This invention relates generally to optically variable pigments, films, devices, and images, and more particularly to aligning or orienting magnetic flakes, such as during a painting or printing process, to obtain an illusive optical effect.
Optically variable devices are used in a wide variety of applications, both decorative and utilitarian, for example such devices are used as security devices on commercial products. Optically variable devices can be made in numerous ways to achieve a variety of effects. Examples of optically variable devices include the holograms imprinted on credit cards and authentic software documentation, colour-shifting images printed on banknotes, and enhancing the surface appearance of items such as motorcycle helmets and wheel covers.
Optically variable devices can be made as film or foil that is pressed, stamped, glued, or otherwise attached to an object, and can also be made using optically variable pigments. One type of optically variable pigment is commonly called a colour-shifting pigment because the apparent colour of images appropriately printed with such pigments changes as the angle of view and/or illumination is tilted. A common example is the “20” printed with colour-shifting pigment in the lower right-hand corner of a U.S. twenty-dollar bill, which serves as an anti-counterfeiting device.
Some anti-counterfeiting devices are covert, while others are intended to be noticed. Unfortunately, some optically variable devices that are intended to be noticed are not widely known because the optically variable aspect of the device is not sufficiently dramatic. For example, the colour shift of an image printed with colour-shifting pigment might not be noticed under uniform fluorescent ceiling lights, but more noticeable in direct sunlight or under single-point illumination. This can make it easier for a counterfeiter to pass counterfeit notes without the optically variable feature because the recipient might not be aware of the optically variable feature, or because the counterfeit note might look substantially similar to the authentic note under certain conditions.
Optically variable devices can also be made with magnetic pigments that are aligned with a magnetic field after applying the pigment (typically in a carrier such as an ink vehicle or a paint vehicle) to a surface. However, painting with magnetic pigments has been used mostly for decorative purposes. For example, use of magnetic pigments has been described to produce painted cover wheels having a decorative feature that appears as a three-dimensional shape. A pattern was formed on the painted product by applying a magnetic field to the product while the paint medium still was in a liquid state. The paint medium had dispersed magnetic non-spherical particles that aligned along the magnetic field lines. The field had two regions. The first region contained lines of a magnetic force that were oriented parallel to the surface and arranged in a shape of a desired pattern. The second region contained lines that were non-parallel to the surface of the painted product and arranged around the pattern. To form the pattern, permanent magnets or electromagnets with the shape corresponding to the shape of desired pattern were located underneath the painted product to orient in the magnetic field non-spherical magnetic particles dispersed in the paint while the paint was still wet. When the paint dried, the pattern was visible on the surface of the painted product as the light rays incident on the paint layer were influenced differently by the oriented magnetic particles.
Similarly, a process for producing a pattern of flaked magnetic particles in fluoropolymer matrix has been described. After coating a product with a composition in liquid form, a magnet with a magnetic field having a desirable shape was placed on the underside of the substrate. Magnetic flakes dispersed in a liquid organic medium orient themselves parallel to the magnetic field lines, tilting from the original planar orientation. This tilt varied from perpendicular to the surface of a substrate to the original orientation, which included flakes essentially parallel to the surface of the product. The planar oriented flakes reflected incident light back to the viewer, while the reoriented flakes did not, providing the appearance of a three dimensional pattern in the coating.
It is an object of the present invention, to provide optical variable images wherein three-dimensional objects such as hemi-spheres, cones and the like form images of security devices, labels and the like, using magnetically alignable flakes in the presence of particular magnetic fields, not heretofore described.
The present invention provides articles, methods and apparatus related to images having an illusive optical effect.
In accordance with the invention there is provided, a security device comprising an image having a first plurality of magnetically alignable flakes resting upon a substrate in a first pattern so as to define a ring or curve. Preferably, at least n flakes, n>1000 are provided, and wherein planes extending from surfaces of the flakes intersect with one another.
In accordance with an aspect of the invention the first plurality of magnetically alignable flakes define a plurality of concentric rings of flakes, and the rings of flakes populate a circular-like region; the flakes defining the rings form an increasing or decreasing angle with respect to the substrate from the outermost ring to the inner most ring.
