1. Field of the Invention
The invention relates to an energy monitoring device, and particularly for monitoring the energy of an excimer or molecular fluorine laser emitting below 200 nm.
2. Discussion of the Related Art
In the past, i.e., prior to the investigations leading up to the present application, very little was known about the behavior of UV-photodetectors under long-term laser pulse radiation exposure below 200 nm. Only a limited number of CW synchrotron exposure experiments had been done at Physikalisch-Technische Bundesanstalt, Berlin (PTB) and the National Institute of Standards and Technology (NIST).
Until now, no reliable energy monitor for detecting the pulse energy of e.g. a molecular fluorine (F2) laser emitting around 157 nm has been available.
For detecting 193 nm and 248 nm excimer laser radiation, UV-photodetectors such as the International Radiation Detectors, Inc. (IRD) UVG 100 or the Hamamatsu S 5226, or S1226 have been used typically as energy monitor detectors. However, these detectors strongly degrade under 157 nm laser exposure.
It is therefore desired to have a reliable photodetector for monitoring pulse energies and/or another parameter of an excimer or molecular fluorine laser beam.
An embodiment herein provides a beam parameter monitoring unit for coupling with an excimer or molecular fluorine (F2) laser resonator that produces an output beam having a wavelength of below 200 nm is provided.
a shows a fluorescence spectrum of BaF2.
b shows a temperature dependence of slow and fast components of fluorescence components of BaF2.
a shows an acousto-optical detection technique.
b shows an electric signal from the piezoelectric microphone.
What follows is a cite list of references each of which is, in addition to those references cited above and below herein, including that which is described as background, and the above invention summary, are hereby incorporated by reference into the detailed description of the preferred embodiment below, as disclosing alternative embodiments of elements or features of the preferred embodiments not otherwise set forth in detail below. A single one or a combination of two or more of these references may be consulted to obtain a variation of the preferred embodiments described in the detailed description below. Further patent, patent application and non-patent references are cited in the written description and are also incorporated by reference into the detailed description of the preferred embodiment with the same effect as just described with respect to the following references:
K. Solt, et al., PtSi-n-Si Schottky-barrier photodetctors with stable spectral responsitivity in the 120–250 nm spectral range, Appl. Phys. Lett 69, 3662 (1996);
P. S. Shaw, et al. Ultraviolet radiometry with synchrotron radiation and cryogenic radiometry, Appl. Optics 38, 18 (1999);
P. S. Shaw, et al., New ultraviolet radiometry beamline at the Synchrotron Ultraviolet Facility at NIST, Metrologia 35, 301 (1998);
P. Kuschnerus, et al., Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range, Metrologla 35, 355 (1998);
IRD datasheet, SXUV Series Photodiodes, September 1999 (www.ird-inc.com);
R. Korde, et al., One Gigarad passivating Nitride Oxide for 100% Internal Quantum Efficiency Silicon Photodiodes, IEEE Transactions on Nuclear Science 40, 1655 (1993);
L. R. Canfield, et al., Absolute Silicon photodiodes for 160 nm to 254 nm Photons Metrologia 35, 329 (1998);
R. Korde, et al., Stable silicon photodiodes with platinium Silicide front window for the ultraviolet, presented at the VUV-XII conference; and
United States patent applications and patent Nos. 09/512,417, 09/594,892, 10/116,903, 09/718,809, 60/170,919, 09/738,849, 09/588,561, 6,463,084, 6,487,229, 6,490,305, 6,219,368, 6,399,916, 6,477,192, 6,154,470 and 6,556,613, each application of which is assigned to the same assignee as the present application.
The invention provides a detector for monitoring an output beam parameter of an excimer or molecular fluorine gas discharge laser operating below 200 nm. It is recognized that energy monitors are known for use with ArF and KrF excimer lasers emitting around 193 nm and 248 nm, respectively. However, these energy monitors are generally not useable for detecting 157 nm laser radiation. First, these previously used UV-detectors strongly degrade when used to detect a molecular fluorine laser beam, owing to the high photon energies associated with their 157 nm (7.9 eV) emission radiation. Second, any 157 nm energy monitor will use a special design, because of a very high sensitivity to residual absorption by gaseous species such as oxygen, water vapor and hydrocarbons at this wavelength, and due to contamination and degradation of optical components. This special design requires sophisticated purge and beam delivery conditions to prevent degradation of the energy monitor during long term usage for detecting 157 nm radiation.
In one conventional silicon detector, one of the intrinsic degradation mechanisms is related to radiation-induced defects in the interface layer between silicone dioxide film at the surface and crystalline silicon forming p-n junction. Such defects serve as “traps” for photo-electrons thus reducing sensitivity of the detector. The silicon dioxide layer can be replaced by some proprietary materials that are more stable under UV irradiation. This, for example, is the concept utilized in some detectors manufactured by International Radiation Detectors, Inc. (Torrance, Calif.).
