gas ratio is equal to or above the threshold value. In certain other instances, the second path 59124 may correspond to a flow path when the size of the majority of the detected droplets is equal to or greater than a predetermined threshold value (e.g., 10-20 μm). The fluid detection sensor 59190A may be configured to detect the presence of liquid droplets or aerosols in the fluid, the liquid-to-gas ratio, and/or the size of the droplet/aerosol. For example, the fluid detection sensor 59190A may be positioned at and/or near the output port of the fluid trap 59110 and/or the inlet port of the first fluid filter device 59120. A liquid-to-gas ratio equal to or above the threshold value (e.g., 1:2; 1:1; 2:1; 5:1; 10:1) may be considered an aerosol. The first path 59123 may bypass the first fluid filter device 59120, and the second path 59124 may direct the fluid through the first fluid filter device 59120 to capture large droplets from the fluid before the fluid is directed into the second fluid filter device 59130. By selecting a fluid path based on the liquid-to-gas ratio or the size of the droplets in the fluid, the efficiency of the surgical evacuation system 59100 may be improved.


As discussed above, if the fluid detection sensor 59190A detects a liquid-to-gas ratio equal to or above a threshold value, a droplet larger than a threshold size, or a combination of both, the fluid intake may be diverted into the second path 59124 before entering the second fluid filter device 59130. The second path 59124 may be configured to condense liquid droplets in the flow path. For example, the second path 59124 may include a plurality of baffles 59126 or other similar structures, upon which the fluid may be configured to condensate. As fluid flows past the second path 59124, the liquid may condensate on the baffles 59126 therein, and may be directed to drip downward into the fluid reservoir 59125.


Conversely, if the fluid detection sensor 59190A detects a liquid-to-gas ratio below the threshold value, a droplet smaller than a threshold size, or a combination of both, the fluid intake may be directed directly to the second fluid filter device 59130. The diverter valve 59122 may be positioned to bypass the second path 59124 and the first fluid filter device 59120 such that the fluid flows directly to the second fluid filter device 59130. By bypassing the first fluid filter device 59120, the surgical evacuation system 59100 may require less power from the motor that drives the pump 59170. For example, the motor may require more power to draw an aerosol through the surgical evacuation system than to draw a non-aerosol smoke through the surgical evacuation system.


In certain instances, the second fluid filter device 59130 may include a filter 59135 that is configured to capture small droplets (e.g., smaller than 10-20 μm). In certain instances, the filter 59135 may be configured to extract droplets larger than a threshold size (e.g., 0.1-1 μm). In certain instances, the filter 59135 may be at least one of a membrane filter, a honeycomb filter, and/or a porous structure filter (e.g., thin porous pad), or any other suitable filter that is capable of extracting small droplets or droplets larger than 0.1-1 μm. The fluid output from the second fluid filter device 59130 may flow into the non-fluid filter device 59140. In certain instances, the second fluid filter device 59130 may also include one or more baffles or similar structures, upon which the fluid input into the second fluid filter device may condensate. In certain instances, the baffles may be located near the inlet port of the second fluid filter device 59130. In certain other instances, the baffles may be positioned in any other suitable location in the second fluid filter device 50130.


Referring still to FIG. 23, the evacuation system 59100 may also include a first recirculation channel 59150. The inlet port 59152 of the first recirculation channel 59150 may be positioned between the second fluid filter device 59130 and the non-fluid filter device 59140. The first recirculation channel 59150 may be configured to recirculate the fluid output from the second fluid filter device 59130.


The fluid directed into the first recirculation channel 59150 may be injected into the fluid path upstream of the second fluid filter device 59130. For example, the fluid directed into the first recirculation channel 59150 may be injected into the first fluid filter device 59120 (e.g., fluid reservoir 59125), as illustrated in FIG. 23. In certain other instances, the fluid directed into the first recirculation channel 59150 may be injected into an upstream portion of the second fluid filter device 59130 (e.g., inlet port of the second fluid filter device 59130) or a flow path between the first fluid filter device 59120 and the second fluid filter device 59130.


In certain instances, the first recirculation channel 59150 (e.g., a portion of the first recirculation channel 59150 near the inlet port 59152) may extend downward from the inlet port 59152 of the first recirculation channel 59150. This may allow the large droplet or the small droplet in the fluid output from the second fluid filter device 59130 to be directed to the first recirculation channel 59150 via gravity.


In certain instances, the evacuation system 59100 may also include a first recirculation valve 59155. The first recirculation valve 59155 may be configured to close and/or open the first recirculation channel 59150. When the first recirculation valve 59155 is opened, the fluid output from the second fluid filter device 59130 may be directed into the first recirculation channel 59150. In certain instances, the evacuation system 59100 may further include a fluid detect sensor 59190D. The fluid detection sensor 59190D may be positioned near the first recirculation valve 59155. The fluid detection sensor 59190D may be similar to the fluid detection sensor 59190A. The fluid detection sensor 59190D may be configured to detect a parameter of the fluid (e.g., the size of the droplets in the fluid, liquid-to-gas ratio). The first recirculation valve 59155 may open the first recirculation channel 59150 when the parameter detected by the fluid detection sensor 59190D is equal to or greater than a predetermined threshold value. For example, if the fluid detection sensor 59190D detects a liquid-to-gas ratio equal to or above a threshold value (e.g., 1:2; 1:1; 2:1; 5:1; 10:1) and/or a droplet size larger than a threshold value (e.g., 0.1-1 μm), the fluid output from the second fluid filter device 59130 may be diverted into the first recirculation channel. In this way, the evacuation system 59100 may prevent droplets/moisture that may damage the filters 59144, 59146 from entering the non-fluid filter device 59140. If the fluid detection sensor 59190D detects a liquid-to-gas ratio below a threshold value and/or a droplet size smaller than a threshold value (e.g., 0.1-1 μm), the first recirculation valve 59155 may be closed such that the fluid output from the second fluid filter device 59130 is directed into the non-fluid filter device 59140.


In certain instances, the recirculated fluid through the first recirculation channel 59150 may go through the first fluid filter device 59120 and/or through second fluid filter device 59130 again, and the recirculation steps may be repeated until the parameter detected by the fluid detection sensor 59190D becomes below a predetermined threshold value. In certain instances, if the number of the repetition is equal to or greater than a predetermined threshold value (e.g., 5 times, 10 times, or any other suitable value greater than 0), which may indicate that some components in the first/second fluid filter devices 59120/59130 are not working properly (e.g., due to sensor failure, damages or blockages to filters/baffles), the first/second fluid filter devices 59120/59130 or the evacuation system 59100 may be disabled, for example, by stopping the pump 59170 or the motor. In this case, the processor of the evacuation system 59100 may notify the evacuation system 59100 or the user that there is an error in the first/second fluid filter devices 59120/59130.


In certain instances, the evacuation system 59100 may also include a second recirculation channel 59160. An inlet port 59162 of the second recirculation channel 59160 may be positioned between the first fluid filter device 59120 and the second fluid filter device 59130. The second recirculation channel 59160 may be configured to recirculate the fluid output from the first fluid filter 59120. In certain instances, the fluid directed into the second recirculation channel 59160 may be injected into the fluid path upstream of the first fluid filter device 59120 (e.g., the reservoir 59114 or the fluid trap 59110) or an upstream portion of the first fluid filter device 59120 (e.g., inlet port of the first fluid filter or the reservoir 59125 of the first fluid filter device 59120). In certain instances, the second recirculation channel 59160 (e.g., a portion of the second recirculation channel 59160 near the inlet port 59162) may extend downward from the inlet port 59162 of the second recirculation channel 59160. This may allow the large droplet or the small droplet in the fluid output from the first fluid filter device 59120 to be directed to the second recirculation channel 59160 via gravity.


In certain instances, the evacuation system 59100 may further include a second recirculation valve 59165. The second recirculation valve 59165 may be configured to close and/or open the second recirculation channel 59160. When the second recirculation valve is opened, the fluid output from the first fluid filter device 59120 may be recirculated through the second recirculation channel 59160.


In certain instances, the evacuation system 59100 may also use a fluid detection sensor 59190C to control the second recirculation valve 59165. The fluid detection sensor 59190C may be similar to the fluid detection sensor 59190A, D. The fluid sensor 59190C may be positioned near the second recirculation valve 59165. The fluid sensor 59190C may be configured to detect a parameter of the fluid (e.g., the size of the droplets in the fluid, liquid-to-gas ratio). The second recirculation valve 59165 may open the second recirculation channel 59160 when the parameter detected by the fluid detection sensor 59190C is equal to or greater than a predetermined threshold value. For example, if the fluid detection sensor 59190C detects a liquid-to-gas ratio equal to or above a threshold value (e.g., 1:2; 1:1; 2:1; 5:1; 10:1) and/or a droplet size larger than a threshold value (e.g., 10-20 μm), the fluid output from the first fluid filter device 59120 may be diverted into the second recirculation channel 59160. In this way, the evacuation system 59100 may prevent large droplets/moistures that may easily and/or quickly clog the filter 59135 from entering the second fluid filter device 59140. If the fluid sensor 59190C detects a liquid-to-gas ratio below a threshold value and/or a droplet size smaller than a threshold value (e.g., 10-20 μm), the second recirculation valve 59165 may be closed such that the fluid output from the first fluid filter device 59120 is directed into the second fluid filter device 59130.


In certain instances, the recirculated fluid through the second recirculation channel 59160 may go through the first fluid filter device 59120 again, and the recirculation steps may be repeated until the parameter detected by the fluid detection sensor 59190C becomes below a predetermined threshold value. In certain instances, if the number of the repetition is equal to or greater than a predetermined threshold value (e.g., 5 times, 10 times, or any other suitable value greater than 0), which may indicate that some components in the first fluid filter device 59120 is not working properly (e.g., due to sensor failure, damages or blockages to baffles), the first fluid filter device 59120 or the evacuation system 59100 may be disabled, for example, by stopping the pump 59170 or the motor. In this case, the processor of the evacuation system 59100 may notify the evacuation system 59100 or the user that there is an error in the first fluid filter device 59120.


In certain instances, the first recirculation valve 59155 may be configured to open and/or close the flow path between the second fluid filter device 59130 and the non-fluid filter device 59140. For example, when the parameter detected by the fluid detection sensor 59190D is equal to or greater than a predetermined threshold value, the first recirculation valve 59155 opens the first recirculation channel 59150 and closes the flow path between the second fluid filter device 59130 and the non-fluid filter device 59140 at the same time. In this way, the present disclosure may advantageously allows the evacuation system 59100 to divert almost all fluid output from the second fluid filter device 59130, which may include droplets that may damage the filters 59144, 59146 of the non-fluid filter device 59140, into the first recirculation channel 59150. Also, in certain instances, the closing of the first recirculation channel 59150 and the opening of the flow path between the second fluid filter device 59130 and the non-fluid filter device 59140 can be done with a single step/operation as opposed to multiple steps/operations. For example, as illustrated in FIG. 23, when the first recirculation valve 59155 is opened 90 degrees, the first recirculation valve 59155 closes the flow path between the second fluid filter device 59130 and the non-fluid filter device 59140.


Similarly, in certain instances, the second recirculation valve 59165 may be configured to open and/or close the flow path between the first fluid filter device 59120 and the second fluid filter device 59130. In certain instances, when the parameter detected by the fluid detection sensor 59190C is equal to or greater than a predetermined threshold value, the second recirculation valve 59165 may open the second recirculation channel 59160 and close the flow path between the first fluid filter device 59120 and the second fluid filter device 59130 at the same time. In this way, the present disclosure may advantageously allows the evacuation system 59100 to divert almost all fluid output from the first fluid filter device 59120, which may include large droplets that may easily/quickly clog the second fluid filter device 59130 and/or the filter 59135 of the second fluid filter device 59130, into the second recirculation channel 59160. Also, in certain instances, the closing of the second recirculation channel 59160 and the opening of the flow path between the first fluid filter device 59120 and the second fluid filter device 59130 can be done with a single step/operation as opposed to multiple steps/operations. For example, as illustrated in FIG. 23, when the second recirculation valve 59165 is opened 90 degrees, the second recirculation valve 59165 closes the flow path between the first fluid filter device 59120 and the second fluid filter device 59130. This may advantageously reduce the number of signals/commands between the processor and the components in the evacuation system 59100, preventing possible signal delay and malfunction of the components due to the signal delay.


In certain instances, the evacuation system 59100 may include one or more centrifugal blower arrangements. For example, a first centrifugal blower 59180A (e.g., squirrel cage) may be provided to the flow path 59148 between the non-fluid filter device 59140 and the pump 59170, and a second centrifugal blower 59180B may be provided to the first recirculation channel 59150. The first centrifugal blower 59180A may be operably coupled to the second centrifugal blower 59180B, for example, via one or more gears 59185A. For example, when the first recirculation valve 59155 is open and the pump 59170 is activated, the suction force generated by the pump 59170 may generate rotation of the first centrifugal blower 59180A, which may be transferred to the second centrifugal blower 59180B, via the gear 59185A, which draws the recirculated fluid through the first recirculation channel 59150.


Similarly, a third centrifugal blower 59180C may be provided to the second recirculation channel 59160. In certain instances, the third centrifugal blower 59180C may be operably coupled to the first centrifugal blower 59180A, for example, via one or more gears 59185A-B and the second centrifugal blower 59180B, as illustrated in FIG. 23. In this case, when the second recirculating valve 59165 is open and the pump 59170 is activated, the suction force generated by the pump 59170 may generate rotation of the first centrifugal blower 59180A, which may be transferred to the second centrifugal blower 59180B and, in turn, to the third centrifugal blower 59180C, which draws the recirculated fluid through the second recirculation channel 59160. In certain other instances, the third centrifugal blower 59180C may be operably coupled to the first centrifugal blower 59180A, for example, via the gears 59185B without having the second centrifugal blower 59180B therebetween. In this case, when the second recirculating valve 59165 is open and the pump 59170 is activated, the suction force generated by the pump 59170 may generate rotation of the first centrifugal blower 59180A, which may be transferred to the third centrifugal blower 59180C, via one or more gears 59185B, which draws the recirculated fluid through the second recirculation channel 59160. In this way, the present disclosure may advantageously use less power from the motor/pump by reusing the motor/pump power in generating a suction force for the first and/or second recirculation channel 59150, 59160. In certain other instances, the first recirculation channel 59150 and/or the second recirculation channel 59160 may be provided with a separate pump to generate the suction force.


The reader will readily appreciate that various surgical evacuation systems and components described herein can be incorporated into a computer-implemented interactive surgical system, a surgical hub, and/or a robotic system. For example, a surgical evacuation system can communicate data to a surgical hub, a robotic system, and/or a computer-implanted interactive surgical system and/or can receive data from a surgical hub, robotic system, and/or a computer-implemented interactive surgical system. Various examples of computer-implemented interactive surgical systems, robotic systems, and surgical hubs are further described below.


Computer-Implemented Interactive Surgical System

Referring to FIG. 24, a computer-implemented interactive surgical system 100 includes one or more surgical systems 102 and a cloud-based system (e.g., the cloud 104 that may include a remote server 113 coupled to a storage device 105). Each surgical system 102 includes at least one surgical hub 106 in communication with the cloud 104 that may include a remote server 113. In one example, as illustrated in FIG. 24, the surgical system 102 includes a visualization system 108, a robotic system 110, and a handheld intelligent surgical instrument 112, which are configured to communicate with one another and/or the hub 106. In some aspects, a surgical system 102 may include an M number of hubs 106, an N number of visualization systems 108, an O number of robotic systems 110, and a P number of handheld intelligent surgical instruments 112, where M, N, O, and P are integers greater than or equal to one.



FIG. 26 depicts an example of a surgical system 102 being used to perform a surgical procedure on a patient who is lying down on an operating table 114 in a surgical operating room 116. A robotic system 110 is used in the surgical procedure as a part of the surgical system 102. The robotic system 110 includes a surgeon's console 118, a patient side cart 120 (surgical robot), and a surgical robotic hub 122. The patient side cart 120 can manipulate at least one removably coupled surgical tool 117 through a minimally invasive incision in the body of the patient while the surgeon views the surgical site through the surgeon's console 118. An image of the surgical site can be obtained by a medical imaging device 124, which can be manipulated by the patient side cart 120 to orient the imaging device 124. The robotic hub 122 can be used to process the images of the surgical site for subsequent display to the surgeon through the surgeon's console 118.


Other types of robotic systems can be readily adapted for use with the surgical system 102. Various examples of robotic systems and surgical tools that are suitable for use with the present disclosure are described in U.S. Provisional Patent Application Ser. No. 62/611,339, titled ROBOT ASSISTED SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety.


Various examples of cloud-based analytics that are performed by the cloud 104, and are suitable for use with the present disclosure, are described in U.S. Provisional Patent Application Ser. No. 62/611,340, titled CLOUD-BASED MEDICAL ANALYTICS, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety.


In various aspects, the imaging device 124 includes at least one image sensor and one or more optical components. Suitable image sensors include, but are not limited to, Charge-Coupled Device (CCD) sensors and Complementary Metal-Oxide Semiconductor (CMOS) sensors.


The optical components of the imaging device 124 may include one or more illumination sources and/or one or more lenses. The one or more illumination sources may be directed to illuminate portions of the surgical field. The one or more image sensors may receive light reflected or refracted from the surgical field, including light reflected or refracted from tissue and/or surgical instruments.


The one or more illumination sources may be configured to radiate electromagnetic energy in the visible spectrum as well as the invisible spectrum. The visible spectrum, sometimes referred to as the optical spectrum or luminous spectrum, is that portion of the electromagnetic spectrum that is visible to (i.e., can be detected by) the human eye and may be referred to as visible light or simply light. A typical human eye will respond to wavelengths in air that are from about 380 nm to about 750 nm.


The invisible spectrum (i.e., the non-luminous spectrum) is that portion of the electromagnetic spectrum that lies below and above the visible spectrum (i.e., wavelengths below about 380 nm and above about 750 nm). The invisible spectrum is not detectable by the human eye. Wavelengths greater than about 750 nm are longer than the red visible spectrum, and they become invisible infrared (IR), microwave, and radio electromagnetic radiation. Wavelengths less than about 380 nm are shorter than the violet spectrum, and they become invisible ultraviolet, x-ray, and gamma ray electromagnetic radiation.


In various aspects, the imaging device 124 is configured for use in a minimally invasive procedure. Examples of imaging devices suitable for use with the present disclosure include, but not limited to, an arthroscope, angioscope, bronchoscope, choledochoscope, colonoscope, cytoscope, duodenoscope, enteroscope, esophagogastro-duodenoscope (gastroscope), endoscope, laryngoscope, nasopharyngo-neproscope, sigmoidoscope, thoracoscope, and ureteroscope.


In one aspect, the imaging device employs multi-spectrum monitoring to discriminate topography and underlying structures. A multi-spectral image is one that captures image data within specific wavelength ranges across the electromagnetic spectrum. The wavelengths may be separated by filters or by the use of instruments that are sensitive to particular wavelengths, including light from frequencies beyond the visible light range, e.g., IR and ultraviolet. Spectral imaging can allow extraction of additional information the human eye fails to capture with its receptors for red, green, and blue. The use of multi-spectral imaging is described in greater detail under the heading “Advanced Imaging Acquisition Module” in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety. Multi-spectrum monitoring can be a useful tool in relocating a surgical field after a surgical task is completed to perform one or more of the previously described tests on the treated tissue.


It is axiomatic that strict sterilization of the operating room and surgical equipment is required during any surgery. The strict hygiene and sterilization conditions required in a “surgical theater,” i.e., an operating or treatment room, necessitate the highest possible sterility of all medical devices and equipment. Part of that sterilization process is the need to sterilize anything that comes in contact with the patient or penetrates the sterile field, including the imaging device 124 and its attachments and components. It will be appreciated that the sterile field may be considered a specified area, such as within a tray or on a sterile towel, that is considered free of microorganisms, or the sterile field may be considered an area, immediately around a patient, who has been prepared for a surgical procedure. The sterile field may include the scrubbed team members, who are properly attired, and all furniture and fixtures in the area.


In various aspects, the visualization system 108 includes one or more imaging sensors, one or more image processing units, one or more storage arrays, and one or more displays that are strategically arranged with respect to the sterile field, as illustrated in FIG. 25. In one aspect, the visualization system 108 includes an interface for HL7, PACS, and EMR. Various components of the visualization system 108 are described under the heading “Advanced Imaging Acquisition Module” in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety.


As illustrated in FIG. 25, a primary display 119 is positioned in the sterile field to be visible to an operator at the operating table 114. In addition, a visualization tower 111 is positioned outside the sterile field. The visualization tower 111 includes a first non-sterile display 107 and a second non-sterile display 109, which face away from each other. The visualization system 108, guided by the hub 106, is configured to utilize the displays 107, 109, and 119 to coordinate information flow to operators inside and outside the sterile field. For example, the hub 106 may cause the visualization system 108 to display a snap-shot of a surgical site, as recorded by an imaging device 124, on a non-sterile display 107 or 109, while maintaining a live feed of the surgical site on the primary display 119. The snap-shot on the non-sterile display 107 or 109 can permit a non-sterile operator to perform a diagnostic step relevant to the surgical procedure, for example.


In one aspect, the hub 106 is also configured to route a diagnostic input or feedback entered by a non-sterile operator at the visualization tower 111 to the primary display 119 within the sterile field, where it can be viewed by a sterile operator at the operating table. In one example, the input can be in the form of a modification to the snap-shot displayed on the non-sterile display 107 or 109, which can be routed to the primary display 119 by the hub 106.


Referring to FIG. 25, a surgical instrument 112 is being used in the surgical procedure as part of the surgical system 102. The hub 106 is also configured to coordinate information flow to a display of the surgical instrument 112. For example, in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety. A diagnostic input or feedback entered by a non-sterile operator at the visualization tower 111 can be routed by the hub 106 to the surgical instrument display 115 within the sterile field, where it can be viewed by the operator of the surgical instrument 112. Example surgical instruments that are suitable for use with the surgical system 102 are described under the heading “Surgical Instrument Hardware” and in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety, for example.


Referring now to FIG. 26, a hub 106 is depicted in communication with a visualization system 108, a robotic system 110, and a handheld intelligent surgical instrument 112. The hub 106 includes a hub display 135, an imaging module 138, a generator module 140, a communication module 130, a processor module 132, and a storage array 134. In certain aspects, as illustrated in FIG. 26, the hub 106 further includes a smoke evacuation module 126 and/or a suction/irrigation module 128.


During a surgical procedure, energy application to tissue, for sealing and/or cutting, is generally associated with smoke evacuation, suction of excess fluid, and/or irrigation of the tissue. Fluid, power, and/or data lines from different sources are often entangled during the surgical procedure. Valuable time can be lost addressing this issue during a surgical procedure. Detangling the lines may necessitate disconnecting the lines from their respective modules, which may require resetting the modules. The hub modular enclosure 136 offers a unified environment for managing the power, data, and fluid lines, which reduces the frequency of entanglement between such lines.


Aspects of the present disclosure present a surgical hub for use in a surgical procedure that involves energy application to tissue at a surgical site. The surgical hub includes a hub enclosure and a combo generator module slidably receivable in a docking station of the hub enclosure. The docking station includes data and power contacts. The combo generator module includes two or more of an ultrasonic energy generator component, a bipolar RF energy generator component, and a monopolar RF energy generator component that are housed in a single unit. In one aspect, the combo generator module also includes a smoke evacuation component, at least one energy delivery cable for connecting the combo generator module to a surgical instrument, at least one smoke evacuation component configured to evacuate smoke, fluid, and/or particulates generated by the application of therapeutic energy to the tissue, and a fluid line extending from the remote surgical site to the smoke evacuation component.


In one aspect, the fluid line is a first fluid line and a second fluid line extends from the remote surgical site to a suction and irrigation module slidably received in the hub enclosure. In one aspect, the hub enclosure comprises a fluid interface.


Certain surgical procedures may require the application of more than one energy type to the tissue. One energy type may be more beneficial for cutting the tissue, while another different energy type may be more beneficial for sealing the tissue. For example, a bipolar generator can be used to seal the tissue while an ultrasonic generator can be used to cut the sealed tissue. Aspects of the present disclosure present a solution where a hub modular enclosure 136 is configured to accommodate different generators, and facilitate an interactive communication therebetween. One of the advantages of the hub modular enclosure 136 is enabling the quick removal and/or replacement of various modules.


Aspects of the present disclosure present a modular surgical enclosure for use in a surgical procedure that involves energy application to tissue. The modular surgical enclosure includes a first energy-generator module, configured to generate a first energy for application to the tissue, and a first docking station comprising a first docking port that includes first data and power contacts, wherein the first energy-generator module is slidably movable into an electrical engagement with the power and data contacts and wherein the first energy-generator module is slidably movable out of the electrical engagement with the first power and data contacts.


Further to the above, the modular surgical enclosure also includes a second energy-generator module configured to generate a second energy, different than the first energy, for application to the tissue, and a second docking station comprising a second docking port that includes second data and power contacts, wherein the second energy-generator module is slidably movable into an electrical engagement with the power and data contacts, and wherein the second energy-generator module is slidably movable out of the electrical engagement with the second power and data contacts.


In addition, the modular surgical enclosure also includes a communication bus between the first docking port and the second docking port, configured to facilitate communication between the first energy-generator module and the second energy-generator module.


Referring to FIGS. 3-7, aspects of the present disclosure are presented for a hub modular enclosure 136 that allows the modular integration of a generator module 140, a smoke evacuation module 126, and a suction/irrigation module 128. The hub modular enclosure 136 further facilitates interactive communication between the modules 140, 126, 128. As illustrated in FIG. 28, the generator module 140 can be a generator module with integrated monopolar, bipolar, and ultrasonic components supported in a single housing unit 139 slidably insertable into the hub modular enclosure 136. As illustrated in FIG. 28, the generator module 140 can be configured to connect to a monopolar device 146, a bipolar device 147, and an ultrasonic device 148. Alternatively, the generator module 140 may comprise a series of monopolar, bipolar, and/or ultrasonic generator modules that interact through the hub modular enclosure 136. The hub modular enclosure 136 can be configured to facilitate the insertion of multiple generators and interactive communication between the generators docked into the hub modular enclosure 136 so that the generators would act as a single generator.


In one aspect, the hub modular enclosure 136 comprises a modular power and communication backplane 149 with external and wireless communication headers to enable the removable attachment of the modules 140, 126, 128 and interactive communication therebetween.


In one aspect, the hub modular enclosure 136 includes docking stations, or drawers, 151, herein also referred to as drawers, which are configured to slidably receive the modules 140, 126, 128. FIG. 27 illustrates a partial perspective view of a surgical hub enclosure 136, and a combo generator module 145 slidably receivable in a docking station 151 of the surgical hub enclosure 136. A docking port 152 with power and data contacts on a rear side of the combo generator module 145 is configured to engage a corresponding docking port 150 with power and data contacts of a corresponding docking station 151 of the hub modular enclosure 136 as the combo generator module 145 is slid into position within the corresponding docking station 151 of the hub module enclosure 136. In one aspect, the combo generator module 145 includes a bipolar, ultrasonic, and monopolar module and a smoke evacuation module integrated together into a single housing unit 139, as illustrated in FIG. 28.


In various aspects, the smoke evacuation module 126 includes a fluid line 154 that conveys captured/collected smoke and/or fluid away from a surgical site and to, for example, the smoke evacuation module 126. Vacuum suction originating from the smoke evacuation module 126 can draw the smoke into an opening of a utility conduit at the surgical site. The utility conduit, coupled to the fluid line, can be in the form of a flexible tube terminating at the smoke evacuation module 126. The utility conduit and the fluid line define a fluid path extending toward the smoke evacuation module 126 that is received in the hub enclosure 136.


In various aspects, the suction/irrigation module 128 is coupled to a surgical tool comprising an aspiration fluid line and a suction fluid line. In one example, the aspiration and suction fluid lines are in the form of flexible tubes extending from the surgical site toward the suction/irrigation module 128. One or more drive systems can be configured to cause irrigation and aspiration of fluids to and from the surgical site.


In one aspect, the surgical tool includes a shaft having an end effector at a distal end thereof and at least one energy treatment associated with the end effector, an aspiration tube, and an irrigation tube. The aspiration tube can have an inlet port at a distal end thereof and the aspiration tube extends through the shaft. Similarly, an irrigation tube can extend through the shaft and can have an inlet port in proximity to the energy deliver implement. The energy deliver implement is configured to deliver ultrasonic and/or RF energy to the surgical site and is coupled to the generator module 140 by a cable extending initially through the shaft.


The irrigation tube can be in fluid communication with a fluid source, and the aspiration tube can be in fluid communication with a vacuum source. The fluid source and/or the vacuum source can be housed in the suction/irrigation module 128. In one example, the fluid source and/or the vacuum source can be housed in the hub enclosure 136 separately from the suction/irrigation module 128. In such example, a fluid interface can be configured to connect the suction/irrigation module 128 to the fluid source and/or the vacuum source.


In one aspect, the modules 140, 126, 128 and/or their corresponding docking stations on the hub modular enclosure 136 may include alignment features that are configured to align the docking ports of the modules into engagement with their counterparts in the docking stations of the hub modular enclosure 136. For example, as illustrated in FIG. 27, the combo generator module 145 includes side brackets 155 that are configured to slidably engage with corresponding brackets 156 of the corresponding docking station 151 of the hub modular enclosure 136. The brackets cooperate to guide the docking port contacts of the combo generator module 145 into an electrical engagement with the docking port contacts of the hub modular enclosure 136.


In some aspects, the drawers 151 of the hub modular enclosure 136 are the same, or substantially the same size, and the modules are adjusted in size to be received in the drawers 151. For example, the side brackets 155 and/or 156 can be larger or smaller depending on the size of the module. In other aspects, the drawers 151 are different in size and are each designed to accommodate a particular module.


Furthermore, the contacts of a particular module can be keyed for engagement with the contacts of a particular drawer to avoid inserting a module into a drawer with mismatching contacts.


As illustrated in FIG. 27, the docking port 150 of one drawer 151 can be coupled to the docking port 150 of another drawer 151 through a communications link 157 to facilitate an interactive communication between the modules housed in the hub modular enclosure 136. The docking ports 150 of the hub modular enclosure 136 may alternatively, or additionally, facilitate a wireless interactive communication between the modules housed in the hub modular enclosure 136. Any suitable wireless communication can be employed, such as for example Air Titan-Bluetooth.



FIG. 29 illustrates individual power bus attachments for a plurality of lateral docking ports of a lateral modular housing 160 configured to receive a plurality of modules of a surgical hub 206. The lateral modular housing 160 is configured to laterally receive and interconnect the modules 161. The modules 161 are slidably inserted into docking stations 162 of lateral modular housing 160, which includes a backplane for interconnecting the modules 161. As illustrated in FIG. 29, the modules 161 are arranged laterally in the lateral modular housing 160. Alternatively, the modules 161 may be arranged vertically in a lateral modular housing.



FIG. 30 illustrates a vertical modular housing 164 configured to receive a plurality of modules 165 of the surgical hub 106. The modules 165 are slidably inserted into docking stations, or drawers, 167 of vertical modular housing 164, which includes a backplane for interconnecting the modules 165. Although the drawers 167 of the vertical modular housing 164 are arranged vertically, in certain instances, a vertical modular housing 164 may include drawers that are arranged laterally. Furthermore, the modules 165 may interact with one another through the docking ports of the vertical modular housing 164. In the example of FIG. 30, a display 177 is provided for displaying data relevant to the operation of the modules 165. In addition, the vertical modular housing 164 includes a master module 178 housing a plurality of sub-modules that are slidably received in the master module 178.


In various aspects, the imaging module 138 comprises an integrated video processor and a modular light source and is adapted for use with various imaging devices. In one aspect, the imaging device is comprised of a modular housing that can be assembled with a light source module and a camera module. The housing can be a disposable housing. In at least one example, the disposable housing is removably coupled to a reusable controller, a light source module, and a camera module. The light source module and/or the camera module can be selectively chosen depending on the type of surgical procedure. In one aspect, the camera module comprises a CCD sensor. In another aspect, the camera module comprises a CMOS sensor. In another aspect, the camera module is configured for scanned beam imaging. Likewise, the light source module can be configured to deliver a white light or a different light, depending on the surgical procedure.


During a surgical procedure, removing a surgical device from the surgical field and replacing it with another surgical device that includes a different camera or a different light source can be inefficient. Temporarily losing sight of the surgical field may lead to undesirable consequences. The module imaging device of the present disclosure is configured to permit the replacement of a light source module or a camera module midstream during a surgical procedure, without having to remove the imaging device from the surgical field.


