The present invention relates to fastener installation tools, and, more particularly, to a dual piston, close clearance fastening tool including two pistons that are diametrically opposed to one another about a longitudinal axis of a nose assembly.
Pull-type fasteners are commonly used for a variety of applications. In some cases, there is a need to install a pull-type fastener in a location that is relatively close to the edge of a structure to be fastened.
In an embodiment, a fastener installation tool includes a nose assembly, a first cylinder, a second cylinder, a first piston, a second piston, and a yoke. The nose assembly has a longitudinal axis and is adapted to apply an axial force to a fastener along the longitudinal axis of the nose assembly. The first cylinder has a longitudinal axis that is parallel to the longitudinal axis of the nose assembly. The second cylinder has a longitudinal axis that is parallel to the longitudinal axis of the nose assembly and is diametrically opposed to the longitudinal axis of the first cylinder about the longitudinal axis of the nose assembly. The first piston is disposed within the first cylinder and is adapted to move with respect to the first cylinder along the longitudinal axis of the first cylinder. The second piston is disposed within the second cylinder and is adapted to move with respect to the second cylinder along the longitudinal axis of the second cylinder. The yoke connects the nose assembly, the first piston, and the second piston such that motion of one of the first and second pistons along the longitudinal axis of a corresponding one of the first and second cylinders causes corresponding motion of at least a portion of the nose assembly along the longitudinal axis of the nose assembly and causes corresponding motion of another one of the first and second pistons along the longitudinal axis of a corresponding one of the first and second cylinders.
In an embodiment, the fastener installation tool also includes a housing defining the first cylinder and the second cylinder. In an embodiment, the first piston includes a pull pressure port adapted to receive a fluid pressure causing the first piston to move in a pull direction. In an embodiment, when the pull pressure port receives the fluid pressure causing the first piston to move in the pull direction, the yoke causes the second piston and the at least a portion of the nose assembly to move in the pull direction. In an embodiment, the second piston includes a return pressure port adapted to receive a fluid pressure causing the second piston to move in a return direction. In an embodiment, when the return pressure port receives the fluid pressure causing the second piston to move in the return direction, the yoke causes the first piston and the at least a portion of the nose assembly to move in the return direction.
In an embodiment, the fastener installation tool also includes a guide rod connecting the yoke to the nose assembly. In an embodiment, a pull side of the first cylinder is in fluid communication with a pull side of the second cylinder. In an embodiment, a return side of the first cylinder is in fluid communication with a return side of the second cylinder.
In an embodiment, the nose assembly includes an anvil and a collet. In an embodiment, the anvil is a swaging anvil. In an embodiment, the anvil is a stand-off anvil. In an embodiment, the collet is an integral collet. In an embodiment, the collet includes jaws. In an embodiment, the motion of at least a portion of the nose assembly includes motion of the collet with respect to the anvil. In an embodiment, the nose assembly comprises a thread adapted to engage a fastener. In an embodiment, the fastener installation tool is a hydraulic installation tool. In an embodiment, the fastener installation tool is a pneumatic installation tool.
Continuing to refer to
In an embodiment, the nose assembly 30 is connected to the center guide rod 24 such that the collet 32 and the center guide rod move in concert with one another while the swaging anvil 34 remains stationary. In other words, a portion of the nose assembly 30 (i.e., the collet 32) moves axially with respect to another portion of the nose assembly 30 (i.e., the swaging anvil 34). In another embodiment, the entire nose assembly 30 may move with the center guide rod 24. In an embodiment, due to the presence of the yoke 22 connecting the pistons 14, 16 and the center guide rod 24 (and, correspondingly, the collet 32), pressure received via the pull pressure port 26 and causing the piston 14 to move in a pull direction also causes the piston 16 and the collet 32 to move in the pull direction.
In an embodiment, the nose assembly 30 consists of a BOBTAIL® nose assembly manufactured by Alcoa Fastening Systems and disclosed in U.S. Pat. Nos. 7,921,530 and 8,621,734. In other embodiments, the nose assembly 30 can consist of a nose assembly for a C50L® lock bolt or a nose assembly for a BOM® blind bolt, both of which are manufactured by Alcoa Fastening Systems.
In an embodiment, the fastening tool 10 is adapted to meet tight clearance requirements for a centerline of a fastener to an edge of a structure. In this regard, the cylinders 18, 20, which flank the main pulling access of the nose assembly 30 in diametrically opposed positions, make it possible to reduce center-to-edge distance D (see
It should be understood that the embodiments described herein are merely exemplary in nature and that a person skilled in the art may make many variations and modifications thereto without departing from the scope of the present invention. All such variations and modifications, including those discussed above, are intended to be included within the scope of the invention.
This application is a Section 111(a) application relating to and claiming the benefit of commonly-owned, U.S. Provisional Patent Application Ser. No. 62/135,460, filed Mar. 19, 2015, entitled “DUAL PISTON CLOSE CLEARANCE FASTENING TOOL,” the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3329000 | Schwab | Jul 1967 | A |
5035353 | Smart | Jul 1991 | A |
5327639 | Wing | Jul 1994 | A |
6125680 | Bradbury | Oct 2000 | A |
Number | Date | Country |
---|---|---|
317992 | Jan 1920 | DE |
408901 | Jan 1925 | DE |
29765 | Nov 1925 | FR |
Entry |
---|
“Twin Centre Hole Hydraulic Cylinders”, http://www.sgs-engineering.com/spx-power-team/hydraulic-cylinders/centre-hole/twin, 2 pages. |
International Search Report and Written Opinion dated Jul. 1, 2016, issued by the European Patent Office in International (PCT) Application No. PCT/US2016/023182 (13 pages). |
Number | Date | Country | |
---|---|---|---|
20160271683 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
62135460 | Mar 2015 | US |