Dual investment shelled solid mold casting of reticulated metal foams

Information

  • Patent Grant
  • 9737930
  • Patent Number
    9,737,930
  • Date Filed
    Monday, December 7, 2015
    9 years ago
  • Date Issued
    Tuesday, August 22, 2017
    7 years ago
Abstract
A method to manufacture reticulated metal foam via a dual investment, includes pre-investment of a precursor with a diluted pre-investment ceramic plaster then applying an outer mold to the encapsulated precursor as a shell-mold.
Description
BACKGROUND

The present disclosure relates to metal foams, more particularly, to methods to manufacture metal foams.


Reticulated metal foams are porous, low-density solid foams that include few, if any, intact bubbles or windows. Reticulated metal foams have a wide range of application and may be utilized in many aerospace applications.


Numerous existing manufacturing technologies for producing reticulated metal foams have been attempted. However, automated production of such reticulated structures may be rather difficult to implement as the ceramic investment often proves difficult to remove without damage to the resultant relatively delicate metallic foam structure. Further, the existing manufacturing technologies lack the capability to efficiently manufacturer relatively large sheets of metal foam as the weight of the ceramic investment is sufficient to crush and convolute the shape of the polyurethane foam precursors. This may result in castability complications, polymer burnout, and reduced dimensional tolerances.


Standard investment casting in a flask tends to insulate the cast metal evenly resulting in heat retention in the center of the mold. This may lead to porosity in the casting and much effort is expended in mold design to direct this internal hot zone to non-critical areas of the casting.


SUMMARY

A method to manufacture reticulated metal foam via a dual investment, according to one disclosed non-limiting embodiment of the present disclosure can include pre-investing a precursor with a diluted pre-investment ceramic plaster to encapsulate the precursor; and applying an outer mold to the encapsulated precursor as a shell-mold.


A further embodiment of the present disclosure may include, wherein the precursor is a reticulated foam.


A further embodiment of the present disclosure may include, wherein the precursor is a polyurethane foam.


A further embodiment of the present disclosure may include, wherein the precursor is completely encapsulated with the diluted pre-investment ceramic plaster.


A further embodiment of the present disclosure may include coating the precursor to increase ligament thickness.


A further embodiment of the present disclosure may include coating the precursor in a molten wax to increase ligament thickness to provide an about 90% air to 10% precursor ratio.


A further embodiment of the present disclosure may include coating the precursor in a molten wax to increase ligament thickness to provide an about 90% air to 10% precursor ratio.


A further embodiment of the present disclosure may include, wherein the diluted pre-investment ceramic plaster is about 55:100 water-to-powder ratio.


A further embodiment of the present disclosure may include applying the outer mold by applying alternating layers of slurry and stucco to form the shell-mold.


A method to manufacture reticulated metal foam via a dual investment, according to another disclosed non-limiting embodiment of the present disclosure can include coating a precursor in a molten wax to increase ligament thickness; pre-investing the waxed precursor with a diluted pre-investment ceramic plaster to encapsulate the precursor; and applying an outer mold to the encapsulated precursor as a shell-mold.


A further embodiment of the present disclosure may include, wherein the precursor is a reticulated foam.


A further embodiment of the present disclosure may include coating the precursor in the molten wax to increase ligament thickness to provide an about 90% air to 10% precursor ratio.


A further embodiment of the present disclosure may include, wherein the ceramic plaster is more rigid than the diluted pre-investment ceramic plaster.


A further embodiment of the present disclosure may include, wherein the diluted pre-investment ceramic plaster defines a predetermined a water-to-powder ratio.


A further embodiment of the present disclosure may include, wherein the diluted pre-investment ceramic plaster is about 55:100 water-to-powder ratio.


A dual investment according to another disclosed non-limiting embodiment of the present disclosure can include a precursor; a diluted pre-investment ceramic plaster over the precursor; and a shell mold over the diluted pre-investment ceramic plaster.


A further embodiment of the present disclosure may include, wherein the precursor is reticulated foam.


A further embodiment of the present disclosure may include, a molten wax over the precursor to increase ligament thickness to provide an about 90% air to 10% precursor ratio.


A further embodiment of the present disclosure may include, wherein the ceramic plaster is more rigid than the diluted pre-investment ceramic plaster.


A further embodiment of the present disclosure may include, wherein the diluted pre-investment ceramic plaster is about 55:100 water-to-powder ratio and the ceramic plaster is about 28:100 water-to-powder ratio.


The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be understood, however, the following description and drawings are intended to be exemplary in nature and non-limiting.