In one aspect, the imaging device comprises a tubular housing that includes a plurality of channels. A first channel is configured to slidably receive the camera module, which can be configured for a snap-fit engagement with the first channel. A second channel is configured to slidably receive the light source module, which can be configured for a snap-fit engagement with the second channel. In another example, the camera module and/or the light source module can be rotated into a final position within their respective channels. A threaded engagement can be employed in lieu of the snap-fit engagement.


In various examples, multiple imaging devices are placed at different positions in the surgical field to provide multiple views. The imaging module 138 can be configured to switch between the imaging devices to provide an optimal view. In various aspects, the imaging module 138 can be configured to integrate the images from the different imaging device.


Various image processors and imaging devices suitable for use with the present disclosure are described in U.S. Pat. No. 7,995,045, titled COMBINED SBI AND CONVENTIONAL IMAGE PROCESSOR, which issued on Aug. 9, 2011, which is herein incorporated by reference in its entirety. In addition, U.S. Pat. No. 7,982,776, titled SBI MOTION ARTIFACT REMOVAL APPARATUS AND METHOD, which issued on Jul. 19, 2011, which is herein incorporated by reference in its entirety, describes various systems for removing motion artifacts from image data. Such systems can be integrated with the imaging module 138. Furthermore, U.S. Patent Application Publication No. 2011/0306840, titled CONTROLLABLE MAGNETIC SOURCE TO FIXTURE INTRACORPOREAL APPARATUS, which published on Dec. 15, 2011, and U.S. Patent Application Publication No. 2014/0243597, titled SYSTEM FOR PERFORMING A MINIMALLY INVASIVE SURGICAL PROCEDURE, which published on Aug. 28, 2014, each of which is herein incorporated by reference in its entirety.



FIG. 31 illustrates a surgical data network 201 comprising a modular communication hub 203 configured to connect modular devices located in one or more operating theaters of a healthcare facility, or any room in a healthcare facility specially equipped for surgical operations, to a cloud-based system (e.g., the cloud 204 that may include a remote server 213 coupled to a storage device 205). In one aspect, the modular communication hub 203 comprises a network hub 207 and/or a network switch 209 in communication with a network router. The modular communication hub 203 also can be coupled to a local computer system 210 to provide local computer processing and data manipulation. The surgical data network 201 may be configured as passive, intelligent, or switching. A passive surgical data network serves as a conduit for the data, enabling it to go from one device (or segment) to another and to the cloud computing resources. An intelligent surgical data network includes additional features to enable the traffic passing through the surgical data network to be monitored and to configure each port in the network hub 207 or network switch 209. An intelligent surgical data network may be referred to as a manageable hub or switch. A switching hub reads the destination address of each packet and then forwards the packet to the correct port.


Modular devices 1a-1n located in the operating theater may be coupled to the modular communication hub 203. The network hub 207 and/or the network switch 209 may be coupled to a network router 211 to connect the devices 1a-1n to the cloud 204 or the local computer system 210. Data associated with the devices 1a-1n may be transferred to cloud-based computers via the router for remote data processing and manipulation. Data associated with the devices 1a-1n may also be transferred to the local computer system 210 for local data processing and manipulation. Modular devices 2a-2m located in the same operating theater also may be coupled to a network switch 209. The network switch 209 may be coupled to the network hub 207 and/or the network router 211 to connect to the devices 2a-2m to the cloud 204. Data associated with the devices 2a-2n may be transferred to the cloud 204 via the network router 211 for data processing and manipulation. Data associated with the devices 2a-2m may also be transferred to the local computer system 210 for local data processing and manipulation.


It will be appreciated that the surgical data network 201 may be expanded by interconnecting multiple network hubs 207 and/or multiple network switches 209 with multiple network routers 211. The modular communication hub 203 may be contained in a modular control tower configured to receive multiple devices 1a-1n/2a-2m. The local computer system 210 also may be contained in a modular control tower. The modular communication hub 203 is connected to a display 212 to display images obtained by some of the devices 1a-1n/2a-2m, for example during surgical procedures. In various aspects, the devices 1a-1n/2a-2m may include, for example, various modules such as an imaging module 138 coupled to an endoscope, a generator module 140 coupled to an energy-based surgical device, a smoke evacuation module 126, a suction/irrigation module 128, a communication module 130, a processor module 132, a storage array 134, a surgical device coupled to a display, and/or a non-contact sensor module, among other modular devices that may be connected to the modular communication hub 203 of the surgical data network 201.


In one aspect, the surgical data network 201 may comprise a combination of network hub(s), network switch(es), and network router(s) connecting the devices 1a-1n/2a-2m to the cloud. Any one of or all of the devices 1a-1n/2a-2m coupled to the network hub or network switch may collect data in real time and transfer the data to cloud computers for data processing and manipulation. It will be appreciated that cloud computing relies on sharing computing resources rather than having local servers or personal devices to handle software applications. The word “cloud” may be used as a metaphor for “the Internet,” although the term is not limited as such. Accordingly, the term “cloud computing” may be used herein to refer to “a type of Internet-based computing,” where different services—such as servers, storage, and applications—are delivered to the modular communication hub 203 and/or computer system 210 located in the surgical theater (e.g., a fixed, mobile, temporary, or field operating room or space) and to devices connected to the modular communication hub 203 and/or computer system 210 through the Internet. The cloud infrastructure may be maintained by a cloud service provider. In this context, the cloud service provider may be the entity that coordinates the usage and control of the devices 1a-1n/2a-2m located in one or more operating theaters. The cloud computing services can perform a large number of calculations based on the data gathered by smart surgical instruments, robots, and other computerized devices located in the operating theater. The hub hardware enables multiple devices or connections to be connected to a computer that communicates with the cloud computing resources and storage.


Applying cloud computer data processing techniques on the data collected by the devices 1a-1n/2a-2m, the surgical data network provides improved surgical outcomes, reduced costs, and improved patient satisfaction. At least some of the devices 1a-1n/2a-2m may be employed to view tissue states to assess leaks or perfusion of sealed tissue after a tissue sealing and cutting procedure. At least some of the devices 1a-1n/2a-2m may be employed to identify pathology, such as the effects of diseases, using the cloud-based computing to examine data including images of samples of body tissue for diagnostic purposes. This includes localization and margin confirmation of tissue and phenotypes. At least some of the devices 1a-1n/2a-2m may be employed to identify anatomical structures of the body using a variety of sensors integrated with imaging devices and techniques such as overlaying images captured by multiple imaging devices. The data gathered by the devices 1a-1n/2a-2m, including image data, may be transferred to the cloud 204 or the local computer system 210 or both for data processing and manipulation including image processing and manipulation. The data may be analyzed to improve surgical procedure outcomes by determining if further treatment, such as the application of endoscopic intervention, emerging technologies, a targeted radiation, targeted intervention, and precise robotics to tissue-specific sites and conditions, may be pursued. Such data analysis may further employ outcome analytics processing, and using standardized approaches may provide beneficial feedback to either confirm surgical treatments and the behavior of the surgeon or suggest modifications to surgical treatments and the behavior of the surgeon.


In one implementation, the operating theater devices 1a-1n may be connected to the modular communication hub 203 over a wired channel or a wireless channel depending on the configuration of the devices 1a-1n to a network hub. The network hub 207 may be implemented, in one aspect, as a local network broadcast device that works on the physical layer of the Open System Interconnection (OSI) model. The network hub provides connectivity to the devices 1a-1n located in the same operating theater network. The network hub 207 collects data in the form of packets and sends them to the router in half duplex mode. The network hub 207 does not store any media access control/internet protocol (MAC/IP) to transfer the device data. Only one of the devices 1a-1n can send data at a time through the network hub 207. The network hub 207 has no routing tables or intelligence regarding where to send information and broadcasts all network data across each connection and to a remote server 213 (FIG. 32) over the cloud 204. The network hub 207 can detect basic network errors such as collisions, but having all information broadcast to multiple ports can be a security risk and cause bottlenecks.


In another implementation, the operating theater devices 2a-2m may be connected to a network switch 209 over a wired channel or a wireless channel. The network switch 209 works in the data link layer of the OSI model. The network switch 209 is a multicast device for connecting the devices 2a-2m located in the same operating theater to the network. The network switch 209 sends data in the form of frames to the network router 211 and works in full duplex mode. Multiple devices 2a-2m can send data at the same time through the network switch 209. The network switch 209 stores and uses MAC addresses of the devices 2a-2m to transfer data.


The network hub 207 and/or the network switch 209 are coupled to the network router 211 for connection to the cloud 204. The network router 211 works in the network layer of the OSI model. The network router 211 creates a route for transmitting data packets received from the network hub 207 and/or network switch 211 to cloud-based computer resources for further processing and manipulation of the data collected by any one of or all the devices 1a-1n/2a-2m. The network router 211 may be employed to connect two or more different networks located in different locations, such as, for example, different operating theaters of the same healthcare facility or different networks located in different operating theaters of different healthcare facilities. The network router 211 sends data in the form of packets to the cloud 204 and works in full duplex mode. Multiple devices can send data at the same time. The network router 211 uses IP addresses to transfer data.


In one example, the network hub 207 may be implemented as a USB hub, which allows multiple USB devices to be connected to a host computer. The USB hub may expand a single USB port into several tiers so that there are more ports available to connect devices to the host system computer. The network hub 207 may include wired or wireless capabilities to receive information over a wired channel or a wireless channel. In one aspect, a wireless USB short-range, high-bandwidth wireless radio communication protocol may be employed for communication between the devices 1a-1n and devices 2a-2m located in the operating theater.


In other examples, the operating theater devices 1a-1n/2a-2m may communicate to the modular communication hub 203 via Bluetooth wireless technology standard for exchanging data over short distances (using short-wavelength UHF radio waves in the ISM band from 2.4 to 2.485 GHz) from fixed and mobile devices and building personal area networks (PANs). In other aspects, the operating theater devices 1a-1n/2a-2m may communicate to the modular communication hub 203 via a number of wireless or wired communication standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long-term evolution (LTE), and Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, and Ethernet derivatives thereof, as well as any other wireless and wired protocols that are designated as 3G, 4G, 5G, and beyond. The computing module may include a plurality of communication modules. For instance, a first communication module may be dedicated to shorter-range wireless communications such as Wi-Fi and Bluetooth, and a second communication module may be dedicated to longer-range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.


The modular communication hub 203 may serve as a central connection for one or all of the operating theater devices 1a-1n/2a-2m and handles a data type known as frames. Frames carry the data generated by the devices 1a-1n/2a-2m. When a frame is received by the modular communication hub 203, it is amplified and transmitted to the network router 211, which transfers the data to the cloud computing resources by using a number of wireless or wired communication standards or protocols, as described herein.


The modular communication hub 203 can be used as a standalone device or be connected to compatible network hubs and network switches to form a larger network. The modular communication hub 203 is generally easy to install, configure, and maintain, making it a good option for networking the operating theater devices 1a-1n/2a-2m.



FIG. 32 illustrates a computer-implemented interactive surgical system 200. The computer-implemented interactive surgical system 200 is similar in many respects to the computer-implemented interactive surgical system 100. For example, the computer-implemented interactive surgical system 200 includes one or more surgical systems 202, which are similar in many respects to the surgical systems 102. Each surgical system 202 includes at least one surgical hub 206 in communication with a cloud 204 that may include a remote server 213. In one aspect, the computer-implemented interactive surgical system 200 comprises a modular control tower 236 connected to multiple operating theater devices such as, for example, intelligent surgical instruments, robots, and other computerized devices located in the operating theater. As shown in FIG. 33, the modular control tower 236 comprises a modular communication hub 203 coupled to a computer system 210. As illustrated in the example of FIG. 32, the modular control tower 236 is coupled to an imaging module 238 that is coupled to an endoscope 239, a generator module 240 that is coupled to an energy device 241, a smoke evacuator module 226, a suction/irrigation module 228, a communication module 230, a processor module 232, a storage array 234, a smart device/instrument 235 optionally coupled to a display 237, and a non-contact sensor module 242. The operating theater devices are coupled to cloud computing resources and data storage via the modular control tower 236. A robot hub 222 also may be connected to the modular control tower 236 and to the cloud computing resources. The devices/instruments 235, visualization systems 208, among others, may be coupled to the modular control tower 236 via wired or wireless communication standards or protocols, as described herein. The modular control tower 236 may be coupled to a hub display 215 (e.g., monitor, screen) to display and overlay images received from the imaging module, device/instrument display, and/or other visualization systems 208. The hub display also may display data received from devices connected to the modular control tower in conjunction with images and overlaid images.



FIG. 33 illustrates a surgical hub 206 comprising a plurality of modules coupled to the modular control tower 236. The modular control tower 236 comprises a modular communication hub 203, e.g., a network connectivity device, and a computer system 210 to provide local processing, visualization, and imaging, for example. As shown in FIG. 33, the modular communication hub 203 may be connected in a tiered configuration to expand the number of modules (e.g., devices) that may be connected to the modular communication hub 203 and transfer data associated with the modules to the computer system 210, cloud computing resources, or both. As shown in FIG. 33, each of the network hubs/switches in the modular communication hub 203 includes three downstream ports and one upstream port. The upstream network hub/switch is connected to a processor to provide a communication connection to the cloud computing resources and a local display 217. Communication to the cloud 204 may be made either through a wired or a wireless communication channel.


The surgical hub 206 employs a non-contact sensor module 242 to measure the dimensions of the operating theater and generate a map of the surgical theater using either ultrasonic or laser-type non-contact measurement devices. An ultrasound-based non-contact sensor module scans the operating theater by transmitting a burst of ultrasound and receiving the echo when it bounces off the perimeter walls of an operating theater as described under the heading “Surgical Hub Spatial Awareness Within an Operating Room” in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety, in which the sensor module is configured to determine the size of the operating theater and to adjust Bluetooth-pairing distance limits. A laser-based non-contact sensor module scans the operating theater by transmitting laser light pulses, receiving laser light pulses that bounce off the perimeter walls of the operating theater, and comparing the phase of the transmitted pulse to the received pulse to determine the size of the operating theater and to adjust Bluetooth pairing distance limits, for example.


The computer system 210 comprises a processor 244 and a network interface 245. The processor 244 is coupled to a communication module 247, storage 248, memory 249, non-volatile memory 250, and input/output interface 251 via a system bus. The system bus can be any of several types of bus structure(s) including the memory bus or memory controller, a peripheral bus or external bus, and/or a local bus using any variety of available bus architectures including, but not limited to, 9-bit bus, Industrial Standard Architecture (ISA), Micro-Charmel Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral Component Interconnect (PCI), USB, Advanced Graphics Port (AGP), Personal Computer Memory Card International Association bus (PCMCIA), Small Computer Systems Interface (SCSI), or any other proprietary bus.


The processor 244 may be any single-core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. In one aspect, the processor may be an LM4F230H5QR ARM Cortex-M4F Processor Core, available from Texas Instruments, for example, comprising an on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), an internal read-only memory (ROM) loaded with StellarisWare® software, a 2 KB electrically erasable programmable read-only memory (EEPROM), and/or one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QEI) analogs, one or more 12-bit analog-to-digital converters (ADCs) with 12 analog input channels, details of which are available for the product datasheet.


In one aspect, the processor 244 may comprise a safety controller comprising two controller-based families such as TMS570 and RM4x, known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. The safety controller may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.


The system memory includes volatile memory and non-volatile memory. The basic input/output system (BIOS), containing the basic routines to transfer information between elements within the computer system, such as during start-up, is stored in non-volatile memory. For example, the non-volatile memory can include ROM, programmable ROM (PROM), electrically programmable ROM (EPROM), EEPROM, or flash memory. Volatile memory includes random-access memory (RAM), which acts as external cache memory. Moreover, RAM is available in many forms such as SRAM, dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM).


The computer system 210 also includes removable/non-removable, volatile/non-volatile computer storage media, such as for example disk storage. The disk storage includes, but is not limited to, devices like a magnetic disk drive, floppy disk drive, tape drive, Jaz drive, Zip drive, LS-60 drive, flash memory card, or memory stick. In addition, the disk storage can include storage media separately or in combination with other storage media including, but not limited to, an optical disc drive such as a compact disc ROM device (CD-ROM), compact disc recordable drive (CD-R Drive), compact disc rewritable drive (CD-RW Drive), or a digital versatile disc ROM drive (DVD-ROM). To facilitate the connection of the disk storage devices to the system bus, a removable or non-removable interface may be employed.


It is to be appreciated that the computer system 210 includes software that acts as an intermediary between users and the basic computer resources described in a suitable operating environment. Such software includes an operating system. The operating system, which can be stored on the disk storage, acts to control and allocate resources of the computer system. System applications take advantage of the management of resources by the operating system through program modules and program data stored either in the system memory or on the disk storage. It is to be appreciated that various components described herein can be implemented with various operating systems or combinations of operating systems.


A user enters commands or information into the computer system 210 through input device(s) coupled to the I/O interface 251. The input devices include, but are not limited to, a pointing device such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick, game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera, web camera, and the like. These and other input devices connect to the processor through the system bus via interface port(s). The interface port(s) include, for example, a serial port, a parallel port, a game port, and a USB. The output device(s) use some of the same types of ports as input device(s). Thus, for example, a USB port may be used to provide input to the computer system and to output information from the computer system to an output device. An output adapter is provided to illustrate that there are some output devices like monitors, displays, speakers, and printers, among other output devices that require special adapters. The output adapters include, by way of illustration and not limitation, video and sound cards that provide a means of connection between the output device and the system bus. It should be noted that other devices and/or systems of devices, such as remote computer(s), provide both input and output capabilities.


The computer system 210 can operate in a networked environment using logical connections to one or more remote computers, such as cloud computer(s), or local computers. The remote cloud computer(s) can be a personal computer, server, router, network PC, workstation, microprocessor-based appliance, peer device, or other common network node, and the like, and typically includes many or all of the elements described relative to the computer system. For purposes of brevity, only a memory storage device is illustrated with the remote computer(s). The remote computer(s) is logically connected to the computer system through a network interface and then physically connected via a communication connection. The network interface encompasses communication networks such as local area networks (LANs) and wide area networks (WANs). LAN technologies include Fiber Distributed Data Interface (FDDI), Copper Distributed Data Interface (CDDI), Ethernet/IEEE 802.3, Token Ring/IEEE 802.5 and the like. WAN technologies include, but are not limited to, point-to-point links, circuit-switching networks like Integrated Services Digital Networks (ISDN) and variations thereon, packet-switching networks, and Digital Subscriber Lines (DSL).


In various aspects, the computer system 210 of FIG. 33, the imaging module 238 and/or visualization system 208, and/or the processor module 232 of FIGS. 9-10, may comprise an image processor, image processing engine, media processor, or any specialized digital signal processor (DSP) used for the processing of digital images. The image processor may employ parallel computing with single instruction, multiple data (SIMD) or multiple instruction, multiple data (MIMD) technologies to increase speed and efficiency. The digital image processing engine can perform a range of tasks. The image processor may be a system on a chip with multicore processor architecture.


The communication connection(s) refers to the hardware/software employed to connect the network interface to the bus. While the communication connection is shown for illustrative clarity inside the computer system, it can also be external to the computer system 210. The hardware/software necessary for connection to the network interface includes, for illustrative purposes only, internal and external technologies such as modems, including regular telephone-grade modems, cable modems, and DSL modems, ISDN adapters, and Ethernet cards.



FIG. 34 illustrates a functional block diagram of one aspect of a USB network hub 300 device, according to one aspect of the present disclosure. In the illustrated aspect, the USB network hub device 300 employs a TUSB2036 integrated circuit hub by Texas Instruments. The USB network hub 300 is a CMOS device that provides an upstream USB transceiver port 302 and up to three downstream USB transceiver ports 304, 306, 308 in compliance with the USB 2.0 specification. The upstream USB transceiver port 302 is a differential root data port comprising a differential data minus (DM0) input paired with a differential data plus (DP0) input. The three downstream USB transceiver ports 304, 306, 308 are differential data ports where each port includes differential data plus (DP1-DP3) outputs paired with differential data minus (DM1-DM3) outputs.


The USB network hub 300 device is implemented with a digital state machine instead of a microcontroller, and no firmware programming is required. Fully compliant USB transceivers are integrated into the circuit for the upstream USB transceiver port 302 and all downstream USB transceiver ports 304, 306, 308. The downstream USB transceiver ports 304, 306, 308 support both full-speed and low-speed devices by automatically setting the slew rate according to the speed of the device attached to the ports. The USB network hub 300 device may be configured either in bus-powered or self-powered mode and includes a hub power logic 312 to manage power.


The USB network hub 300 device includes a serial interface engine 310 (SIE). The SIE 310 is the front end of the USB network hub 300 hardware and handles most of the protocol described in chapter 8 of the USB specification. The SIE 310 typically comprehends signaling up to the transaction level. The functions that it handles could include: packet recognition, transaction sequencing, SOP, EOP, RESET, and RESUME signal detection/generation, clock/data separation, non-return-to-zero invert (NRZI) data encoding/decoding and bit-stuffing, CRC generation and checking (token and data), packet ID (PID) generation and checking/decoding, and/or serial-parallel/parallel-serial conversion. The 310 receives a clock input 314 and is coupled to a suspend/resume logic and frame timer 316 circuit and a hub repeater circuit 318 to control communication between the upstream USB transceiver port 302 and the downstream USB transceiver ports 304, 306, 308 through port logic circuits 320, 322, 324. The SIE 310 is coupled to a command decoder 326 via interface logic to control commands from a serial EEPROM via a serial EEPROM interface 330.


In various aspects, the USB network hub 300 can connect 127 functions configured in up to six logical layers (tiers) to a single computer. Further, the USB network hub 300 can connect to all peripherals using a standardized four-wire cable that provides both communication and power distribution. The power configurations are bus-powered and self-powered modes. The USB network hub 300 may be configured to support four modes of power management: a bus-powered hub, with either individual-port power management or ganged-port power management, and the self-powered hub, with either individual-port power management or ganged-port power management. In one aspect, using a USB cable, the USB network hub 300, the upstream USB transceiver port 302 is plugged into a USB host controller, and the downstream USB transceiver ports 304, 306, 308 are exposed for connecting USB compatible devices, and so forth.


Surgical Instrument Hardware


FIG. 35 illustrates a logic diagram of a control system 470 of a surgical instrument or tool in accordance with one or more aspects of the present disclosure. The system 470 comprises a control circuit. The control circuit includes a microcontroller 461 comprising a processor 462 and a memory 468. One or more of sensors 472, 474, 476, for example, provide real-time feedback to the processor 462. A motor 482, driven by a motor driver 492, operably couples a longitudinally movable displacement member to drive the I-beam knife element. A tracking system 480 is configured to determine the position of the longitudinally movable displacement member. The position information is provided to the processor 462, which can be programmed or configured to determine the position of the longitudinally movable drive member as well as the position of a firing member, firing bar, and I-beam knife element. Additional motors may be provided at the tool driver interface to control I-beam firing, closure tube travel, shaft rotation, and articulation. A display 473 displays a variety of operating conditions of the instruments and may include touch screen functionality for data input. Information displayed on the display 473 may be overlaid with images acquired via endoscopic imaging modules.


In one aspect, the microcontroller 461 may be any single-core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. In one aspect, the main microcontroller 461 may be an LM4F230H5QR ARM Cortex-M4F Processor Core, available from Texas Instruments, for example, comprising an on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle SRAM, and internal ROM loaded with StellarisWare® software, a 2 KB EEPROM, one or more PWM modules, one or more QEI analogs, and/or one or more 12-bit ADCs with 12 analog input channels, details of which are available for the product datasheet.


In one aspect, the microcontroller 461 may comprise a safety controller comprising two controller-based families such as TMS570 and RM4x, known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. The safety controller may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.


The microcontroller 461 may be programmed to perform various functions such as precise control over the speed and position of the knife and articulation systems. In one aspect, the microcontroller 461 includes a processor 462 and a memory 468. The electric motor 482 may be a brushed direct current (DC) motor with a gearbox and mechanical links to an articulation or knife system. In one aspect, a motor driver 492 may be an A3941 available from Allegro Microsystems, Inc. Other motor drivers may be readily substituted for use in the tracking system 480 comprising an absolute positioning system. A detailed description of an absolute positioning system is described in U.S. Patent Application Publication No. 2017/0296213, titled SYSTEMS AND METHODS FOR CONTROLLING A SURGICAL STAPLING AND CUTTING INSTRUMENT, which published on Oct. 19, 2017, which is herein incorporated by reference in its entirety.


The microcontroller 461 may be programmed to provide precise control over the speed and position of displacement members and articulation systems. The microcontroller 461 may be configured to compute a response in the software of the microcontroller 461. The computed response is compared to a measured response of the actual system to obtain an “observed” response, which is used for actual feedback decisions. The observed response is a favorable, tuned value that balances the smooth, continuous nature of the simulated response with the measured response, which can detect outside influences on the system.


In one aspect, the motor 482 may be controlled by the motor driver 492 and can be employed by the firing system of the surgical instrument or tool. In various forms, the motor 482 may be a brushed DC driving motor having a maximum rotational speed of approximately 25,000 RPM. In other arrangements, the motor 482 may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. The motor driver 492 may comprise an H-bridge driver comprising field-effect transistors (FETs), for example. The motor 482 can be powered by a power assembly releasably mounted to the handle assembly or tool housing for supplying control power to the surgical instrument or tool. The power assembly may comprise a battery which may include a number of battery cells connected in series that can be used as the power source to power the surgical instrument or tool. In certain circumstances, the battery cells of the power assembly may be replaceable and/or rechargeable. In at least one example, the battery cells can be lithium-ion batteries which can be couplable to and separable from the power assembly.


The motor driver 492 may be an A3941 available from Allegro Microsystems, Inc. The A3941 492 is a full-bridge controller for use with external N-channel power metal-oxide semiconductor field-effect transistors (MOSFETs) specifically designed for inductive loads, such as brush DC motors. The driver 492 comprises a unique charge pump regulator that provides full (>10 V) gate drive for battery voltages down to 7 V and allows the A3941 to operate with a reduced gate drive, down to 5.5 V. A bootstrap capacitor may be employed to provide the above battery supply voltage required for N-channel MOSFETs. An internal charge pump for the high-side drive allows DC (100% duty cycle) operation. The full bridge can be driven in fast or slow decay modes using diode or synchronous rectification. In the slow decay mode, current recirculation can be through the high-side or the lowside FETs. The power FETs are protected from shoot-through by resistor-adjustable dead time. Integrated diagnostics provide indications of undervoltage, overtemperature, and power bridge faults and can be configured to protect the power MOSFETs under most short circuit conditions. Other motor drivers may be readily substituted for use in the tracking system 480 comprising an absolute positioning system.


The tracking system 480 comprises a controlled motor drive circuit arrangement comprising a position sensor 472 according to one aspect of this disclosure. The position sensor 472 for an absolute positioning system provides a unique position signal corresponding to the location of a displacement member. In one aspect, the displacement member represents a longitudinally movable drive member comprising a rack of drive teeth for meshing engagement with a corresponding drive gear of a gear reducer assembly. In other aspects, the displacement member represents the firing member, which could be adapted and configured to include a rack of drive teeth. In yet another aspect, the displacement member represents a firing bar or the I-beam, each of which can be adapted and configured to include a rack of drive teeth. Accordingly, as used herein, the term displacement member is used generically to refer to any movable member of the surgical instrument or tool such as the drive member, the firing member, the firing bar, the I-beam, or any element that can be displaced. In one aspect, the longitudinally movable drive member is coupled to the firing member, the firing bar, and the I-beam. Accordingly, the absolute positioning system can, in effect, track the linear displacement of the I-beam by tracking the linear displacement of the longitudinally movable drive member. In various other aspects, the displacement member may be coupled to any position sensor 472 suitable for measuring linear displacement. Thus, the longitudinally movable drive member, the firing member, the firing bar, or the I-beam, or combinations thereof, may be coupled to any suitable linear displacement sensor. Linear displacement sensors may include contact or non-contact displacement sensors. Linear displacement sensors may comprise linear variable differential transformers (LVDT), differential variable reluctance transducers (DVRT), a slide potentiometer, a magnetic sensing system comprising a movable magnet and a series of linearly arranged Hall effect sensors, a magnetic sensing system comprising a fixed magnet and a series of movable, linearly arranged Hall effect sensors, an optical sensing system comprising a movable light source and a series of linearly arranged photo diodes or photo detectors, an optical sensing system comprising a fixed light source and a series of movable linearly, arranged photo diodes or photo detectors, or any combination thereof.


The electric motor 482 can include a rotatable shaft that operably interfaces with a gear assembly that is mounted in meshing engagement with a set, or rack, of drive teeth on the displacement member. A sensor element may be operably coupled to a gear assembly such that a single revolution of the position sensor 472 element corresponds to some linear longitudinal translation of the displacement member. An arrangement of gearing and sensors can be connected to the linear actuator, via a rack and pinion arrangement, or a rotary actuator, via a spur gear or other connection. A power source supplies power to the absolute positioning system and an output indicator may display the output of the absolute positioning system. The displacement member represents the longitudinally movable drive member comprising a rack of drive teeth formed thereon for meshing engagement with a corresponding drive gear of the gear reducer assembly. The displacement member represents the longitudinally movable firing member, firing bar, I-beam, or combinations thereof.


A single revolution of the sensor element associated with the position sensor 472 is equivalent to a longitudinal linear displacement d1 of the of the displacement member, where d1 is the longitudinal linear distance that the displacement member moves from point “a” to point “b” after a single revolution of the sensor element coupled to the displacement member. The sensor arrangement may be connected via a gear reduction that results in the position sensor 472 completing one or more revolutions for the full stroke of the displacement member. The position sensor 472 may complete multiple revolutions for the full stroke of the displacement member.


A series of switches, where n is an integer greater than one, may be employed alone or in combination with a gear reduction to provide a unique position signal for more than one revolution of the position sensor 472. The state of the switches are fed back to the microcontroller 461 that applies logic to determine a unique position signal corresponding to the longitudinal linear displacement d1+d2+ . . . dn of the displacement member. The output of the position sensor 472 is provided to the microcontroller 461. The position sensor 472 of the sensor arrangement may comprise a magnetic sensor, an analog rotary sensor like a potentiometer, or an array of analog Hall-effect elements, which output a unique combination of position signals or values.


The position sensor 472 may comprise any number of magnetic sensing elements, such as, for example, magnetic sensors classified according to whether they measure the total magnetic field or the vector components of the magnetic field. The techniques used to produce both types of magnetic sensors encompass many aspects of physics and electronics. The technologies used for magnetic field sensing include search coil, fluxgate, optically pumped, nuclear precession, SQUID, Hall-effect, anisotropic magnetoresistance, giant magnetoresistance, magnetic tunnel junctions, giant magnetoimpedance, magnetostrictive/piezoelectric composites, magnetodiode, magnetotransistor, fiber-optic, magneto-optic, and microelectromechanical systems-based magnetic sensors, among others.


In one aspect, the position sensor 472 for the tracking system 480 comprising an absolute positioning system comprises a magnetic rotary absolute positioning system. The position sensor 472 may be implemented as an AS5055EQFT single-chip magnetic rotary position sensor available from Austria Microsystems, AG. The position sensor 472 is interfaced with the microcontroller 461 to provide an absolute positioning system. The position sensor 472 is a low-voltage and low-power component and includes four Hall-effect elements in an area of the position sensor 472 that is located above a magnet. A high-resolution ADC and a smart power management controller are also provided on the chip. A coordinate rotation digital computer (CORDIC) processor, also known as the digit-by-digit method and Volder's algorithm, is provided to implement a simple and efficient algorithm to calculate hyperbolic and trigonometric functions that require only addition, subtraction, bitshift, and table lookup operations. The angle position, alarm bits, and magnetic field information are transmitted over a standard serial communication interface, such as a serial peripheral interface (SPI) interface, to the microcontroller 461. The position sensor 472 provides 12 or 14 bits of resolution. The position sensor 472 may be an AS5055 chip provided in a small QFN 16-pin 4×4×0.85 mm package.