In an aspect of the invention the device may include a second plurality of magnetically alignable flakes resting upon the substrate in a corresponding pattern to the first pattern wherein the flakes are tilted at a same second angle with respect to the substrate, wherein the second angle is different than the first angle and wherein planes extending from along surfaces of the second plurality of flakes intersect with each other.
The plurality of magnetically alignable flakes may be distributed substantially throughout an entire closed region and oriented in a predetermined pattern therein, wherein at least more than 50% of the flakes are oriented such that lines normal to their reflecting surfaces converge along a line or to a point.
In preferred embodiments the image comprises at least 10,000 flakes or more.
In accordance with an aspect of the invention an optically illusive image is provided comprising a substrate having a region of flakes coating a surface thereof wherein the flakes are distributed throughout substantially the entire region and oriented in a predetermined pattern therein, wherein the flakes are oriented such that lines normal to their reflecting surfaces converge along a line or to a point.
In accordance with another aspect of the invention a label or security device is provided comprising an optically illusive image having flakes covering and distributed throughout an entire region and oriented in a predetermined pattern, the flakes having reflecting surfaces, wherein the orientation of the flakes forming the predetermined pattern is such that lines normal to the reflecting surfaces of the flakes converge along a line or at a point, wherein the predetermined pattern has an axis of revolution.
In accordance with a further aspect of the invention a printed array is provided comprising a plurality of concentric rings of magnetically aligned platelets disposed upon a substrate in the form of a Fresnel structure, preferably a Fresnel reflector. Advantageously, since the magnetic field can be controlled with respect to strength and direction, one can easily design a field that will correct for spherical aberration that would otherwise be present in a typical Fresnel reflector.
In accordance with an aspect of the invention the image forms a part of a receiving or reflecting antenna and wherein the flakes are selectively absorbing or reflecting, respectively.
In accordance with another aspect of the invention an optical image as described in any of the embodiments described heretofore has a grating thereon and/or the flakes have a surface area between 100 μm2 to 1 mm2 and wherein the flakes are within a range of thickness between 100 nm and 100 μm.
In accordance with yet another aspect of the invention, at least some of the flakes having gratings therein or thereon, and wherein the frequency and depth of the grating is sufficiently low so as to not have diffractive effects that can be seen by the naked human eye, and wherein the flakes having gratings are aligned along lines of the respective grating. In some embodiments at least some of the flakes having gratings therein or thereon, and wherein the frequency of the gratings is less than 200 ln/mm and wherein the depth of the grating is less than 100 microns.
The flakes may be uniform in shape, and are preferably hexagonal in shape allowing for a greater packing density.
In an alternative embodiment of the invention an image is provided that forms a light detector, the image being dynamic such that it displays a number of rings corresponding to a number of separate light sources that illuminate the image.
Exemplary embodiments of the invention will now be described in accordance with the invention in which:
a and 42b are graphs depicting multi-angle color travel of low-modulated low-frequency rectangular grating (1) and high-frequency sinusoidal grating (2) at measurement directions across the grooves.
The present invention in its various embodiments provides novel and inventive magnetic structures useful for security and packaging and labeling applications. Normally, particles of an optically variable pigment dispersed in a liquid paint or ink vehicle generally orient themselves parallel to the surface when printed or painted on to a surface. Orientation parallel to the surface provides high reflectance of incident light from the coated surface. Magnetic flakes can be tilted with respect to the substrate while in the liquid medium by applying a magnetic field. The flakes generally align in such way that the longest diagonal of a reflective flake and the groove's orientation of the diffractive flake follows a magnetic field line. Depending on the position and strength of the magnet, the magnetic field lines can penetrate the substrate at different angles, tilting magnetic flakes to these angles. A tilted flake reflects incident light differently than a flake parallel to the surface of the printed substrate. The reflectance and hue can both be different. Tilted flakes typically look darker and have a different colour than flakes parallel to the surface at a normal viewing angle.
