This relates generally to the field of memory applications and voltage devices, including but not limited to dual threshold voltage devices.
The field of memory applications is becoming more challenging as the performance requirements for memory-based devices increase. Because of many useful properties of dual threshold voltage devices (e.g., adjustability, density, and drivability), memory systems comprising dual threshold voltage devices have superior performance over conventional memory systems.
There is a need for systems and/or devices with more efficient, accurate, and effective methods for fabricating and/or operating memory systems. Such systems, devices, and methods optionally complement or replace conventional systems, devices, and methods for fabricating and/or operating memory systems.
The present disclosure describes a dual threshold voltage device, also sometimes called a dual gate device. For example, a device is provided, the device comprising a core, a plurality of layers that surround the core in succession, including a first layer, a second layer, a third layer, and a fourth layer. The core, the first layer, and the second layer correspond to a first transistor. In some embodiments, the core is the gate of the first transistor, the first layer is the gate dielectric of the first transistor, and the second layer serves as a channel of the first transistor as well as a channel of the second transistor. The second layer, the third layer, and the fourth layer correspond to a second transistor. In some embodiments, the third layer is a gate dielectric for the second transistor and the fourth layer is a gate of the second transistor. It is important to note that the second layer is a common channel for the first and second transistors. The device further comprises a first input terminal coupled to the core, the first input terminal being configured to receive a first voltage and a second input terminal coupled to the fourth layer, the second input terminal being configured to receive a second voltage. The device further comprises a common source terminal coupled to the core and the fourth layer. In other words, the device further comprises a common source terminal for both transistors which is a lower portion of the common cylindrical channel. The upper portion of the cylindrical channel serves as a common drain for the first and second transistors. In some implementations, a memory device, such as an MTJ is coupled to the channel drain of the device (e.g., the dual Vt transistors). Thus, in some implementations, a device for easily programing an MTJ, the device having two threshold voltages, is provided. An exemplary device is provided in
In one aspect, some implementations include a method of fabricating an annular device (e.g., an annular dual threshold voltage device). The method comprises providing a cylindrical device having a conductive core corresponding to a first transistor and a plurality of annular layers surrounding the core, including a first dielectric layer, a second layer, a third dielectric layer, and a fourth conductive layer corresponding to a second transistor and creating a silicide source, wherein the silicide source is coupled to the conductive core corresponding to the first transistor and the fourth conductive layer corresponding to the second transistor. The method of creating the silicide source includes coating a first oxide substrate with an organic polymerizing layer (OPL) to create an OPL plane, wherein the OPL plane surrounds a horizontal cross section of the cylindrical device and depositing low-temperature silicon oxide (LTO) on the OPL to create an LTO layer, wherein the LTO layer surrounds a horizontal cross section of the cylindrical device. The method of creating the silicide source further includes coating the LTO layer with a bottom antireflective coating (BARC) layer and a photoresistive (PR) layer, applying a layer of silicide to create the silicide source and creating a mask with the PR layer, wherein the mask covers the second layer of the cylindrical device. The method further includes dry etching the BARC layer, the LTO layer and the OPL until the oxide substrate is exposed and then etching horizontally the LTO layer and oxide to expose a layer of silicon on a horizontal cross section of the cylindrical device to create an annular area. The method further includes Ion Implanting a source dopant and performing a first rapid thermal annealing (RTA) on the annular area to reduce its electrical resistance and then depositing a siliciding metal on the annular area to create the silicide source and performing a second RTA to reduce its electrical resistance.
In another aspect, some implementations include a method for fabricating an annular device, including an annular polycide layer. The method comprises forming a cylindrical device having a conductive core corresponding to a first transistor and a plurality of annular layers surrounding the core, including a first dielectric layer, a second layer, a third dielectric layer, and a fourth conductive layer corresponding to a second transistor. The method further comprises coating a spin-on glass (SOG) layer on a first plane and the cylindrical device to create a sloped ring around the bottom of the cylindrical device, wherein the cylindrical device is vertically disposed in the first plane and the SOG surrounds the cylindrical device. The method further comprises etching the SOG layer from around and inside the cylindrical device to a desired depth and depositing dielectric materials to form the third dielectric layer. The method further includes depositing doped chemically vaporized polysilicon on the first plane, a horizontal cross section of the cylindrical device, a top of the cylindrical device, and the sloped ring around the cylindrical device (e.g., using chemically vaporized deposition). The method further includes etching, using a reactive-ion etch (RIE), the polysilicon on the top of the cylindrical device and on the sloped ring and depositing a siliciding metal and performing rapid thermal anneal (RTA) to create the fourth conductive layer of reduced electrical resistivity.