The tracking system 480 comprising an absolute positioning system may comprise and/or be programmed to implement a feedback controller, such as a PID, state feedback, and adaptive controller. A power source converts the signal from the feedback controller into a physical input to the system: in this case the voltage. Other examples include a PWM of the voltage, current, and force. Other sensor(s) may be provided to measure physical parameters of the physical system in addition to the position measured by the position sensor 472. In some aspects, the other sensor(s) can include sensor arrangements such as those described in U.S. Pat. No. 9,345,481, titled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which issued on May 24, 2016, which is herein incorporated by reference in its entirety; U.S. Patent Application Publication No. 2014/0263552, titled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which published on Sep. 18, 2014, which is herein incorporated by reference in its entirety; and U.S. patent application Ser. No. 15/628,175, titled TECHNIQUES FOR ADAPTIVE CONTROL OF MOTOR VELOCITY OF A SURGICAL STAPLING AND CUTTING INSTRUMENT, filed Jun. 20, 2017, which is herein incorporated by reference in its entirety. In a digital signal processing system, an absolute positioning system is coupled to a digital data acquisition system where the output of the absolute positioning system will have a finite resolution and sampling frequency. The absolute positioning system may comprise a compare-and-combine circuit to combine a computed response with a measured response using algorithms, such as a weighted average and a theoretical control loop, that drive the computed response towards the measured response. The computed response of the physical system takes into account properties like mass, inertial, viscous friction, inductance resistance, etc., to predict what the states and outputs of the physical system will be by knowing the input.


The absolute positioning system provides an absolute position of the displacement member upon power-up of the instrument, without retracting or advancing the displacement member to a reset (zero or home) position as may be required with conventional rotary encoders that merely count the number of steps forwards or backwards that the motor 482 has taken to infer the position of a device actuator, drive bar, knife, or the like.


A sensor 474, such as, for example, a strain gauge or a micro-strain gauge, is configured to measure one or more parameters of the end effector, such as, for example, the amplitude of the strain exerted on the anvil during a clamping operation, which can be indicative of the closure forces applied to the anvil. The measured strain is converted to a digital signal and provided to the processor 462. Alternatively, or in addition to the sensor 474, a sensor 476, such as, for example, a load sensor, can measure the closure force applied by the closure drive system to the anvil. The sensor 476, such as, for example, a load sensor, can measure the firing force applied to an I-beam in a firing stroke of the surgical instrument or tool. The I-beam is configured to engage a wedge sled, which is configured to upwardly cam staple drivers to force out staples into deforming contact with an anvil. The I-beam also includes a sharpened cutting edge that can be used to sever tissue as the I-beam is advanced distally by the firing bar. Alternatively, a current sensor 478 can be employed to measure the current drawn by the motor 482. The force required to advance the firing member can correspond to the current drawn by the motor 482, for example. The measured force is converted to a digital signal and provided to the processor 462.


In one form, the strain gauge sensor 474 can be used to measure the force applied to the tissue by the end effector. A strain gauge can be coupled to the end effector to measure the force on the tissue being treated by the end effector. A system for measuring forces applied to the tissue grasped by the end effector comprises a strain gauge sensor 474, such as, for example, a micro-strain gauge, that is configured to measure one or more parameters of the end effector, for example. In one aspect, the strain gauge sensor 474 can measure the amplitude or magnitude of the strain exerted on a jaw member of an end effector during a clamping operation, which can be indicative of the tissue compression. The measured strain is converted to a digital signal and provided to a processor 462 of the microcontroller 461. A load sensor 476 can measure the force used to operate the knife element, for example, to cut the tissue captured between the anvil and the staple cartridge. A magnetic field sensor can be employed to measure the thickness of the captured tissue. The measurement of the magnetic field sensor also may be converted to a digital signal and provided to the processor 462.


The measurements of the tissue compression, the tissue thickness, and/or the force required to close the end effector on the tissue, as respectively measured by the sensors 474, 476, can be used by the microcontroller 461 to characterize the selected position of the firing member and/or the corresponding value of the speed of the firing member. In one instance, a memory 468 may store a technique, an equation, and/or a lookup table which can be employed by the microcontroller 461 in the assessment.


The control system 470 of the surgical instrument or tool also may comprise wired or wireless communication circuits to communicate with the modular communication hub as shown in FIGS. 8-11.



FIG. 36 illustrates a control circuit 500 configured to control aspects of the surgical instrument or tool according to one aspect of this disclosure. The control circuit 500 can be configured to implement various processes described herein. The control circuit 500 may comprise a microcontroller comprising one or more processors 502 (e.g., microprocessor, microcontroller) coupled to at least one memory circuit 504. The memory circuit 504 stores machine-executable instructions that, when executed by the processor 502, cause the processor 502 to execute machine instructions to implement various processes described herein. The processor 502 may be any one of a number of single-core or multicore processors known in the art. The memory circuit 504 may comprise volatile and non-volatile storage media. The processor 502 may include an instruction processing unit 506 and an arithmetic unit 508. The instruction processing unit may be configured to receive instructions from the memory circuit 504 of this disclosure.



FIG. 37 illustrates a combinational logic circuit 510 configured to control aspects of the surgical instrument or tool according to one aspect of this disclosure. The combinational logic circuit 510 can be configured to implement various processes described herein. The combinational logic circuit 510 may comprise a finite state machine comprising a combinational logic 512 configured to receive data associated with the surgical instrument or tool at an input 514, process the data by the combinational logic 512, and provide an output 516.



FIG. 38 illustrates a sequential logic circuit 520 configured to control aspects of the surgical instrument or tool according to one aspect of this disclosure. The sequential logic circuit 520 or the combinational logic 522 can be configured to implement various processes described herein. The sequential logic circuit 520 may comprise a finite state machine. The sequential logic circuit 520 may comprise a combinational logic 522, at least one memory circuit 524, and a clock 529, for example. The at least one memory circuit 524 can store a current state of the finite state machine. In certain instances, the sequential logic circuit 520 may be synchronous or asynchronous. The combinational logic 522 is configured to receive data associated with the surgical instrument or tool from an input 526, process the data by the combinational logic 522, and provide an output 528. In other aspects, the circuit may comprise a combination of a processor (e.g., processor 502, FIG. 36) and a finite state machine to implement various processes herein. In other aspects, the finite state machine may comprise a combination of a combinational logic circuit (e.g., combinational logic circuit 510, FIG. 37) and the sequential logic circuit 520.



FIG. 39 illustrates a surgical instrument or tool comprising a plurality of motors which can be activated to perform various functions. In certain instances, a first motor can be activated to perform a first function, a second motor can be activated to perform a second function, a third motor can be activated to perform a third function, a fourth motor can be activated to perform a fourth function, and so on. In certain instances, the plurality of motors of robotic surgical instrument 600 can be individually activated to cause firing, closure, and/or articulation motions in the end effector. The firing, closure, and/or articulation motions can be transmitted to the end effector through a shaft assembly, for example.


In certain instances, the surgical instrument system or tool may include a firing motor 602. The firing motor 602 may be operably coupled to a firing motor drive assembly 604 which can be configured to transmit firing motions, generated by the motor 602 to the end effector, in particular to displace the I-beam element. In certain instances, the firing motions generated by the motor 602 may cause the staples to be deployed from the staple cartridge into tissue captured by the end effector and/or the cutting edge of the I-beam element to be advanced to cut the captured tissue, for example. The I-beam element may be retracted by reversing the direction of the motor 602.


In certain instances, the surgical instrument or tool may include a closure motor 603. The closure motor 603 may be operably coupled to a closure motor drive assembly 605 which can be configured to transmit closure motions, generated by the motor 603 to the end effector, in particular to displace a closure tube to close the anvil and compress tissue between the anvil and the staple cartridge. The closure motions may cause the end effector to transition from an open configuration to an approximated configuration to capture tissue, for example. The end effector may be transitioned to an open position by reversing the direction of the motor 603.


In certain instances, the surgical instrument or tool may include one or more articulation motors 606a, 606b, for example. The motors 606a, 606b may be operably coupled to respective articulation motor drive assemblies 608a, 608b, which can be configured to transmit articulation motions generated by the motors 606a, 606b to the end effector. In certain instances, the articulation motions may cause the end effector to articulate relative to the shaft, for example.


As described above, the surgical instrument or tool may include a plurality of motors which may be configured to perform various independent functions. In certain instances, the plurality of motors of the surgical instrument or tool can be individually or separately activated to perform one or more functions while the other motors remain inactive. For example, the articulation motors 606a, 606b can be activated to cause the end effector to be articulated while the firing motor 602 remains inactive. Alternatively, the firing motor 602 can be activated to fire the plurality of staples, and/or to advance the cutting edge, while the articulation motor 606 remains inactive. Furthermore the closure motor 603 may be activated simultaneously with the firing motor 602 to cause the closure tube and the I-beam element to advance distally as described in more detail hereinbelow.


In certain instances, the surgical instrument or tool may include a common control module 610 which can be employed with a plurality of motors of the surgical instrument or tool. In certain instances, the common control module 610 may accommodate one of the plurality of motors at a time. For example, the common control module 610 can be couplable to and separable from the plurality of motors of the robotic surgical instrument individually. In certain instances, a plurality of the motors of the surgical instrument or tool may share one or more common control modules such as the common control module 610. In certain instances, a plurality of motors of the surgical instrument or tool can be individually and selectively engaged with the common control module 610. In certain instances, the common control module 610 can be selectively switched from interfacing with one of a plurality of motors of the surgical instrument or tool to interfacing with another one of the plurality of motors of the surgical instrument or tool.


In at least one example, the common control module 610 can be selectively switched between operable engagement with the articulation motors 606a, 606b and operable engagement with either the firing motor 602 or the closure motor 603. In at least one example, as illustrated in FIG. 39, a switch 614 can be moved or transitioned between a plurality of positions and/or states. In a first position 616, the switch 614 may electrically couple the common control module 610 to the firing motor 602; in a second position 617, the switch 614 may electrically couple the common control module 610 to the closure motor 603; in a third position 618a, the switch 614 may electrically couple the common control module 610 to the first articulation motor 606a; and in a fourth position 618b, the switch 614 may electrically couple the common control module 610 to the second articulation motor 606b, for example. In certain instances, separate common control modules 610 can be electrically coupled to the firing motor 602, the closure motor 603, and the articulations motor 606a, 606b at the same time. In certain instances, the switch 614 may be a mechanical switch, an electromechanical switch, a solid-state switch, or any suitable switching mechanism.


Each of the motors 602, 603, 606a, 606b may comprise a torque sensor to measure the output torque on the shaft of the motor. The force on an end effector may be sensed in any conventional manner, such as by force sensors on the outer sides of the jaws or by a torque sensor for the motor actuating the jaws.


In various instances, as illustrated in FIG. 39, the common control module 610 may comprise a motor driver 626 which may comprise one or more H-Bridge FETs. The motor driver 626 may modulate the power transmitted from a power source 628 to a motor coupled to the common control module 610 based on input from a microcontroller 620 (the “controller”), for example. In certain instances, the microcontroller 620 can be employed to determine the current drawn by the motor, for example, while the motor is coupled to the common control module 610, as described above.


In certain instances, the microcontroller 620 may include a microprocessor 622 (the “processor”) and one or more non-transitory computer-readable mediums or memory units 624 (the “memory”). In certain instances, the memory 624 may store various program instructions, which when executed may cause the processor 622 to perform a plurality of functions and/or calculations described herein. In certain instances, one or more of the memory units 624 may be coupled to the processor 622, for example.


In certain instances, the power source 628 can be employed to supply power to the microcontroller 620, for example. In certain instances, the power source 628 may comprise a battery (or “battery pack” or “power pack”), such as a lithium-ion battery, for example. In certain instances, the battery pack may be configured to be releasably mounted to a handle for supplying power to the surgical instrument 600. A number of battery cells connected in series may be used as the power source 628. In certain instances, the power source 628 may be replaceable and/or rechargeable, for example.


In various instances, the processor 622 may control the motor driver 626 to control the position, direction of rotation, and/or velocity of a motor that is coupled to the common control module 610. In certain instances, the processor 622 can signal the motor driver 626 to stop and/or disable a motor that is coupled to the common control module 610. It should be understood that the term “processor” as used herein includes any suitable microprocessor, microcontroller, or other basic computing device that incorporates the functions of a computer's central processing unit (CPU) on an integrated circuit or, at most, a few integrated circuits. The processor is a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output. It is an example of sequential digital logic, as it has internal memory. Processors operate on numbers and symbols represented in the binary numeral system.


In one instance, the processor 622 may be any single-core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. In certain instances, the microcontroller 620 may be an LM 4F230H5QR, available from Texas Instruments, for example. In at least one example, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising an on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle SRAM, an internal ROM loaded with StellarisWare® software, a 2 KB EEPROM, one or more PWM modules, one or more QEI analogs, one or more 12-bit ADCs with 12 analog input channels, among other features that are readily available for the product datasheet. Other microcontrollers may be readily substituted for use with the module 4410. Accordingly, the present disclosure should not be limited in this context.


In certain instances, the memory 624 may include program instructions for controlling each of the motors of the surgical instrument 600 that are couplable to the common control module 610. For example, the memory 624 may include program instructions for controlling the firing motor 602, the closure motor 603, and the articulation motors 606a, 606b. Such program instructions may cause the processor 622 to control the firing, closure, and articulation functions in accordance with inputs from algorithms or control programs of the surgical instrument or tool.


In certain instances, one or more mechanisms and/or sensors such as, for example, sensors 630 can be employed to alert the processor 622 to the program instructions that should be used in a particular setting. For example, the sensors 630 may alert the processor 622 to use the program instructions associated with firing, closing, and articulating the end effector. In certain instances, the sensors 630 may comprise position sensors which can be employed to sense the position of the switch 614, for example. Accordingly, the processor 622 may use the program instructions associated with firing the I-beam of the end effector upon detecting, through the sensors 630 for example, that the switch 614 is in the first position 616; the processor 622 may use the program instructions associated with closing the anvil upon detecting, through the sensors 630 for example, that the switch 614 is in the second position 617; and the processor 622 may use the program instructions associated with articulating the end effector upon detecting, through the sensors 630 for example, that the switch 614 is in the third or fourth position 618a, 618b.



FIG. 40 is a schematic diagram of a robotic surgical instrument 700 configured to operate a surgical tool described herein according to one aspect of this disclosure. The robotic surgical instrument 700 may be programmed or configured to control distal/proximal translation of a displacement member, distal/proximal displacement of a closure tube, shaft rotation, and articulation, either with single or multiple articulation drive links. In one aspect, the surgical instrument 700 may be programmed or configured to individually control a firing member, a closure member, a shaft member, and/or one or more articulation members. The surgical instrument 700 comprises a control circuit 710 configured to control motor-driven firing members, closure members, shaft members, and/or one or more articulation members.


In one aspect, the robotic surgical instrument 700 comprises a control circuit 710 configured to control an anvil 716 and an I-beam 714 (including a sharp cutting edge) portion of an end effector 702, a removable staple cartridge 718, a shaft 740, and one or more articulation members 742a, 742b via a plurality of motors 704a-704e. A position sensor 734 may be configured to provide position feedback of the I-beam 714 to the control circuit 710. Other sensors 738 may be configured to provide feedback to the control circuit 710. A timer/counter 731 provides timing and counting information to the control circuit 710. An energy source 712 may be provided to operate the motors 704a-704e, and a current sensor 736 provides motor current feedback to the control circuit 710. The motors 704a-704e can be operated individually by the control circuit 710 in an open-loop or closed-loop feedback control.


In one aspect, the control circuit 710 may comprise one or more microcontrollers, microprocessors, or other suitable processors for executing instructions that cause the processor or processors to perform one or more tasks. In one aspect, a timer/counter 731 provides an output signal, such as the elapsed time or a digital count, to the control circuit 710 to correlate the position of the I-beam 714 as determined by the position sensor 734 with the output of the timer/counter 731 such that the control circuit 710 can determine the position of the I-beam 714 at a specific time (t) relative to a starting position or the time (t) when the I-beam 714 is at a specific position relative to a starting position. The timer/counter 731 may be configured to measure elapsed time, count external events, or time external events.


In one aspect, the control circuit 710 may be programmed to control functions of the end effector 702 based on one or more tissue conditions. The control circuit 710 may be programmed to sense tissue conditions, such as thickness, either directly or indirectly, as described herein. The control circuit 710 may be programmed to select a firing control program or closure control program based on tissue conditions. A firing control program may describe the distal motion of the displacement member. Different firing control programs may be selected to better treat different tissue conditions. For example, when thicker tissue is present, the control circuit 710 may be programmed to translate the displacement member at a lower velocity and/or with lower power. When thinner tissue is present, the control circuit 710 may be programmed to translate the displacement member at a higher velocity and/or with higher power. A closure control program may control the closure force applied to the tissue by the anvil 716. Other control programs control the rotation of the shaft 740 and the articulation members 742a, 742b.


In one aspect, the control circuit 710 may generate motor set point signals. The motor set point signals may be provided to various motor controllers 708a-708e. The motor controllers 708a-708e may comprise one or more circuits configured to provide motor drive signals to the motors 704a-704e to drive the motors 704a-704e as described herein. In some examples, the motors 704a-704e may be brushed DC electric motors. For example, the velocity of the motors 704a-704e may be proportional to the respective motor drive signals. In some examples, the motors 704a-704e may be brushless DC electric motors, and the respective motor drive signals may comprise a PWM signal provided to one or more stator windings of the motors 704a-704e. Also, in some examples, the motor controllers 708a-708e may be omitted and the control circuit 710 may generate the motor drive signals directly.


In one aspect, the control circuit 710 may initially operate each of the motors 704a-704e in an open-loop configuration for a first open-loop portion of a stroke of the displacement member. Based on the response of the robotic surgical instrument 700 during the open-loop portion of the stroke, the control circuit 710 may select a firing control program in a closed-loop configuration. The response of the instrument may include a translation distance of the displacement member during the open-loop portion, a time elapsed during the open-loop portion, the energy provided to one of the motors 704a-704e during the open-loop portion, a sum of pulse widths of a motor drive signal, etc. After the open-loop portion, the control circuit 710 may implement the selected firing control program for a second portion of the displacement member stroke. For example, during a closed-loop portion of the stroke, the control circuit 710 may modulate one of the motors 704a-704e based on translation data describing a position of the displacement member in a closed-loop manner to translate the displacement member at a constant velocity.


In one aspect, the motors 704a-704e may receive power from an energy source 712. The energy source 712 may be a DC power supply driven by a main alternating current power source, a battery, a super capacitor, or any other suitable energy source. The motors 704a-704e may be mechanically coupled to individual movable mechanical elements such as the I-beam 714, anvil 716, shaft 740, articulation 742a, and articulation 742b via respective transmissions 706a-706e. The transmissions 706a-706e may include one or more gears or other linkage components to couple the motors 704a-704e to movable mechanical elements. A position sensor 734 may sense a position of the I-beam 714. The position sensor 734 may be or include any type of sensor that is capable of generating position data that indicate a position of the I-beam 714. In some examples, the position sensor 734 may include an encoder configured to provide a series of pulses to the control circuit 710 as the I-beam 714 translates distally and proximally. The control circuit 710 may track the pulses to determine the position of the I-beam 714. Other suitable position sensors may be used, including, for example, a proximity sensor. Other types of position sensors may provide other signals indicating motion of the I-beam 714. Also, in some examples, the position sensor 734 may be omitted. Where any of the motors 704a-704e is a stepper motor, the control circuit 710 may track the position of the I-beam 714 by aggregating the number and direction of steps that the motor 704 has been instructed to execute. The position sensor 734 may be located in the end effector 702 or at any other portion of the instrument. The outputs of each of the motors 704a-704e include a torque sensor 744a-744e to sense force and have an encoder to sense rotation of the drive shaft.


In one aspect, the control circuit 710 is configured to drive a firing member such as the I-beam 714 portion of the end effector 702. The control circuit 710 provides a motor set point to a motor control 708a, which provides a drive signal to the motor 704a. The output shaft of the motor 704a is coupled to a torque sensor 744a. The torque sensor 744a is coupled to a transmission 706a which is coupled to the I-beam 714. The transmission 706a comprises movable mechanical elements such as rotating elements and a firing member to control the movement of the I-beam 714 distally and proximally along a longitudinal axis of the end effector 702. In one aspect, the motor 704a may be coupled to the knife gear assembly, which includes a knife gear reduction set that includes a first knife drive gear and a second knife drive gear. A torque sensor 744a provides a firing force feedback signal to the control circuit 710. The firing force signal represents the force required to fire or displace the I-beam 714. A position sensor 734 may be configured to provide the position of the I-beam 714 along the firing stroke or the position of the firing member as a feedback signal to the control circuit 710. The end effector 702 may include additional sensors 738 configured to provide feedback signals to the control circuit 710. When ready to use, the control circuit 710 may provide a firing signal to the motor control 708a. In response to the firing signal, the motor 704a may drive the firing member distally along the longitudinal axis of the end effector 702 from a proximal stroke start position to a stroke end position distal to the stroke start position. As the firing member translates distally, an I-beam 714, with a cutting element positioned at a distal end, advances distally to cut tissue located between the staple cartridge 718 and the anvil 716.


In one aspect, the control circuit 710 is configured to drive a closure member such as the anvil 716 portion of the end effector 702. The control circuit 710 provides a motor set point to a motor control 708b, which provides a drive signal to the motor 704b. The output shaft of the motor 704b is coupled to a torque sensor 744b. The torque sensor 744b is coupled to a transmission 706b which is coupled to the anvil 716. The transmission 706b comprises movable mechanical elements such as rotating elements and a closure member to control the movement of the anvil 716 from the open and closed positions. In one aspect, the motor 704b is coupled to a closure gear assembly, which includes a closure reduction gear set that is supported in meshing engagement with the closure spur gear. The torque sensor 744b provides a closure force feedback signal to the control circuit 710. The closure force feedback signal represents the closure force applied to the anvil 716. The position sensor 734 may be configured to provide the position of the closure member as a feedback signal to the control circuit 710. Additional sensors 738 in the end effector 702 may provide the closure force feedback signal to the control circuit 710. The pivotable anvil 716 is positioned opposite the staple cartridge 718. When ready to use, the control circuit 710 may provide a closure signal to the motor control 708b. In response to the closure signal, the motor 704b advances a closure member to grasp tissue between the anvil 716 and the staple cartridge 718.


In one aspect, the control circuit 710 is configured to rotate a shaft member such as the shaft 740 to rotate the end effector 702. The control circuit 710 provides a motor set point to a motor control 708c, which provides a drive signal to the motor 704c. The output shaft of the motor 704c is coupled to a torque sensor 744c. The torque sensor 744c is coupled to a transmission 706c which is coupled to the shaft 740. The transmission 706c comprises movable mechanical elements such as rotating elements to control the rotation of the shaft 740 clockwise or counterclockwise up to and over 360°. In one aspect, the motor 704c is coupled to the rotational transmission assembly, which includes a tube gear segment that is formed on (or attached to) the proximal end of the proximal closure tube for operable engagement by a rotational gear assembly that is operably supported on the tool mounting plate. The torque sensor 744c provides a rotation force feedback signal to the control circuit 710. The rotation force feedback signal represents the rotation force applied to the shaft 740. The position sensor 734 may be configured to provide the position of the closure member as a feedback signal to the control circuit 710. Additional sensors 738 such as a shaft encoder may provide the rotational position of the shaft 740 to the control circuit 710.


In one aspect, the control circuit 710 is configured to articulate the end effector 702. The control circuit 710 provides a motor set point to a motor control 708d, which provides a drive signal to the motor 704d. The output shaft of the motor 704d is coupled to a torque sensor 744d. The torque sensor 744d is coupled to a transmission 706d which is coupled to an articulation member 742a. The transmission 706d comprises movable mechanical elements such as articulation elements to control the articulation of the end effector 702 ±65°. In one aspect, the motor 704d is coupled to an articulation nut, which is rotatably journaled on the proximal end portion of the distal spine portion and is rotatably driven thereon by an articulation gear assembly. The torque sensor 744d provides an articulation force feedback signal to the control circuit 710. The articulation force feedback signal represents the articulation force applied to the end effector 702. Sensors 738, such as an articulation encoder, may provide the articulation position of the end effector 702 to the control circuit 710.


In another aspect, the articulation function of the robotic surgical system 700 may comprise two articulation members, or links, 742a, 742b. These articulation members 742a, 742b are driven by separate disks on the robot interface (the rack), which are driven by the two motors 708d, 708e. When the separate firing motor 704a is provided, each of articulation links 742a, 742b can be antagonistically driven with respect to the other link in order to provide a resistive holding motion and a load to the head when it is not moving and to provide an articulation motion as the head is articulated. The articulation members 742a, 742b attach to the head at a fixed radius as the head is rotated. Accordingly, the mechanical advantage of the push-and-pull link changes as the head is rotated. This change in the mechanical advantage may be more pronounced with other articulation link drive systems.


In one aspect, the one or more motors 704a-704e may comprise a brushed DC motor with a gearbox and mechanical links to a firing member, closure member, or articulation member. Another example includes electric motors 704a-704e that operate the movable mechanical elements such as the displacement member, articulation links, closure tube, and shaft. An outside influence is an unmeasured, unpredictable influence of things like tissue, surrounding bodies, and friction on the physical system. Such outside influence can be referred to as drag, which acts in opposition to one of electric motors 704a-704e. The outside influence, such as drag, may cause the operation of the physical system to deviate from a desired operation of the physical system.


In one aspect, the position sensor 734 may be implemented as an absolute positioning system. In one aspect, the position sensor 734 may comprise a magnetic rotary absolute positioning system implemented as an AS5055EQFT single-chip magnetic rotary position sensor available from Austria Microsystems, AG. The position sensor 734 may interface with the control circuit 710 to provide an absolute positioning system. The position may include multiple Hall-effect elements located above a magnet and coupled to a CORDIC processor, also known as the digit-by-digit method and Volder's algorithm, that is provided to implement a simple and efficient algorithm to calculate hyperbolic and trigonometric functions that require only addition, subtraction, bitshift, and table lookup operations.


In one aspect, the control circuit 710 may be in communication with one or more sensors 738. The sensors 738 may be positioned on the end effector 702 and adapted to operate with the robotic surgical instrument 700 to measure the various derived parameters such as the gap distance versus time, tissue compression versus time, and anvil strain versus time. The sensors 738 may comprise a magnetic sensor, a magnetic field sensor, a strain gauge, a load cell, a pressure sensor, a force sensor, a torque sensor, an inductive sensor such as an eddy current sensor, a resistive sensor, a capacitive sensor, an optical sensor, and/or any other suitable sensor for measuring one or more parameters of the end effector 702. The sensors 738 may include one or more sensors. The sensors 738 may be located on the staple cartridge 718 deck to determine tissue location using segmented electrodes. The torque sensors 744a-744e may be configured to sense force such as firing force, closure force, and/or articulation force, among others. Accordingly, the control circuit 710 can sense (1) the closure load experienced by the distal closure tube and its position, (2) the firing member at the rack and its position, (3) what portion of the staple cartridge 718 has tissue on it, and (4) the load and position on both articulation rods.


In one aspect, the one or more sensors 738 may comprise a strain gauge, such as a micro-strain gauge, configured to measure the magnitude of the strain in the anvil 716 during a clamped condition. The strain gauge provides an electrical signal whose amplitude varies with the magnitude of the strain. The sensors 738 may comprise a pressure sensor configured to detect a pressure generated by the presence of compressed tissue between the anvil 716 and the staple cartridge 718. The sensors 738 may be configured to detect impedance of a tissue section located between the anvil 716 and the staple cartridge 718 that is indicative of the thickness and/or fullness of tissue located therebetween.


In one aspect, the sensors 738 may be implemented as one or more limit switches, electromechanical devices, solid-state switches, Hall-effect devices, magneto-resistive (MR) devices, giant magneto-resistive (GMR) devices, magnetometers, among others. In other implementations, the sensors 738 may be implemented as solid-state switches that operate under the influence of light, such as optical sensors, IR sensors, ultraviolet sensors, among others. Still, the switches may be solid-state devices such as transistors (e.g., FET, junction FET, MOSFET, bipolar, and the like). In other implementations, the sensors 738 may include electrical conductorless switches, ultrasonic switches, accelerometers, and inertial sensors, among others.


In one aspect, the sensors 738 may be configured to measure forces exerted on the anvil 716 by the closure drive system. For example, one or more sensors 738 can be at an interaction point between the closure tube and the anvil 716 to detect the closure forces applied by the closure tube to the anvil 716. The forces exerted on the anvil 716 can be representative of the tissue compression experienced by the tissue section captured between the anvil 716 and the staple cartridge 718. The one or more sensors 738 can be positioned at various interaction points along the closure drive system to detect the closure forces applied to the anvil 716 by the closure drive system. The one or more sensors 738 may be sampled in real time during a clamping operation by the processor of the control circuit 710. The control circuit 710 receives real-time sample measurements to provide and analyze time-based information and assess, in real time, closure forces applied to the anvil 716.


In one aspect, a current sensor 736 can be employed to measure the current drawn by each of the motors 704a-704e. The force required to advance any of the movable mechanical elements such as the I-beam 714 corresponds to the current drawn by one of the motors 704a-704e. The force is converted to a digital signal and provided to the control circuit 710. The control circuit 710 can be configured to simulate the response of the actual system of the instrument in the software of the controller. A displacement member can be actuated to move an I-beam 714 in the end effector 702 at or near a target velocity. The robotic surgical instrument 700 can include a feedback controller, which can be one of any feedback controllers, including, but not limited to a PID, a state feedback, a linear-quadratic (LQR), and/or an adaptive controller, for example. The robotic surgical instrument 700 can include a power source to convert the signal from the feedback controller into a physical input such as case voltage, PWM voltage, frequency modulated voltage, current, torque, and/or force, for example. Additional details are disclosed in U.S. patent application Ser. No. 15/636,829, titled CLOSED LOOP VELOCITY CONTROL TECHNIQUES FOR ROBOTIC SURGICAL INSTRUMENT, filed Jun. 29, 2017, which is herein incorporated by reference in its entirety.



FIG. 41 illustrates a block diagram of a surgical instrument 750 programmed to control the distal translation of a displacement member according to one aspect of this disclosure. In one aspect, the surgical instrument 750 is programmed to control the distal translation of a displacement member such as the I-beam 764. The surgical instrument 750 comprises an end effector 752 that may comprise an anvil 766, an I-beam 764 (including a sharp cutting edge), and a removable staple cartridge 768.


The position, movement, displacement, and/or translation of a linear displacement member, such as the I-beam 764, can be measured by an absolute positioning system, sensor arrangement, and position sensor 784. Because the I-beam 764 is coupled to a longitudinally movable drive member, the position of the I-beam 764 can be determined by measuring the position of the longitudinally movable drive member employing the position sensor 784. Accordingly, in the following description, the position, displacement, and/or translation of the I-beam 764 can be achieved by the position sensor 784 as described herein. A control circuit 760 may be programmed to control the translation of the displacement member, such as the I-beam 764. The control circuit 760, in some examples, may comprise one or more microcontrollers, microprocessors, or other suitable processors for executing instructions that cause the processor or processors to control the displacement member, e.g., the I-beam 764, in the manner described. In one aspect, a timer/counter 781 provides an output signal, such as the elapsed time or a digital count, to the control circuit 760 to correlate the position of the I-beam 764 as determined by the position sensor 784 with the output of the timer/counter 781 such that the control circuit 760 can determine the position of the I-beam 764 at a specific time (t) relative to a starting position. The timer/counter 781 may be configured to measure elapsed time, count external events, or time external events.


The control circuit 760 may generate a motor set point signal 772. The motor set point signal 772 may be provided to a motor controller 758. The motor controller 758 may comprise one or more circuits configured to provide a motor drive signal 774 to the motor 754 to drive the motor 754 as described herein. In some examples, the motor 754 may be a brushed DC electric motor. For example, the velocity of the motor 754 may be proportional to the motor drive signal 774. In some examples, the motor 754 may be a brushless DC electric motor and the motor drive signal 774 may comprise a PWM signal provided to one or more stator windings of the motor 754. Also, in some examples, the motor controller 758 may be omitted, and the control circuit 760 may generate the motor drive signal 774 directly.


The motor 754 may receive power from an energy source 762. The energy source 762 may be or include a battery, a super capacitor, or any other suitable energy source. The motor 754 may be mechanically coupled to the I-beam 764 via a transmission 756. The transmission 756 may include one or more gears or other linkage components to couple the motor 754 to the I-beam 764. A position sensor 784 may sense a position of the I-beam 764. The position sensor 784 may be or include any type of sensor that is capable of generating position data that indicate a position of the I-beam 764. In some examples, the position sensor 784 may include an encoder configured to provide a series of pulses to the control circuit 760 as the I-beam 764 translates distally and proximally. The control circuit 760 may track the pulses to determine the position of the I-beam 764. Other suitable position sensors may be used, including, for example, a proximity sensor. Other types of position sensors may provide other signals indicating motion of the I-beam 764. Also, in some examples, the position sensor 784 may be omitted. Where the motor 754 is a stepper motor, the control circuit 760 may track the position of the I-beam 764 by aggregating the number and direction of steps that the motor 754 has been instructed to execute. The position sensor 784 may be located in the end effector 752 or at any other portion of the instrument.