Another possible improvement is the use of back-thinned detectors (example: Hamamatsu Corp. (Bridgewater, N.J.)), where the radiation reaches photo-sensitive area through the thin layer of silicon underlying the p-n junction. Other detectors utilize effect of fluorescence of certain materials under UV irradiation (examples: Laser Laboratorium Göttingen (Göttingen, Germany), Star Tech Instruments (Danbury, Conn.). Here, the fluorescence lies in the visible or near-IR part of the spectrum and can be detected by a conventional detector without danger of long-term degradation due to the short wavelength. In any of these devices, some small portion of the output laser beam has to be split off (“sampled”) and directed onto the detector. Very frequently available beam sampling techniques produce excessive amounts of the sampled energy, thus requiring further attenuation of the sampled beam, commonly by using diffusers and/or metallic meshes. Common beam sampling techniques include reflective beam splitters which utilize Fresnel reflection of the un-coated optical windows. Less commonly, diffractive beam samplers are used, which are essentially transmissive diffraction gratings with reduced diffraction efficiency. Besides the degradation of the detectors, the inherent problem with these existing techniques, that is specific to the DUV and VUV spectral ranges, is their sensitivity to contamination by organic substances, moisture and oxygen. These chemicals are commonly present in the atmosphere and on the optical surfaces. Even when the beam path is enclosed in an inert-gas purged housing, there is a certain amount of impurities present. Laser radiation tends to 1) Remove some of the contaminants (which is known as “Laser cleaning”), or, sometimes, 2) Cause photochemical reactions leading to production of light-absorbing gases (ozone, nitrogen oxides), or polymer films on the exposed surfaces. These effects tend to modify, the reflectivity of beam samplers, and also change transmittance of the beam attenuating components as well. As a result, even assuming perfectly stable detector, the calibration coefficient of the power monitor varies as a function of such factors as gas purging rate and purity, temperature, exposure time and others. The present invention overcomes this limitation by
Three main preferred embodiments are shown in
This setup is relatively in-sensitive to the contamination and “cleaning” effects described above. Indeed, lets consider a conventional beam splitter made as a transparent window placed in the beam. Some portion R of the beam power, typically in the range of R=0.1% to 5.0%, will be reflected at each surface of such beam splitter. Modification of the surface condition due to contamination (or cleaning) will result in the change of Fresnel reflectivity by some small amount ΔR. Additionally, there are possible changes in scattering and absorption (or, collectively, losses L) at the surface, due to the impurities and surface roughness. The relative variation of the sampled beam power at the detector, therefore, will be (ΔR−ΔL)/R. At the same time, the power variation in the detector of the present invention will be (ΔR−ΔL)/(1−R). Since R, ΔR and ΔL are small values, relative change of the signal in the present invention is negligible, while in the conventional technique it may be substantial. This is the main principle of present invention.
Examples of materials suitable for the window 9 include, among others, CaF2, BaF2, MgF2, sapphire, LiSrAIF6 (commonly known as LiSAF), LiCaAIF6 (commonly known as LiCAF), high purity crystalline quartz, OH-free fused silica. It is important to select proper spectral range of the fluorescence emission. Spectral filters 10 serve to select an appropriate wavelength of fluorescence emission. It is known that certain components of the fluorescence emission spectrum are sensitive to the temperature. This makes them unsuitable for stable operation because temperature in the irradiated area of the window 9 may change due to
Another factor is that some spectral components of fluorescence emission have slow temporal response. This creates problems for detection of high repetition rate pulses, such as 2 kHz to 6 kHz.
Example of the fluorescence spectrum and temperature dependence of “slow” and “fast” components of fluorescence of BaF2 is shown in
Another example is the fluorescence emission of sapphire. There is an emission from chromium atom impurity in sapphire. Its double-line feature centered at approximately 694 nm has a total spectral width of several nanometers. This spectral line has radiative lifetime of approximately 3 ms, which limits repetition rate to roughly 300 Hz. Another emission band centered at 800 nm stretches from approximately 600 nm to 1100 nm and is caused by Ti atom impurity in sapphire. Its fluorescence lifetime is 3.2 microseconds, which is suited for high repetition rate detection.
An additional advantage of using spectral filters is that it eliminates stray emission generated in plasma discharge in the laser chamber, and also “red line” emission in molecular fluorine laser (located between 740 nm and 800 nm).
Further possible fluorescent materials are LiSAF and LiCAF with small amount of Cr impurity. This impurity produces emission in the range 700 to 1100 nm.