In another aspect, some implementations include a method for fabricating an annular device, including creating a contact between a required node of the device to other metal connections. Some aspects of the method include providing a cylindrical device having a conductive core corresponding to a first transistor and a plurality of annular layers surrounding the core, including a first dielectric layer, a second layer, a third dielectric layer, and a fourth conductive layer corresponding to a second transistor, wherein the fourth conductive layer is an outermost layer of the cylindrical device. Some methods include converting the fourth conductive layer of the CVD polysilicon to a low resistivity silicide a gate of the second transistor. This may include depositing a first low-temperature oxide (LTO) layer to create a first LTO plane and spin coating a spin-on glass (SOG) layer in the first LTO plane, wherein the cylindrical device is vertically disposed in the first LTO plane. The method for making a contact to the conductive layer for the gate of the second transistor includes etching the SOG layer to a first thickness and spin coating an organic compound to a first height to create an organic planarizing layer (OPL), wherein the OPL surrounds a horizontal cross section of the cylindrical device. The method further includes depositing a second LTO layer onto the OPL, wherein the second LTO layer surrounds a horizontal cross section of the cylindrical device, and coating the second LTO layer with a bottom anti-reflective coating (BARC) layer. The method further includes coating the BARC layer with a photoresist layer, wherein the BARC layer and the photoresist layer surround a horizontal cross section of the cylindrical device and creating a mask with the photoresist layer. The method further includes dry etching the BARC layer and the second LTO layer using a fluorine-based chemistry through the BARC layer and the second LTO layer into the OPL, wherein the dry etching areas is defined by the mask layout of the photoresist pattern layer. The method further includes etching the OPL in oxygen plasma until the SOG layer is exposed to create a trench and depositing tantalum nitride in the trench to create a contact from the silicided polysilicon of the gate to the metal lines needed for the memory device or connection to the logic devices.
In another aspect, some implementations include a method for fabricating an annular device, including creating a contact between a core of a device and any other metal line for connection to a given core. The method comprises providing a cylindrical device having a conductive core corresponding to a first transistor and a plurality of annular layers surrounding the core, including a first dielectric layer, a second layer, a third dielectric layer, and a fourth conductive layer corresponding to a second transistor. The method further comprises coupling (or providing access to couple) the conductive core of the cylindrical device to other metal nodes. This includes depositing, by chemical vapor deposition (CVD), a first silicon nitride (SiN) layer to create a first SiN plane. The method further includes depositing a spin-on glass (SOG) layer and a low temperature oxide (LTO) layer and performing a metal gate contact mask. The method further includes etching, using an ion beam trench etch, to create a trench through the plurality of annular layers surrounding the core and depositing a second SiN layer in the trench and on sides of the trench. The method further includes removing the deposited first SiN layer from the core by a first chemical mechanical polishing (CMP) and depositing a metal gate contact and metal lines to create a contact from the conductive core to outer metal lines.
Thus, devices and systems are provided with methods for fabricating and operating dual threshold (e.g., dual gate) devices, thereby increasing the effectiveness, efficiency, and user satisfaction with such systems and devices.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
For a better understanding of the various described implementations, reference should be made to the Description of Implementations below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.
Like reference numerals refer to corresponding parts throughout the several views of the drawings.
Reference will now be made in detail to implementations, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the various described implementations. However, it will be apparent to one of ordinary skill in the art that the various described implementations may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the implementations.
A device, and a method of fabricating the device, having dual threshold voltages is provided. The device has a core, a plurality of layers that surround the core in succession, including a first layer, a second layer, a third layer, and a fourth layer. The core, the first layer, and the second layer correspond to a first transistor. The second layer, the third layer, and the fourth layer correspond to a second transistor. The second layer is a common channel for the first and second transistors. The device further comprises a first input terminal coupled to the core, the first input terminal being configured to receive a first voltage and a second input terminal coupled to the fourth layer, the second input terminal being configured to receive a second voltage. The device further comprises a common source terminal coupled to the core and the fourth layer (but not physically or electrically shorting). In some implementations, a memory device, such as an MTJ is coupled to the drain side of the channel of the device. Thus, in some implementations, a device and a method of fabrication of the device that can be used to easily and efficiently program an MTJ is provided.
In some implementations, dual threshold voltage, dual transistor CMOS devices are provided. In some implementations, cylindrical pillars are etched out of silicon for CMOS devices (e.g., <100> silicon). In some implementations, the channels are annular vertical cylinders etched into silicon. In some implementations, the source comprises bottom silicided areas of the annular cylinder of silicon and the drain is the top part of the channel. In some implementations, the innermost cylinder makes the first transistor (e.g., Gate 1) electrode with a first threshold voltage (e.g., Vt1). In some implementations, the outer wrap around the poly cylinder makes the second transistor (e.g., Gate 2) with a second threshold voltage (e.g., Vt2). In some implementations, the first threshold voltage and the second threshold voltage of the N and/or P type devices (e.g., transistors) can be individually tailored by proper choices of: the dopant of the cylindrical pillar, the thickness of the gates' dielectrics, the dielectric constant of their gates' materials, and the/or the work functions of the gate electrodes. In some implementations, the thicker the cylindrical pillar means the greater the drive currents will be. In some implementations, the combined drive current is an order of magnitude more than a surface device with a given photolithographic step (F, minimum feature size). In some implementations, the shallower the pillar, the faster will be the speed of the vertical channel transistors. In some implementations, having a dual threshold voltage device saves real estate (e.g., space) in the layout in analog CMOS circuits, digital, and/or memory.
