Analytical equipment, including Mass Spectrometers (MS) and Atomic Emission Spectrometers (AES), are utilized for detecting trace elements of species in samples. Inductively Coupled Plasma MS (ICP-MS) and Inductively Coupled Plasma AES (ICP-AES), which may also be referred to as ICP Optical Emission Spectrometry (ICP-OES), are two sample analysis systems used by laboratories for the determination of trace element concentrations and isotope ratios in liquid samples. ICP spectrometry employs electromagnetically generated partially ionized plasma, which can reach temperatures of approximately seven thousand Kelvin (7,000 K). When a sample is introduced to the plasma, the high temperature causes sample atoms to become ionized or emit light. Since each chemical element and ratios thereof produces a characteristic mass or emission spectrum, measuring the spectra of the emitted mass or light allows for the determination of the elemental composition of the original sample.
A dual spray chamber apparatus is described. In one or more implementations, the dual spray chamber apparatus includes a first cyclonic spray chamber for receiving an aerosol and conditioning the aerosol to separate a first conditioned portion of the aerosol from a second portion of the aerosol. The first cyclonic spray chamber defines a first chamber interior and comprises an input port in fluid communication with the first chamber interior for receiving the aerosol to be conditioned by the first cyclonic spray chamber. The first cyclonic spray chamber may include a baffle. The dual spray chamber apparatus also includes a second spray chamber coupled with the first cyclonic spray chamber for receiving the first conditioned portion of the aerosol and further conditioning the first conditioned portion of the aerosol to separate a first further conditioned portion of the first conditioned portion of the aerosol from a second conditioned portion of the first conditioned portion of the aerosol. The second spray chamber defines a second chamber interior and comprises an output port for expelling the first further conditioned portion of the first conditioned portion of the aerosol from the second chamber interior. The second spray chamber may be a cyclonic spray chamber.
The dual spray chamber apparatus may further include a drain port in fluid communication with the first chamber interior for removing the second portion of the aerosol from the first cyclonic spray chamber. The dual spray chamber apparatus may also include a baffle at least partially disposed within the second chamber interior, where the baffle defines an interior portion for receiving the first further conditioned portion of the first conditioned portion of the aerosol. The dual spray chamber apparatus may further include a linking chamber for coupling the first cyclonic spray chamber to the second spray chamber. The linking chamber may comprise a taper and may form an annular drain portion for removing the second conditioned portion of the first conditioned portion of the aerosol from the second spray chamber. The volume defined by the first chamber interior may be greater than the volume defined by the second chamber interior.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The Detailed Description is described with reference to the accompanying figures. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items.
When a sample is introduced to plasma in ICP spectrometry, the high temperature causes sample atoms to become ionized or emit light. Measuring the spectra of the emitted mass or light allows for the determination of the elemental composition of the sample. Sample analysis systems may employ a sample introduction system for conditioning a sample prior to introduction into the analytical equipment. For example, a sample introduction system may withdraw an aliquot of a liquid sample from a sample container and transport the aliquot to a nebulizer that converts the aliquot into a polydisperse aerosol suitable for ionization in plasma by the ICP spectrometry instrumentation. Such conversion may take place in a spray chamber prior to introduction to the plasma. The nebulized sample may include a distribution of large and small aerosol particles. The large aerosol particles may inhibit signal stability and intensity of the nebulized sample when analyzed. The spray chamber can be configured to remove the larger aerosol particles to improve signal stability and intensity of the nebulized sample.
One particular spray chamber design is known as a cyclonic spray chamber, which causes the nebulized sample to swirl within the chamber. The larger particles collide with the walls of the chamber and are drained from the chamber, whereas the smaller particles are expelled from the chamber through an outlet, typically located at a vertical end of the chamber. The cyclonic spray chamber may be modified to include a baffle that serves as an additional region of impact for the larger particles. However, one problem with a baffled cyclonic spray chamber is that signals from the analyzed sample may be lower than in a non-baffled spray chamber. This may be due to the nebulized sample being introduced in close proximity to the baffle, which may cause smaller aerosol particles to impact the baffle. Further, a non-baffled cyclonic spray chamber may provide less short term stability than a baffled cyclonic spray chamber, and may lead to a build-up of liquid in the ICP torch injector, which can reduce signal quality as well as extinguish the ICP plasma.
Accordingly, the present disclosure is directed to a dual spray chamber apparatus that can provide separation of large aerosol particles from smaller aerosol particles using two or more spray chambers. The dual spray chamber apparatus can provide short-term stability by mixing using two or more spray chambers, and long-term plasma stability by preventing the formation of droplets in a torch injector base. The dual spray chamber apparatus includes a first cyclonic spray chamber having an input port for receiving an aerosol to be conditioned in the interior of the first chamber and a second spray chamber coupled with the first cyclonic spray chamber (e.g., via a linking chamber). The first cyclonic spray chamber may include a baffle disposed in the interior of the first chamber. The second spray chamber can be implemented as a cyclonic spray chamber, or another type of spray chamber, and may include a baffle disposed in the interior of the second chamber and coupled with an output port for supplying a portion of the conditioned aerosol from the first chamber via, for example, an ICP torch injector. In implementations, the input port of the first cyclonic spray chamber may be generally orthogonal to the output port of the second spray chamber. In other implementations, the input port of the first cyclonic spray chamber may be generally parallel to the output port of the second spray chamber. In the following discussion, example implementations of dual spray chambers are described.