BRIEF DESCRIPTION OF THE DRAWINGS

Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiments. The drawings that accompany the detailed description can be briefly described as follows:



FIG. 1 is a schematic block diagram of a method to manufacture reticulated metal foam via a dual investment solid mold according to one disclosed non-limiting embodiment;



FIG. 2 is a schematic view of one step in the method to manufacture reticulated metal foam;



FIG. 3 is a schematic view of one step in the method to manufacture reticulated metal foam;



FIG. 4 is a schematic view of one step in the method to manufacture reticulated metal foam;



FIG. 5 is a schematic view of one step in the method to manufacture reticulated metal foam;



FIG. 6 is a schematic view of one step in the method to manufacture reticulated metal foam;



FIG. 7 is a schematic view of a mold assembly for the method to manufacture reticulated metal foam; and



FIG. 8 is a schematic view of a shell mold applied to the mold assembly to form a second, final, investment for casting.





DETAILED DESCRIPTION


FIG. 1 schematically illustrates a method 100 to manufacture reticulated metal foam via a dual investment solid mold according to one disclosed non-limiting embodiment. The reticulated metal foam is typically manufactured of aluminum, however, other materials will also benefit herefrom.


Initially, a precursor 20 (FIG. 2) such as a polyurethane reticulated foam structure or other such reticulated material shaped to a desired size and configuration (step 102). In one example, the precursor 20 may be about 2′ by 1′ by 1.5″. In some embodiments, the precursor 20 may be a commercially available 14 ppi polyurethane foam such as that manufactured by INOAC USA, INC of Moonachie, N.J. USA, although any material that provides desired pore configurations are usable herewith.


Next, the precursor 20 is heated, then dipped or otherwise coated in a molten wax 22 to increase ligament thickness (Step 104; FIG. 2). The wax may be melted in an electric oven at ˜215° F. and the precursor 20 may be preheated simultaneously therein as well. In one example, the wax coating increased ligament/strut thickness to provide an about 90% air to 10% precursor ratio to facilitate castability with thicker struts and channels for metal, however, other densities will benefit herefrom as waxing the foam enables casting of the foam due to the passageways formed during de-wax and burnout. The wax coating also facilitates improved/accelerated burnout (passageways for gas).


It should be appreciated that various processes may be utilized to facilitate the wax coating such as location of the precursor 20 into the oven for a few minutes to re-melt the wax on the precursor 20; utilization of an air gun used to blow out and/or to even out the wax coating; and/or repeat the re-heat/air gun process as necessary to produce an even coating of wax. Alternatively, or in addition, the precursor 20 may be controlled a CNC machine to assure that the wax coating is consistently and equivalently applied. The precursor 20 is then a coated precursor 30 that is then allowed to cool (FIG. 2).


Next, a wax gating 40 is attached to each end 42, 44 of the coated precursor 30 (step 106; FIG. 3). An edge face 46, 48 of the respective wax gating 40 may be dipped into melted wax as a glue and attached to the coated precursor 30.


Next, a container 50 is formed to support the wax gating 40 and attached coated precursor 30 therein (step 108; FIG. 4). In some embodiments, the container 50 may be formed as an open-topped rectangular container manufactured from scored sheet wax of about 1/16″ thick (FIG. 5). It should be appreciated that other materials such as plastic, cardboard, and others may be utilized to support the wax gating 40 and attached coated precursor 30 therein as well as contain a liquid such that the wax gating 40 can be completely submerged. In one example, the container 50 is about twice the depth of the wax gating 40 and provides spacing completely around the coated precursor 30.


Next, the wax gating 40 and attached coated precursor 30 is pre-invested by pouring a slurry of diluted pre-investment ceramic plaster into the container 50 to form a pre-investment block 60 (step 110; FIG. 6, FIG. 7). The pre-investment may be performed with a ceramic plaster such as, for example, an Ultra-Vest® investment manufactured by Ransom & Randolph® of Maumee, Ohio, USA.


The ceramic plaster may be mixed per manufacturer's recommendations However, it may be desirable, in some embodiments, for the ceramic plaster to be highly diluted, e.g., water to powder ratio of 55:100 used for Ultra-Vest® as compared to the manufacturer's recommended 39-42:100 to provide the diluted pre-investment ceramic plaster. It should be appreciated that various processes may be utilized to facilitate pouring such as a vibration plate to facilitate slurry infiltration into the coated precursor 30; location in a vacuum chamber to remove trapped air; etc. If a vacuum chamber is employed, the vacuum may be released once bubbles stop breaching the surface, or slurry starts setting up. The container 50 may then be topped off with excess slurry if necessary.