Magnetoresistive random access memory (MRAM) is a non-volatile memory technology that stores data through magnetic storage elements. MRAM devices store information by changing the orientation of the magnetization of a storage layer. For example, based on whether the storage layer is in a parallel or anti-parallel alignment relative to a reference layer, either a “1” or a “0” can be stored in each MRAM cell.
The present disclosure describes various implementations of MRAM systems and devices. As discussed in greater detail below, MRAM stores data through magnetic storage elements. These elements typically include two ferromagnetic films or layers that can hold a magnetic field and are separated by a non-magnetic material. In general, one of the layers has its magnetization pinned (e.g., a “reference layer”), meaning that this layer requires a large magnetic field or spin-polarized current to change the orientation of its magnetization. The second layer is typically referred to as the storage, or free, layer and its magnetization direction can be changed by a smaller magnetic field or spin-polarized current relative to the reference layer.
Due to the spin-polarized electron tunneling effect, the electrical resistance of the cell changes due to the orientation of the magnetization of the two layers. A memory cell's resistance will be different for the parallel and anti-parallel states and thus the cell's resistance can be used to distinguish between a “1” and a “0”. One important feature of MRAM devices is that they are non-volatile memory devices, since they maintain the information even when the power is off. In particular, the layers can be sub-micron in lateral size and the magnetization direction can still be stable over time and with respect to thermal fluctuations.
In some implementations, the reference layer 102 and the storage layer 106 are composed of the same ferromagnetic material. In some implementations, the reference layer 102 and the storage layer 106 are composed of different ferromagnetic materials. In some implementations, the reference layer 102 is composed of a ferromagnetic material that has a higher coercivity and/or thermal stability than the storage layer 106. In some implementations, the reference layer 102 and the storage layer 106 are composed of different ferromagnetic materials with the same or similar thicknesses (e.g., within 10%, 5%, or 1% of one another). In some implementations, the thickness of the reference layer 102 is different from that of the storage layer 106 (e.g., the reference layer 102 is thicker than the storage layer 106). In some implementations, the thickness of the spacer layer 104 is on the order of a few atomic layers. In some implementations, the thickness of the spacer layer 104 is on the order of a few nanometers (nm). In some implementations, thicknesses of the reference layer 102, the spacer layer 104, and the storage layer 106 are uniform. In some implementations, thicknesses of the reference layer 102, the spacer layer 104, and the storage layer 106 are not uniform (e.g., a first portion of the spacer layer 104 is thinner relative to a second portion of the spacer layer 104).
In some implementations, the reference layer 102 and/or the storage layer 106 is composed of two or more ferromagnetic layers are separated from one another with spacer layers. In some implementations, each of these ferromagnetic layers is composed of identical, or varying, thickness(es) and/or material(s). In some implementations, the spacer layers are composed of identical, or varying, thickness(es) and/or material(s) with respect to one another.
Magnetic anisotropy refers to the directional dependence of a material's magnetic properties. The magnetic moment of magnetically anisotropic materials will tend to align with an “easy axis,” which is the energetically favorable direction of spontaneous magnetization. In some implementations and instances, the two opposite directions along an easy axis are equivalent, and the direction of magnetization can be along either of them (and in some cases, about them). For example, in accordance with some implementations,
In some implementations, the MTJ structure 100 is an in-plane MTJ. In this instance, the magnetic moments of the reference layer 102 and the storage layer 106, and correspondingly their magnetization direction, are oriented in the plane of the ferromagnetic films of the reference layer 102 and the storage layer 106.
In some implementations, the MTJ structure 100 is a perpendicular (or out-of-plane) MTJ. In this instance, the magnetic moments of the reference layer 102 and the storage layer 106, and correspondingly their magnetization direction, are oriented perpendicular and out-of-plane to the ferromagnetic films of the reference layer 102 and the storage layer 106.
In some implementations, the MTJ structure 100 has preferred directions of magnetization at arbitrary angles with respect to the magnetic films of the reference layer 102 and the storage layer 106.
In accordance with some implementations, an MRAM device provides at least two states such that they can be assigned to digital signals “0” and “1,” respectively. One storage principle of an MRAM is based on the energy barrier required to switch the magnetization of a single-domain magnet (e.g., switch the magnetization of the storage layer 106) from one direction to the other.