All of the mentioned above materials either naturally contain small amounts of fluorescent impurities, or such impurities can be introduced in controllable amounts during manufacturing. It is also important to ensure highest possible transparency of these materials at the laser wavelength, which usually means minimizing such impurities as OH radicals. This is a common knowledge in the industry that produces DUV or VUV-grade optical materials.
The example of appropriately selected spectral detection window is using a long-pass spectral filter 10 (part number LPF-800 from CVI Laser Corp. (Albuquerque, N. Mex.) with the DUV-grade sapphire window 9 manufactured by Crystal Systems Inc. (Salem, Mass.). Here, the emission from Ti-impurity is detected, “red-line” emission from molecular fluorine laser is blocked, and overall stability of +1% over the 50 million pulses-run is typical.
The 0.5 mm-thick sapphire window has transmission for linearly polarized beam of approximately 95% when placed in the beam at the Brewster angle.
The window 9 is placed in the output laser beam at the Brewster angle, so that to minimize reflective losses at the surfaces. This further reduces influence of the changes in reflectivity on the overall sensitivity of the monitor.
An additional possible embodiment shown in
Another embodiment shown in
Yet another possible way of measuring the amount of laser power absorbed by the window 9 is using the Acousto-Optical (AO) detection technique. The AO detection method is based on the fact that absorption of the short laser pulse leads to local heating, subsequent thermal expansion and formation of the acoustic wave in the window 9. The acoustic detector 12 in
The gas mixture in the laser chamber 102 typically includes about 0.1% F2 and 99.9% buffer gas. The buffer gas preferably comprises neon and may be a mixture of neon and helium (see U.S. Pat. No. 6,157,162, which is hereby incorporated by reference. A trace amount of a gas additive such as xenon, argon or krypton may be included (see U.S. patent application Ser. No. 09/513,025 and No. 60/160,126, which are each assigned to the same assignee as the present application and are hereby incorporated by reference).
The gas mixture is preferably monitored and controlled using an expert system (see U.S. Pat. No. 6,212,214, which is assigned to the same assignee, and U.S. Pat. No. 5,440,578, each of which is hereby incorporated by reference). One or more beam parameters indicative of the fluorine concentration in the gas mixture, which is subject to depletion, may be monitored, and the gas supply replenished accordingly (see U.S. patent applications and Pat. Nos. 6,490,307, 6,243,406, 6,212,214, 6,389,052 and Ser. No. 09/484,818, which are assigned to the same assignee and are hereby incorporated by reference). The diagnostic module 118 preferably includes monitoring equipment or a detector as set forth above, and which may also be positioned to receive a beam portion split off from within the laser resonator, as mentioned above (see also U.S. patent application No. 60/166,967, which is assigned to the same assignee as the present application and is hereby incorporated by reference). The processor 106 preferably receives information from the diagnostic module 118 concerning the halogen concentration in the gas mixture and initiates gas replenishment actions such as micro-halogen injections, mini and partial gas replacements, and pressure adjustments by communicating with the gas handling module 106.
Although not shown, the gas handling module 106 has a series of valves connected to gas containers external to the laser system. The gas handling module 106 may also include an internal gas supply such as a halogen and/or xenon supply or generator (see the '025 application). A gas compartment or (not shown) may be included in the gas handling module 106 for precise control of the micro halogen injections (see the '882 and '717 applications, mentioned above, and U.S. Pat. No. 5,396,514, which is assigned to the same assignee as the present application and is hereby incorporated by reference).
The wavelength and bandwidth of the output beam 120 are also preferably monitored and controlled. A preferred wavelength calibration apparatus and procedure are described at the '344 application, mentioned above, and at U.S. Pat. Nos. 6,160,832 and 4,905,243, which are hereby incorporated by reference. The monitoring equipment may be included in the diagnostic module 118 or the system may be configured to outcouple a beam portion elsewhere such as from the rear optics module, since only a small intensity beam portion is typically used for wavelength calibration (see the '832 patent). The diagnostic module 118 may be integrated with the front optics module 112, and the line-narrowing components of the resonator may be integrated in the front optics module 112, as well, such that only a HR mirror and an optional aperture are included in the rear optics module 110 (see U.S. patent application No. 60/166,967, which is assigned to the same assignee as the present application and is hereby incorporated by reference).
Preferred main electrodes 103 are described at U.S. patent application and U.S. Pat. Nos. 6,430,205, 6,466,599 and 60/184,705, which are each assigned to the same assignee as the present application and are hereby incorporated by reference. Other electrode configurations are set forth at U.S. Pat. Nos. 5,729,565 and 4,860,300, each of which is assigned to the same assignee and is hereby incorporated by reference. Preferred preionization units are set forth at U.S. patent application Ser. Nos. 09/692,265 and 09/247,887, each of which is assigned to the same assignee as the present application and is hereby incorporated by reference. The preferred solid state pulser module 104 and the high voltage power supply 108 are set forth at U.S. Pat. Nos. 6,020,723 and 6,005,880, 6,198,761 and U.S. patent application Nos. 60/149,392 and 60/204,905, each of which is assigned to the same assignee as the present application and is hereby incorporated by reference into the present application.