The highly water-diluted ceramic plaster reduces the strength of the ceramic, which facilitates post cast removal. The highly water-diluted ceramic plaster also readily flows into the polymer reticulated foam structure, ensuring 100% investment. This is significant in the production of very dense, fine pore, metal foams. This pre-investment may thus take the form of a block, panel, brick, sheets, etc. Once pre-invested, a rectangular prism of the diluted investment plaster with the foam encapsulated inside may be formed.


The pre-investment block 60 is then allowed to harden, e.g., for about 10 minutes, and once set, transferred to a humidity controlled drying room. In some embodiments, the final pre-investment block 60, when solidified, may be only slightly larger than the original polyurethane foam precursor 20 shape. This facilitates maintenance and support of the precursor 20 structural integrity that may be otherwise compromised. That is, the shape of the precursor 20 is protected within the pre-investment material. After the pre-investment block 60 is dried or sufficiently dried, a wax assembly procedure (step 112) may be performed. In some embodiments, the wax assembly procedure may be performed after about 2 hours drying time.


The wax assembly procedure (step 112) may include attachment of gates 70, 72, and a pour cone 74, to the pre-investment block 60 to form a gated pre-investment block 80 (FIG. 7). Alternatively, multiple pre-investment blocks 60 may be commonly gated as a gated pre-investment block 80.


Next, the outer mold assembly 82 is applied as a shell-mold to provide the build-up around the preinvest/gating assembly to prepare the final mold 90 for the final investment (step 114). A shell-mold in this disclosure refers to the building of an investment mold by applying alternating layers of slurry and stucco on a pattern (FIG. 8). In common industry language, this is often referred to simply as “investment casting.” In one example, the materials utilized include a colloidal silica suspension binder within an aqueous solution having a zirconia and/or alumina aggregate which provides an approximate 0.375″ (9.5 mm) buildup on all surfaces. The final mold 90 is thereby significantly more rigid and robust than the pre-investment ceramic plaster.


The use of a shell-mold system reduces material cost relative to a solid mold technique. Additionally, shell-mold applications may enable automation to facilitate a relatively high through-put and economies of scale for investing and component manufacturing.


The use of the terms “a,” “an,” “the,” and similar references in the context of description (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or specifically contradicted by context. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., it includes the degree of error associated with measurement of the particular quantity). All ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other. It should be appreciated that relative positional terms such as “forward,” “aft,” “upper,” “lower,” “above,” “below,” and the like are with reference to normal operational attitude and should not be considered otherwise limiting.


Although the different non-limiting embodiments have specific illustrated components, the embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from any of the non-limiting embodiments in combination with features or components from any of the other non-limiting embodiments.


It should be appreciated that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be appreciated that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom.


Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present disclosure.


The foregoing description is illustrative rather than defined by the limitations within. Various non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be understood that within the scope of the appended claims, the disclosure may be practiced other than as specifically described. For that reason the appended claims should be studied to determine true scope and content.

Claims
  • 1. A method to manufacture reticulated metal foam via a dual investment, comprising: pre-investing a precursor with a pre-investment ceramic plaster to encapsulate the precursor;applying an outer mold to the encapsulated precursor as a shell-mold; andcoating the prescursor in a molten wax to increase ligament thickness to provide an about 90% air to 10% precursor ratio.
  • 2. The method as recited in claim 1, wherein the precursor is a reticulated foam.
  • 3. The method as recited in claim 1, wherein the precursor is a polyurethane foam.
  • 4. The method as recited in claim 1, wherein the precursor is completely encapsulated with the pre-investment ceramic plaster.
  • 5. The method as recited in claim 1, further comprising, coating the precursor to increase ligament thickness.
  • 6. The method as recited in claim 1, further comprising applying the outer mold by applying alternating layers of slurry and stucco to form the shell-mold.
  • 7. A method to manufacture reticulated metal foam via a dual investment, comprising: pre-investing a precursor with a pre-investment ceramic plaster to encapsulate the precursor;applying an outer mold to the encapsulated precursor as a shell-mold,wherein the pre-investment ceramic plaster is diluted to about 55:100 water-to-powder ratio.
  • 8. A method to manufacture reticulated metal foam via a dual investment, comprising: coating a precursor in a molten wax to increase ligament thickness;pre-investing the waxed precursor with a pre-investment ceramic plaster to encapsulate the precursor; andapplying an outer mold to the encapsulated precursor as a shell-mold,wherein the outer mold is more rigid than the pre-investment ceramic plaster.
  • 9. A method to manufacture reticulated metal foam via a dual investment, comprising: coating a precursor in a molten wax to increase ligament thickness;pre-investing the waxed precursor with a pre-investment ceramic plaster to encapsulate the precursor; andapplying an outer mold to the encapsulated precursor as a shell-mold,wherein the pre-investment ceramic plaster is diluted to a predetermined water-to-powder ratio.
  • 10. A method to manufacture reticulated metal foam via a dual investment, comprising: coating a precursor in a molten wax to increase ligament thickness;pre-investing the waxed precursor with a pre-investment ceramic plaster to encapsulate the precursor; andapplying an outer mold to the encapsulated precursor as a shell-mold,wherein the pre-investment ceramic plaster is diluted to an about 55:100 water-to-powder ratio.
  • 11. A dual investment, comprising: a precursor;a pre-investment ceramic plaster over the precursor;a shell mold over the pre-investment ceramic plaster; anda molten wax over the precursor to increase ligament thickness to provide an about 90% air to 10% precursor ratio.
  • 12. The dual investment as recited in claim 11, wherein the precursor is reticulated foam.
  • 13. A dual investment, comprising: a precursor;a pre-investment ceramic plaster over the precursor; anda shell mold over the pre-investment ceramic plaster,wherein the pre-investment ceramic plaster is diluted more than about 39-42:100.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Continuation-in-Part and claims the benefit of patent application Ser. No. 14/600,717, filed Jan. 20, 2015 and patent application Ser. No. 14/619,372, filed Feb. 11, 2015.