For an MRAM device with the MTJ structure 100, the resistance states of the MRAM devices are different when the magnetization directions of the reference layer 102 and the storage layer 106 are aligned in a parallel (low resistance state) configuration or in an anti-parallel (high resistance state) configuration, as will be discussed with respect to
For the pMTJ structure 200 illustrated in
Thus, by changing the magnetization direction of the storage layer 106 relative to that of the reference layer 102, the resistance states of the pMTJ structure 200 can be varied between low resistance to high resistance, enabling digital signals corresponding to bits of “0” and “1” to be stored and read. Conventionally, the parallel configuration (low resistance state) corresponds to a bit “0,” whereas the anti-parallel configuration (high resistance state) corresponds to a bit “1”.
Although
In general, electrons possess a spin, a quantized number of angular momentum intrinsic to the electron. An electrical current is generally unpolarized, e.g., it consists of 50% spin up and 50% spin down electrons. When a current is applied though a ferromagnetic layer, the electrons are polarized with spin orientation corresponding to the magnetization direction of the ferromagnetic layer, thus producing a spin-polarized current (or spin-polarized electrons).
As described earlier, the magnetization direction of the reference layer 102 is “fixed” in an MTJ (e.g., the applied currents are insufficient to change the magnetization state of the reference layer). Therefore, spin-polarized electrons may be used to switch the magnetization direction of the storage layer 106 in the MTJ (e.g., switch between parallel and anti-parallel configurations).
As will be explained in further detail, when spin-polarized electrons travel to the magnetic region of the storage layer 106 in the MTJ, the electrons will transfer a portion of their spin-angular momentum to the storage layer 106, to produce a torque on the magnetization of the storage layer 106. When sufficient torque is applied, the magnetization of the storage layer 106 switches, which, in effect, writes either a “1” or a “0” based on whether the storage layer 106 is in the parallel or anti-parallel configuration relative to the reference layer.
Thus, as shown in
The MTJ structure 200 in
Accordingly, STT allows switching of the magnetization direction of the storage layer 106. MRAM devices employing STT (e.g., STT-MRAM) offer advantages including lower power consumption, faster switching, and better scalability, over conventional MRAM devices that use magnetic field to switch the magnetization directions. STT-MRAM also offers advantages over flash memory in that it provides memory cells with longer life spans (e.g., can be read and written to more times compared to flash memory).
The MTJ structure 100 and/or the pMTJ structure 200 is also sometimes referred to as an MRAM cell. In some implementations, the STT-MRAM 400 contains multiple MRAM cells (e.g., hundreds or thousands of MRAM cells) arranged in an array coupled to respective bit lines and source lines. During a read/write operation, a voltage is applied between the bit line 408 and the source line 410 (e.g., corresponding to a “0” or “1” value), and the word line 412 enables current to flow between the bit line 408 to the source line 410. In a write operation, the current is sufficient to change a magnetization of the storage layer 106 and thus, depending on the direction of electron flow, bits of “0” and “1” are written into the MRAM cell (e.g., as illustrated in
The present disclosure describes various implementations of dual threshold (e.g., dual gate) voltage devices and systems. As discussed in greater detail below, dual threshold voltage devices are able to store multiple bits in a compact layout. Thus, memory arrays can be produced using the dual threshold voltage devices as memory cells. In addition, dual threshold voltage devices can be implemented as current and/or voltage selectors for other circuit components, such as magnetic memory devices. Some magnetic memory devices require inputs with multiple voltage levels in order to effectively read from and write to the devices. The dual threshold voltage devices are optionally used (e.g., in place of larger, more complex analog circuitry) to modulate a voltage or current source so as to provide the required voltage and/or current levels. Moreover, the input voltage requirements of some magnetic memory devices vary with the temperature of the magnetic memory devices. To achieve a desirable bit error rate (BER) across multiple temperatures, without excessive power consumption, a dual-threshold voltage is used in some implementations to regulate the input voltage/current for the magnetic memory device based on temperature.
In some implementations, the first input terminal 512 and the second input terminal 514 are outwardly disposed from the center of the device. In some implementations, there is an angle between the disposition of the first input terminal 512 and the second input terminal 514 (e.g., the first terminal and second terminal are spaced such that they do not share a vertical plane).
In some implementations, the core is vertical and cylindrical in shape. In some implementations, the plurality of layers annularly surrounds the vertical cylindrical core and the core surrounded by the plurality of layers creates a cylindrical pillar (e.g., device 500 is shaped as a cylindrical pillar). For example, the cylindrical pillar comprises core 502, first layer 504, second layer 506, third layer 508, and fourth layer 510. Further, the cylindrical pillar includes the first input terminal 512, the second input terminal 514 and the drain terminal 506. In some implementations, the core is composed of electrically lower resistive material such as tantalum nitride (TaN).
In some implementations, the common source terminal 518 is composed of silicided areas coupled to a lower portion of the channel (e.g., the channel is also coupled to the drain of the device). Commonly, the cylindrical source contact 520 is used and installed to provide electrical connection to the source 518. Cylindrical source contact 520 provides methods to connect source of the dual voltage device to the outside power supply line.