The resonator includes optics for line-selection and also preferably for narrowing the selected line (see U.S. Pat. No. 6,556,613, 6,154,470, 6,381,256, No. 60/170,342, 60/166,967, 60/170,919, U.S. Pat. No. 5,761,236, No. 60/212,257, 60/212,301, 60/215,933, U.S. Pat. Nos. 6,285,701, 6,393,037, 6,298,080, 6,477,192, 6,476,987, 6,061,382 and U.S. Pat. Nos. 5,761,236 and 5,946,337, each of which is assigned to the same assignee as the present application, and U.S. Pat. Nos. 5,095,492, 5,684,822, 5,835,520, 5,852,627, 5,856,991, 5,898,725, 5,901,163, 5,917,849, 5,970,082, 5,404,366, 4,975,919, 5,142,543, 5,596,596, 5,802,094, 4,856,018, and 4,829,536, all of which are hereby incorporated by reference). Some of the line selection and/or line narrowing techniques set forth in these patents and patent applications may be used in combination with or alternative to any of the aspects of the invention set forth below.
Also particularly for the molecular fluorine laser system, an enclosure (not shown) seals the beam path of the beam 120 such as to keep the beam path free of VUV photoabsorbing species, as described above. Smaller enclosures preferably seal the beam path between the chamber 102 and the optics modules 110 and 112. Advantageously, the diagnostic components may be integrated into the front optics module 112, separate enclosure components that would otherwise be used between, e.g., a separate diagnostic module 118 and beam splitter module 122, or between the front optics module 112 and beam splitter module 122, would not be used. The preferred enclosure is described above in detail, and variations may be derived from U.S. Pat. Nos. 6,219,368, 6,477,192, 6,219,368, 6,399,916 and No. 60/140,530, each of which is assigned to the same assignee and is hereby incorporated by reference, and alternative configurations are set forth at U.S. Pat. Nos. 5,559,584, 5,221,823, 5,763,855, 5,811,753 and 4,616,908, all of which are hereby incorporated by reference.
Those skilled in the art will appreciate that the just-disclosed preferred embodiments are subject to numerous adaptations and modifications without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope and spirit of the invention, the invention may be practiced other than as specifically described above. In particular, the invention is to be interpreted in accordance with the appended claims, and equivalents thereof, without limitations being read from the specification above.
This application claims the benefit of priority to U.S. provisional patent application No. 60/381,586, filed May 17, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3975098 | West | Aug 1976 | A |
5051162 | Kambara et al. | Sep 1991 | A |
5054878 | Gergely et al. | Oct 1991 | A |
5062942 | Kambara et al. | Nov 1991 | A |
5194913 | Myrick et al. | Mar 1993 | A |
5290419 | Kambara et al. | Mar 1994 | A |
5307148 | Kambara et al. | Apr 1994 | A |
5424841 | Van Gelder et al. | Jun 1995 | A |
5485269 | Feldman | Jan 1996 | A |
5516692 | Berndt | May 1996 | A |
5830138 | Wilson | Nov 1998 | A |
5894352 | Morton | Apr 1999 | A |
5926271 | Couderc et al. | Jul 1999 | A |
6002137 | Hayashi | Dec 1999 | A |
6058739 | Morton et al. | May 2000 | A |
6067306 | Sandstrom et al. | May 2000 | A |
6075611 | Dussan V. et al. | Jun 2000 | A |
6141081 | Das et al. | Oct 2000 | A |
6144448 | Mitoma | Nov 2000 | A |
6191425 | Imai | Feb 2001 | B1 |
6327284 | Stamm et al. | Dec 2001 | B1 |
6363094 | Morton et al. | Mar 2002 | B1 |
6389045 | Mann et al. | May 2002 | B1 |
6486949 | Hachfeld et al. | Nov 2002 | B2 |
6529533 | Voss | Mar 2003 | B1 |
6542243 | Kramer | Apr 2003 | B2 |
6549555 | Serwazi et al. | Apr 2003 | B2 |
6587202 | Rebhan | Jul 2003 | B2 |
6665072 | Hoyt | Dec 2003 | B2 |
6704109 | Wu et al. | Mar 2004 | B2 |
6839375 | Lokai et al. | Jan 2005 | B1 |
20020021730 | Schroeder et al. | Feb 2002 | A1 |
20020139936 | Dumas | Oct 2002 | A1 |
20020159064 | Wakabayashi et al. | Oct 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20030219057 A1 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
60381586 | May 2002 | US |