The first cyclonic spray chamber 102 is configured to condition the aerosol by separating relatively large aerosol particles from smaller aerosol particles by allowing the larger aerosol particles to impact with the walls of the chamber interior 108. In particular, the input port 106 is configured to receive an aerosol to be conditioned in the chamber interior 108 to produce a first conditioned portion of the aerosol (e.g., the smaller aerosol particles) and a second portion of the aerosol (e.g., the larger aerosol particles). With reference to
The second spray chamber 104 may be coupled with the output port 112 of the first cyclonic spray chamber 102 via a linking chamber 114 (e.g., as illustrated in
Referring now to
The dual spray chamber apparatus 100 may be configured so that the volume defined by the first chamber interior 108 is greater than the volume defined by the second chamber interior 116. When the second portion of the aerosol is drained from the first cyclonic spray chamber 102 (e.g., via the drain port 110), the first conditioned portion of the aerosol may occupy less volume when passed to the second spray chamber 104 for further conditioning. By providing a second chamber interior 116 having a smaller volume than that of the chamber interior 108, the dual spray chamber apparatus 100 may have a reduced dead (unused) volume when compared to a configuration having equal volumes for the chamber interior 108 and the second chamber interior 116. A reduced dead volume may require less time for a sample signal to stabilize during analysis with analytic instrumentation.
As shown in
The linking chamber 114 of the dual spray chamber apparatus 100 may be disposed between the first cyclonic spray chamber 102 and the second spray chamber 104. The output port 112 may be disposed at least partially within the linking chamber 114. For instance, the output port 112 may be positioned approximately concentrically within the linking chamber 114 and may taper within the linking chamber 114, forming a drain portion 124 within the annular space between the output port 112 and the linking chamber 114. The linking chamber 114 may include a drain port 126 coupled with the drain portion 124 (e.g., as illustrated in
Referring now to
It should be noted that while the dual spray chamber apparatus has been described in the accompanying figures as including two spray chambers, more than two spray chambers may be provided in accordance with the present disclosure, such as three spray chambers, four spray chambers, and so forth. For example, in some implementations, a dual spray chamber apparatus may include a third spray chamber (which may be a cyclonic spray chamber or another type of spray chamber) for receiving the first further conditioned portion of the first conditioned portion of the aerosol, and expelling a still further conditioned portion of the first conditioned portion via another output port included with the third spray chamber. The third spray chamber may also be connected to a fourth spray chamber, and so forth. Further, the volume of the interior of each successive spray chamber may be reduced from the volume of the previous spray chamber (e.g., as previously described). Additionally, the volume of each successive spray chamber may be equal to or less than the volume of a preceding spray chamber.
Although the subject matter has been described in language specific to structural features and/or process operations, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
The present application is a continuation under 35 U.S.C. § 120 of U.S. patent application Ser. No. 14/942,681, filed Nov. 16, 2015, and titled “Dual Spray Chamber.” U.S. patent application Ser. No. 14/942,681 is a continuation under 35 U.S.C. § 120 of U.S. patent application Ser. No. 13/752,644, filed Jan. 29, 2013, and titled “DUAL SPRAY CHAMBER,” which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 61/593,405, filed Feb. 1, 2012, and titled “DUAL SPRAY CHAMBER.” U.S. patent application Ser. No. 13/752,644 is also a continuation-in-part under 35 U.S.C. § 120 of U.S. patent application Ser. No. 13/238,237, filed Sep. 21, 2011, and titled “DUAL-CYCLONIC SPRAY CHAMBER,” which claims the benefit of 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 61/385,012, filed Sep. 21, 2010, and titled “DUAL-CYCLONIC SPRAY CHAMBER APPARATUS.” U.S. Provisional Applications Ser. Nos. 61/385,012 and 61/593,405, and U.S. patent application Ser. Nos. 13/238,237; 13/752,644; and 14/942,681 are herein incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2281610 | Watson | May 1942 | A |
2372514 | Pootjes | Mar 1945 | A |
3084798 | Lau | Apr 1963 | A |
3197955 | Cohn et al. | Aug 1965 | A |
3769781 | Klein | Nov 1973 | A |
3793812 | Willis | Feb 1974 | A |
4325716 | Livemore | Apr 1982 | A |
4863500 | Rombout | Sep 1989 | A |
4995989 | Carroll et al. | Feb 1991 | A |
6193075 | Plas | Feb 2001 | B1 |
7390339 | Warrick et al. | Jun 2008 | B1 |
20030150324 | West | Aug 2003 | A1 |
20050028499 | Greif | Feb 2005 | A1 |
20060059874 | Cho | Mar 2006 | A1 |
20060230719 | Han | Oct 2006 | A1 |
20080264013 | Rowley | Oct 2008 | A1 |
20090196806 | Larnholm | Aug 2009 | A1 |
20100275561 | Lundquist | Nov 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20190293522 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
61593405 | Feb 2012 | US | |
61385012 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14942681 | Nov 2015 | US |
Child | 16293172 | US | |
Parent | 13752644 | Jan 2013 | US |
Child | 14942681 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13238237 | Sep 2011 | US |
Child | 13752644 | US |