In some implementations, the core 502 is composed of a conductive material, the first layer 504 is a first dielectric layer that surrounds the core 502, the second layer 506 surrounds the first dielectric layer 504, the third layer 508 is a third dielectric layer that surrounds the second layer 506 and the fourth layer 510 is composed of a conductive material and surrounds the third dielectric layer 508. For example, the fourth layer may be the outermost layer. In some implementations, the fourth layer 510 is composed of a polycide.
In some implementations, the device 600 comprises a core 602 and a plurality of layers that surround the core in succession, including a first (e.g., innermost) layer 604, a second layer 606, a third layer 608 and a fourth (e.g., outermost) layer 610. In some implementations, the core 602, the first layer 604 and the second layer 606 correspond to a first transistor. In some implementations, the handle 616 (also sometimes called contact 616) connected to the 606 drain is not provided and/or is not used (e.g., is not coupled to another device or component). For example, the handle 616 is not used in some MRAM memory applications. In some implementations, the second layer 606, the third layer 608 and the fourth layer 610 correspond to a second transistor. In some implementations, the second layer 606 is a common channel (e.g., coupled to drain terminal 616) for the first transistor and the second transistor. In some implementations, the device further includes a terminal 612, also sometimes called a contact 612, (e.g., Gate 1 in example (ii)) that is coupled to the core 602 and the terminal 612 is configured to receive a first voltage (e.g., is configured to have a first threshold voltage). In some implementations, the device further includes a terminal 614 (e.g., Gate 2 in example (ii)) that is coupled to the fourth layer 610 and the terminal 614 is configured to receive a second voltage. The first input terminal 612 and the second input terminal 614 are stacked on top of each other (e.g., vertically aligned). In accordance with some implementations, stacking the terminals 612 and 614 enable production of an array of devices with a smaller pitch, as shown in
In some implementations, an annular device (e.g., device 600) is provided. The annular device comprises a first transistor including a first input terminal (e.g., gate 1 handle) and a second transistor including a second input terminal (e.g., gate 2 handle). In some implementations, the first input terminal and the second input terminal extend radially outward from the annular device 600 and the first input terminal is aligned with the second input terminal.
In some implementations, a magnetic tunnel junction (MTJ) coupled to the channel drain (e.g., at the top/above the cylindrical core), as described in greater detail with reference to
In some implementations, the core is vertical and cylindrical in shape, the plurality of layers annularly surrounds the vertical cylindrical core, and the core surrounded by the plurality of layers creates a cylindrical pillar. In some implementations, the first transistor is configured to have a first threshold voltage having a first magnitude and the second transistor is configured to have a second threshold voltage having a second magnitude. In some implementations, the second magnitude is distinct from the first magnitude.
In some implementations, the first threshold voltage and the second threshold voltage are based on a respective thickness for each of the dielectric layer thicknesses and the dopants of the channel and work function of the core and the plurality of layers.
In some implementations, the first threshold voltage and the second threshold voltage are selected by changing one or more properties of the device selected from the group consisting of: a dopant of the device, a thickness of one or more of the plurality of layers, and material compositions of the first transistor and the second transistor. In some implementations, the common source terminal is composed of silicided areas coupled to a bottom plane of the core and the fourth layer.
In some implementations, the core is composed of a conductive material, the first layer is a first dielectric layer that surrounds the core, the second layer surrounds the first dielectric layer, the third layer is a third dielectric layer that surrounds the second layer, and the fourth layer is composed of a conductive material and surrounds the third dielectric layer.
In some implementations, the fourth layer is composed of a polycide. In some implementations, the core is composed of a nitride (e.g., TaN). In some implementations, the device further comprises a cylindrical source contact (e.g., source contact 520) coupled to the common source. In some implementations, the second layer has a height that is distinct from (e.g., greater than) a height of the core. In some implementations, the second layer has a height that is distinct from (e.g., greater than) a respective height of the third layer and the fourth layer.
In some implementations, the first voltage and the second voltage are based on a dopants and their levels of the cylindrical pillar channel. It is to be noted that to have a larger drive current dual Vt device, a thicker cylindrical pillar may give a greater drive current. In some implementations, the first threshold voltage value and the second threshold voltage value are selected (e.g., configured) by changing one or more properties of the device 500. The one or more properties may be selected from the group consisting of a dopant of the device, a thickness of one or more of the plurality of layers, and material compositions of the first transistor and the second transistor.
In some implementations, creating the silicide source 518 comprises depositing multiple layers in succession on an oxide substrate, the multiple layers including at least an oxide layer and a planarization layer. The method further comprises removing, at least partially, the oxide layer and the planarization layer until the oxide substrate is exposed and removing, at least partially, the oxide layer to expose a horizontal cross section of the cylindrical device to create an annular area. The method further comprises, after the removing, depositing a siliciding metal on the annular area to form the silicide source.