The control circuit 760 may be in communication with one or more sensors 788. The sensors 788 may be positioned on the end effector 752 and adapted to operate with the surgical instrument 750 to measure the various derived parameters such as gap distance versus time, tissue compression versus time, and anvil strain versus time. The sensors 788 may comprise a magnetic sensor, a magnetic field sensor, a strain gauge, a pressure sensor, a force sensor, an inductive sensor such as an eddy current sensor, a resistive sensor, a capacitive sensor, an optical sensor, and/or any other suitable sensor for measuring one or more parameters of the end effector 752. The sensors 788 may include one or more sensors.


The one or more sensors 788 may comprise a strain gauge, such as a micro-strain gauge, configured to measure the magnitude of the strain in the anvil 766 during a clamped condition. The strain gauge provides an electrical signal whose amplitude varies with the magnitude of the strain. The sensors 788 may comprise a pressure sensor configured to detect a pressure generated by the presence of compressed tissue between the anvil 766 and the staple cartridge 768. The sensors 788 may be configured to detect impedance of a tissue section located between the anvil 766 and the staple cartridge 768 that is indicative of the thickness and/or fullness of tissue located therebetween.


The sensors 788 may be is configured to measure forces exerted on the anvil 766 by a closure drive system. For example, one or more sensors 788 can be at an interaction point between a closure tube and the anvil 766 to detect the closure forces applied by a closure tube to the anvil 766. The forces exerted on the anvil 766 can be representative of the tissue compression experienced by the tissue section captured between the anvil 766 and the staple cartridge 768. The one or more sensors 788 can be positioned at various interaction points along the closure drive system to detect the closure forces applied to the anvil 766 by the closure drive system. The one or more sensors 788 may be sampled in real time during a clamping operation by a processor of the control circuit 760. The control circuit 760 receives real-time sample measurements to provide and analyze time-based information and assess, in real time, closure forces applied to the anvil 766.


A current sensor 786 can be employed to measure the current drawn by the motor 754. The force required to advance the I-beam 764 corresponds to the current drawn by the motor 754. The force is converted to a digital signal and provided to the control circuit 760.


The control circuit 760 can be configured to simulate the response of the actual system of the instrument in the software of the controller. A displacement member can be actuated to move an I-beam 764 in the end effector 752 at or near a target velocity. The surgical instrument 750 can include a feedback controller, which can be one of any feedback controllers, including, but not limited to a PID, a state feedback, LQR, and/or an adaptive controller, for example. The surgical instrument 750 can include a power source to convert the signal from the feedback controller into a physical input such as case voltage, PWM voltage, frequency modulated voltage, current, torque, and/or force, for example.


The actual drive system of the surgical instrument 750 is configured to drive the displacement member, cutting member, or I-beam 764, by a brushed DC motor with gearbox and mechanical links to an articulation and/or knife system. Another example is the electric motor 754 that operates the displacement member and the articulation driver, for example, of an interchangeable shaft assembly. An outside influence is an unmeasured, unpredictable influence of things like tissue, surrounding bodies and friction on the physical system. Such outside influence can be referred to as drag which acts in opposition to the electric motor 754. The outside influence, such as drag, may cause the operation of the physical system to deviate from a desired operation of the physical system.


Various example aspects are directed to a surgical instrument 750 comprising an end effector 752 with motor-driven surgical stapling and cutting implements. For example, a motor 754 may drive a displacement member distally and proximally along a longitudinal axis of the end effector 752. The end effector 752 may comprise a pivotable anvil 766 and, when configured for use, a staple cartridge 768 positioned opposite the anvil 766. A clinician may grasp tissue between the anvil 766 and the staple cartridge 768, as described herein. When ready to use the instrument 750, the clinician may provide a firing signal, for example by depressing a trigger of the instrument 750. In response to the firing signal, the motor 754 may drive the displacement member distally along the longitudinal axis of the end effector 752 from a proximal stroke begin position to a stroke end position distal of the stroke begin position. As the displacement member translates distally, an I-beam 764 with a cutting element positioned at a distal end, may cut the tissue between the staple cartridge 768 and the anvil 766.


In various examples, the surgical instrument 750 may comprise a control circuit 760 programmed to control the distal translation of the displacement member, such as the I-beam 764, for example, based on one or more tissue conditions. The control circuit 760 may be programmed to sense tissue conditions, such as thickness, either directly or indirectly, as described herein. The control circuit 760 may be programmed to select a firing control program based on tissue conditions. A firing control program may describe the distal motion of the displacement member. Different firing control programs may be selected to better treat different tissue conditions. For example, when thicker tissue is present, the control circuit 760 may be programmed to translate the displacement member at a lower velocity and/or with lower power. When thinner tissue is present, the control circuit 760 may be programmed to translate the displacement member at a higher velocity and/or with higher power.


In some examples, the control circuit 760 may initially operate the motor 754 in an open loop configuration for a first open loop portion of a stroke of the displacement member. Based on a response of the instrument 750 during the open loop portion of the stroke, the control circuit 760 may select a firing control program. The response of the instrument may include, a translation distance of the displacement member during the open loop portion, a time elapsed during the open loop portion, energy provided to the motor 754 during the open loop portion, a sum of pulse widths of a motor drive signal, etc. After the open loop portion, the control circuit 760 may implement the selected firing control program for a second portion of the displacement member stroke. For example, during the closed loop portion of the stroke, the control circuit 760 may modulate the motor 754 based on translation data describing a position of the displacement member in a closed loop manner to translate the displacement member at a constant velocity. Additional details are disclosed in U.S. patent application Ser. No. 15/720,852, titled SYSTEM AND METHODS FOR CONTROLLING A DISPLAY OF A SURGICAL INSTRUMENT, filed Sep. 29, 2017, which is herein incorporated by reference in its entirety.



FIG. 42 is a schematic diagram of a surgical instrument 790 configured to control various functions according to one aspect of this disclosure. In one aspect, the surgical instrument 790 is programmed to control distal translation of a displacement member such as the I-beam 764. The surgical instrument 790 comprises an end effector 792 that may comprise an anvil 766, an I-beam 764, and a removable staple cartridge 768 which may be interchanged with an RF cartridge 796 (shown in dashed line).


In one aspect, sensors 788 may be implemented as a limit switch, electromechanical device, solid-state switches, Hall-effect devices, MR devices, GMR devices, magnetometers, among others. In other implementations, the sensors 638 may be solid-state switches that operate under the influence of light, such as optical sensors, IR sensors, ultraviolet sensors, among others. Still, the switches may be solid-state devices such as transistors (e.g., FET, junction FET, MOSFET, bipolar, and the like). In other implementations, the sensors 788 may include electrical conductorless switches, ultrasonic switches, accelerometers, and inertial sensors, among others.


In one aspect, the position sensor 784 may be implemented as an absolute positioning system comprising a magnetic rotary absolute positioning system implemented as an AS5055EQFT single-chip magnetic rotary position sensor available from Austria Microsystems, AG. The position sensor 784 may interface with the control circuit 760 to provide an absolute positioning system. The position may include multiple Hall-effect elements located above a magnet and coupled to a CORDIC processor, also known as the digit-by-digit method and Volder's algorithm, that is provided to implement a simple and efficient algorithm to calculate hyperbolic and trigonometric functions that require only addition, subtraction, bitshift, and table lookup operations.


In one aspect, the I-beam 764 may be implemented as a knife member comprising a knife body that operably supports a tissue cutting blade thereon and may further include anvil engagement tabs or features and channel engagement features or a foot. In one aspect, the staple cartridge 768 may be implemented as a standard (mechanical) surgical fastener cartridge. In one aspect, the RF cartridge 796 may be implemented as an RF cartridge. These and other sensors arrangements are described in commonly owned U.S. patent application Ser. No. 15/628,175, titled TECHNIQUES FOR ADAPTIVE CONTROL OF MOTOR VELOCITY OF A SURGICAL STAPLING AND CUTTING INSTRUMENT, filed Jun. 20, 2017, which is herein incorporated by reference in its entirety.


The position, movement, displacement, and/or translation of a linear displacement member, such as the I-beam 764, can be measured by an absolute positioning system, sensor arrangement, and position sensor represented as position sensor 784. Because the I-beam 764 is coupled to the longitudinally movable drive member, the position of the I-beam 764 can be determined by measuring the position of the longitudinally movable drive member employing the position sensor 784. Accordingly, in the following description, the position, displacement, and/or translation of the I-beam 764 can be achieved by the position sensor 784 as described herein. A control circuit 760 may be programmed to control the translation of the displacement member, such as the I-beam 764, as described herein. The control circuit 760, in some examples, may comprise one or more microcontrollers, microprocessors, or other suitable processors for executing instructions that cause the processor or processors to control the displacement member, e.g., the I-beam 764, in the manner described. In one aspect, a timer/counter 781 provides an output signal, such as the elapsed time or a digital count, to the control circuit 760 to correlate the position of the I-beam 764 as determined by the position sensor 784 with the output of the timer/counter 781 such that the control circuit 760 can determine the position of the I-beam 764 at a specific time (t) relative to a starting position. The timer/counter 781 may be configured to measure elapsed time, count external events, or time external events.


The control circuit 760 may generate a motor set point signal 772. The motor set point signal 772 may be provided to a motor controller 758. The motor controller 758 may comprise one or more circuits configured to provide a motor drive signal 774 to the motor 754 to drive the motor 754 as described herein. In some examples, the motor 754 may be a brushed DC electric motor. For example, the velocity of the motor 754 may be proportional to the motor drive signal 774. In some examples, the motor 754 may be a brushless DC electric motor and the motor drive signal 774 may comprise a PWM signal provided to one or more stator windings of the motor 754. Also, in some examples, the motor controller 758 may be omitted, and the control circuit 760 may generate the motor drive signal 774 directly.


The motor 754 may receive power from an energy source 762. The energy source 762 may be or include a battery, a super capacitor, or any other suitable energy source. The motor 754 may be mechanically coupled to the I-beam 764 via a transmission 756. The transmission 756 may include one or more gears or other linkage components to couple the motor 754 to the I-beam 764. A position sensor 784 may sense a position of the I-beam 764. The position sensor 784 may be or include any type of sensor that is capable of generating position data that indicate a position of the I-beam 764. In some examples, the position sensor 784 may include an encoder configured to provide a series of pulses to the control circuit 760 as the I-beam 764 translates distally and proximally. The control circuit 760 may track the pulses to determine the position of the I-beam 764. Other suitable position sensors may be used, including, for example, a proximity sensor. Other types of position sensors may provide other signals indicating motion of the I-beam 764. Also, in some examples, the position sensor 784 may be omitted. Where the motor 754 is a stepper motor, the control circuit 760 may track the position of the I-beam 764 by aggregating the number and direction of steps that the motor has been instructed to execute. The position sensor 784 may be located in the end effector 792 or at any other portion of the instrument.


The control circuit 760 may be in communication with one or more sensors 788. The sensors 788 may be positioned on the end effector 792 and adapted to operate with the surgical instrument 790 to measure the various derived parameters such as gap distance versus time, tissue compression versus time, and anvil strain versus time. The sensors 788 may comprise a magnetic sensor, a magnetic field sensor, a strain gauge, a pressure sensor, a force sensor, an inductive sensor such as an eddy current sensor, a resistive sensor, a capacitive sensor, an optical sensor, and/or any other suitable sensor for measuring one or more parameters of the end effector 792. The sensors 788 may include one or more sensors.


The one or more sensors 788 may comprise a strain gauge, such as a micro-strain gauge, configured to measure the magnitude of the strain in the anvil 766 during a clamped condition. The strain gauge provides an electrical signal whose amplitude varies with the magnitude of the strain. The sensors 788 may comprise a pressure sensor configured to detect a pressure generated by the presence of compressed tissue between the anvil 766 and the staple cartridge 768. The sensors 788 may be configured to detect impedance of a tissue section located between the anvil 766 and the staple cartridge 768 that is indicative of the thickness and/or fullness of tissue located therebetween.


The sensors 788 may be is configured to measure forces exerted on the anvil 766 by the closure drive system. For example, one or more sensors 788 can be at an interaction point between a closure tube and the anvil 766 to detect the closure forces applied by a closure tube to the anvil 766. The forces exerted on the anvil 766 can be representative of the tissue compression experienced by the tissue section captured between the anvil 766 and the staple cartridge 768. The one or more sensors 788 can be positioned at various interaction points along the closure drive system to detect the closure forces applied to the anvil 766 by the closure drive system. The one or more sensors 788 may be sampled in real time during a clamping operation by a processor portion of the control circuit 760. The control circuit 760 receives real-time sample measurements to provide and analyze time-based information and assess, in real time, closure forces applied to the anvil 766.


A current sensor 786 can be employed to measure the current drawn by the motor 754. The force required to advance the I-beam 764 corresponds to the current drawn by the motor 754. The force is converted to a digital signal and provided to the control circuit 760.


An RF energy source 794 is coupled to the end effector 792 and is applied to the RF cartridge 796 when the RF cartridge 796 is loaded in the end effector 792 in place of the staple cartridge 768. The control circuit 760 controls the delivery of the RF energy to the RF cartridge 796.


Additional details are disclosed in U.S. patent application Ser. No. 15/636,096, titled SURGICAL SYSTEM COUPLABLE WITH STAPLE CARTRIDGE AND RADIO FREQUENCY CARTRIDGE, AND METHOD OF USING SAME, filed Jun. 28, 2017, which is herein incorporated by reference in its entirety.


Generator Hardware


FIG. 43 is a simplified block diagram of a generator 800 configured to provide inductorless tuning, among other benefits. Additional details of the generator 800 are described in U.S. Pat. No. 9,060,775, titled SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES, which issued on Jun. 23, 2015, which is herein incorporated by reference in its entirety. The generator 800 may comprise a patient isolated stage 802 in communication with a non-isolated stage 804 via a power transformer 806. A secondary winding 808 of the power transformer 806 is contained in the isolated stage 802 and may comprise a tapped configuration (e.g., a center-tapped or a non-center-tapped configuration) to define drive signal outputs 810a, 810b, 810c for delivering drive signals to different surgical instruments, such as, for example, an ultrasonic surgical instrument, an RF electrosurgical instrument, and a multifunction surgical instrument which includes ultrasonic and RF energy modes that can be delivered alone or simultaneously. In particular, drive signal outputs 810a, 810c may output an ultrasonic drive signal (e.g., a 420V root-mean-square (RMS) drive signal) to an ultrasonic surgical instrument, and drive signal outputs 810b, 810c may output an RF electrosurgical drive signal (e.g., a 100V RMS drive signal) to an RF electrosurgical instrument, with the drive signal output 810b corresponding to the center tap of the power transformer 806.


In certain forms, the ultrasonic and electrosurgical drive signals may be provided simultaneously to distinct surgical instruments and/or to a single surgical instrument, such as the multifunction surgical instrument, having the capability to deliver both ultrasonic and electrosurgical energy to tissue. It will be appreciated that the electrosurgical signal, provided either to a dedicated electrosurgical instrument and/or to a combined multifunction ultrasonic/electrosurgical instrument may be either a therapeutic or sub-therapeutic level signal where the sub-therapeutic signal can be used, for example, to monitor tissue or instrument conditions and provide feedback to the generator. For example, the ultrasonic and RF signals can be delivered separately or simultaneously from a generator with a single output port in order to provide the desired output signal to the surgical instrument, as will be discussed in more detail below. Accordingly, the generator can combine the ultrasonic and electrosurgical RF energies and deliver the combined energies to the multifunction ultrasonic/electrosurgical instrument. Bipolar electrodes can be placed on one or both jaws of the end effector. One jaw may be driven by ultrasonic energy in addition to electrosurgical RF energy, working simultaneously. The ultrasonic energy may be employed to dissect tissue, while the electrosurgical RF energy may be employed for vessel sealing.


The non-isolated stage 804 may comprise a power amplifier 812 having an output connected to a primary winding 814 of the power transformer 806. In certain forms, the power amplifier 812 may comprise a push-pull amplifier. For example, the non-isolated stage 804 may further comprise a logic device 816 for supplying a digital output to a digital-to-analog converter (DAC) circuit 818, which in turn supplies a corresponding analog signal to an input of the power amplifier 812. In certain forms, the logic device 816 may comprise a programmable gate array (PGA), a FPGA, programmable logic device (PLD), among other logic circuits, for example. The logic device 816, by virtue of controlling the input of the power amplifier 812 via the DAC circuit 818, may therefore control any of a number of parameters (e.g., frequency, waveform shape, waveform amplitude) of drive signals appearing at the drive signal outputs 810a, 810b, 810c. In certain forms and as discussed below, the logic device 816, in conjunction with a processor (e.g., a DSP discussed below), may implement a number of DSP-based and/or other control algorithms to control parameters of the drive signals output by the generator 800.


Power may be supplied to a power rail of the power amplifier 812 by a switch-mode regulator 820, e.g., a power converter. In certain forms, the switch-mode regulator 820 may comprise an adjustable buck regulator, for example. The non-isolated stage 804 may further comprise a first processor 822, which in one form may comprise a DSP processor such as an Analog Devices ADSP-21469 SHARC DSP, available from Analog Devices, Norwood, Mass., for example, although in various forms any suitable processor may be employed. In certain forms the DSP processor 822 may control the operation of the switch-mode regulator 820 responsive to voltage feedback data received from the power amplifier 812 by the DSP processor 822 via an ADC circuit 824. In one form, for example, the DSP processor 822 may receive as input, via the ADC circuit 824, the waveform envelope of a signal (e.g., an RF signal) being amplified by the power amplifier 812. The DSP processor 822 may then control the switch-mode regulator 820 (e.g., via a PWM output) such that the rail voltage supplied to the power amplifier 812 tracks the waveform envelope of the amplified signal. By dynamically modulating the rail voltage of the power amplifier 812 based on the waveform envelope, the efficiency of the power amplifier 812 may be significantly improved relative to a fixed rail voltage amplifier schemes.


In certain forms, the logic device 816, in conjunction with the DSP processor 822, may implement a digital synthesis circuit such as a direct digital synthesizer control scheme to control the waveform shape, frequency, and/or amplitude of drive signals output by the generator 800. In one form, for example, the logic device 816 may implement a DDS control algorithm by recalling waveform samples stored in a dynamically updated lookup table (LUT), such as a RAM LUT, which may be embedded in an FPGA. This control algorithm is particularly useful for ultrasonic applications in which an ultrasonic transducer, such as an ultrasonic transducer, may be driven by a clean sinusoidal current at its resonant frequency. Because other frequencies may excite parasitic resonances, minimizing or reducing the total distortion of the motional branch current may correspondingly minimize or reduce undesirable resonance effects. Because the waveform shape of a drive signal output by the generator 800 is impacted by various sources of distortion present in the output drive circuit (e.g., the power transformer 806, the power amplifier 812), voltage and current feedback data based on the drive signal may be input into an algorithm, such as an error control algorithm implemented by the DSP processor 822, which compensates for distortion by suitably pre-distorting or modifying the waveform samples stored in the LUT on a dynamic, ongoing basis (e.g., in real time). In one form, the amount or degree of pre-distortion applied to the LUT samples may be based on the error between a computed motional branch current and a desired current waveform shape, with the error being determined on a sample-by-sample basis. In this way, the pre-distorted LUT samples, when processed through the drive circuit, may result in a motional branch drive signal having the desired waveform shape (e.g., sinusoidal) for optimally driving the ultrasonic transducer. In such forms, the LUT waveform samples will therefore not represent the desired waveform shape of the drive signal, but rather the waveform shape that is required to ultimately produce the desired waveform shape of the motional branch drive signal when distortion effects are taken into account.


The non-isolated stage 804 may further comprise a first ADC circuit 826 and a second ADC circuit 828 coupled to the output of the power transformer 806 via respective isolation transformers 830, 832 for respectively sampling the voltage and current of drive signals output by the generator 800. In certain forms, the ADC circuits 826, 828 may be configured to sample at high speeds (e.g., 80 mega samples per second (MSPS)) to enable oversampling of the drive signals. In one form, for example, the sampling speed of the ADC circuits 826, 828 may enable approximately 200× (depending on frequency) oversampling of the drive signals. In certain forms, the sampling operations of the ADC circuit 826, 828 may be performed by a single ADC circuit receiving input voltage and current signals via a two-way multiplexer. The use of high-speed sampling in forms of the generator 800 may enable, among other things, calculation of the complex current flowing through the motional branch (which may be used in certain forms to implement DDS-based waveform shape control described above), accurate digital filtering of the sampled signals, and calculation of real power consumption with a high degree of precision. Voltage and current feedback data output by the ADC circuits 826, 828 may be received and processed (e.g., first-in-first-out (FIFO) buffer, multiplexer) by the logic device 816 and stored in data memory for subsequent retrieval by, for example, the DSP processor 822. As noted above, voltage and current feedback data may be used as input to an algorithm for pre-distorting or modifying LUT waveform samples on a dynamic and ongoing basis. In certain forms, this may require each stored voltage and current feedback data pair to be indexed based on, or otherwise associated with, a corresponding LUT sample that was output by the logic device 816 when the voltage and current feedback data pair was acquired. Synchronization of the LUT samples and the voltage and current feedback data in this manner contributes to the correct timing and stability of the pre-distortion algorithm.


In certain forms, the voltage and current feedback data may be used to control the frequency and/or amplitude (e.g., current amplitude) of the drive signals. In one form, for example, voltage and current feedback data may be used to determine impedance phase. The frequency of the drive signal may then be controlled to minimize or reduce the difference between the determined impedance phase and an impedance phase setpoint (e.g., 0°), thereby minimizing or reducing the effects of harmonic distortion and correspondingly enhancing impedance phase measurement accuracy. The determination of phase impedance and a frequency control signal may be implemented in the DSP processor 822, for example, with the frequency control signal being supplied as input to a DDS control algorithm implemented by the logic device 816.


In another form, for example, the current feedback data may be monitored in order to maintain the current amplitude of the drive signal at a current amplitude setpoint. The current amplitude setpoint may be specified directly or determined indirectly based on specified voltage amplitude and power setpoints. In certain forms, control of the current amplitude may be implemented by control algorithm, such as, for example, a proportional-integral-derivative (PID) control algorithm, in the DSP processor 822. Variables controlled by the control algorithm to suitably control the current amplitude of the drive signal may include, for example, the scaling of the LUT waveform samples stored in the logic device 816 and/or the full-scale output voltage of the DAC circuit 818 (which supplies the input to the power amplifier 812) via a DAC circuit 834.


The non-isolated stage 804 may further comprise a second processor 836 for providing, among other things user interface (UI) functionality. In one form, the UI processor 836 may comprise an Atmel AT91SAM9263 processor having an ARM 926EJ-S core, available from Atmel Corporation, San Jose, Calif., for example. Examples of UI functionality supported by the UI processor 836 may include audible and visual user feedback, communication with peripheral devices (e.g., via a USB interface), communication with a foot switch, communication with an input device (e.g., a touch screen display) and communication with an output device (e.g., a speaker). The UI processor 836 may communicate with the DSP processor 822 and the logic device 816 (e.g., via SPI buses). Although the UI processor 836 may primarily support UI functionality, it may also coordinate with the DSP processor 822 to implement hazard mitigation in certain forms. For example, the UI processor 836 may be programmed to monitor various aspects of user input and/or other inputs (e.g., touch screen inputs, foot switch inputs, temperature sensor inputs) and may disable the drive output of the generator 800 when an erroneous condition is detected.


In certain forms, both the DSP processor 822 and the UI processor 836, for example, may determine and monitor the operating state of the generator 800. For the DSP processor 822, the operating state of the generator 800 may dictate, for example, which control and/or diagnostic processes are implemented by the DSP processor 822. For the UI processor 836, the operating state of the generator 800 may dictate, for example, which elements of a UI (e.g., display screens, sounds) are presented to a user. The respective DSP and UI processors 822, 836 may independently maintain the current operating state of the generator 800 and recognize and evaluate possible transitions out of the current operating state. The DSP processor 822 may function as the master in this relationship and determine when transitions between operating states are to occur. The UI processor 836 may be aware of valid transitions between operating states and may confirm if a particular transition is appropriate. For example, when the DSP processor 822 instructs the UI processor 836 to transition to a specific state, the UI processor 836 may verify that requested transition is valid. In the event that a requested transition between states is determined to be invalid by the UI processor 836, the UI processor 836 may cause the generator 800 to enter a failure mode.


The non-isolated stage 804 may further comprise a controller 838 for monitoring input devices (e.g., a capacitive touch sensor used for turning the generator 800 on and off, a capacitive touch screen). In certain forms, the controller 838 may comprise at least one processor and/or other controller device in communication with the UI processor 836. In one form, for example, the controller 838 may comprise a processor (e.g., a Meg168 8-bit controller available from Atmel) configured to monitor user input provided via one or more capacitive touch sensors. In one form, the controller 838 may comprise a touch screen controller (e.g., a QT5480 touch screen controller available from Atmel) to control and manage the acquisition of touch data from a capacitive touch screen.


In certain forms, when the generator 800 is in a “power off” state, the controller 838 may continue to receive operating power (e.g., via a line from a power supply of the generator 800, such as the power supply 854 discussed below). In this way, the controller 838 may continue to monitor an input device (e.g., a capacitive touch sensor located on a front panel of the generator 800) for turning the generator 800 on and off. When the generator 800 is in the power off state, the controller 838 may wake the power supply (e.g., enable operation of one or more DC/DC voltage converters 856 of the power supply 854) if activation of the “on/off” input device by a user is detected. The controller 838 may therefore initiate a sequence for transitioning the generator 800 to a “power on” state. Conversely, the controller 838 may initiate a sequence for transitioning the generator 800 to the power off state if activation of the “on/off” input device is detected when the generator 800 is in the power on state. In certain forms, for example, the controller 838 may report activation of the “on/off” input device to the UI processor 836, which in turn implements the necessary process sequence for transitioning the generator 800 to the power off state. In such forms, the controller 838 may have no independent ability for causing the removal of power from the generator 800 after its power on state has been established.


In certain forms, the controller 838 may cause the generator 800 to provide audible or other sensory feedback for alerting the user that a power on or power off sequence has been initiated. Such an alert may be provided at the beginning of a power on or power off sequence and prior to the commencement of other processes associated with the sequence.


In certain forms, the isolated stage 802 may comprise an instrument interface circuit 840 to, for example, provide a communication interface between a control circuit of a surgical instrument (e.g., a control circuit comprising handpiece switches) and components of the non-isolated stage 804, such as, for example, the logic device 816, the DSP processor 822, and/or the UI processor 836. The instrument interface circuit 840 may exchange information with components of the non-isolated stage 804 via a communication link that maintains a suitable degree of electrical isolation between the isolated and non-isolated stages 802, 804, such as, for example, an IR-based communication link. Power may be supplied to the instrument interface circuit 840 using, for example, a low-dropout voltage regulator powered by an isolation transformer driven from the non-isolated stage 804.


In one form, the instrument interface circuit 840 may comprise a logic circuit 842 (e.g., logic circuit, programmable logic circuit, PGA, FPGA, PLD) in communication with a signal conditioning circuit 844. The signal conditioning circuit 844 may be configured to receive a periodic signal from the logic circuit 842 (e.g., a 2 kHz square wave) to generate a bipolar interrogation signal having an identical frequency. The interrogation signal may be generated, for example, using a bipolar current source fed by a differential amplifier. The interrogation signal may be communicated to a surgical instrument control circuit (e.g., by using a conductive pair in a cable that connects the generator 800 to the surgical instrument) and monitored to determine a state or configuration of the control circuit. The control circuit may comprise a number of switches, resistors, and/or diodes to modify one or more characteristics (e.g., amplitude, rectification) of the interrogation signal such that a state or configuration of the control circuit is uniquely discernable based on the one or more characteristics. In one form, for example, the signal conditioning circuit 844 may comprise an ADC circuit for generating samples of a voltage signal appearing across inputs of the control circuit resulting from passage of interrogation signal therethrough. The logic circuit 842 (or a component of the non-isolated stage 804) may then determine the state or configuration of the control circuit based on the ADC circuit samples.


In one form, the instrument interface circuit 840 may comprise a first data circuit interface 846 to enable information exchange between the logic circuit 842 (or other element of the instrument interface circuit 840) and a first data circuit disposed in or otherwise associated with a surgical instrument. In certain forms, for example, a first data circuit may be disposed in a cable integrally attached to a surgical instrument handpiece or in an adaptor for interfacing a specific surgical instrument type or model with the generator 800. The first data circuit may be implemented in any suitable manner and may communicate with the generator according to any suitable protocol, including, for example, as described herein with respect to the first data circuit. In certain forms, the first data circuit may comprise a non-volatile storage device, such as an EEPROM device. In certain forms, the first data circuit interface 846 may be implemented separately from the logic circuit 842 and comprise suitable circuitry (e.g., discrete logic devices, a processor) to enable communication between the logic circuit 842 and the first data circuit. In other forms, the first data circuit interface 846 may be integral with the logic circuit 842.


In certain forms, the first data circuit may store information pertaining to the particular surgical instrument with which it is associated. Such information may include, for example, a model number, a serial number, a number of operations in which the surgical instrument has been used, and/or any other type of information. This information may be read by the instrument interface circuit 840 (e.g., by the logic circuit 842), transferred to a component of the non-isolated stage 804 (e.g., to logic device 816, DSP processor 822, and/or UI processor 836) for presentation to a user via an output device and/or for controlling a function or operation of the generator 800. Additionally, any type of information may be communicated to the first data circuit for storage therein via the first data circuit interface 846 (e.g., using the logic circuit 842). Such information may comprise, for example, an updated number of operations in which the surgical instrument has been used and/or dates and/or times of its usage.


As discussed previously, a surgical instrument may be detachable from a handpiece (e.g., the multifunction surgical instrument may be detachable from the handpiece) to promote instrument interchangeability and/or disposability. In such cases, conventional generators may be limited in their ability to recognize particular instrument configurations being used and to optimize control and diagnostic processes accordingly. The addition of readable data circuits to surgical instruments to address this issue is problematic from a compatibility standpoint, however. For example, designing a surgical instrument to remain backwardly compatible with generators that lack the requisite data reading functionality may be impractical due to, for example, differing signal schemes, design complexity, and cost. Forms of instruments discussed herein address these concerns by using data circuits that may be implemented in existing surgical instruments economically and with minimal design changes to preserve compatibility of the surgical instruments with current generator platforms.


Additionally, forms of the generator 800 may enable communication with instrument-based data circuits. For example, the generator 800 may be configured to communicate with a second data circuit contained in an instrument (e.g., the multifunction surgical instrument). In some forms, the second data circuit may be implemented in a many similar to that of the first data circuit described herein. The instrument interface circuit 840 may comprise a second data circuit interface 848 to enable this communication. In one form, the second data circuit interface 848 may comprise a tri-state digital interface, although other interfaces may also be used. In certain forms, the second data circuit may generally be any circuit for transmitting and/or receiving data. In one form, for example, the second data circuit may store information pertaining to the particular surgical instrument with which it is associated. Such information may include, for example, a model number, a serial number, a number of operations in which the surgical instrument has been used, and/or any other type of information.


In some forms, the second data circuit may store information about the electrical and/or ultrasonic properties of an associated ultrasonic transducer, end effector, or ultrasonic drive system. For example, the first data circuit may indicate a burn-in frequency slope, as described herein. Additionally or alternatively, any type of information may be communicated to second data circuit for storage therein via the second data circuit interface 848 (e.g., using the logic circuit 842). Such information may comprise, for example, an updated number of operations in which the instrument has been used and/or dates and/or times of its usage. In certain forms, the second data circuit may transmit data acquired by one or more sensors (e.g., an instrument-based temperature sensor). In certain forms, the second data circuit may receive data from the generator 800 and provide an indication to a user (e.g., a light emitting diode indication or other visible indication) based on the received data.