US Referenced Citations (58)
Number Name Date Kind
3362463 Manginelli Jan 1968 A
3616841 Walz Nov 1971 A
3788382 Daniel et al. Jan 1974 A
3933190 Fassler et al. Jan 1976 A
3946039 Walz Mar 1976 A
4235277 Aizawa et al. Nov 1980 A
5720597 Wang et al. Feb 1998 A
6187411 Palmer Feb 2001 B1
6412541 Roesler et al. Jul 2002 B2
6443700 Grylls et al. Sep 2002 B1
6652222 Wojtyczka et al. Nov 2003 B1
6711902 Douglas Mar 2004 B2
6827556 Simon Dec 2004 B2
6857461 Girlich Feb 2005 B2
6913436 McMillan et al. Jul 2005 B2
6971841 Care Dec 2005 B2
7045237 Sridhar et al. May 2006 B2
7067208 Gottmann et al. Jun 2006 B2
7118920 Brophy et al. Oct 2006 B2
7125217 Care Oct 2006 B2
7135248 Finn et al. Nov 2006 B2
7137433 Dobesberger et al. Nov 2006 B2
7144651 Finn et al. Dec 2006 B2
7175387 Kreis et al. Feb 2007 B2
7255956 Mcelroy et al. Aug 2007 B2
7448849 Webster et al. Nov 2008 B1
7513734 McMillan Apr 2009 B2
7524162 Reigl Apr 2009 B2
7588421 Burdgick et al. Sep 2009 B2
7594325 Read Sep 2009 B2
7604199 McMillan et al. Oct 2009 B2
7604781 Brophy et al. Oct 2009 B2
7753654 Read et al. Jul 2010 B2
7766603 Beckford et al. Aug 2010 B2
7766625 Burdgick et al. Aug 2010 B2
7775766 Meier et al. Aug 2010 B2
7902484 Ulrich Mar 2011 B2
7905016 James et al. Mar 2011 B2
7922456 McMillan Apr 2011 B2
7942639 Burdgick et al. May 2011 B2
7946827 Beckford May 2011 B2
7950147 Meier et al. May 2011 B2
7968144 James et al. Jun 2011 B2
8047001 Beeck et al. Nov 2011 B2
8052378 Draper Nov 2011 B2
8092148 Seitz et al. Jan 2012 B2
8231328 Reed Jul 2012 B2
8246291 Wolford Aug 2012 B2
8297912 Reed Oct 2012 B2
8304136 Lee et al. Nov 2012 B2
8313288 Schlichting et al. Nov 2012 B2
8327911 Kush et al. Dec 2012 B2
8333552 Wood et al. Dec 2012 B2
8721290 Darkins, Jr. et al. May 2014 B2
8763360 Murdock Jul 2014 B2
8777582 Darkins, Jr. et al. Jul 2014 B2
8777583 Darkins, Jr. et al. Jul 2014 B2
8870547 Grase et al. Oct 2014 B2
Foreign Referenced Citations (2)
Number Date Country
1604756 Dec 2005 EP
2010711 Jul 1979 GB
Non-Patent Literature Citations (2)
Entry
European Search Report for EP 16152132.3, dated Jun. 8, 2016.
European Search Report for EP 16152118.2, dated Jun. 8, 2016.
Related Publications (1)
Number Date Country
20160221072 A1 Aug 2016 US
Continuation in Parts (2)
Number Date Country
Parent 14600717 Jan 2015 US
Child 14960744 US
Parent 14619372 Feb 2015 US
Child 14600717 US