In some implementations, the method further comprises depositing the siliciding metal and performing a first rapid thermal annealing (RTA) and then removing the unreacted siliciding metal. In some implementations, the annular area is at a bottom of the cylindrical device.
In some implementations, providing the cylindrical device having the two transistors comprises: (i) providing a conductive core corresponding to a first transistor of the two transistors, and (ii) forming a plurality of cylindrical layers around the conductive core, including a first dielectric layer, a second channel layer, a third dielectric layer, and a fourth conductive layer (e.g., a poly layer) corresponding to a second transistor of the two transistors. In some implementations, the second layer of the cylindrical device corresponds to a channel. In some implementations, the method further comprises removing the siliciding metal from the second layer of the cylindrical device, where removing the siliciding metal leaves a residual reacted metal forming the silicide source.
In some implementations, the method further comprises applying a mask prior to removing one or more layers (e.g., before an etching operation) so as to selectively remove portions of the one or more layers. For example, a mask could protect the cylindrical core and one or more layers of the plurality of cylindrical layers during the removing.
In some implementations, forming the plurality of cylindrical layers around the cylindrical core comprises depositing a spin-on glass (SOG) layer on a first plane of the cylindrical device to create a sloped ring around the bottom of the cylindrical device, wherein the cylindrical device is vertically disposed in the first plane and the SOG layer surrounds the cylindrical device. The method further comprises etching the SOG layer from around and inside the cylindrical device to a desired depth and depositing one or more dielectric materials to form the third dielectric layer. The method further comprises depositing a doped material on the first plane, a horizontal cross section of the cylindrical device, a top of the cylindrical device, and the sloped ring. The method further comprises etching the doped material on the top of the cylindrical device and on the sloped ring and depositing a siliciding metal to create the fourth conductive layer.
In some implementations, the method further comprises performing a third RTA to finish creation of the fourth conductive layer. In some implementations, the method further comprises wet etching the unreacting siliciding metal after the third RTA.
In some implementations, the oxide layer is a first oxide layer and the method further comprises creating a contact to the second transistor of the two transistors, including depositing a second oxide layer to create an oxide plane, depositing a spin-on glass (SOG) layer on the oxide plane, wherein the cylindrical device is vertically disposed in the oxide plane, depositing an organic compound to a first height to create an organic planarization layer (OPL), wherein the OPL surrounds a horizontal cross section of the cylindrical device, depositing a third oxide layer onto the OPL, wherein the third oxide layer surrounds a horizontal cross section of the cylindrical device, depositing anti-reflective coating on the third oxide layer, masking these layers and then removing the deposited layers from areas governed by the mask layout using a first removal technique. Next, the OPL is removed using a second removal technique until the SOG layer is exposed, thereby forming a trench and depositing a metallic compound in the trench to create the contact to the second transistor gate.
In some implementations, the method further comprises etching the SOG layer to a first thickness before depositing the organic compound. In some implementations, the positioning of the upper and the lower edge of Gate 2 contacts to second transistor are adjusted by varying the thickness of the layers (e.g., varying the thickness of layers 1904, 1906, and 1908 in
In some implementations, the method further comprises depositing a photoresist layer on the anti-reflective coating, wherein the anti-reflective coating and the photoresist layer surround a horizontal cross section of the cylindrical device.
In some implementations, the method further comprises creating a mask with the photoresist layer before removing the anti-reflective coating and the second oxide layer using the fluorine-based chemistry, wherein said removing is defined by the mask of the photoresist layer. In some implementations, the second removal technique uses oxygen plasma to remove the OPL. In some implementations, the compound is tantalum nitride.
In some implementations, the method further comprises creating a contact to the first transistor of the two transistors (e.g., innermost metallic gate), including depositing, on top of the plurality of cylindrical layers, a metal gate contact material, etching through the plurality of cylindrical layers and the metal gate contact material to a first height extending across the conductive core through the fourth layer (i.e., forming a trench), depositing a first mask, depositing a layer of silicon nitride (SiN) (e.g., in the formed trench), depositing a second mask and etching the layer of SiN in accordance with the second mask to create a flat surface, and depositing a metal gate contact on the flat surface to create a contact to the first transistor. Using the SiN ensures that the metal gate contact (e.g., Gate 1 contact metal) does not short any conductive annular layers of either of the transistors.
In some implementations, the metal gate contact material is tantalum nitride. In some implementations, the first height is based on the height of a second highest layer of the plurality of layers. In some implementations, the method further comprises, after depositing the first mask, wet dipping the plurality of layers in potassium hydroxide in accordance with the mask. In some implementations, the wet dipping decreases the height of the third layer and the fourth layer. In some implementations, the layer of silicon nitride is thick SiN. In some implementations, the method further comprises performing a chemical mechanical polishing (CMP) on the layer of SiN.