Generally, flakes viewed normal to the plane of the flake appear bright, while flakes viewed along the edge of the plane appear dark. For example, light from an illumination source 30 is reflected off the flakes in the first region to the viewer 32. If the image is tilted in the direction indicated by the arrow 34, the flakes in the first region 22 will be viewed on-end, while light will be reflected off the flakes in the second region 24. Thus, in the first viewing position the first region will appear light and the second region will appear dark, while in the second viewing position the fields will flip-flop, the first region becoming dark and the second region becoming light. This provides a very striking visual effect. Similarly, if the pigment flakes are colour-shifting, one portion may appear to be a first colour and the other portion another colour.
The carrier is typically transparent, either clear or tinted, and the flakes are typically fairly reflective. For example, the carrier could be tinted green and the flakes could include a metallic layer, such as a thin film of aluminum, gold, nickel, platinum, or metal alloy, or be a metal flake, such as a nickel or alloy flake. The light reflected off a metal layer through the green-tinted carrier might appear bright green, while another portion with flakes viewed on end might appear dark green or other colour. If the flakes are merely metallic flakes in a clear carrier, then one portion of the image might appear bright metallic, while another appears dark. Alternatively, the metallic flakes might be coated with a tinted layer, or the flakes might include an optical interference structure, such as an absorber-spacer-reflector Fabry-Perot type structure. Furthermore, a diffractive structure may be formed on the reflective surface for providing an enhancement and an additional security feature. The diffractive structure may have a simple linear grating formed in the reflective surface, or may have a more complex predetermined pattern that can only be discerned when magnified but having an overall effect when viewing. By providing diffractive reflective layer, a colour change or brightness change is seen by a viewer by simply turning the sheet, banknote, or structure having the diffractive flakes.
The process of fabricating diffractive flakes is described in detail in U.S. Pat. No. 6,692,830. U.S. patent application 20030190473, describes fabricating chromatic diffractive flakes. Producing a magnetic diffractive flake is similar to producing a diffractive flake, however one of the layers is required to be magnetic. In fact, the magnetic layer can be disguised by way of being sandwiched between A1 layers; in this manner the magnetic layer and then it doesn't substantially affect the optical design of the flake; or could simultaneously play an optically active role as absorber, dielectric or reflector in a thin film interference optical design.
The bar may also appear to have depth, even though it is printed in a plane. The virtual depth can appear to be much greater than the physical thickness of the printed image. It happens because the bar is a imaginary focal line of the cylindrical convex Fresnel reflector located at the focal length underneath the plane of the reflector. The tilting of the flakes in a selected pattern reflects light to provide the illusion of depth or “3D”, as it is commonly referred to. A three-dimensional effect can be obtained by placing a shaped magnet behind the paper or other substrate with magnetic pigment flakes printed on the substrate in a fluid carrier. The flakes align along magnetic field lines and create the 3D image after setting (e.g. drying or curing) the carrier. The image often appears to move as it is tilted; hence kinematic 3D images may be formed.
Flip-flops and rolling bars can be printed with magnetic pigment flakes, i.e. pigment flakes that can be aligned using a magnetic field. A printed flip-flop type image provides an optically variable device with two distinct fields that can be obtained with a single print step and using a single ink formulation. A rolling bar type image provides an optically variable device that has a contrasting band that appears to move as the image is tilted, similar to the semi-precious stone known as Tiger's Eye. These printed images are quite noticeable and the illusive aspects would not photocopy. Such images may be applied to bank notes, stock certificates, software documentation, security seals, and similar objects as authentication and/or anti-counterfeiting devices. They are particularly desirable for high-volume printed documents, such as bank notes, packaging, and labels, because they can be printed in a high-speed printing operation, as is described below.
In another embodiment, shown in
This invention applies three-dimensional magnetic fields having a predetermined shape, for a linear or discrete printing of dynamic optical devices (DACOD). Dynamic optical devices are images, some of which may be printed with a high-speed printing press, and which use ink containing magnetic platelet-like pigments in a magnetic field having a predetermined shape. The images are able to change their appearance in response to a physical action applied by an observer to the substrate. The observer needs to tilt, rotate or bend the substrate to see appearance or disappearance or motion of parts of the image or entire image. This behavior of the Dynamic Appearance-Changing Optical Devices (DACOD) depends purely on reflection or dispersion of the incident light from differently oriented magnetic platelets in the layer of dry ink. The presence or absence of colour is a complementary feature of the DACODs. Magnetic colour-shifting pigments provide a plurality of variations in the colour change of dynamic optical devices in addition to their appearance change.