In certain forms, the second data circuit and the second data circuit interface 848 may be configured such that communication between the logic circuit 842 and the second data circuit can be effected without the need to provide additional conductors for this purpose (e.g., dedicated conductors of a cable connecting a handpiece to the generator 800). In one form, for example, information may be communicated to and from the second data circuit using a one-wire bus communication scheme implemented on existing cabling, such as one of the conductors used transmit interrogation signals from the signal conditioning circuit 844 to a control circuit in a handpiece. In this way, design changes or modifications to the surgical instrument that might otherwise be necessary are minimized or reduced. Moreover, because different types of communications implemented over a common physical channel can be frequency-band separated, the presence of a second data circuit may be “invisible” to generators that do not have the requisite data reading functionality, thus enabling backward compatibility of the surgical instrument.


In certain forms, the isolated stage 802 may comprise at least one blocking capacitor 850-1 connected to the drive signal output 810b to prevent passage of DC current to a patient. A single blocking capacitor may be required to comply with medical regulations or standards, for example. While failure in single-capacitor designs is relatively uncommon, such failure may nonetheless have negative consequences. In one form, a second blocking capacitor 850-2 may be provided in series with the blocking capacitor 850-1, with current leakage from a point between the blocking capacitors 850-1, 850-2 being monitored by, for example, an ADC circuit 852 for sampling a voltage induced by leakage current. The samples may be received by the logic circuit 842, for example. Based changes in the leakage current (as indicated by the voltage samples), the generator 800 may determine when at least one of the blocking capacitors 850-1, 850-2 has failed, thus providing a benefit over single-capacitor designs having a single point of failure.


In certain forms, the non-isolated stage 804 may comprise a power supply 854 for delivering DC power at a suitable voltage and current. The power supply may comprise, for example, a 400 W power supply for delivering a 48 VDC system voltage. The power supply 854 may further comprise one or more DC/DC voltage converters 856 for receiving the output of the power supply to generate DC outputs at the voltages and currents required by the various components of the generator 800. As discussed above in connection with the controller 838, one or more of the DC/DC voltage converters 856 may receive an input from the controller 838 when activation of the “on/off” input device by a user is detected by the controller 838 to enable operation of, or wake, the DC/DC voltage converters 856.



FIG. 44 illustrates an example of a generator 900, which is one form of the generator 800 (FIG. 43). The generator 900 is configured to deliver multiple energy modalities to a surgical instrument. The generator 900 provides RF and ultrasonic signals for delivering energy to a surgical instrument either independently or simultaneously. The RF and ultrasonic signals may be provided alone or in combination and may be provided simultaneously. As noted above, at least one generator output can deliver multiple energy modalities (e.g., ultrasonic, bipolar or monopolar RF, irreversible and/or reversible electroporation, and/or microwave energy, among others) through a single port, and these signals can be delivered separately or simultaneously to the end effector to treat tissue.


The generator 900 comprises a processor 902 coupled to a waveform generator 904. The processor 902 and waveform generator 904 are configured to generate a variety of signal waveforms based on information stored in a memory coupled to the processor 902, not shown for clarity of disclosure. The digital information associated with a waveform is provided to the waveform generator 904 which includes one or more DAC circuits to convert the digital input into an analog output. The analog output is fed to an amplifier 1106 for signal conditioning and amplification. The conditioned and amplified output of the amplifier 906 is coupled to a power transformer 908. The signals are coupled across the power transformer 908 to the secondary side, which is in the patient isolation side. A first signal of a first energy modality is provided to the surgical instrument between the terminals labeled ENERGY1 and RETURN. A second signal of a second energy modality is coupled across a capacitor 910 and is provided to the surgical instrument between the terminals labeled ENERGY2 and RETURN. It will be appreciated that more than two energy modalities may be output and thus the subscript “n” may be used to designate that up to n ENERGYn terminals may be provided, where n is a positive integer greater than 1. It also will be appreciated that up to “n” return paths RETURNn may be provided without departing from the scope of the present disclosure.


A first voltage sensing circuit 912 is coupled across the terminals labeled ENERGY1 and the RETURN path to measure the output voltage therebetween. A second voltage sensing circuit 924 is coupled across the terminals labeled ENERGY2 and the RETURN path to measure the output voltage therebetween. A current sensing circuit 914 is disposed in series with the RETURN leg of the secondary side of the power transformer 908 as shown to measure the output current for either energy modality. If different return paths are provided for each energy modality, then a separate current sensing circuit should be provided in each return leg. The outputs of the first and second voltage sensing circuits 912, 924 are provided to respective isolation transformers 916, 922 and the output of the current sensing circuit 914 is provided to another isolation transformer 918. The outputs of the isolation transformers 916, 928, 922 in the on the primary side of the power transformer 908 (non-patient isolated side) are provided to a one or more ADC circuit 926. The digitized output of the ADC circuit 926 is provided to the processor 902 for further processing and computation. The output voltages and output current feedback information can be employed to adjust the output voltage and current provided to the surgical instrument and to compute output impedance, among other parameters. Input/output communications between the processor 902 and patient isolated circuits is provided through an interface circuit 920. Sensors also may be in electrical communication with the processor 902 by way of the interface circuit 920.


In one aspect, the impedance may be determined by the processor 902 by dividing the output of either the first voltage sensing circuit 912 coupled across the terminals labeled ENERGY1/RETURN or the second voltage sensing circuit 924 coupled across the terminals labeled ENERGY2/RETURN by the output of the current sensing circuit 914 disposed in series with the RETURN leg of the secondary side of the power transformer 908. The outputs of the first and second voltage sensing circuits 912, 924 are provided to separate isolations transformers 916, 922 and the output of the current sensing circuit 914 is provided to another isolation transformer 916. The digitized voltage and current sensing measurements from the ADC circuit 926 are provided the processor 902 for computing impedance. As an example, the first energy modality ENERGY1 may be ultrasonic energy and the second energy modality ENERGY2 may be RF energy. Nevertheless, in addition to ultrasonic and bipolar or monopolar RF energy modalities, other energy modalities include irreversible and/or reversible electroporation and/or microwave energy, among others. Also, although the example illustrated in FIG. 44 shows a single return path RETURN may be provided for two or more energy modalities, in other aspects, multiple return paths RETURNn may be provided for each energy modality ENERGYn. Thus, as described herein, the ultrasonic transducer impedance may be measured by dividing the output of the first voltage sensing circuit 912 by the current sensing circuit 914 and the tissue impedance may be measured by dividing the output of the second voltage sensing circuit 924 by the current sensing circuit 914.


As shown in FIG. 44, the generator 900 comprising at least one output port can include a power transformer 908 with a single output and with multiple taps to provide power in the form of one or more energy modalities, such as ultrasonic, bipolar or monopolar RF, irreversible and/or reversible electroporation, and/or microwave energy, among others, for example, to the end effector depending on the type of treatment of tissue being performed. For example, the generator 900 can deliver energy with higher voltage and lower current to drive an ultrasonic transducer, with lower voltage and higher current to drive RF electrodes for sealing tissue, or with a coagulation waveform for spot coagulation using either monopolar or bipolar RF electrosurgical electrodes. The output waveform from the generator 900 can be steered, switched, or filtered to provide the frequency to the end effector of the surgical instrument. The connection of an ultrasonic transducer to the generator 900 output would be preferably located between the output labeled ENERGY1 and RETURN as shown in FIG. 44. In one example, a connection of RF bipolar electrodes to the generator 900 output would be preferably located between the output labeled ENERGY2 and RETURN. In the case of monopolar output, the preferred connections would be active electrode (e.g., pencil or other probe) to the ENERGY2 output and a suitable return pad connected to the RETURN output.


Additional details are disclosed in U.S. Patent Application Publication No. 2017/0086914, titled TECHNIQUES FOR OPERATING GENERATOR FOR DIGITALLY GENERATING ELECTRICAL SIGNAL WAVEFORMS AND SURGICAL INSTRUMENTS, which published on Mar. 30, 2017, which is herein incorporated by reference in its entirety.


As used throughout this description, the term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some aspects they might not. The communication module may implement any of a number of wireless or wired communication standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, Ethernet derivatives thereof, as well as any other wireless and wired protocols that are designated as 3G, 4G, 5G, and beyond. The computing module may include a plurality of communication modules. For instance, a first communication module may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication module may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.


As used herein a processor or processing unit is an electronic circuit which performs operations on some external data source, usually memory or some other data stream. The term is used herein to refer to the central processor (central processing unit) in a system or computer systems (especially systems on a chip (SoCs)) that combine a number of specialized “processors.”


As used herein, a system on a chip or system on chip (SoC or SOC) is an integrated circuit (also known as an “IC” or “chip”) that integrates all components of a computer or other electronic systems. It may contain digital, analog, mixed-signal, and often radio-frequency functions—all on a single substrate. A SoC integrates a microcontroller (or microprocessor) with advanced peripherals like graphics processing unit (GPU), Wi-Fi module, or coprocessor. A SoC may or may not contain built-in memory.


As used herein, a microcontroller or controller is a system that integrates a microprocessor with peripheral circuits and memory. A microcontroller (or MCU for microcontroller unit) may be implemented as a small computer on a single integrated circuit. It may be similar to a SoC; an SoC may include a microcontroller as one of its components. A microcontroller may contain one or more core processing units (CPUs) along with memory and programmable input/output peripherals. Program memory in the form of Ferroelectric RAM, NOR flash or OTP ROM is also often included on chip, as well as a small amount of RAM. Microcontrollers may be employed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications consisting of various discrete chips.


As used herein, the term controller or microcontroller may be a stand-alone IC or chip device that interfaces with a peripheral device. This may be a link between two parts of a computer or a controller on an external device that manages the operation of (and connection with) that device.


Any of the processors or microcontrollers described herein, may be implemented by any single core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. In one aspect, the processor may be an LM4F230H5QR ARM Cortex-M4F Processor Core, available from Texas Instruments, for example, comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare® software, 2 KB electrically erasable programmable read-only memory (EEPROM), one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QEI) analog, one or more 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, details of which are available for the product datasheet.


In one aspect, the processor may comprise a safety controller comprising two controller-based families such as TMS570 and RM4x known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. The safety controller may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.


Modular devices include the modules (as described in connection with FIGS. 3 and 9, for example) that are receivable within a surgical hub and the surgical devices or instruments that can be connected to the various modules in order to connect or pair with the corresponding surgical hub. The modular devices include, for example, intelligent surgical instruments, medical imaging devices, suction/irrigation devices, smoke evacuators, energy generators, ventilators, insufflators, and displays. The modular devices described herein can be controlled by control algorithms. The control algorithms can be executed on the modular device itself, on the surgical hub to which the particular modular device is paired, or on both the modular device and the surgical hub (e.g., via a distributed computing architecture). In some exemplifications, the modular devices' control algorithms control the devices based on data sensed by the modular device itself (i.e., by sensors in, on, or connected to the modular device). This data can be related to the patient being operated on (e.g., tissue properties or insufflation pressure) or the modular device itself (e.g., the rate at which a knife is being advanced, motor current, or energy levels). For example, a control algorithm for a surgical stapling and cutting instrument can control the rate at which the instrument's motor drives its knife through tissue according to resistance encountered by the knife as it advances.


Situational Awareness

Situational awareness is the ability of some aspects of a surgical system to determine or infer information related to a surgical procedure from data received from databases and/or instruments. The information can include the type of procedure being undertaken, the type of tissue being operated on, or the body cavity that is the subject of the procedure. With the contextual information related to the surgical procedure, the surgical system can, for example, improve the manner in which it controls the modular devices (e.g. a robotic arm and/or robotic surgical tool) that are connected to it and provide contextualized information or suggestions to the surgeon during the course of the surgical procedure.


Referring now to FIG. 45, a timeline 5200 depicting situational awareness of a hub, such as the surgical hub 106 or 206, for example, is depicted. The timeline 5200 is an illustrative surgical procedure and the contextual information that the surgical hub 106, 206 can derive from the data received from the data sources at each step in the surgical procedure. The timeline 5200 depicts the typical steps that would be taken by the nurses, surgeons, and other medical personnel during the course of a lung segmentectomy procedure, beginning with setting up the operating theater and ending with transferring the patient to a post-operative recovery room.


The situationally aware surgical hub 106, 206 receives data from the data sources throughout the course of the surgical procedure, including data generated each time medical personnel utilize a modular device that is paired with the surgical hub 106, 206. The surgical hub 106, 206 can receive this data from the paired modular devices and other data sources and continually derive inferences (i.e., contextual information) about the ongoing procedure as new data is received, such as which step of the procedure is being performed at any given time. The situational awareness system of the surgical hub 106, 206 is able to, for example, record data pertaining to the procedure for generating reports, verify the steps being taken by the medical personnel, provide data or prompts (e.g., via a display screen) that may be pertinent for the particular procedural step, adjust modular devices based on the context (e.g., activate monitors, adjust the field of view (FOV) of the medical imaging device, or change the energy level of an ultrasonic surgical instrument or RF electrosurgical instrument), and take any other such action described above.


As the first step 5202 in this illustrative procedure, the hospital staff members retrieve the patient's Electronic Medical Record (EMR) from the hospital's EMR database. Based on select patient data in the EMR, the surgical hub 106, 206 determines that the procedure to be performed is a thoracic procedure.


Second step 5204, the staff members scan the incoming medical supplies for the procedure. The surgical hub 106, 206 cross-references the scanned supplies with a list of supplies that are utilized in various types of procedures and confirms that the mix of supplies corresponds to a thoracic procedure. Further, the surgical hub 106, 206 is also able to determine that the procedure is not a wedge procedure (because the incoming supplies either lack certain supplies that are necessary for a thoracic wedge procedure or do not otherwise correspond to a thoracic wedge procedure).


Third step 5206, the medical personnel scan the patient band via a scanner that is communicably connected to the surgical hub 106, 206. The surgical hub 106, 206 can then confirm the patient's identity based on the scanned data.


Fourth step 5208, the medical staff turns on the auxiliary equipment. The auxiliary equipment being utilized can vary according to the type of surgical procedure and the techniques to be used by the surgeon, but in this illustrative case they include a smoke evacuator, insufflator, and medical imaging device. When activated, the auxiliary equipment that are modular devices can automatically pair with the surgical hub 106, 206 that is located within a particular vicinity of the modular devices as part of their initialization process. The surgical hub 106, 206 can then derive contextual information about the surgical procedure by detecting the types of modular devices that pair with it during this pre-operative or initialization phase. In this particular example, the surgical hub 106, 206 determines that the surgical procedure is a VATS procedure based on this particular combination of paired modular devices. Based on the combination of the data from the patient's EMR, the list of medical supplies to be used in the procedure, and the type of modular devices that connect to the hub, the surgical hub 106, 206 can generally infer the specific procedure that the surgical team will be performing. Once the surgical hub 106, 206 knows what specific procedure is being performed, the surgical hub 106, 206 can then retrieve the steps of that procedure from a memory or from the cloud and then cross-reference the data it subsequently receives from the connected data sources (e.g., modular devices and patient monitoring devices) to infer what step of the surgical procedure the surgical team is performing.


Fifth step 5210, the staff members attach the EKG electrodes and other patient monitoring devices to the patient. The EKG electrodes and other patient monitoring devices are able to pair with the surgical hub 106, 206. As the surgical hub 106, 206 begins receiving data from the patient monitoring devices, the surgical hub 106, 206 thus confirms that the patient is in the operating theater.


Sixth step 5212, the medical personnel induce anesthesia in the patient. The surgical hub 106, 206 can infer that the patient is under anesthesia based on data from the modular devices and/or patient monitoring devices, including EKG data, blood pressure data, ventilator data, or combinations thereof, for example. Upon completion of the sixth step 5212, the pre-operative portion of the lung segmentectomy procedure is completed and the operative portion begins.


Seventh step 5214, the patient's lung that is being operated on is collapsed (while ventilation is switched to the contralateral lung). The surgical hub 106, 206 can infer from the ventilator data that the patient's lung has been collapsed, for example. The surgical hub 106, 206 can infer that the operative portion of the procedure has commenced as it can compare the detection of the patient's lung collapsing to the expected steps of the procedure (which can be accessed or retrieved previously) and thereby determine that collapsing the lung is the first operative step in this particular procedure.


Eighth step 5216, the medical imaging device (e.g., a scope) is inserted and video from the medical imaging device is initiated. The surgical hub 106, 206 receives the medical imaging device data (i.e., video or image data) through its connection to the medical imaging device. Upon receipt of the medical imaging device data, the surgical hub 106, 206 can determine that the laparoscopic portion of the surgical procedure has commenced. Further, the surgical hub 106, 206 can determine that the particular procedure being performed is a segmentectomy, as opposed to a lobectomy (note that a wedge procedure has already been discounted by the surgical hub 106, 206 based on data received at the second step 5204 of the procedure). The data from the medical imaging device 124 (FIG. 25) can be utilized to determine contextual information regarding the type of procedure being performed in a number of different ways, including by determining the angle at which the medical imaging device is oriented with respect to the visualization of the patient's anatomy, monitoring the number or medical imaging devices being utilized (i.e., that are activated and paired with the surgical hub 106, 206), and monitoring the types of visualization devices utilized. For example, one technique for performing a VATS lobectomy places the camera in the lower anterior corner of the patient's chest cavity above the diaphragm, whereas one technique for performing a VATS segmentectomy places the camera in an anterior intercostal position relative to the segmental fissure. Using pattern recognition or machine learning techniques, for example, the situational awareness system can be trained to recognize the positioning of the medical imaging device according to the visualization of the patient's anatomy. As another example, one technique for performing a VATS lobectomy utilizes a single medical imaging device, whereas another technique for performing a VATS segmentectomy utilizes multiple cameras. As yet another example, one technique for performing a VATS segmentectomy utilizes an infrared light source (which can be communicably coupled to the surgical hub as part of the visualization system) to visualize the segmental fissure, which is not utilized in a VATS lobectomy. By tracking any or all of this data from the medical imaging device, the surgical hub 106, 206 can thereby determine the specific type of surgical procedure being performed and/or the technique being used for a particular type of surgical procedure.


Ninth step 5218, the surgical team begins the dissection step of the procedure. The surgical hub 106, 206 can infer that the surgeon is in the process of dissecting to mobilize the patient's lung because it receives data from the RF or ultrasonic generator indicating that an energy instrument is being fired. The surgical hub 106, 206 can cross-reference the received data with the retrieved steps of the surgical procedure to determine that an energy instrument being fired at this point in the process (i.e., after the completion of the previously discussed steps of the procedure) corresponds to the dissection step. In certain instances, the energy instrument can be an energy tool mounted to a robotic arm of a robotic surgical system.


Tenth step 5220, the surgical team proceeds to the ligation step of the procedure. The surgical hub 106, 206 can infer that the surgeon is ligating arteries and veins because it receives data from the surgical stapling and cutting instrument indicating that the instrument is being fired. Similarly to the prior step, the surgical hub 106, 206 can derive this inference by cross-referencing the receipt of data from the surgical stapling and cutting instrument with the retrieved steps in the process. In certain instances, the surgical instrument can be a surgical tool mounted to a robotic arm of a robotic surgical system.


Eleventh step 5222, the segmentectomy portion of the procedure is performed. The surgical hub 106, 206 can infer that the surgeon is transecting the parenchyma based on data from the surgical stapling and cutting instrument, including data from its cartridge. The cartridge data can correspond to the size or type of staple being fired by the instrument, for example. As different types of staples are utilized for different types of tissues, the cartridge data can thus indicate the type of tissue being stapled and/or transected. In this case, the type of staple being fired is utilized for parenchyma (or other similar tissue types), which allows the surgical hub 106, 206 to infer that the segmentectomy portion of the procedure is being performed.


Twelfth step 5224, the node dissection step is then performed. The surgical hub 106, 206 can infer that the surgical team is dissecting the node and performing a leak test based on data received from the generator indicating that an RF or ultrasonic instrument is being fired. For this particular procedure, an RF or ultrasonic instrument being utilized after parenchyma was transected corresponds to the node dissection step, which allows the surgical hub 106, 206 to make this inference. It should be noted that surgeons regularly switch back and forth between surgical stapling/cutting instruments and surgical energy (i.e., RF or ultrasonic) instruments depending upon the particular step in the procedure because different instruments are better adapted for particular tasks. Therefore, the particular sequence in which the stapling/cutting instruments and surgical energy instruments are used can indicate what step of the procedure the surgeon is performing. Moreover, in certain instances, robotic tools can be utilized for one or more steps in a surgical procedure and/or handheld surgical instruments can be utilized for one or more steps in the surgical procedure. The surgeon(s) can alternate between robotic tools and handheld surgical instruments and/or can use the devices concurrently, for example. Upon completion of the twelfth step 5224, the incisions are closed up and the post-operative portion of the procedure begins.


Thirteenth step 5226, the patient's anesthesia is reversed. The surgical hub 106, 206 can infer that the patient is emerging from the anesthesia based on the ventilator data (i.e., the patient's breathing rate begins increasing), for example.


Lastly, the fourteenth step 5228 is that the medical personnel remove the various patient monitoring devices from the patient. The surgical hub 106, 206 can thus infer that the patient is being transferred to a recovery room when the hub loses EKG, BP, and other data from the patient monitoring devices. As can be seen from the description of this illustrative procedure, the surgical hub 106, 206 can determine or infer when each step of a given surgical procedure is taking place according to data received from the various data sources that are communicably coupled to the surgical hub 106, 206.


Situational awareness is further described in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety. In certain instances, operation of a robotic surgical system, including the various robotic surgical systems disclosed herein, for example, can be controlled by the hub 106, 206 based on its situational awareness and/or feedback from the components thereof and/or based on information from the cloud 104.


EXAMPLES

Various aspects of the subject matter described herein are set out in the following numbered examples.


Example 1

A surgical evacuation system, comprising a pump; a motor operably coupled to the pump; and a flow path fluidically coupled to the pump, wherein the flow path comprises a first fluid filter configured to extract a large droplet in a fluid moving through the flow path; and a second fluid filter configured to extract a small droplet in the fluid moving through the flow path, wherein the first fluid filter is coupled in series with the second fluid filter, wherein the first fluid filter is positioned upstream of the second fluid filter, wherein an outlet port of the second fluid filter is coupled to an inlet port of a non-fluid filter.


Example 2

The surgical evacuation system of Example 1, further comprising a first recirculation channel, wherein an inlet port of the first recirculation channel is positioned between the second fluid filter and the non-fluid filter, wherein the first recirculation channel is configured to recirculate the fluid output from the second fluid filter.


Example 3

The surgical evacuation system of Example 2, further comprising a first recirculation valve configured to close and open the first recirculation channel, wherein when the first recirculation valve is opened, the fluid output from the second fluid filter is recirculated through the first recirculation channel.


Example 4

The surgical evacuation system of Example 3, further comprising a first sensor positioned near the first recirculation valve, wherein the first sensor is configured to detect a parameter of the fluid, wherein the first recirculation valve opens the first recirculation channel when the parameter detected by the first sensor is equal to or greater than a first predetermined threshold value.


Example 5

The surgical evacuation system of any one of Examples 2-4, wherein the fluid directed into the first recirculation channel is injected into the fluid path upstream of the second fluid filter.


Example 6

The surgical evacuation system of Example 5, wherein the fluid directed into the first recirculation channel is injected into the first fluid filter.


Example 7

The surgical evacuation system of any one of Examples 2-6, wherein the fluid directed into the first recirculation channel is injected into an upstream portion of the second fluid filter.


Example 8

The surgical evacuation system of any one of Examples 2-7, wherein the first recirculation channel extends downward from the inlet port of the first recirculation channel, which allows the large droplet or the small droplet in the fluid output from the second fluid filter to be directed to the first recirculation channel via gravity.


Example 9

The surgical evacuation system of any one of Examples 2-8, further comprising a second recirculation channel, wherein an inlet port of the second recirculation channel is positioned between the first fluid filter and the second fluid filter, wherein the second recirculation channel is configured to recirculate the fluid output from the first fluid filter.


Example 10

The surgical evacuation system of Example 9, further comprising a second recirculation valve configured to close and open the second recirculation channel, wherein when the second recirculation valve is opened, the fluid output from the first fluid filter is recirculated through the second recirculation channel.


Example 11

The surgical evacuation system of Example 10, further comprising a second sensor positioned near the second recirculation valve, wherein the second sensor is configured to detect the parameter of the fluid, wherein the second recirculation valve opens the second recirculation channel when the parameter detected by the second sensor is equal to or greater than a second predetermined threshold value.


Example 12

The surgical evacuation system of any one of Example 9-11, wherein the fluid directed into the second recirculation channel is injected into the fluid path upstream of the first fluid filter.


Example 13

The surgical evacuation system of any one of Examples 9-12, wherein the fluid directed into the second recirculation channel is injected into an upstream portion of the first fluid filter.


Example 14

The surgical evacuation system of any one of Examples 9-13, wherein the second recirculation channel extends downward from the inlet port of the second recirculation channel, which allows the large droplet or the small droplet in the fluid output from the first fluid filter to be directed to the second recirculation channel via gravity.


Example 15

The surgical evacuation system of any one of Examples 1-14, wherein the first fluid filter comprises at least one baffle.


Example 16

The surgical evacuation system of any one of Examples 1-15, wherein the first fluid filter comprises a diverter valve.


Example 17

The surgical evacuation system of any one of Examples 1-16, wherein the second fluid filter comprises a filter selected from the group consisting of a membrane filter, a honeycomb filter, and a porous structure filter, and combinations thereof.


Example 18

The surgical evacuation system of any one of Example 1-17, wherein the non-fluid filter comprises a particulate filter.


Example 19

The surgical evacuation system of any one of Example 1-17, wherein at least one of the first fluid filter and the second fluid filter is disabled when it is determined that the number of recirculation processes performed through a recirculation channel is equal to or greater than a third predetermined threshold value.


Example 20

A surgical evacuation system, comprising: a pump; a motor operably coupled to the pump; and a flow path fluidically coupled to the pump, wherein the flow path comprises: a first fluid filter configured to extract a large droplet in a fluid moving through the flow path, wherein the first fluid filter comprises at least one baffle; and a second fluid filter configured to extract a small droplet in the fluid moving through the flow path, wherein the second fluid filter comprises a filter selected from the group consisting of a membrane filter, a honeycomb filter, and a porous structure filter, and combinations thereof, wherein the first fluid filter is coupled in series with the second fluid filter, wherein the first fluid filter is positioned upstream of the second fluid filter, wherein an outlet port of the second fluid filter is coupled to an inlet port of a non-fluid filter.


Example 21

The surgical evacuation system of Example 20, further comprising a first recirculation channel, wherein an inlet port of the first recirculation channel is positioned between the second fluid filter and the non-fluid filter, wherein the first recirculation channel is configured to recirculate the fluid output from the second fluid filter.


Example 22

The surgical evacuation system of any one of Examples 20-21, further comprising a second recirculation channel, wherein an inlet port of the second recirculation channel is positioned between the first fluid filter and the second fluid filter, wherein the second recirculation channel is configured to recirculate the fluid output from the first fluid filter.


While several forms have been illustrated and described, it is not the intention of the applicant to restrict or limit the scope of the appended claims to such detail. Numerous modifications, variations, changes, substitutions, combinations, and equivalents to those forms may be implemented and will occur to those skilled in the art without departing from the scope of the present disclosure. Moreover, the structure of each element associated with the described forms can be alternatively described as a means for providing the function performed by the element. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications, combinations, and variations as falling within the scope of the disclosed forms. The appended claims are intended to cover all such modifications, variations, changes, substitutions, modifications, and equivalents.


The foregoing detailed description has set forth various forms of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, and/or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. Those skilled in the art will recognize that some aspects of the forms disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as one or more program products in a variety of forms, and that an illustrative form of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution.


Instructions used to program logic to perform various disclosed aspects can be stored within a memory in the system, such as dynamic random access memory (DRAM), cache, flash memory, or other storage. Furthermore, the instructions can be distributed via a network or by way of other computer readable media. Thus a machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer), but is not limited to, floppy diskettes, optical disks, compact disc, read-only memory (CD-ROMs), and magneto-optical disks, read-only memory (ROMs), random access memory (RAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic or optical cards, flash memory, or a tangible, machine-readable storage used in the transmission of information over the Internet via electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.). Accordingly, the non-transitory computer-readable medium includes any type of tangible machine-readable medium suitable for storing or transmitting electronic instructions or information in a form readable by a machine (e.g., a computer).


As used in any aspect herein, the term “control circuit” may refer to, for example, hardwired circuitry, programmable circuitry (e.g., a computer processor comprising one or more individual instruction processing cores, processing unit, processor, microcontroller, microcontroller unit, controller, digital signal processor (DSP), programmable logic device (PLD), programmable logic array (PLA), or field programmable gate array (FPGA)), state machine circuitry, firmware that stores instructions executed by programmable circuitry, and any combination thereof. The control circuit may, collectively or individually, be embodied as circuitry that forms part of a larger system, for example, an integrated circuit (IC), an application-specific integrated circuit (ASIC), a system on-chip (SoC), desktop computers, laptop computers, tablet computers, servers, smart phones, etc. Accordingly, as used herein “control circuit” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.


As used in any aspect herein, the term “logic” may refer to an app, software, firmware and/or circuitry configured to perform any of the aforementioned operations. Software may be embodied as a software package, code, instructions, instruction sets and/or data recorded on non-transitory computer readable storage medium. Firmware may be embodied as code, instructions or instruction sets and/or data that are hard-coded (e.g., nonvolatile) in memory devices.


As used in any aspect herein, the terms “component,” “system,” “module” and the like can refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution.


As used in any aspect herein, an “algorithm” refers to a self-consistent sequence of steps leading to a desired result, where a “step” refers to a manipulation of physical quantities and/or logic states which may, though need not necessarily, take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It is common usage to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities and/or states.


A network may include a packet switched network. The communication devices may be capable of communicating with each other using a selected packet switched network communications protocol. One example communications protocol may include an Ethernet communications protocol which may be capable permitting communication using a Transmission Control Protocol/Internet Protocol (TCP/IP). The Ethernet protocol may comply or be compatible with the Ethernet standard published by the Institute of Electrical and Electronics Engineers (IEEE) titled “IEEE 802.3 Standard”, published in December, 2008 and/or later versions of this standard. Alternatively or additionally, the communication devices may be capable of communicating with each other using an X.25 communications protocol. The X.25 communications protocol may comply or be compatible with a standard promulgated by the International Telecommunication Union-Telecommunication Standardization Sector (ITU-T). Alternatively or additionally, the communication devices may be capable of communicating with each other using a frame relay communications protocol. The frame relay communications protocol may comply or be compatible with a standard promulgated by Consultative Committee for International Telegraph and Telephone (CCITT) and/or the American National Standards Institute (ANSI). Alternatively or additionally, the transceivers may be capable of communicating with each other using an Asynchronous Transfer Mode (ATM) communications protocol. The ATM communications protocol may comply or be compatible with an ATM standard published by the ATM Forum titled “ATM-MPLS Network Interworking 2.0” published August 2001, and/or later versions of this standard. Of course, different and/or after-developed connection-oriented network communication protocols are equally contemplated herein.


Unless specifically stated otherwise as apparent from the foregoing disclosure, it is appreciated that, throughout the foregoing disclosure, discussions using terms such as “processing,” “computing,” “calculating,” “determining,” “displaying,” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.


One or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.


The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.


Those skilled in the art will recognize that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.


In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”


With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flow diagrams are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.


It is worthy to note that any reference to “one aspect,” “an aspect,” “an exemplification,” “one exemplification,” and the like means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in an exemplification,” and “in one exemplification” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.


Any patent application, patent, non-patent publication, or other disclosure material referred to in this specification and/or listed in any Application Data Sheet is incorporated by reference herein, to the extent that the incorporated materials is not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more forms has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more forms were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various forms and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.