In some implementations, the process starts with Silicon (Si) (e.g., Silicon having a (110) lattice structure), and the process comprises depositing or growing and converting a small part of Silicon itself to its Silicon dioxide compound, a thin oxide layer onto the Si to create a planar layer 902, as shown in
In some implementations, the process of formation of the source silicidation includes coating (e.g., depositing) a first oxide (e.g., a thin film) on silicon, then coating it with an organic polymerizing layer (OPL) to create an OPL plane 1102, wherein the OPL plane 1102 surrounds a horizontal cross section of the cylindrical device 906. In some implementations, the polymerizing layer (e.g., OPL) is thinned down to a required thickness for the silicide formation. The process further includes depositing low-temperature silicon oxide (LTO) on the OPL to create an LTO layer 1104, wherein the LTO layer 1104 surrounds a horizontal cross section of the cylindrical device 906. The process further includes coating the LTO layer 1104 with a bottom antireflective coating (BARC) layer and a photoresistive (PR) layer 1106, as shown in
In some implementations, the process further includes creating a mask 1204 with the PR layer, wherein the mask 1204 covers the second layer (e.g., channel) of the cylindrical device 906. The process further includes dry etching (e.g., using a high pressure controlled dry etch) the BARC layer, the LTO layer and the OPL until the oxide substrate 1206 is exposed. For example, the center of the cylindrical channel is covered with masking PR such that the center of the channel barrel is not exposed (e.g., is not effected) for this dry etching or the following etching and siliciding. In some implementations, the dry etching is fluorine-based (e.g, NF3 and/or SF6). The process further includes, as shown in
In some implementations, the horizontal etching is wet etching and/or dry etching (e.g., performed sequentially). In some implementations, the second layer of the cylindrical device corresponds to a channel and the channel is not exposed to the etching of the BARC layer, the LTO layer and the OPL.
The process further includes depositing a siliciding metal (e.g., Ti 50 nm) on the annular area 1302 to create the silicide source and performing a second Rapid Thermal Annealing. In some implementations, the annular area 1302 is at the bottom of the cylindrical device.
In some implementations, the method further comprises removing the siliciding metal from the second layer 506 (e.g., the channel drain) of the cylindrical device (e.g., using hydrogen peroxide or another compatible chemical), wherein the removal leaves a residual reacted metal along strip 1504, forming (e.g., leaving) the silicide source. In some implementations, removing the unreacted siliciding metal (e.g., unreacted Ti) includes wet etching the metal.
The method comprises coating (e.g., depositing) a spin-on glass (SOG) layer 1604 on a first plane (e.g., on which the device rests) and coating the device to create a sloped ring 1606 (e.g., or other sloped shape surrounding the shape of the device 500, such as a square) around the bottom of the cylindrical device, wherein the device (e.g., cylindrical device) is vertically disposed in the first plane and the SOG surrounds the cylindrical device. The method further comprises etching (e.g., removing) the SOG layer from around and inside the cylindrical device to a desired depth and depositing dielectric materials to form the third dielectric layer 1608 (e.g., the third layer is a dielectric layer) (e.g., such that oxide grows on all surfaces of the cylindrical device) to create the device shown in
In some implementations, the method further includes etching (e.g., wet etching) the unreacted siliciding metal after performing the RTA. In some implementations, the device is a cylindrical device and the plurality of layers are annular layers.
The method further includes creating a gate handle, including depositing a first oxide layer to create a first oxide plane 1902. In some implementations, the first oxide layer is created by depositing a first low-temperature oxide (LTO) layer. The method further includes depositing a spin-on glass (SOG) layer 1904 on the first oxide plane 1902, wherein the device 500 is vertically disposed in the first oxide plane 1902. In some implementations, the method further includes etching (e.g., reactive-ion etching) the SOG layer 1904 to a first thickness.
The method further includes spin coating (e.g., depositing) an organic compound to a first height to create an organic planarizing layer (OPL) 1906, wherein the OPL 1906 surrounds a horizontal cross section of the cylindrical device 500. The method further includes depositing a second oxide (e.g., LTO) layer 1908 onto the OPL 1906 and depositing anti-reflective coating on the second oxide layer. In some implementations the second oxide (e.g., LTO) layer 1908 surrounds a horizontal cross section (e.g., above the horizontal cross section surrounded by the OPL 1906) of the cylindrical device 500. In some implementations, the method includes depositing (e.g., coating) the second LTO layer 1908 with a bottom anti-reflective coating (BARC) layer 1910 and coating the BARC layer 1910 with a photoresist layer 1912, wherein the BARC layer 1910 and the photoresist layer 1912 surround a horizontal cross section of the cylindrical device (e.g., above the horizontal cross sections of the device surrounded by the OPL layers and LTO layer).
The method includes removing, using a first removal technique the anti-reflective coating and the second oxide layer. For example, the method may further include creating a mask with the photoresist layer and dry etching the BARC layer and the second LTO layer using a fluorine-based chemistry (e.g., the first removal technique) through the BARC layer and the second LTO layer into the OPL (e.g., the top portion of the OPL without etching through the OPL completely), wherein the dry etching is defined by the mask of the photoresistive layer. The method further includes removing, using a second removal technique (e.g., which may be the same or different than the first removal technique), the OPL (e.g., etching in oxygen plasma) until the SOG layer 1904 is exposed to create a trench 1914. The method further includes depositing tantalum nitride (e.g., or other conductive material) in the trench 1914 to create a gate (e.g., second input terminal 514) that extends outwardly from the fourth conductive layer.
In some implementations, the photoresistive layer and the BARC layers are completely etched off. In some implementations, the silicide source is coupled to the channel (e.g., which is also coupled to the drain/second layer) and is not coupled to the remaining plurality of annular layers (e.g., the silicide source is only coupled to the channel drain without being coupled to the remaining plurality of layers). For example, the silicide source is selectively coupled to prevent a shorting (e.g., of the circuit) of the device.
In some implementations, a method of forming a contact (e.g., first input terminal and/or second input terminal and/or drain terminal) comprises, at a device (e.g., an annular device) composed of a core and a plurality of layers that surround the core in succession, the plurality of layers including a first layer and a second layer, wherein the core and the second layer are separated by the first layer, depositing a coating on a surface of the annular device, the surface including the core and the plurality of layers. The method further comprises determining relative heights of the core, the first layer, and the second layer. In accordance with a determination that the second layer has the largest relative height, the method comprises performing a first removal of the coating to expose the second layer, depositing a first metal on the second layer, performing a second removal of the coating to expose the core, and depositing a second metal on the core. In accordance with a determination that the core has the largest relative height, the method comprises etching a portion of the coating to expose the core and forming a first terminal by depositing a conductive material, wherein the conductive material contacts the exposed core and the first input terminal extends radially outward from the annular device.
In some implementations, the method further comprises, after forming the first input terminal, planarizing a top surface of the first input terminal to create a flat surface. In some implementations, the first removal is a planarization (e.g., polishing) process. In some implementations, the first removal is a chemical mechanical planarization process. In some implementations, the coating is a nitride-based coating. In some implementations, the plurality of layers further includes a third layer and a fourth layer. In some implementations, the core, the first layer, and the second layer correspond to a first transistor, the second layer, the third layer, and the fourth layer correspond to a second transistor, and the second layer is a channel drain common to the first transistor and the second transistor. In some implementations, the first metal is the second metal.
In some implementations, the method of creating a contact with the core, as shown in
In some implementations, handle 2110 has various thicknesses as it crosses the cross-sections of the plurality of layers. For example, the handle 2110 shown in
Although some of various drawings illustrate a number of logical stages in a particular order, stages that are not order dependent may be reordered and other stages may be combined or broken out. While some reordering or other groupings are specifically mentioned, others will be obvious to those of ordinary skill in the art, so the ordering and groupings presented herein are not an exhaustive list of alternatives. Moreover, it should be recognized that the stages could be implemented in hardware, firmware, software or any combination thereof.
It will also be understood that, although the terms first, second, etc. are, in some instances, used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first device could be termed a second device, and, similarly, a second device could be termed a first device, without departing from the scope of the various described implementations. The first device and the second device are both electronic devices, but they are not the same device unless it is explicitly stated otherwise.
The terminology used in the description of the various described implementations herein is for the purpose of describing particular implementations only and is not intended to be limiting. As used in the description of the various described implementations and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting” or “in accordance with a determination that,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event]” or “in accordance with a determination that [a stated condition or event] is detected,” depending on the context.
The foregoing description, for purpose of explanation, has been described with reference to specific implementations. However, the illustrative discussions above are not intended to be exhaustive or to limit the scope of the claims to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The implementations were chosen in order to best explain the principles underlying the claims and their practical applications, to thereby enable others skilled in the art to best use the implementations with various modifications as are suited to the particular uses contemplated.
This application is related to U.S. Utility patent application Ser. No. 15/865,125, entitled “Adjustable Current Selectors,” filed Jan. 8, 2018, U.S. Utility patent application Ser. No. 15/865,140, entitled “Methods of Fabricating Dual Threshold Voltage Devices,” filed Jan. 8, 2018, U.S. Utility patent application Ser. No. 15/865,132, entitled “Methods of Fabricating Dual Threshold Voltage Devices with Stacked Gates,” filed Jan. 8, 2018, U.S. Utility patent application Ser. No. 15/865,123, entitled “Methods of Fabricating Contacts for Cylindrical Devices,” filed Jan. 8, 2018, U.S. Utility patent application Ser. No. 15/865,144, entitled “Dual Gate Memory Devices,” filed Jan. 8, 2018, each of which is incorporated by reference herein in its entirety.