Claims
  • 1. A surgical evacuation system, comprising: a pump;a motor operably coupled to the pump; anda flow path fluidically coupled to the pump, wherein the flow path comprises:a first fluid filter configured to extract a large droplet in a fluid moving through the flow path; anda second fluid filter configured to extract a small droplet in the fluid moving through the flow path, wherein the second fluid filter is different than the first fluid filter, wherein the first fluid filter is coupled in series with the second fluid filter, wherein the first fluid filter is positioned upstream of the second fluid filter, and wherein an outlet port of the second fluid filter is coupled to an inlet port of a non-fluid filter.
  • 2. The surgical evacuation system of claim 1, further comprising a first recirculation channel, wherein an inlet port of the first recirculation channel is positioned between the second fluid filter and the non-fluid filter, and wherein the first recirculation channel is configured to recirculate the fluid output from the second fluid filter.
  • 3. The surgical evacuation system of claim 2, further comprising a first recirculation valve configured to close and open the first recirculation channel, wherein when the first recirculation valve is opened, the fluid output from the second fluid filter is recirculated through the first recirculation channel.
  • 4. The surgical evacuation system of claim 3, further comprising a first sensor positioned near the first recirculation valve, wherein the first sensor is configured to detect a parameter of the fluid, and wherein the first recirculation valve opens the first recirculation channel when the parameter detected by the first sensor is equal to or greater than a first predetermined threshold value.
  • 5. The surgical evacuation system of claim 2, wherein the fluid directed into the first recirculation channel is injected into the flow path upstream of the second fluid filter or an upstream portion of the second fluid filter.
  • 6. The surgical evacuation system of claim 5, wherein the fluid directed into the first recirculation channel is injected into the first fluid filter.
  • 7. The surgical evacuation system of claim 2, wherein the first recirculation channel extends downward from the inlet port of the first recirculation channel, which allows the large droplet or the small droplet in the fluid output from the second fluid filter to be directed to the first recirculation channel via gravity.
  • 8. The surgical evacuation system of claim 1, further comprising a second recirculation channel, wherein an inlet port of the second recirculation channel is positioned between the first fluid filter and the second fluid filter, and wherein the second recirculation channel is configured to recirculate the fluid output from the first fluid filter.
  • 9. The surgical evacuation system of claim 8, further comprising a second recirculation valve configured to close and open the second recirculation channel, wherein when the second recirculation valve is opened, the fluid output from the first fluid filter is recirculated through the second recirculation channel.
  • 10. The surgical evacuation system of claim 9, further comprising a second sensor positioned near the second recirculation valve, wherein the second sensor is configured to detect a parameter of the fluid, and wherein the second recirculation valve opens the second recirculation channel when the parameter detected by the second sensor is equal to or greater than a second predetermined threshold value.
  • 11. The surgical evacuation system of claim 8, wherein the fluid directed into the second recirculation channel is injected into the flow path upstream of the first fluid filter or an upstream portion of the first fluid filter.
  • 12. The surgical evacuation system of claim 8, wherein the second recirculation channel extends downward from the inlet port of the second recirculation channel, which allows the large droplet or the small droplet in the fluid output from the first fluid filter to be directed to the second recirculation channel via gravity.
  • 13. The surgical evacuation system of claim 1, wherein the first fluid filter comprises at least one baffle.
  • 14. The surgical evacuation system of claim 1, wherein the first fluid filter comprises a diverter valve.
  • 15. The surgical evacuation system of claim 1, wherein the second fluid filter comprises a filter selected from the group consisting of a membrane filter, a honeycomb filter, and a porous structure filter, and combinations thereof.
  • 16. The surgical evacuation system of claim 1, wherein the non-fluid filter comprises a particulate filter.
  • 17. The surgical evacuation system of claim 1, further comprising a control circuit and a recirculation channel, wherein a fluid is directed through the recirculation channel during a recirculation process, and wherein at least one of the first fluid filter and the second fluid filter is disabled when the control circuit determines that recirculation processes performed through the recirculation channel is equal to or greater than a third predetermined threshold value.
  • 18. A surgical evacuation system, comprising: a pump;a motor operably coupled to the pump; anda flow path fluidically coupled to the pump, wherein the flow path comprises:a first fluid filter configured to extract a large droplet in a fluid moving through the flow path, wherein the first fluid filter comprises at least one baffle; anda second fluid filter configured to extract a small droplet in the fluid moving through the flow path, wherein the second fluid filter is different than the first fluid filter, wherein the second fluid filter comprises a filter selected from the group consisting of a membrane filter, a honeycomb filter, a porous structure filter, and combinations thereof, wherein the first fluid filter is coupled in series with the second fluid filter, wherein the first fluid filter is positioned upstream of the second fluid filter, and wherein an outlet port of the second fluid filter is coupled to an inlet port of a non-fluid filter.
  • 19. The surgical evacuation system of claim 18, further comprising a first recirculation channel, wherein an inlet port of the first recirculation channel is positioned between the second fluid filter and the non-fluid filter, and wherein the first recirculation channel is configured to recirculate the fluid output from the second fluid filter.
  • 20. The surgical evacuation system of claim 18, further comprising a second recirculation channel, wherein an inlet port of the second recirculation channel is positioned between the first fluid filter and the second fluid filter, and wherein the second recirculation channel is configured to recirculate the fluid output from the first fluid filter.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/691,251, titled DUAL IN-SERIES LARGE AND SMALL DROPLET FILTERS, filed Jun. 28, 2018, the disclosure of which is herein incorporated by reference in its entirety. This application claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/650,887, titled SURGICAL SYSTEMS WITH OPTIMIZED SENSING CAPABILITIES, filed Mar. 30, 2018, to U.S. Provisional Patent Application Ser. No. 62/650,877, titled SURGICAL SMOKE EVACUATION SENSING AND CONTROLS, filed Mar. 30, 2018, to U.S. Provisional Patent Application Ser. No. 62/650,882, titled SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM, filed Mar. 30, 2018, and to U.S. Provisional Patent Application Ser. No. 62/650,898, titled CAPACITIVE COUPLED RETURN PATH PAD WITH SEPARABLE ARRAY ELEMENTS, filed Mar. 30, 2018, the disclosure of each of which is herein incorporated by reference in its entirety. This application also claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/640,417, titled TEMPERATURE CONTROL IN ULTRASONIC DEVICE AND CONTROL SYSTEM THEREFOR, filed Mar. 8, 2018, and to U.S. Provisional Patent Application Ser. No. 62/640,415, titled ESTIMATING STATE OF ULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR, filed Mar. 8, 2018, the disclosure of each of which is herein incorporated by reference in its entirety. This application also claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, to U.S. Provisional Patent Application Ser. No. 62/611,340, titled CLOUD-BASED MEDICAL ANALYTICS, filed Dec. 28, 2017, and to U.S. Provisional Patent Application Ser. No. 62/611,339, titled ROBOT ASSISTED SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of each of which is herein incorporated by reference in its entirety.

US Referenced Citations (1702)
Number Name Date Kind
1853416 Hall Apr 1932 A
3082426 Miles Mar 1963 A
3503396 Pierie et al. Mar 1970 A
3584628 Green Jun 1971 A
3633584 Farrell Jan 1972 A
3759017 Young Sep 1973 A
4412539 Jarvik Nov 1983 A
4448193 Ivanov May 1984 A
4523695 Braun et al. Jun 1985 A
4608160 Zoch Aug 1986 A
4614366 North et al. Sep 1986 A
4701193 Robertson et al. Oct 1987 A
4735603 Goodson et al. Apr 1988 A
4788977 Farin et al. Dec 1988 A
5035692 Lyon et al. Jul 1991 A
5042460 Sakurai et al. Aug 1991 A
5084057 Green et al. Jan 1992 A
5100402 Fan Mar 1992 A
5151102 Kamiyama et al. Sep 1992 A
5156315 Green et al. Oct 1992 A
5158585 Saho Oct 1992 A
5197962 Sansom et al. Mar 1993 A
5242474 Herbst et al. Sep 1993 A
5253793 Green et al. Oct 1993 A
RE34519 Fox et al. Jan 1994 E
5318516 Cosmescu Jun 1994 A
5322055 Davison et al. Jun 1994 A
5342349 Kaufman Aug 1994 A
5383880 Hooven Jan 1995 A
5396900 Slater et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403327 Thornton et al. Apr 1995 A
5413267 Solyntjes et al. May 1995 A
5417699 Klein et al. May 1995 A
5439468 Schulze et al. Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5465895 Knodel et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5474566 Alesi et al. Dec 1995 A
5496315 Weaver et al. Mar 1996 A
5503320 Webster et al. Apr 1996 A
5531743 Nettekoven et al. Jul 1996 A
5545148 Wurster Aug 1996 A
5584425 Savage et al. Dec 1996 A
5610379 Muz et al. Mar 1997 A
5613966 Makower et al. Mar 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5643291 Pier et al. Jul 1997 A
5654750 Weil et al. Aug 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5675227 Roos et al. Oct 1997 A
5693052 Weaver Dec 1997 A
5695502 Pier et al. Dec 1997 A
5697926 Weaver Dec 1997 A
5706998 Plyley et al. Jan 1998 A
5725536 Oberlin et al. Mar 1998 A
5725542 Yoon Mar 1998 A
5735848 Yates et al. Apr 1998 A
5746209 Yost et al. May 1998 A
5749362 Funda et al. May 1998 A
5749893 Vidal et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5766186 Faraz et al. Jun 1998 A
5769791 Benaron et al. Jun 1998 A
5797537 Oberlin et al. Aug 1998 A
D399561 Ellingson Oct 1998 S
5817093 Williamson, IV et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5836849 Mathiak et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5843080 Fleenor et al. Dec 1998 A
5846237 Nettekoven Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5873873 Smith et al. Feb 1999 A
5878938 Bittner et al. Mar 1999 A
5893849 Weaver Apr 1999 A
5906625 Bito et al. May 1999 A
5942333 Arnett et al. Aug 1999 A
5947996 Logeman Sep 1999 A
5968032 Sleister Oct 1999 A
5980510 Tsonton et al. Nov 1999 A
5997528 Bisch et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6030437 Gourrier et al. Feb 2000 A
6036637 Kudo Mar 2000 A
6039734 Goble Mar 2000 A
6039735 Greep Mar 2000 A
6059799 Aranyi et al. May 2000 A
6066137 Greep May 2000 A
6079606 Milliman et al. Jun 2000 A
6090107 Borgmeier et al. Jul 2000 A
6099537 Sugai et al. Aug 2000 A
6155473 Tompkins et al. Dec 2000 A
6214000 Fleenor et al. Apr 2001 B1
6258105 Hart et al. Jul 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6301495 Gueziec et al. Oct 2001 B1
6302881 Farin Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6325808 Bernard et al. Dec 2001 B1
6325811 Messerly Dec 2001 B1
6341164 Dilkie et al. Jan 2002 B1
6391102 Bodden et al. May 2002 B1
6434416 Mizoguchi et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6457625 Tormala et al. Oct 2002 B1
6461352 Morgan et al. Oct 2002 B2
6530933 Yeung et al. Mar 2003 B1
6551243 Bocionek et al. Apr 2003 B2
6569109 Sakurai et al. May 2003 B2
6582424 Fleenor et al. Jun 2003 B2
6585791 Garito et al. Jul 2003 B1
6618626 West, Jr. et al. Sep 2003 B2
6648223 Boukhny et al. Nov 2003 B2
6685704 Greep Feb 2004 B2
6699187 Webb et al. Mar 2004 B2
6742895 Robin Jun 2004 B2
6752816 Culp et al. Jun 2004 B2
6773444 Messerly Aug 2004 B2
6778846 Martinez et al. Aug 2004 B1
6781683 Kacyra et al. Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6783525 Greep et al. Aug 2004 B2
6793663 Kneifel et al. Sep 2004 B2
6846308 Whitman et al. Jan 2005 B2
6852219 Hammond Feb 2005 B2
6863650 Irion Mar 2005 B1
6869430 Balbierz et al. Mar 2005 B2
6869435 Blake, III Mar 2005 B2
6911033 de Guillebon et al. Jun 2005 B2
6937892 Leyde et al. Aug 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6951559 Greep Oct 2005 B1
6978921 Shelton, IV et al. Dec 2005 B2
6988649 Shelton, IV et al. Jan 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7030146 Baynes et al. Apr 2006 B2
7032798 Whitman et al. Apr 2006 B2
7041941 Faries, Jr. et al. May 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044911 Drinan et al. May 2006 B2
7048775 Jornitz et al. May 2006 B2
7053752 Wang et al. May 2006 B2
7077853 Kramer et al. Jul 2006 B2
7077856 Whitman Jul 2006 B2
7081096 Brister et al. Jul 2006 B2
7097640 Wang et al. Aug 2006 B2
7103688 Strong Sep 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7121460 Parsons et al. Oct 2006 B1
7137980 Buysse et al. Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7147139 Schwemberger et al. Dec 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7169145 Isaacson et al. Jan 2007 B2
7177533 McFarlin et al. Feb 2007 B2
7182775 de Guillebon et al. Feb 2007 B2
7208005 Frecker et al. Apr 2007 B2
7230529 Ketcherside, Jr. et al. Jun 2007 B2
7232447 Gellman et al. Jun 2007 B2
7236817 Papas et al. Jun 2007 B2
7246734 Shelton, IV Jul 2007 B2
7278563 Green Oct 2007 B1
7294106 Birkenbach et al. Nov 2007 B2
7294116 Ellman et al. Nov 2007 B1
7296724 Green et al. Nov 2007 B2
7317955 McGreevy Jan 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7362228 Nycz et al. Apr 2008 B2
7371227 Zeiner May 2008 B2
7380695 Doll et al. Jun 2008 B2
7383088 Spinelli et al. Jun 2008 B2
7391173 Schena Jun 2008 B2
7407074 Ortiz et al. Aug 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7423972 Shaham et al. Sep 2008 B2
7457804 Uber, III et al. Nov 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7515961 Germanson et al. Apr 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7617137 Kreiner et al. Nov 2009 B2
7621192 Conti et al. Nov 2009 B2
7621898 Lalomia et al. Nov 2009 B2
7637410 Marczyk Dec 2009 B2
7641092 Kruszynski et al. Jan 2010 B2
7667839 Bates Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7694865 Scirica Apr 2010 B2
7699860 Huitema et al. Apr 2010 B2
7720306 Gardiner et al. May 2010 B2
7721934 Shelton, IV et al. May 2010 B2
7736357 Lee, Jr. et al. Jun 2010 B2
7742176 Braunecker et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7766905 Paterson et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7782789 Stultz et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7803151 Whitman Sep 2010 B2
7818041 Kim et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7836085 Petakov et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837680 Isaacson et al. Nov 2010 B2
7841980 Minosawa et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7862560 Marion Jan 2011 B2
7862579 Ortiz et al. Jan 2011 B2
7887530 Zemlok et al. Feb 2011 B2
7892337 Palmerton et al. Feb 2011 B2
7913891 Doll et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918377 Measamer et al. Apr 2011 B2
7920706 Asokan et al. Apr 2011 B2
7927014 Dehler Apr 2011 B2
7954682 Giordano et al. Jun 2011 B2
7955322 Devengenzo et al. Jun 2011 B2
7956620 Gilbert Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7966269 Bauer et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
7976553 Shelton, IV et al. Jul 2011 B2
7979157 Anvari Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7982776 Dunki-Jacobs et al. Jul 2011 B2
7988028 Farascioni et al. Aug 2011 B2
7993140 Sakezles Aug 2011 B2
7995045 Dunki-Jacobs Aug 2011 B2
8005947 Morris et al. Aug 2011 B2
8007494 Taylor et al. Aug 2011 B1
8007513 Nalagatla et al. Aug 2011 B2
8010180 Quaid et al. Aug 2011 B2
8012170 Whitman et al. Sep 2011 B2
8015976 Shah Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8027710 Dannan Sep 2011 B1
8035685 Jensen Oct 2011 B2
8038686 Huitema et al. Oct 2011 B2
8038693 Allen Oct 2011 B2
8043560 Okumoto et al. Oct 2011 B2
8054184 Cline et al. Nov 2011 B2
8062306 Nobis et al. Nov 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8066721 Kortenbach et al. Nov 2011 B2
8075571 Vitali et al. Dec 2011 B2
8096459 Ortiz et al. Jan 2012 B2
8118206 Zand et al. Feb 2012 B2
8120301 Goldberg et al. Feb 2012 B2
8123764 Meade et al. Feb 2012 B2
8131565 Dicks et al. Mar 2012 B2
8147486 Honour et al. Apr 2012 B2
8155479 Hoffman et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8160098 Yan et al. Apr 2012 B1
8161977 Shelton, IV et al. Apr 2012 B2
8170396 Kuspa et al. May 2012 B2
8172836 Ward May 2012 B2
8181839 Beetel May 2012 B2
8185409 Putnam et al. May 2012 B2
8206345 Abboud et al. Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8214007 Baker et al. Jul 2012 B2
8216849 Petty Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8225643 Abboud et al. Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8229549 Whitman et al. Jul 2012 B2
8257387 Cunningham Sep 2012 B2
8260016 Maeda et al. Sep 2012 B2
8262560 Whitman Sep 2012 B2
8292888 Whitman Oct 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8308040 Huang et al. Nov 2012 B2
8321581 Katis et al. Nov 2012 B2
8328065 Shah Dec 2012 B2
8335590 Costa et al. Dec 2012 B2
8346392 Walser et al. Jan 2013 B2
8364222 Cook et al. Jan 2013 B2
8365975 Manoux et al. Feb 2013 B1
8388652 Viola Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8397972 Kostrzewski Mar 2013 B2
8398541 DiMaio et al. Mar 2013 B2
8403944 Pain et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403946 Whitfield et al. Mar 2013 B2
8406859 Zuzak et al. Mar 2013 B2
8422035 Hinderling et al. Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8428722 Verhoef et al. Apr 2013 B2
8439910 Greep et al. May 2013 B2
8444663 Houser et al. May 2013 B2
8452615 Abri May 2013 B2
8454506 Rothman et al. Jun 2013 B2
8461744 Wiener et al. Jun 2013 B2
8468030 Stroup et al. Jun 2013 B2
8469973 Meade et al. Jun 2013 B2
8472630 Konrad et al. Jun 2013 B2
8476227 Kaplan et al. Jul 2013 B2
8489235 Moll et al. Jul 2013 B2
8499992 Whitman et al. Aug 2013 B2
8500756 Papa et al. Aug 2013 B2
8503759 Greer et al. Aug 2013 B2
8505801 Ehrenfels et al. Aug 2013 B2
8506478 Mizuyoshi Aug 2013 B2
8512365 Wiener et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8546996 Messerly et al. Oct 2013 B2
8560047 Haider et al. Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8566115 Moore Oct 2013 B2
8571598 Valavi Oct 2013 B2
8573459 Smith et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8591536 Robertson Nov 2013 B2
8595607 Nekoomaram et al. Nov 2013 B2
8596513 Olson et al. Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8620055 Barratt et al. Dec 2013 B2
8620473 Diolaiti et al. Dec 2013 B2
8623027 Price et al. Jan 2014 B2
8627483 Rachlin et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8628518 Blumenkranz et al. Jan 2014 B2
8628545 Cabrera et al. Jan 2014 B2
8631987 Shelton, IV et al. Jan 2014 B2
8632525 Kerr et al. Jan 2014 B2
8652086 Gerg et al. Feb 2014 B2
8652128 Ward Feb 2014 B2
8657176 Shelton, IV et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8663220 Wiener et al. Mar 2014 B2
8666544 Moll et al. Mar 2014 B2
8682049 Zhao et al. Mar 2014 B2
8682489 Itkowitz et al. Mar 2014 B2
8685056 Evans et al. Apr 2014 B2
8688188 Heller et al. Apr 2014 B2
8701962 Kostrzewski Apr 2014 B2
8719061 Birchall May 2014 B2
8720766 Hess et al. May 2014 B2
8733613 Huitema et al. May 2014 B2
8740840 Foley et al. Jun 2014 B2
8740866 Reasoner et al. Jun 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8757465 Woodard, Jr. et al. Jun 2014 B2
8761717 Buchheit Jun 2014 B1
8763879 Shelton, IV et al. Jul 2014 B2
8768251 Claus et al. Jul 2014 B2
8771270 Burbank Jul 2014 B2
8775196 Simpson et al. Jul 2014 B2
8779648 Giordano et al. Jul 2014 B2
8790253 Sunagawa et al. Jul 2014 B2
8794497 Zingman Aug 2014 B2
8799008 Johnson et al. Aug 2014 B2
8799009 Mellin et al. Aug 2014 B2
8801703 Gregg et al. Aug 2014 B2
8814996 Giurgiutiu et al. Aug 2014 B2
8818556 Sanchez et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820608 Miyamoto Sep 2014 B2
8827134 Viola et al. Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852174 Burbank Oct 2014 B2
8875973 Whitman Nov 2014 B2
8882662 Charles Nov 2014 B2
8905977 Shelton et al. Dec 2014 B2
8912746 Reid et al. Dec 2014 B2
8914098 Brennan et al. Dec 2014 B2
8918207 Prisco Dec 2014 B2
8920414 Stone et al. Dec 2014 B2
8920433 Barrier et al. Dec 2014 B2
8930203 Kiaie et al. Jan 2015 B2
8930214 Woolford Jan 2015 B2
8931679 Kostrzewski Jan 2015 B2
8945095 Blumenkranz et al. Feb 2015 B2
8945163 Voegele et al. Feb 2015 B2
8956581 Rosenbaum et al. Feb 2015 B2
8960519 Whitman et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8962062 Podhajsky et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8967455 Zhou Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968309 Roy et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8968358 Reschke Mar 2015 B2
8974429 Gordon et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989903 Weir et al. Mar 2015 B2
8991678 Wellman et al. Mar 2015 B2
8992565 Brisson et al. Mar 2015 B2
8998797 Omori Apr 2015 B2
9002518 Manzo et al. Apr 2015 B2
9011366 Dean et al. Apr 2015 B2
9011427 Price et al. Apr 2015 B2
9016539 Kostrzewski et al. Apr 2015 B2
9017326 DiNardo et al. Apr 2015 B2
9020240 Pettersson et al. Apr 2015 B2
9023071 Miller et al. May 2015 B2
9027431 Tang et al. May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9035568 Ganton et al. May 2015 B2
9038882 Racenet et al. May 2015 B2
9043027 Durant et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044244 Ludwin et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9050063 Roe et al. Jun 2015 B2
9050083 Yates et al. Jun 2015 B2
9050120 Swarup et al. Jun 2015 B2
9052809 Vesto Jun 2015 B2
9055035 Porsch et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060775 Wiener et al. Jun 2015 B2
9066650 Sekiguchi Jun 2015 B2
9072523 Houser et al. Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9078653 Leimbach et al. Jul 2015 B2
9078727 Miller Jul 2015 B2
9084606 Greep Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9099863 Smith et al. Aug 2015 B2
9101358 Kerr et al. Aug 2015 B2
9101359 Smith et al. Aug 2015 B2
9101374 Hoch et al. Aug 2015 B1
9106270 Puterbaugh et al. Aug 2015 B2
9107573 Birnkrant Aug 2015 B2
9107662 Kostrzewski Aug 2015 B2
9107684 Ma Aug 2015 B2
9107688 Kimball et al. Aug 2015 B2
9107689 Robertson et al. Aug 2015 B2
9107694 Hendriks et al. Aug 2015 B2
9111548 Nandy et al. Aug 2015 B2
9113880 Zemlok et al. Aug 2015 B2
9114494 Mah Aug 2015 B1
9116597 Gulasky Aug 2015 B1
9119617 Souls et al. Sep 2015 B2
9119655 Bowling et al. Sep 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9123155 Cunningham et al. Sep 2015 B2
9129054 Nawana et al. Sep 2015 B2
9137254 Bilbrey et al. Sep 2015 B2
9138129 Diolaiti Sep 2015 B2
9138225 Huang et al. Sep 2015 B2
9149322 Knowlton Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9179912 Yates et al. Nov 2015 B2
9183723 Sherman et al. Nov 2015 B2
9186143 Timm et al. Nov 2015 B2
9192375 Skinlo et al. Nov 2015 B2
9192447 Choi et al. Nov 2015 B2
9192707 Gerber et al. Nov 2015 B2
9202078 Abuelsaad et al. Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204995 Scheller et al. Dec 2015 B2
9216062 Duque et al. Dec 2015 B2
9218053 Komuro et al. Dec 2015 B2
9226689 Jacobsen et al. Jan 2016 B2
9226766 Aldridge et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9232883 Ozawa et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9241728 Price et al. Jan 2016 B2
9241731 Boudreaux et al. Jan 2016 B2
9250172 Harris et al. Feb 2016 B2
9255907 Heanue et al. Feb 2016 B2
9265585 Wingardner et al. Feb 2016 B2
9272406 Aronhalt et al. Mar 2016 B2
9277956 Zhang Mar 2016 B2
9280884 Schultz et al. Mar 2016 B1
9282974 Shelton, IV Mar 2016 B2
9283054 Morgan et al. Mar 2016 B2
9289212 Shelton, IV et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9301691 Hufnagel et al. Apr 2016 B2
9301753 Aldridge et al. Apr 2016 B2
9301759 Spivey et al. Apr 2016 B2
9301810 Amiri et al. Apr 2016 B2
9302213 Manahan et al. Apr 2016 B2
9307894 von Grunberg et al. Apr 2016 B2
9307914 Fahey Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9314246 Shelton, IV et al. Apr 2016 B2
9314308 Parihar et al. Apr 2016 B2
9326767 Koch et al. May 2016 B2
9331422 Nazzaro et al. May 2016 B2
9332987 Leimbach et al. May 2016 B2
9333042 Diolaiti et al. May 2016 B2
9341704 Picard et al. May 2016 B2
9345481 Hall et al. May 2016 B2
9345490 Ippisch May 2016 B2
9345546 Toth et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351727 Leimbach et al. May 2016 B2
9358003 Hail et al. Jun 2016 B2
9358685 Meier et al. Jun 2016 B2
9360449 Duric Jun 2016 B2
9364231 Wenchell Jun 2016 B2
9364249 Kimball et al. Jun 2016 B2
9364294 Razzaque et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9375282 Nau, Jr. et al. Jun 2016 B2
9375539 Stearns et al. Jun 2016 B2
9381003 Todor et al. Jul 2016 B2
9381058 Houser et al. Jul 2016 B2
9386984 Aronhalt et al. Jul 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9387295 Mastri et al. Jul 2016 B1
9393017 Flanagan et al. Jul 2016 B2
9393037 Olson et al. Jul 2016 B2
9398905 Martin Jul 2016 B2
9398911 Auld Jul 2016 B2
9402629 Ehrenfels et al. Aug 2016 B2
9414776 Sillay et al. Aug 2016 B2
9419018 Sasagawa et al. Aug 2016 B2
9421014 Ingmanson et al. Aug 2016 B2
9433470 Choi Sep 2016 B2
9439622 Case et al. Sep 2016 B2
9439668 Timm et al. Sep 2016 B2
9439736 Olson Sep 2016 B2
9445764 Gross et al. Sep 2016 B2
9445813 Shelton, IV et al. Sep 2016 B2
9450701 Do et al. Sep 2016 B2
9451949 Gorek et al. Sep 2016 B2
9451958 Shelton, IV et al. Sep 2016 B2
9463022 Swayze et al. Oct 2016 B2
9468438 Baber et al. Oct 2016 B2
9480492 Aranyi et al. Nov 2016 B2
9485475 Speier et al. Nov 2016 B2
9492146 Kostrzewski et al. Nov 2016 B2
9492237 Kang et al. Nov 2016 B2
9498215 Duque et al. Nov 2016 B2
9498231 Haider et al. Nov 2016 B2
9516239 Blanquart et al. Dec 2016 B2
9519753 Gerdeman et al. Dec 2016 B1
9522003 Weir et al. Dec 2016 B2
9526407 Hoeg et al. Dec 2016 B2
9526499 Kostrzewski et al. Dec 2016 B2
9526587 Zhao et al. Dec 2016 B2
9539007 Dhakad et al. Jan 2017 B2
9539020 Conlon et al. Jan 2017 B2
9542481 Halter et al. Jan 2017 B2
9546662 Shener-Irmakoglu et al. Jan 2017 B2
9554794 Baber et al. Jan 2017 B2
9554854 Yates et al. Jan 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9561045 Hinman et al. Feb 2017 B2
9566708 Kurnianto Feb 2017 B2
9572592 Price et al. Feb 2017 B2
9585657 Shelton, IV et al. Mar 2017 B2
9592095 Panescu et al. Mar 2017 B2
9597081 Swayze et al. Mar 2017 B2
9600138 Thomas et al. Mar 2017 B2
9603024 Wang et al. Mar 2017 B2
9610114 Baxter, III et al. Apr 2017 B2
9622808 Beller et al. Apr 2017 B2
9629560 Joseph Apr 2017 B2
9629623 Lytle, IV et al. Apr 2017 B2
9629629 Leimbach et al. Apr 2017 B2
9630318 Ibarz Gabardos et al. Apr 2017 B2
9636188 Gattani et al. May 2017 B2
9636825 Penn et al. May 2017 B2
9641596 Unagami et al. May 2017 B2
9641815 Richardson et al. May 2017 B2
9649110 Parihar et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649126 Robertson et al. May 2017 B2
9649169 Cinquin et al. May 2017 B2
9652655 Satish et al. May 2017 B2
9655616 Aranyi May 2017 B2
9656092 Golden May 2017 B2
9662116 Smith et al. May 2017 B2
9662177 Weir et al. May 2017 B2
9668729 Williams et al. Jun 2017 B2
9668732 Patel et al. Jun 2017 B2
9668765 Grace et al. Jun 2017 B2
9671860 Ogawa et al. Jun 2017 B2
9675264 Acquista et al. Jun 2017 B2
9675354 Weir et al. Jun 2017 B2
9681870 Baxter, III et al. Jun 2017 B2
9686306 Chizeck et al. Jun 2017 B2
9687230 Leimbach et al. Jun 2017 B2
9690362 Leimbach et al. Jun 2017 B2
9700292 Nawana et al. Jul 2017 B2
9700309 Jaworek et al. Jul 2017 B2
9700312 Kostrzewski et al. Jul 2017 B2
9706993 Hessler et al. Jul 2017 B2
9710214 Lin et al. Jul 2017 B2
9710644 Reybok et al. Jul 2017 B2
9713424 Spaide Jul 2017 B2
9717141 Tegg Jul 2017 B1
9717498 Aranyi et al. Aug 2017 B2
9717525 Ahluwalia et al. Aug 2017 B2
9717548 Couture Aug 2017 B2
9724094 Baber et al. Aug 2017 B2
9724118 Schulte et al. Aug 2017 B2
9733663 Leimbach et al. Aug 2017 B2
9737301 Baber et al. Aug 2017 B2
9737310 Whitfield et al. Aug 2017 B2
9737335 Butler et al. Aug 2017 B2
9737355 Yates et al. Aug 2017 B2
9740826 Raghavan et al. Aug 2017 B2
9743016 Nestares et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
9743946 Faller et al. Aug 2017 B2
9743947 Price et al. Aug 2017 B2
9750499 Leimbach et al. Sep 2017 B2
9750500 Malkowski Sep 2017 B2
9750522 Scheib et al. Sep 2017 B2
9750523 Tsubuku Sep 2017 B2
9753135 Bosch Sep 2017 B2
9757126 Cappola Sep 2017 B2
9757128 Baber et al. Sep 2017 B2
9757142 Shimizu Sep 2017 B2
9757152 Ogilvie et al. Sep 2017 B2
9764164 Wiener et al. Sep 2017 B2
9770541 Carr et al. Sep 2017 B2
9777913 Talbert et al. Oct 2017 B2
9782164 Mumaw et al. Oct 2017 B2
9782169 Kimsey et al. Oct 2017 B2
9782212 Wham et al. Oct 2017 B2
9782214 Houser et al. Oct 2017 B2
9788836 Overmyer et al. Oct 2017 B2
9788851 Dannaher et al. Oct 2017 B2
9788902 Inoue et al. Oct 2017 B2
9788907 Alvi et al. Oct 2017 B1
9795436 Yates et al. Oct 2017 B2
9797486 Zergiebel et al. Oct 2017 B2
9801531 Morita et al. Oct 2017 B2
9801626 Parihar et al. Oct 2017 B2
9801627 Harris et al. Oct 2017 B2
9801679 Trees et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9804618 Leimbach et al. Oct 2017 B2
9805472 Chou et al. Oct 2017 B2
9808244 Leimbach et al. Nov 2017 B2
9808245 Richard et al. Nov 2017 B2
9808246 Shelton, IV et al. Nov 2017 B2
9808248 Hoffman Nov 2017 B2
9814457 Martin et al. Nov 2017 B2
9814460 Kimsey et al. Nov 2017 B2
9814462 Woodard, Jr. et al. Nov 2017 B2
9814463 Williams et al. Nov 2017 B2
9820699 Bingley et al. Nov 2017 B2
9820738 Lytle, IV et al. Nov 2017 B2
9820741 Kostrzewski Nov 2017 B2
9826976 Parihar et al. Nov 2017 B2
9826977 Leimbach et al. Nov 2017 B2
9827054 Richmond et al. Nov 2017 B2
9827059 Robinson et al. Nov 2017 B2
9830424 Dixon et al. Nov 2017 B2
9833241 Huitema et al. Dec 2017 B2
9839419 Deck et al. Dec 2017 B2
9839424 Zergiebel et al. Dec 2017 B2
9839428 Baxter, III et al. Dec 2017 B2
9839470 Gilbert et al. Dec 2017 B2
9839487 Dachs, II Dec 2017 B2
9844368 Boudreaux et al. Dec 2017 B2
9844369 Huitema et al. Dec 2017 B2
9844374 Lytle, IV et al. Dec 2017 B2
9844375 Overmyer et al. Dec 2017 B2
9844379 Shelton, IV et al. Dec 2017 B2
9848058 Johnson et al. Dec 2017 B2
9848877 Shelton, IV et al. Dec 2017 B2
9861354 Saliman et al. Jan 2018 B2
9861363 Chen et al. Jan 2018 B2
9861428 Trees et al. Jan 2018 B2
9867612 Parihar et al. Jan 2018 B2
9867651 Wham Jan 2018 B2
9867914 Bonano et al. Jan 2018 B2
9872609 Levy Jan 2018 B2
9872683 Hopkins et al. Jan 2018 B2
9877718 Weir et al. Jan 2018 B2
9877721 Schellin et al. Jan 2018 B2
9883860 Leimbach Feb 2018 B2
9888914 Martin et al. Feb 2018 B2
9888919 Leimbach et al. Feb 2018 B2
9888921 Williams et al. Feb 2018 B2
9895148 Shelton, IV et al. Feb 2018 B2
9900787 Ou Feb 2018 B2
9901342 Shelton, IV et al. Feb 2018 B2
9901406 State et al. Feb 2018 B2
9905000 Chou et al. Feb 2018 B2
9907550 Sniffin et al. Mar 2018 B2
9913642 Leimbach et al. Mar 2018 B2
9913645 Zerkle et al. Mar 2018 B2
9918730 Trees et al. Mar 2018 B2
9918778 Walberg et al. Mar 2018 B2
9918788 Paul et al. Mar 2018 B2
9922304 DeBusk et al. Mar 2018 B2
9924941 Burbank Mar 2018 B2
9924961 Shelton, IV et al. Mar 2018 B2
9931040 Homyk et al. Apr 2018 B2
9931118 Shelton, IV et al. Apr 2018 B2
9931124 Gokharu Apr 2018 B2
9936942 Chin et al. Apr 2018 B2
9936955 Miller et al. Apr 2018 B2
9936961 Chien et al. Apr 2018 B2
9937012 Hares et al. Apr 2018 B2
9937014 Bowling et al. Apr 2018 B2
9937626 Rockrohr Apr 2018 B2
9938972 Walley Apr 2018 B2
9943230 Kaku et al. Apr 2018 B2
9943309 Shelton, IV et al. Apr 2018 B2
9943377 Yates et al. Apr 2018 B2
9943379 Gregg, II et al. Apr 2018 B2
9943918 Grogan et al. Apr 2018 B2
9949785 Price et al. Apr 2018 B2
9962157 Sapre May 2018 B2
9968355 Shelton, IV et al. May 2018 B2
9980769 Trees et al. May 2018 B2
9980778 Ohline et al. May 2018 B2
9987000 Shelton, IV et al. Jun 2018 B2
9993248 Shelton, IV et al. Jun 2018 B2
9993258 Shelton, IV et al. Jun 2018 B2
9993305 Andersson Jun 2018 B2
10004491 Martin et al. Jun 2018 B2
10004497 Overmyer et al. Jun 2018 B2
10004500 Shelton, IV et al. Jun 2018 B2
10004501 Shelton, IV et al. Jun 2018 B2
10004527 Gee et al. Jun 2018 B2
D822206 Shelton, IV et al. Jul 2018 S
10010322 Shelton, IV et al. Jul 2018 B2
10010324 Huitema et al. Jul 2018 B2
10013049 Leimbach et al. Jul 2018 B2
10016199 Baber et al. Jul 2018 B2
10021318 Hugosson et al. Jul 2018 B2
10022120 Martin et al. Jul 2018 B2
10022391 Ruderman Chen et al. Jul 2018 B2
10022568 Messerly et al. Jul 2018 B2
10028761 Leimbach et al. Jul 2018 B2
10028788 Kang Jul 2018 B2
10034704 Asher et al. Jul 2018 B2
10037641 Hyde et al. Jul 2018 B2
D826405 Shelton, IV et al. Aug 2018 S
10039564 Hibner et al. Aug 2018 B2
10039565 Vezzu Aug 2018 B2
10041822 Zemlok Aug 2018 B2
10044791 Kamen et al. Aug 2018 B2
10045776 Shelton, IV et al. Aug 2018 B2
10045779 Savage et al. Aug 2018 B2
10045781 Cropper et al. Aug 2018 B2
10045813 Mueller Aug 2018 B2
10048379 Markendorf et al. Aug 2018 B2
10052044 Shelton, IV et al. Aug 2018 B2
10052102 Baxter, III et al. Aug 2018 B2
10054441 Schorr et al. Aug 2018 B2
10076326 Yates et al. Sep 2018 B2
10080618 Marshall et al. Sep 2018 B2
10085748 Morgan et al. Oct 2018 B2
10085749 Cappola et al. Oct 2018 B2
10095942 Mentese et al. Oct 2018 B2
10098527 Weisenburgh, II et al. Oct 2018 B2
10098635 Burbank Oct 2018 B2
10098705 Brisson et al. Oct 2018 B2
10105140 Malinouskas et al. Oct 2018 B2
10105142 Baxter, III et al. Oct 2018 B2
10111658 Chowaniec et al. Oct 2018 B2
10111665 Aranyi et al. Oct 2018 B2
10111679 Baber et al. Oct 2018 B2
10117649 Baxter et al. Nov 2018 B2
10117651 Whitman et al. Nov 2018 B2
10117702 Danziger et al. Nov 2018 B2
10118119 Sappok et al. Nov 2018 B2
10130359 Hess et al. Nov 2018 B2
10130360 Olson et al. Nov 2018 B2
10130361 Yates et al. Nov 2018 B2
10130367 Cappola et al. Nov 2018 B2
10133248 Fitzsimmons et al. Nov 2018 B2
10135242 Baber et al. Nov 2018 B2
10136887 Shelton, IV et al. Nov 2018 B2
10136949 Felder et al. Nov 2018 B2
10143526 Walker et al. Dec 2018 B2
10143948 Bonifas et al. Dec 2018 B2
10149680 Parihar et al. Dec 2018 B2
10152789 Carnes et al. Dec 2018 B2
10159044 Hrabak Dec 2018 B2
10159481 Whitman et al. Dec 2018 B2
10159483 Beckman et al. Dec 2018 B2
10164466 Calderoni Dec 2018 B2
10166025 Leimbach et al. Jan 2019 B2
10169862 Andre et al. Jan 2019 B2
10172687 Garbus et al. Jan 2019 B2
10175096 Dickerson Jan 2019 B2
10175127 Collins et al. Jan 2019 B2
10178992 Wise et al. Jan 2019 B2
10179413 Rockrohr Jan 2019 B2
10180463 Beckman et al. Jan 2019 B2
10182814 Okoniewski Jan 2019 B2
10182816 Shelton, IV et al. Jan 2019 B2
10182818 Hensel et al. Jan 2019 B2
10188385 Kerr et al. Jan 2019 B2
10189157 Schlegel et al. Jan 2019 B2
10194907 Marczyk et al. Feb 2019 B2
10194913 Nalagatla et al. Feb 2019 B2
10198965 Hart Feb 2019 B2
10201311 Chou et al. Feb 2019 B2
10201349 Leimbach et al. Feb 2019 B2
10201364 Leimbach et al. Feb 2019 B2
10201365 Boudreaux et al. Feb 2019 B2
10205708 Fletcher et al. Feb 2019 B1
10206605 Shelton, IV et al. Feb 2019 B2
10206752 Hares et al. Feb 2019 B2
10213201 Shelton, IV et al. Feb 2019 B2
10213266 Zemlok et al. Feb 2019 B2
10213268 Dachs, II Feb 2019 B2
10219491 Stiles, Jr. et al. Mar 2019 B2
10220522 Rockrohr Mar 2019 B2
10222750 Bang et al. Mar 2019 B2
10226249 Jaworek et al. Mar 2019 B2
10226250 Beckman et al. Mar 2019 B2
10226302 Lacal et al. Mar 2019 B2
10231634 Zand et al. Mar 2019 B2
10231733 Ehrenfels et al. Mar 2019 B2
10238413 Hibner et al. Mar 2019 B2
10245027 Shelton, IV et al. Apr 2019 B2
10245028 Shelton, IV et al. Apr 2019 B2
10245029 Hunter et al. Apr 2019 B2
10245030 Hunter et al. Apr 2019 B2
10245033 Overmyer et al. Apr 2019 B2
10245037 Conklin et al. Apr 2019 B2
10245038 Hopkins et al. Apr 2019 B2
10251661 Collings et al. Apr 2019 B2
10258331 Shelton, IV et al. Apr 2019 B2
10258359 Kapadia Apr 2019 B2
10258362 Conlon Apr 2019 B2
10258363 Worrell et al. Apr 2019 B2
10258415 Harrah et al. Apr 2019 B2
10258418 Shelton, IV et al. Apr 2019 B2
10258425 Mustufa et al. Apr 2019 B2
10263171 Wiener et al. Apr 2019 B2
10265035 Fehre et al. Apr 2019 B2
10265068 Harris et al. Apr 2019 B2
10265072 Shelton, IV et al. Apr 2019 B2
10265090 Ingmanson et al. Apr 2019 B2
10265130 Hess et al. Apr 2019 B2
10271840 Sapre Apr 2019 B2
10271844 Valentine et al. Apr 2019 B2
10271850 Williams Apr 2019 B2
10271851 Shelton, IV et al. Apr 2019 B2
D847989 Shelton, IV et al. May 2019 S
10278698 Racenet May 2019 B2
10278778 State et al. May 2019 B2
10283220 Azizian et al. May 2019 B2
10285694 Viola et al. May 2019 B2
10285698 Cappola et al. May 2019 B2
10285705 Shelton, IV et al. May 2019 B2
10292704 Harris et al. May 2019 B2
10292707 Shelton, IV et al. May 2019 B2
10292758 Boudreaux et al. May 2019 B2
10292771 Wood et al. May 2019 B2
10299792 Huitema et al. May 2019 B2
10299870 Connolly et al. May 2019 B2
D850617 Shelton, IV et al. Jun 2019 S
10307159 Harris et al. Jun 2019 B2
10307170 Parfett et al. Jun 2019 B2
10307199 Farritor et al. Jun 2019 B2
10311036 Hussam et al. Jun 2019 B1
10313137 Aarnio et al. Jun 2019 B2
10314577 Laurent et al. Jun 2019 B2
10314582 Shelton, IV et al. Jun 2019 B2
10321907 Shelton, IV et al. Jun 2019 B2
10321964 Grover et al. Jun 2019 B2
10327764 Harris et al. Jun 2019 B2
10335147 Rector et al. Jul 2019 B2
10335149 Baxter, III et al. Jul 2019 B2
10335180 Johnson et al. Jul 2019 B2
10335227 Heard Jul 2019 B2
10342543 Shelton, IV et al. Jul 2019 B2
10342602 Strobl et al. Jul 2019 B2
10342623 Huelman et al. Jul 2019 B2
10343102 Reasoner et al. Jul 2019 B2
10357246 Shelton, IV et al. Jul 2019 B2
10357247 Shelton, IV et al. Jul 2019 B2
10362179 Harris Jul 2019 B2
10363037 Aronhalt et al. Jul 2019 B2
10368861 Baxter, III et al. Aug 2019 B2
10368865 Harris et al. Aug 2019 B2
10368867 Harris et al. Aug 2019 B2
10368876 Bhatnagar et al. Aug 2019 B2
10368894 Madan et al. Aug 2019 B2
10368903 Morales et al. Aug 2019 B2
10376263 Morgan et al. Aug 2019 B2
10376305 Yates et al. Aug 2019 B2
10376337 Kilroy et al. Aug 2019 B2
10376338 Taylor et al. Aug 2019 B2
10378893 Mankovskii Aug 2019 B2
10383518 Abu-Tarif et al. Aug 2019 B2
10383699 Kilroy et al. Aug 2019 B2
10390718 Chen et al. Aug 2019 B2
10390794 Kuroiwa et al. Aug 2019 B2
10390825 Shelton, IV et al. Aug 2019 B2
10390831 Holsten et al. Aug 2019 B2
10390895 Henderson et al. Aug 2019 B2
10398434 Shelton, IV et al. Sep 2019 B2
10398517 Eckert et al. Sep 2019 B2
10398521 Itkowitz et al. Sep 2019 B2
10404521 McChord et al. Sep 2019 B2
10404801 Martch Sep 2019 B2
10405857 Shelton, IV et al. Sep 2019 B2
10405863 Wise et al. Sep 2019 B2
10413291 Worthington et al. Sep 2019 B2
10413293 Shelton, IV et al. Sep 2019 B2
10413297 Harris et al. Sep 2019 B2
10417446 Takeyama Sep 2019 B2
10420552 Shelton, IV et al. Sep 2019 B2
10420558 Nalagatla et al. Sep 2019 B2
10420559 Marczyk et al. Sep 2019 B2
10420620 Rockrohr Sep 2019 B2
10420865 Reasoner et al. Sep 2019 B2
10422727 Pliskin Sep 2019 B2
10426466 Contini et al. Oct 2019 B2
10426467 Miller et al. Oct 2019 B2
10426468 Contini et al. Oct 2019 B2
10426471 Shelton, IV et al. Oct 2019 B2
10433837 Worthington et al. Oct 2019 B2
10433844 Shelton, IV et al. Oct 2019 B2
10433849 Shelton, IV et al. Oct 2019 B2
10441279 Shelton, IV et al. Oct 2019 B2
10441345 Aldridge et al. Oct 2019 B2
10448948 Shelton, IV et al. Oct 2019 B2
10448950 Shelton, IV et al. Oct 2019 B2
10456137 Vendely et al. Oct 2019 B2
10456140 Shelton, IV et al. Oct 2019 B2
10456193 Yates et al. Oct 2019 B2
10463365 Williams Nov 2019 B2
10463367 Kostrzewski et al. Nov 2019 B2
10463371 Kostrzewski Nov 2019 B2
10463436 Jackson et al. Nov 2019 B2
10470762 Leimbach et al. Nov 2019 B2
10470764 Baxter, III et al. Nov 2019 B2
10470768 Harris et al. Nov 2019 B2
10470791 Houser Nov 2019 B2
10471254 Sano et al. Nov 2019 B2
10478181 Shelton, IV et al. Nov 2019 B2
10478189 Bear et al. Nov 2019 B2
10478190 Miller et al. Nov 2019 B2
10478544 Friederichs et al. Nov 2019 B2
10485450 Gupta et al. Nov 2019 B2
10485542 Shelton, IV et al. Nov 2019 B2
10485543 Shelton, IV et al. Nov 2019 B2
10492783 Shelton, IV et al. Dec 2019 B2
10492785 Overmyer et al. Dec 2019 B2
10496788 Amarasingham et al. Dec 2019 B2
10498269 Zemlok et al. Dec 2019 B2
10499891 Chaplin et al. Dec 2019 B2
10499914 Huang et al. Dec 2019 B2
10499915 Aranyi Dec 2019 B2
10499994 Luks et al. Dec 2019 B2
10507068 Kopp et al. Dec 2019 B2
10512461 Gupta et al. Dec 2019 B2
10512499 McHenry et al. Dec 2019 B2
10512514 Nowlin et al. Dec 2019 B2
10517588 Gupta et al. Dec 2019 B2
10517595 Hunter et al. Dec 2019 B2
10517596 Hunter et al. Dec 2019 B2
10517686 Vokrot et al. Dec 2019 B2
10524789 Swayze et al. Jan 2020 B2
10531874 Morgan et al. Jan 2020 B2
10531929 Widenhouse et al. Jan 2020 B2
10532330 Diallo et al. Jan 2020 B2
10536617 Liang et al. Jan 2020 B2
10537324 Shelton, IV et al. Jan 2020 B2
10537325 Bakos et al. Jan 2020 B2
10537351 Shelton, IV et al. Jan 2020 B2
10542978 Chowaniec et al. Jan 2020 B2
10542979 Shelton, IV et al. Jan 2020 B2
10542982 Beckman et al. Jan 2020 B2
10542991 Shelton, IV et al. Jan 2020 B2
10548504 Shelton, IV et al. Feb 2020 B2
10548612 Martinez et al. Feb 2020 B2
10548673 Harris et al. Feb 2020 B2
10552574 Sweeney Feb 2020 B2
10555675 Satish et al. Feb 2020 B2
10555748 Yates et al. Feb 2020 B2
10555750 Conlon et al. Feb 2020 B2
10555769 Worrell et al. Feb 2020 B2
10561422 Schellin et al. Feb 2020 B2
10561471 Nichogi Feb 2020 B2
10568625 Harris et al. Feb 2020 B2
10568626 Shelton, IV et al. Feb 2020 B2
10568632 Miller et al. Feb 2020 B2
10575868 Hall et al. Mar 2020 B2
10582928 Hunter et al. Mar 2020 B2
10582931 Mujawar Mar 2020 B2
10586074 Rose et al. Mar 2020 B2
10588625 Weaner et al. Mar 2020 B2
10588629 Malinouskas et al. Mar 2020 B2
10588630 Shelton, IV et al. Mar 2020 B2
10588631 Shelton, IV et al. Mar 2020 B2
10588632 Shelton, IV et al. Mar 2020 B2
10588711 DiCarlo et al. Mar 2020 B2
10595882 Parfett et al. Mar 2020 B2
10595887 Shelton, IV et al. Mar 2020 B2
10595930 Scheib et al. Mar 2020 B2
10595952 Forrest et al. Mar 2020 B2
10602848 Magana Mar 2020 B2
10603036 Hunter et al. Mar 2020 B2
10603128 Zergiebel et al. Mar 2020 B2
10610223 Wellman et al. Apr 2020 B2
10610224 Shelton, IV et al. Apr 2020 B2
10610286 Wiener et al. Apr 2020 B2
10610313 Bailey et al. Apr 2020 B2
10617412 Shelton, IV et al. Apr 2020 B2
10617414 Shelton, IV et al. Apr 2020 B2
10617482 Houser et al. Apr 2020 B2
10617484 Kilroy et al. Apr 2020 B2
10624635 Harris et al. Apr 2020 B2
10624691 Wiener et al. Apr 2020 B2
10631423 Collins et al. Apr 2020 B2
10631916 Horner et al. Apr 2020 B2
10631917 Ineson Apr 2020 B2
10631939 Dachs, II et al. Apr 2020 B2
10639027 Shelton, IV et al. May 2020 B2
10639034 Harris et al. May 2020 B2
10639035 Shelton, IV et al. May 2020 B2
10639036 Yates et al. May 2020 B2
10639037 Shelton, IV et al. May 2020 B2
10639039 Vendely et al. May 2020 B2
10639111 Kopp May 2020 B2
10639185 Agrawal et al. May 2020 B2
10653413 Worthington et al. May 2020 B2
10653476 Ross May 2020 B2
10653489 Kopp May 2020 B2
10656720 Holz May 2020 B1
10660705 Piron et al. May 2020 B2
10667809 Bakos et al. Jun 2020 B2
10667810 Shelton, IV et al. Jun 2020 B2
10667811 Harris et al. Jun 2020 B2
10667877 Kapadia Jun 2020 B2
10674897 Levy Jun 2020 B2
10675021 Harris et al. Jun 2020 B2
10675023 Cappola Jun 2020 B2
10675024 Shelton, IV et al. Jun 2020 B2
10675025 Swayze et al. Jun 2020 B2
10675026 Harris et al. Jun 2020 B2
10675104 Kapadia Jun 2020 B2
10677764 Ross et al. Jun 2020 B2
10679758 Fox et al. Jun 2020 B2
10682136 Harris et al. Jun 2020 B2
10682138 Shelton, IV et al. Jun 2020 B2
10686805 Reybok, Jr. et al. Jun 2020 B2
10687806 Shelton, IV et al. Jun 2020 B2
10687809 Shelton, IV et al. Jun 2020 B2
10687810 Shelton, IV et al. Jun 2020 B2
10687884 Wiener et al. Jun 2020 B2
10687905 Kostrzewski Jun 2020 B2
10695055 Shelton, IV et al. Jun 2020 B2
10695081 Shelton, IV et al. Jun 2020 B2
10695134 Barral et al. Jun 2020 B2
10702270 Shelton, IV et al. Jul 2020 B2
10702271 Aranyi et al. Jul 2020 B2
10709446 Harris et al. Jul 2020 B2
10716615 Shelton, IV et al. Jul 2020 B2
10716639 Kapadia et al. Jul 2020 B2
10717194 Griffiths et al. Jul 2020 B2
10722222 Aranyi Jul 2020 B2
10722233 Wellman Jul 2020 B2
10729458 Stoddard et al. Aug 2020 B2
10733267 Pedersen Aug 2020 B2
10736219 Seow et al. Aug 2020 B2
10736616 Scheib et al. Aug 2020 B2
10736628 Yates et al. Aug 2020 B2
10736629 Shelton, IV et al. Aug 2020 B2
10736636 Baxter, III et al. Aug 2020 B2
10736705 Scheib et al. Aug 2020 B2
10743872 Leimbach et al. Aug 2020 B2
10748115 Laster et al. Aug 2020 B2
10751052 Stokes et al. Aug 2020 B2
10751136 Farritor et al. Aug 2020 B2
10751768 Hersey et al. Aug 2020 B2
10755813 Shelton, IV et al. Aug 2020 B2
10758229 Shelton, IV et al. Sep 2020 B2
10758230 Shelton, IV et al. Sep 2020 B2
10758294 Jones Sep 2020 B2
10758310 Shelton, IV et al. Sep 2020 B2
10765376 Brown, III et al. Sep 2020 B2
10765424 Baxter, III et al. Sep 2020 B2
10765427 Shelton, IV et al. Sep 2020 B2
10765470 Yates et al. Sep 2020 B2
10772651 Shelton, IV et al. Sep 2020 B2
10772688 Peine et al. Sep 2020 B2
10779818 Zemlok et al. Sep 2020 B2
10779821 Harris et al. Sep 2020 B2
10779823 Shelton, IV et al. Sep 2020 B2
10779897 Rockrohr Sep 2020 B2
10779900 Pedros et al. Sep 2020 B2
10783634 Nye et al. Sep 2020 B2
10786298 Johnson Sep 2020 B2
10786327 Anderson et al. Sep 2020 B2
10792118 Prpa et al. Oct 2020 B2
10799304 Kapadia et al. Oct 2020 B2
10803977 Sanmugalingham Oct 2020 B2
10806445 Penna et al. Oct 2020 B2
10806453 Chen et al. Oct 2020 B2
10806454 Kopp Oct 2020 B2
10806506 Gaspredes et al. Oct 2020 B2
10806532 Grubbs et al. Oct 2020 B2
10813638 Shelton, IV et al. Oct 2020 B2
10813703 Swayze et al. Oct 2020 B2
10818383 Sharifi Sedeh et al. Oct 2020 B2
10828028 Harris et al. Nov 2020 B2
10828030 Weir et al. Nov 2020 B2
10835245 Swayze et al. Nov 2020 B2
10835246 Shelton, IV et al. Nov 2020 B2
10842473 Scheib et al. Nov 2020 B2
10842490 DiNardo et al. Nov 2020 B2
10842492 Shelton, IV et al. Nov 2020 B2
10842522 Messerly et al. Nov 2020 B2
10842523 Shelton, IV et al. Nov 2020 B2
10842575 Panescu et al. Nov 2020 B2
10842897 Schwartz et al. Nov 2020 B2
10849697 Yates et al. Dec 2020 B2
10849700 Kopp et al. Dec 2020 B2
10856867 Shelton, IV et al. Dec 2020 B2
10856868 Shelton, IV et al. Dec 2020 B2
10856870 Harris et al. Dec 2020 B2
10864050 Tabandeh et al. Dec 2020 B2
10881399 Shelton, IV et al. Jan 2021 B2
10881401 Baber et al. Jan 2021 B2
10881446 Strobl Jan 2021 B2
10881464 Odermatt et al. Jan 2021 B2
20020049551 Friedman et al. Apr 2002 A1
20030093503 Yamaki et al. May 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030210812 Khamene et al. Nov 2003 A1
20030223877 Anstine et al. Dec 2003 A1
20040078236 Stoodley et al. Apr 2004 A1
20040199180 Knodel et al. Oct 2004 A1
20040199659 Ishikawa et al. Oct 2004 A1
20040206365 Knowlton Oct 2004 A1
20040243148 Wasielewski Dec 2004 A1
20040243435 Williams Dec 2004 A1
20050020909 Moctezuma de la Barrera et al. Jan 2005 A1
20050063575 Ma et al. Mar 2005 A1
20050065438 Miller Mar 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050149001 Uchikubo et al. Jul 2005 A1
20050149356 Cyr et al. Jul 2005 A1
20050192633 Montpetit Sep 2005 A1
20050222631 Dalal et al. Oct 2005 A1
20050236474 Onuma et al. Oct 2005 A1
20050277913 McCary Dec 2005 A1
20060020272 Gildenberg Jan 2006 A1
20060059018 Shiobara et al. Mar 2006 A1
20060116908 Dew et al. Jun 2006 A1
20060241399 Fabian Oct 2006 A1
20070010838 Shelton et al. Jan 2007 A1
20070016235 Tanaka et al. Jan 2007 A1
20070027459 Horvath et al. Feb 2007 A1
20070049947 Menn et al. Mar 2007 A1
20070078678 DiSilvestro et al. Apr 2007 A1
20070167702 Hasser et al. Jul 2007 A1
20070168461 Moore Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070225556 Ortiz et al. Sep 2007 A1
20070244478 Bahney Oct 2007 A1
20070249990 Cosmescu Oct 2007 A1
20070270660 Caylor et al. Nov 2007 A1
20070293218 Meylan et al. Dec 2007 A1
20080013460 Allen et al. Jan 2008 A1
20080015664 Podhajsky Jan 2008 A1
20080015912 Rosenthal et al. Jan 2008 A1
20080033404 Romoda et al. Feb 2008 A1
20080040151 Moore Feb 2008 A1
20080059658 Williams Mar 2008 A1
20080077158 Haider et al. Mar 2008 A1
20080083414 Messerges Apr 2008 A1
20080177362 Phillips et al. Jul 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080281678 Keuls et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20090036750 Weinstein et al. Feb 2009 A1
20090036794 Stubhaug et al. Feb 2009 A1
20090043253 Podaima Feb 2009 A1
20090046146 Hoyt Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099866 Newman Apr 2009 A1
20090182577 Squilla et al. Jul 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090217932 Voegele Sep 2009 A1
20090259149 Tahara et al. Oct 2009 A1
20090259221 Tahara et al. Oct 2009 A1
20090307681 Armado et al. Dec 2009 A1
20090326321 Jacobsen et al. Dec 2009 A1
20090326336 Lemke et al. Dec 2009 A1
20100065604 Weng Mar 2010 A1
20100070417 Flynn et al. Mar 2010 A1
20100132334 Duclos et al. Jun 2010 A1
20100191100 Anderson et al. Jul 2010 A1
20100198248 Vakharia Aug 2010 A1
20100217991 Choi Aug 2010 A1
20100235689 Tian et al. Sep 2010 A1
20100250571 Pierce et al. Sep 2010 A1
20100292535 Paskar Nov 2010 A1
20110022032 Zemlok et al. Jan 2011 A1
20110077512 Boswell Mar 2011 A1
20110087238 Wang et al. Apr 2011 A1
20110105895 Kornblau et al. May 2011 A1
20110118708 Burbank et al. May 2011 A1
20110119075 Dhoble May 2011 A1
20110125149 El-Galley et al. May 2011 A1
20110237883 Chun Sep 2011 A1
20110306840 Allen et al. Dec 2011 A1
20120022519 Huang et al. Jan 2012 A1
20120059684 Hampapur et al. Mar 2012 A1
20120116381 Houser et al. May 2012 A1
20120130217 Kauphusman et al. May 2012 A1
20120172696 Kallback et al. Jul 2012 A1
20120191091 Allen Jul 2012 A1
20120203785 Awada Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120245958 Lawrence et al. Sep 2012 A1
20120292367 Morgan et al. Nov 2012 A1
20120319859 Taub et al. Dec 2012 A1
20130024213 Poon Jan 2013 A1
20130046182 Hegg et al. Feb 2013 A1
20130046279 Niklewski et al. Feb 2013 A1
20130066647 Andrie et al. Mar 2013 A1
20130090526 Suzuki et al. Apr 2013 A1
20130093829 Rosenblatt et al. Apr 2013 A1
20130116218 Kaplan et al. May 2013 A1
20130165776 Blomqvist Jun 2013 A1
20130178853 Hyink et al. Jul 2013 A1
20130206813 Nalagatla Aug 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130253480 Kimball et al. Sep 2013 A1
20130256373 Schmid et al. Oct 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130317837 Ballantyne et al. Nov 2013 A1
20130321425 Greene et al. Dec 2013 A1
20130325809 Kim et al. Dec 2013 A1
20130331875 Ross et al. Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140006132 Barker Jan 2014 A1
20140006943 Robbins et al. Jan 2014 A1
20140029411 Nayak et al. Jan 2014 A1
20140035762 Shelton, IV et al. Feb 2014 A1
20140066700 Wilson et al. Mar 2014 A1
20140081255 Johnson et al. Mar 2014 A1
20140081659 Nawana et al. Mar 2014 A1
20140087999 Kaplan et al. Mar 2014 A1
20140092089 Kasuya et al. Apr 2014 A1
20140107697 Patani et al. Apr 2014 A1
20140108983 William R et al. Apr 2014 A1
20140148729 Schmitz et al. May 2014 A1
20140187856 Holoien et al. Jul 2014 A1
20140204190 Rosenblatt, III et al. Jul 2014 A1
20140243799 Parihar Aug 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140249557 Koch et al. Sep 2014 A1
20140252064 Mozdzierz et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140303660 Boyden et al. Oct 2014 A1
20150006201 Pait et al. Jan 2015 A1
20150025549 Kilroy et al. Jan 2015 A1
20150032150 Ishida et al. Jan 2015 A1
20150051617 Takemura et al. Feb 2015 A1
20150053737 Leimbach et al. Feb 2015 A1
20150066000 An et al. Mar 2015 A1
20150070187 Wiesner et al. Mar 2015 A1
20150108198 Estrella Apr 2015 A1
20150133945 Dushyant et al. May 2015 A1
20150196295 Shelton, IV et al. Jul 2015 A1
20150199109 Lee Jul 2015 A1
20150238355 Vezzu et al. Aug 2015 A1
20150272557 Overmyer et al. Oct 2015 A1
20150272571 Leimbach et al. Oct 2015 A1
20150272580 Leimbach et al. Oct 2015 A1
20150272582 Leimbach et al. Oct 2015 A1
20150297200 Fitzsimmons et al. Oct 2015 A1
20150297222 Huitema et al. Oct 2015 A1
20150297228 Huitema et al. Oct 2015 A1
20150297233 Huitema et al. Oct 2015 A1
20150297311 Tesar Oct 2015 A1
20150302157 Collar et al. Oct 2015 A1
20150310174 Coudert et al. Oct 2015 A1
20150313538 Bechtel et al. Nov 2015 A1
20150317899 Dumbauld et al. Nov 2015 A1
20150332003 Stamm et al. Nov 2015 A1
20150332196 Stiller et al. Nov 2015 A1
20160000437 Giordano et al. Jan 2016 A1
20160015471 Piron et al. Jan 2016 A1
20160034648 Mohlenbrock et al. Feb 2016 A1
20160038253 Piron et al. Feb 2016 A1
20160066913 Swayze et al. Mar 2016 A1
20160078190 Greene et al. Mar 2016 A1
20160106516 Mesallum Apr 2016 A1
20160106934 Hiraga et al. Apr 2016 A1
20160180045 Syed Jun 2016 A1
20160192960 Bueno et al. Jul 2016 A1
20160206202 Frangioni Jul 2016 A1
20160235303 Fleming et al. Aug 2016 A1
20160249910 Shelton, IV et al. Sep 2016 A1
20160296246 Schaller Oct 2016 A1
20160302210 Thornton et al. Oct 2016 A1
20160310055 Zand et al. Oct 2016 A1
20160321400 Durrant et al. Nov 2016 A1
20160323283 Kang et al. Nov 2016 A1
20160324537 Green et al. Nov 2016 A1
20160342916 Arceneaux et al. Nov 2016 A1
20160345857 Jensrud et al. Dec 2016 A1
20160350490 Martinez et al. Dec 2016 A1
20160374665 DiNardo et al. Dec 2016 A1
20160374723 Frankhouser et al. Dec 2016 A1
20160374762 Case et al. Dec 2016 A1
20170000516 Stulen et al. Jan 2017 A1
20170000553 Wiener et al. Jan 2017 A1
20170027603 Pandey Feb 2017 A1
20170068792 Reiner Mar 2017 A1
20170086829 Vendely et al. Mar 2017 A1
20170086930 Thompson et al. Mar 2017 A1
20170105754 Boudreaux et al. Apr 2017 A1
20170132374 Lee et al. May 2017 A1
20170132785 Wshah et al. May 2017 A1
20170143284 Sehnert et al. May 2017 A1
20170143442 Tesar et al. May 2017 A1
20170156076 Eom et al. Jun 2017 A1
20170164997 Johnson et al. Jun 2017 A1
20170165012 Chaplin et al. Jun 2017 A1
20170172565 Heneveld Jun 2017 A1
20170172614 Scheib et al. Jun 2017 A1
20170177807 Fabian Jun 2017 A1
20170196637 Shelton, IV et al. Jul 2017 A1
20170202591 Shelton, IV et al. Jul 2017 A1
20170202607 Shelton, IV et al. Jul 2017 A1
20170224332 Hunter et al. Aug 2017 A1
20170224334 Worthington et al. Aug 2017 A1
20170224428 Kopp Aug 2017 A1
20170231627 Shelton, IV et al. Aug 2017 A1
20170231628 Shelton, IV et al. Aug 2017 A1
20170249432 Grantcharov Aug 2017 A1
20170262604 Francois Sep 2017 A1
20170281171 Shelton, IV et al. Oct 2017 A1
20170281173 Shelton, IV et al. Oct 2017 A1
20170281186 Shelton, IV et al. Oct 2017 A1
20170281189 Nalagatla et al. Oct 2017 A1
20170290585 Shelton, IV et al. Oct 2017 A1
20170296169 Yates et al. Oct 2017 A1
20170296173 Shelton, IV et al. Oct 2017 A1
20170296185 Swensgard et al. Oct 2017 A1
20170296213 Swensgard et al. Oct 2017 A1
20170303984 Malackowski Oct 2017 A1
20170304020 Ng et al. Oct 2017 A1
20170325876 Nakadate et al. Nov 2017 A1
20170360499 Greep et al. Dec 2017 A1
20170367695 Shelton, IV et al. Dec 2017 A1
20170367697 Shelton, IV et al. Dec 2017 A1
20170367754 Narisawa Dec 2017 A1
20170370710 Chen et al. Dec 2017 A1
20180008359 Randle Jan 2018 A1
20180050196 Pawsey et al. Feb 2018 A1
20180055529 Messerly et al. Mar 2018 A1
20180065248 Barral et al. Mar 2018 A1
20180098816 Govari et al. Apr 2018 A1
20180110523 Shelton, IV Apr 2018 A1
20180116662 Shelton, IV et al. May 2018 A1
20180116735 Tierney et al. May 2018 A1
20180122506 Grantcharov et al. May 2018 A1
20180125590 Giordano et al. May 2018 A1
20180132895 Silver May 2018 A1
20180153574 Faller et al. Jun 2018 A1
20180153628 Grover et al. Jun 2018 A1
20180153632 Tokarchuk et al. Jun 2018 A1
20180154297 Maletich et al. Jun 2018 A1
20180161716 Li et al. Jun 2018 A1
20180168575 Simms et al. Jun 2018 A1
20180168577 Aronhalt et al. Jun 2018 A1
20180168578 Aronhalt et al. Jun 2018 A1
20180168579 Aronhalt et al. Jun 2018 A1
20180168584 Harris et al. Jun 2018 A1
20180168586 Shelton, IV et al. Jun 2018 A1
20180168590 Overmyer et al. Jun 2018 A1
20180168592 Overmyer et al. Jun 2018 A1
20180168593 Overmyer et al. Jun 2018 A1
20180168597 Fanelli et al. Jun 2018 A1
20180168598 Shelton, IV et al. Jun 2018 A1
20180168601 Bakos et al. Jun 2018 A1
20180168603 Morgan et al. Jun 2018 A1
20180168608 Shelton, IV et al. Jun 2018 A1
20180168609 Fanelli et al. Jun 2018 A1
20180168610 Shelton, IV et al. Jun 2018 A1
20180168614 Shelton, IV et al. Jun 2018 A1
20180168615 Shelton, IV et al. Jun 2018 A1
20180168617 Shelton, IV et al. Jun 2018 A1
20180168618 Scott et al. Jun 2018 A1
20180168619 Scott et al. Jun 2018 A1
20180168623 Simms et al. Jun 2018 A1
20180168625 Posada et al. Jun 2018 A1
20180168627 Weaner et al. Jun 2018 A1
20180168628 Hunter et al. Jun 2018 A1
20180168632 Harris et al. Jun 2018 A1
20180168633 Shelton, IV et al. Jun 2018 A1
20180168647 Shelton, IV et al. Jun 2018 A1
20180168648 Shelton, IV et al. Jun 2018 A1
20180168649 Shelton, IV et al. Jun 2018 A1
20180168650 Shelton, IV et al. Jun 2018 A1
20180168651 Shelton, IV et al. Jun 2018 A1
20180214025 Homyk et al. Aug 2018 A1
20180221598 Silver Aug 2018 A1
20180228557 Darisse et al. Aug 2018 A1
20180242967 Meade Aug 2018 A1
20180263710 Sakaguchi et al. Sep 2018 A1
20180263717 Kopp Sep 2018 A1
20180268320 Shekhar Sep 2018 A1
20180271603 Nir et al. Sep 2018 A1
20180296286 Peine et al. Oct 2018 A1
20180304471 Tokuchi Oct 2018 A1
20180310935 Wixey Nov 2018 A1
20180310986 Batchelor et al. Nov 2018 A1
20180317826 Muhsin et al. Nov 2018 A1
20180317915 McDonald, II Nov 2018 A1
20180360449 Shelton, IV et al. Dec 2018 A1
20180360454 Shelton, IV et al. Dec 2018 A1
20180360456 Shelton, IV et al. Dec 2018 A1
20180368930 Esterberg et al. Dec 2018 A1
20180369511 Zergiebel et al. Dec 2018 A1
20190000446 Shelton, IV et al. Jan 2019 A1
20190000448 Shelton, IV et al. Jan 2019 A1
20190000478 Messerly et al. Jan 2019 A1
20190000530 Yates et al. Jan 2019 A1
20190000565 Shelton, IV et al. Jan 2019 A1
20190000569 Crawford et al. Jan 2019 A1
20190001079 Zergiebel et al. Jan 2019 A1
20190005641 Yamamoto Jan 2019 A1
20190006047 Gorek et al. Jan 2019 A1
20190029712 Stoddard et al. Jan 2019 A1
20190038335 Mohr et al. Feb 2019 A1
20190038364 Enoki Feb 2019 A1
20190053801 Wixey et al. Feb 2019 A1
20190053866 Seow et al. Feb 2019 A1
20190069949 Vrba et al. Mar 2019 A1
20190069964 Hagn Mar 2019 A1
20190070550 Lalomia et al. Mar 2019 A1
20190070731 Bowling et al. Mar 2019 A1
20190090969 Jarc et al. Mar 2019 A1
20190104919 Shelton, IV et al. Apr 2019 A1
20190125320 Shelton, IV et al. May 2019 A1
20190125321 Shelton, IV et al. May 2019 A1
20190125324 Scheib et al. May 2019 A1
20190125335 Shelton, IV et al. May 2019 A1
20190125336 Deck et al. May 2019 A1
20190125337 Shelton, IV et al. May 2019 A1
20190125338 Shelton, IV et al. May 2019 A1
20190125339 Shelton, IV et al. May 2019 A1
20190125347 Stokes et al. May 2019 A1
20190125348 Shelton, IV et al. May 2019 A1
20190125352 Shelton, IV et al. May 2019 A1
20190125353 Shelton, IV et al. May 2019 A1
20190125354 Deck et al. May 2019 A1
20190125355 Shelton, IV et al. May 2019 A1
20190125356 Shelton, IV et al. May 2019 A1
20190125357 Shelton, IV et al. May 2019 A1
20190125358 Shelton, IV et al. May 2019 A1
20190125359 Shelton, IV et al. May 2019 A1
20190125360 Shelton, IV et al. May 2019 A1
20190125361 Shelton, IV et al. May 2019 A1
20190125377 Shelton, IV May 2019 A1
20190125378 Shelton, IV et al. May 2019 A1
20190125379 Shelton, IV et al. May 2019 A1
20190125380 Hunter et al. May 2019 A1
20190125383 Scheib et al. May 2019 A1
20190125384 Scheib et al. May 2019 A1
20190125385 Scheib et al. May 2019 A1
20190125386 Shelton, IV et al. May 2019 A1
20190125387 Parihar et al. May 2019 A1
20190125388 Shelton, IV et al. May 2019 A1
20190125389 Shelton, IV et al. May 2019 A1
20190125430 Shelton, IV et al. May 2019 A1
20190125431 Shelton, IV et al. May 2019 A1
20190125432 Shelton, IV et al. May 2019 A1
20190125454 Stokes et al. May 2019 A1
20190125455 Shelton, IV et al. May 2019 A1
20190125456 Shelton, IV et al. May 2019 A1
20190125457 Parihar et al. May 2019 A1
20190125458 Shelton, IV et al. May 2019 A1
20190125459 Shelton, IV et al. May 2019 A1
20190125476 Shelton, IV et al. May 2019 A1
20190133703 Seow et al. May 2019 A1
20190142449 Shelton, IV et al. May 2019 A1
20190142535 Seow et al. May 2019 A1
20190145942 Dutriez et al. May 2019 A1
20190150975 Kawasaki et al. May 2019 A1
20190159778 Shelton, IV et al. May 2019 A1
20190162179 O'Shea et al. May 2019 A1
20190192157 Scott et al. Jun 2019 A1
20190192236 Shelton, IV et al. Jun 2019 A1
20190200844 Shelton, IV et al. Jul 2019 A1
20190200863 Shelton, IV et al. Jul 2019 A1
20190200905 Shelton, IV et al. Jul 2019 A1
20190200906 Shelton, IV et al. Jul 2019 A1
20190200977 Shelton, IV et al. Jul 2019 A1
20190200980 Shelton, IV et al. Jul 2019 A1
20190200981 Harris et al. Jul 2019 A1
20190200984 Shelton, IV et al. Jul 2019 A1
20190200985 Shelton, IV et al. Jul 2019 A1
20190200986 Shelton, IV et al. Jul 2019 A1
20190200987 Shelton, IV et al. Jul 2019 A1
20190200988 Shelton, IV Jul 2019 A1
20190200996 Shelton, IV et al. Jul 2019 A1
20190200997 Shelton, IV et al. Jul 2019 A1
20190200998 Shelton, IV et al. Jul 2019 A1
20190201020 Shelton, IV et al. Jul 2019 A1
20190201021 Shelton, IV et al. Jul 2019 A1
20190201023 Shelton, IV et al. Jul 2019 A1
20190201024 Shelton, IV et al. Jul 2019 A1
20190201025 Shelton, IV et al. Jul 2019 A1
20190201026 Shelton, IV et al. Jul 2019 A1
20190201027 Shelton, IV et al. Jul 2019 A1
20190201028 Shelton, IV et al. Jul 2019 A1
20190201029 Shelton, IV et al. Jul 2019 A1
20190201030 Shelton, IV et al. Jul 2019 A1
20190201033 Yates et al. Jul 2019 A1
20190201034 Shelton, IV et al. Jul 2019 A1
20190201036 Nott et al. Jul 2019 A1
20190201037 Houser et al. Jul 2019 A1
20190201038 Yates et al. Jul 2019 A1
20190201039 Widenhouse et al. Jul 2019 A1
20190201040 Messerly et al. Jul 2019 A1
20190201041 Kimball et al. Jul 2019 A1
20190201042 Nott et al. Jul 2019 A1
20190201043 Shelton, IV et al. Jul 2019 A1
20190201044 Shelton, IV et al. Jul 2019 A1
20190201045 Yates et al. Jul 2019 A1
20190201046 Shelton, IV et al. Jul 2019 A1
20190201047 Yates et al. Jul 2019 A1
20190201073 Nott et al. Jul 2019 A1
20190201074 Yates et al. Jul 2019 A1
20190201075 Shelton, IV et al. Jul 2019 A1
20190201077 Yates et al. Jul 2019 A1
20190201079 Shelton, IV et al. Jul 2019 A1
20190201080 Messerly et al. Jul 2019 A1
20190201081 Shelton, IV et al. Jul 2019 A1
20190201082 Shelton, IV et al. Jul 2019 A1
20190201083 Shelton, IV et al. Jul 2019 A1
20190201084 Shelton, IV et al. Jul 2019 A1
20190201085 Shelton, IV et al. Jul 2019 A1
20190201086 Shelton, IV et al. Jul 2019 A1
20190201087 Shelton, IV et al. Jul 2019 A1
20190201088 Shelton, IV et al. Jul 2019 A1
20190201090 Shelton, IV et al. Jul 2019 A1
20190201091 Yates et al. Jul 2019 A1
20190201092 Yates et al. Jul 2019 A1
20190201102 Shelton, IV et al. Jul 2019 A1
20190201104 Shelton, IV et al. Jul 2019 A1
20190201105 Shelton, IV et al. Jul 2019 A1
20190201111 Shelton, IV et al. Jul 2019 A1
20190201112 Wiener et al. Jul 2019 A1
20190201113 Shelton, IV et al. Jul 2019 A1
20190201114 Shelton, IV et al. Jul 2019 A1
20190201115 Shelton, IV et al. Jul 2019 A1
20190201116 Shelton, IV et al. Jul 2019 A1
20190201118 Shelton, IV et al. Jul 2019 A1
20190201119 Harris et al. Jul 2019 A1
20190201120 Shelton, IV et al. Jul 2019 A1
20190201123 Shelton, IV et al. Jul 2019 A1
20190201124 Shelton, IV et al. Jul 2019 A1
20190201125 Shelton, IV et al. Jul 2019 A1
20190201126 Shelton, IV et al. Jul 2019 A1
20190201127 Shelton, IV et al. Jul 2019 A1
20190201128 Yates et al. Jul 2019 A1
20190201129 Shelton, IV et al. Jul 2019 A1
20190201130 Shelton, IV et al. Jul 2019 A1
20190201135 Shelton, IV et al. Jul 2019 A1
20190201136 Shelton, IV et al. Jul 2019 A1
20190201137 Shelton, IV et al. Jul 2019 A1
20190201138 Yates et al. Jul 2019 A1
20190201139 Shelton, IV et al. Jul 2019 A1
20190201140 Yates et al. Jul 2019 A1
20190201141 Shelton, IV et al. Jul 2019 A1
20190201142 Shelton, IV et al. Jul 2019 A1
20190201143 Shelton, IV et al. Jul 2019 A1
20190201144 Shelton, IV et al. Jul 2019 A1
20190201145 Shelton, IV et al. Jul 2019 A1
20190201146 Shelton, IV et al. Jul 2019 A1
20190201158 Shelton, IV et al. Jul 2019 A1
20190201159 Shelton, IV et al. Jul 2019 A1
20190201594 Shelton, IV et al. Jul 2019 A1
20190204201 Shelton, IV et al. Jul 2019 A1
20190205001 Messerly et al. Jul 2019 A1
20190205441 Shelton, IV et al. Jul 2019 A1
20190205566 Shelton, IV et al. Jul 2019 A1
20190205567 Shelton, IV et al. Jul 2019 A1
20190206003 Harris et al. Jul 2019 A1
20190206004 Shelton, IV et al. Jul 2019 A1
20190206050 Yates et al. Jul 2019 A1
20190206216 Shelton, IV et al. Jul 2019 A1
20190206542 Shelton, IV et al. Jul 2019 A1
20190206551 Yates et al. Jul 2019 A1
20190206555 Morgan et al. Jul 2019 A1
20190206556 Shelton, IV et al. Jul 2019 A1
20190206561 Shelton, IV et al. Jul 2019 A1
20190206562 Shelton, IV et al. Jul 2019 A1
20190206563 Shelton, IV et al. Jul 2019 A1
20190206564 Shelton, IV et al. Jul 2019 A1
20190206565 Shelton, IV Jul 2019 A1
20190206569 Shelton, IV et al. Jul 2019 A1
20190206576 Shelton, IV et al. Jul 2019 A1
20190207773 Shelton, IV et al. Jul 2019 A1
20190207857 Shelton, IV et al. Jul 2019 A1
20190207911 Wiener et al. Jul 2019 A1
20190208641 Yates et al. Jul 2019 A1
20190254759 Azizian Aug 2019 A1
20190269476 Bowling et al. Sep 2019 A1
20190274662 Rockman et al. Sep 2019 A1
20190274705 Sawhney et al. Sep 2019 A1
20190274706 Nott et al. Sep 2019 A1
20190274707 Sawhney et al. Sep 2019 A1
20190274708 Boudreaux Sep 2019 A1
20190274709 Scoggins Sep 2019 A1
20190274710 Black Sep 2019 A1
20190274711 Scoggins et al. Sep 2019 A1
20190274712 Faller et al. Sep 2019 A1
20190274713 Scoggins et al. Sep 2019 A1
20190274714 Cuti et al. Sep 2019 A1
20190274716 Nott et al. Sep 2019 A1
20190274717 Nott et al. Sep 2019 A1
20190274718 Denzinger et al. Sep 2019 A1
20190274719 Stulen Sep 2019 A1
20190274720 Gee et al. Sep 2019 A1
20190274749 Brady et al. Sep 2019 A1
20190274750 Jayme et al. Sep 2019 A1
20190274752 Denzinger et al. Sep 2019 A1
20190290389 Kopp Sep 2019 A1
20190298340 Shelton, IV et al. Oct 2019 A1
20190298341 Shelton, IV et al. Oct 2019 A1
20190298342 Shelton, IV et al. Oct 2019 A1
20190298343 Shelton, IV et al. Oct 2019 A1
20190298346 Shelton, IV et al. Oct 2019 A1
20190298347 Shelton, IV et al. Oct 2019 A1
20190298350 Shelton, IV et al. Oct 2019 A1
20190298351 Shelton, IV et al. Oct 2019 A1
20190298352 Shelton, IV et al. Oct 2019 A1
20190298353 Shelton, IV et al. Oct 2019 A1
20190298354 Shelton, IV et al. Oct 2019 A1
20190298355 Shelton, IV et al. Oct 2019 A1
20190298356 Shelton, IV et al. Oct 2019 A1
20190298357 Shelton, IV et al. Oct 2019 A1
20190298464 Abbott Oct 2019 A1
20190298481 Rosenberg et al. Oct 2019 A1
20190307520 Peine et al. Oct 2019 A1
20190314015 Shelton, IV et al. Oct 2019 A1
20190321117 Itkowitz et al. Oct 2019 A1
20190333626 Mansi et al. Oct 2019 A1
20190343594 Garcia Kilroy et al. Nov 2019 A1
20190374140 Tucker et al. Dec 2019 A1
20200054317 Pisarnwongs et al. Feb 2020 A1
20200054320 Harris et al. Feb 2020 A1
20200054321 Harris et al. Feb 2020 A1
20200054322 Harris et al. Feb 2020 A1
20200054323 Harris et al. Feb 2020 A1
20200054326 Harris et al. Feb 2020 A1
20200054327 Harris et al. Feb 2020 A1
20200054328 Harris et al. Feb 2020 A1
20200054330 Harris et al. Feb 2020 A1
20200100830 Henderson et al. Apr 2020 A1
20200162896 Su et al. May 2020 A1
20200178971 Harris et al. Jun 2020 A1
20200261075 Boudreaux et al. Aug 2020 A1
20200261076 Boudreaux et al. Aug 2020 A1
20200261077 Shelton, IV et al. Aug 2020 A1
20200261078 Bakos et al. Aug 2020 A1
20200261080 Bakos et al. Aug 2020 A1
20200261081 Boudreaux et al. Aug 2020 A1
20200261082 Boudreaux et al. Aug 2020 A1
20200261083 Bakos et al. Aug 2020 A1
20200261084 Bakos et al. Aug 2020 A1
20200261085 Boudreaux et al. Aug 2020 A1
20200261086 Zeiner et al. Aug 2020 A1
20200261087 Timm et al. Aug 2020 A1
20200261088 Harris et al. Aug 2020 A1
20200261089 Shelton, IV et al. Aug 2020 A1
20200281665 Kopp Sep 2020 A1
Foreign Referenced Citations (46)
Number Date Country
2015201140 Mar 2015 AU
2795323 May 2014 CA
101617950 Jan 2010 CN
104490448 Mar 2017 CN
206097107 Apr 2017 CN
2037167 Jul 1980 DE
3824913 Feb 1990 DE
4002843 Apr 1991 DE
102005051367 Apr 2007 DE
102016207666 Nov 2017 DE
0000756 Oct 1981 EP
2732772 May 2014 EP
3047806 Jul 2016 EP
3056923 Aug 2016 EP
3095399 Nov 2016 EP
3120781 Jan 2017 EP
3135225 Mar 2017 EP
3141181 Mar 2017 EP
2509523 Jul 2014 GB
S5373315 Jun 1978 JP
2017513561 Jun 2017 JP
20140104587 Aug 2014 KR
101587721 Jan 2016 KR
WO-9734533 Sep 1997 WO
WO-0024322 May 2000 WO
WO-0108578 Feb 2001 WO
WO-0112089 Feb 2001 WO
WO-0120892 Mar 2001 WO
WO-2007137304 Nov 2007 WO
WO-2008056618 May 2008 WO
WO-2008069816 Jun 2008 WO
WO-2008147555 Dec 2008 WO
WO-2011112931 Sep 2011 WO
WO-2013143573 Oct 2013 WO
WO-2014134196 Sep 2014 WO
WO-2015129395 Sep 2015 WO
WO-2016100719 Jun 2016 WO
WO-2016206015 Dec 2016 WO
WO-2017011382 Jan 2017 WO
WO-2017011646 Jan 2017 WO
WO-2017151996 Sep 2017 WO
WO-2017189317 Nov 2017 WO
WO-2017205308 Nov 2017 WO
WO-2017210499 Dec 2017 WO
WO-2017210501 Dec 2017 WO
WO-2018152141 Aug 2018 WO
Non-Patent Literature Citations (49)
Entry
US 10,504,709 B2, 12/2019, Karancsi et al. (withdrawn)
Flores et al., “Large-scale Offloading in the Internet of Things,” 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), IEEE, pp. 479-484, Mar. 13, 2017.
Kalantarian et al., “Computation Offloading for Real-Time Health-Monitoring Devices,” 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EBMC), IEEE, pp. 4971-4974, Aug. 16, 2016.
Yuyi Mao et al., “A Survey on Mobile Edge Computing: The Communication Perspective,” IEEE Communications Surveys & Tutorials, pp. 2322-2358, Jun. 13, 2017.
Benkmann et al., “Concept of iterative optimization of minimally invasive surgery,” 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), IEEE pp. 443-446, Aug. 28, 2017.
Trautman, Peter, “Breaking the Human-Robot Deadlock: Surpassing Shared Control Performance Limits with Sparse Human-Robot Interaction,” Robotics: Science and Systems XIIII, pp. 1-10, Jul. 12, 2017.
Khazaei et al., “Health Informatics for Neonatal Intensive Care Units: An Analytical Modeling Perspective,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 3, pp. 1-9, Oct. 21, 2015.
Yang et al., “A dynamic stategy for packet scheduling and bandwidth allocation based on channel quality in IEEE 802.16e OFDMA system,” Journal of Network and Computer Applications, vol. 39, pp. 52-60, May 2, 2013.
Takahashi et al., “Automatic smoke evacuation in laparoscopic surgery: a simplified method for objective evaluation,” Surgical Endoscopy, vol. 27, No. 8, pp. 2980-2987, Feb. 23, 2013.
Miksch et al., “Utilizing temporal data abstraction for data validation and therapy planning for artificially ventilated newborn infants,” Artificial Intelligence in Medicine, vol. 8, No. 6, pp. 543-576 (1996).
Horn et al., “Effective data validation of high-frequency data: Time-point-time-interval-, and trend-based methods,” Computers in Biology and Medic, New York, NY, vol. 27, No. 5, pp. 389-409 (1997).
Stacey et al., “Temporal abstraction in intelligent clinical data analysis: A survey, ” Artificial Intelligence in Medicine, vol. 39, No. 1, pp. 1-24 (2006).
Zoccali, Bruno, “A Method for Approximating Component Temperatures at Altitude Conditions Based on CFD Analysis at Sea Level Conditions,” (white paper), www.tdmginc.com, Dec. 6, 2018 (9 pages).
Slocinski et al., “Distance measure for impedance spectra for quantified evaluations,” Lecture Notes on Impedance Spectroscopy, vol. 3, Taylor and Francis Group (Jul. 2012)—Book Not Attached.
Engel et al. “A safe robot system for craniofacial surgery”, 2013 IEEE International Conference on Robotics and Automation (ICRA); May 6-10, 2013; Karlsruhe, Germany, vol. 2, Jan. 1, 2001, pp. 2020-2024.
Bonaci et al., “To Make a Robot Secure: An Experimental Analysis of Cyber Security Threats Against Teleoperated Surgical Robots,” May 13, 2015. Retrieved from the Internet: URL:https://arxiv.org/pdf/1504.04339v2.pdf [retrieved on Aug. 24, 2019].
Homa Alemzadeh et al., “Targeted Attacks on Teleoperated Surgical Robots: Dynamic Model-Based Detection and Mitigation,” 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), IEEE, Jun. 28, 2016, pp. 395-406.
Phumzile Malindi, “5. QoS in Telemedicine,” “Telemedicine,” Jun. 20, 2011, IntechOpen, pp. 119-138.
Staub et al., “Contour-based Surgical Instrument Tracking Supported by Kinematic Prediction,” Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Sep. 1, 2010, pp. 746-752.
Allan et al., “3-D Pose Estimation of Articulated Instruments in Robotic Minimally Invasive Surgery,” IEEE Transactions on Medical Imaging, vol. 37, No. 5, May 1, 2018, pp. 1204-1213.
Kassahun et al., “Surgical Robotics Beyond Enhanced Dexterity Instrumentation: A Survey of the Machine Learning Techniques and their Role in Intelligent and Autonomous Surgical Actions.” International Journal of Computer Assisted Radiology and Surgery, vol. 11, No. 4, Oct. 8, 2015, pp. 553-568.
Weede et al. “An Intelligent and Autonomous Endoscopic Guidance System for Minimally Invasive Surgery,” 2013 IEEE International Conference on Robotics ad Automation (ICRA), May 6-10, 2013. Karlsruhe, Germany, May 1, 2011, pp. 5762-5768.
Altenberg et al., “Genes of Glycolysis are Ubiquitously Overexpressed in 24 Cancer Classes,” Genomics, vol. 84, pp. 1014-1020 (2004).
Harold I. Brandon and V. Leroy Young, Mar. 1997, Surgical Services Management vol. 3 No. 3. retrieved from the internet <https://www.surgimedics.com/Research%20Articles/Electrosurgical%20Plume/Characterization%20And%20Removal%20Of%20Electrosurgical%20Smoke.pdf> (Year: 1997).
Marshall Brain, How Microcontrollers Work, 2006, retrieved from the internet <https://web.archive.org/web/20060221235221/http://electronics.howstuffworks.com/microcontroller.htm/printable> (Year: 2006).
CRC Press, “The Measurement, Instrumentation and Sensors Handbook,” 1999, Section VII, Chapter 41, Peter O'Shea, “Phase Measurement,” pp. 1303-1321, ISBN 0-8493-2145-X.
Jiang, “‘Sound of Silence’ : a secure indoor wireless ultrasonic communication system,” Article, 2014, pp. 46-50, Snapshots of Doctoral Research at University College Cork, School of Engineering—Electrical & Electronic Engineering, UCC, Cork, Ireland.
Li, et al., “Short-range ultrasonic communications in air using quadrature modulation,” Journal, Oct. 30, 2009, pp. 2060-2072, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, No. 10, IEEE.
Salamon, “AI Detects Polyps Better Than Colonoscopists” Online Article, Jun. 3, 2018, Medscape Medical News, Digestive Disease Week (DDW) 2018: Presentation 133.
Misawa, et al. “Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience,” Article, Jun. 2018, pp. 2027-2029, vol. 154, Issue 8, American Gastroenterolgy Association.
Dottorato, “Analysis and Design of the Rectangular Microstrip Patch Antennas for TM0n0 operating mode,”Article, Oct. 8, 2010, pp. 1-9, Microwave Journal.
Miller, et al., “Impact of Powered and Tissue-Specific Endoscopic Stapling Technology on Clinical and Economic Outcomes of Video-Assisted Thoracic Surgery Lobectomy Procedures: A Retrospective, Observational Study,” Article, Apr. 2018, pp. 707-723, vol. 35 (Issue 5), Advances in Therapy.
Hsiao-Wei Tang, “ARCM”, Video, Sep. 2012, YouTube, 5 screenshots, Retrieved from internet: <https://www.youtube.com/watch?v=UIdQaxb3fRw&feature=youtu.be>.
Giannios, et al., “Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies,” Article, Jun. 14, 2016, pp. 1-10, Scientific Reports 6, Article No. 27910, Nature.
Vander Heiden, et al., “Understanding the Warburg effect: the metabolic requirements of cell proliferation,” Article, May 22,2009, pp. 1-12, vol. 324, Issue 5930, Science.
Hirayama et al., “Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry,” Article, Jun. 2009, pp. 4918-4925, vol. 69, Issue 11, Cancer Research.
Cengiz, et al., “A Tale of Two Compartments: Interstitial Versus Blood Glucose Monitoring,” Article, Jun. 2009, pp. S11-S16, vol. 11, Supplement 1, Diabetes Technology & Therapeutics.
Shen, et al., “An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor,” Article, Feb. 3, 2007, pp. 106-113, vol. 125, Issue 1, Sensors and Actuators B: Chemical, Science Direct.
“ATM-MPLS Network Interworking Version 2.0, af-aic-0178.001” ATM Standard, The ATM Forum Technical Committee, published Aug. 2003.
IEEE Std 802.3-2012 (Revision of IEEE Std 802.3-2008, published Dec. 28, 2012.
IEEE Std No. 177, “Standard Definitions and Methods of Measurement for Piezoelectric Vibrators,” published May 1966, The Institute of Electrical and Electronics Engineers, Inc., New York, N.Y.
Shi et al., An intuitive control console for robotic syrgery system, 2014, IEEE, p. 404-407 (Year: 2014).
Choi et al., A haptic augmented reality surgeon console for a laparoscopic surgery robot system, 2013, IEEE, p. 355-357 (Year: 2013).
Xie et al., Development of stereo vision and master-slave controller for a compact surgical robot system, 2015, IEEE, p. 403-407 (Year: 2015).
Sun et al., Innovative effector design for simulation training in robotic surgery, 2010, IEEE, p. 1735-1759 (Year: 2010).
Anonymous, “Internet of Things Powers Connected Surgical Device Infrastructure Case Study”, Dec. 31, 2016 (Dec. 31, 2016), Retrieved from the Internet: URL:https://www.cognizant.com/services-resources/150110_IoT_connected_surgical_devices.pdf.
Draijer, Matthijs et al., “Review of laser pseckle contrast techniques for visualizing tissue perfusion,” Lasers in Medical Science, Springer-Verlag, LO, vol. 24, No. 4, Dec. 3, 2008, pp. 639-651.
Roy D Cullum, “Handbook of Engineering Design”, ISBN: 9780408005586, Jan. 1, 1988 (Jan. 1, 1988), XP055578597, ISBN: 9780408005586, 10-20, Chapter 6, p. 138, right-hand column, paragraph 3.
“Surgical instrumentation: the true cost of instrument trays and a potential strategy for optimization”; Mhlaba et al.; Sep. 23, 2015 (Year: 2015).
Related Publications (1)
Number Date Country
20190201597 A1 Jul 2019 US
Provisional Applications (10)
Number Date Country
62691251 Jun 2018 US
62650882 Mar 2018 US
62650877 Mar 2018 US
62650887 Mar 2018 US
62650898 Mar 2018 US
62640417 Mar 2018 US
62640415 Mar 2018 US
62611341 Dec 2017 US
62611339 Dec 2017 US
62611340 Dec 2017 US