This invention describes a special class of dynamic optical devices in part of an image printed through a silk screen, offset, flexo, intaglio, gravure or other known printing methods on a paper or other flat substrate material in magnetic fields of different configurations in such a way that during translation of the printed wet image on the substrate in the field, the platelets of the pigment in the layer of the ink align along magnetic lines of the field causing the images to change their appearance in observations at different angles after drying of the ink. The printed image that has an appearance-changing element does not need any special equipment to be viewed and therefore it can be viewed by the naked eye. Tilt of the printed dynamic optical device at different angles with respect to the light source causes attention-grabbing change of appearance or motion in the part of the image that was printed with magnetic ink. The ink for the dynamic optical devices consists of an ink vehicle and any light reflecting or light dispersing platelet-based magnetic pigment. The pigment can be a colour-shifting pigment, a non colour-shifting pigment, and/or or have a microstructure such as a diffraction grating facilitating orientation of the magnetically aligned flake. The ink vehicle may be clear or coloured, UV curable or solvent based.
Printed appearance-changing optical devices may be used as a security feature on or within bank notes and valuable documents.
Effects of apparent motion or change within an image are well known in the printing industry. Usually they based on a specific picture or set of patterns for motion effects or lenticular substrates for the image change with the flip effect. The number of known effects is limited which greatly limits their applicability.
Appearance-changing images, printed in magnetic fields, have been described heretofore in the applicants' earlier published United States patent application US 200410051297 A1. Described therein are printed images with a rolling bar effect and a flip-flop effect changing colour or intensity of the reflected light in different parts of the image as the light source or viewing angle changes. Change in the image appearance in these effects doesn't happen instantly as for holograms or lenticular substrates but rather gradually.
Notwithstanding, the images described in the aforementioned '297 U.S. patent application are related to simple rolling bar and flip-flop type applications, wherein flakes along a single straight lines are symmetrical, and make a same angle with the substrate; and flakes along subsequent adjacent straight lines make a different same angle with the substrate, so that each flake in any given row of flakes has a same angle with the substrate, and wherein flakes in adjacent rows typically form a different angle with the substrate.
We have recently discovered that by aligning flakes along curves, wherein flakes along any given curve forms a same angle with the substrate, and wherein flakes following adjacent curves more especially circles, particularly concentric circles are oriented to form a different angle than an adjacent curve or circle, striking realistic optically illusive images of objects such as funnels, cones, bowls, and ellipses, and hemispheres can be formed. It should be noted that in particular embodiments the circles may be more elliptical than circular and the definition of circle hereafter includes circular-like rings and shapes.
The description which follows refers to a significantly different class of printed optical effects similar in reflection of incident light by reflective cones, spheres, hemispheres, funnels, and various other three-dimensional objects and in particular, Fresnel-like structures.
Examples are shown, wherein,
The center of the printed optical device printed in the funnel-shaped field, shown in
The cone-shaped magnetic field lines, shown in
The print, made in the cone-shaped field, produces an image with a bright center at a normal angle of observation as shown in
Images printed in a torus-shaped field or a shape approximate to that generates images with an appearance shown in
The described above methods for aligning magnetically alignable flakes or particles can be applied to the images where either entire area is printed wherein the magnetic feature or just a certain part of the image is filled with magnetic feature. This depends upon the desired image.
Many of the magnetic features described above can be applied to images printed with guilloche patterns for enhancement of security features of bank notes and other valuable documents.
Referring now to
It should be noted that the thickness, dimensions, and strength of the magnets can vary depending upon the particular desired image. For example the stacked magnets may be of same thickness and strength, having different diameters, or alternatively one or more parameters may be varied.
Many of the magnetic features described heretofore can be applied to the images printed with geometrical images and illusive optical images for enhancement of their illusive properties. Examples of such images are shown in
The same spiral-like image in
Another linear illusive image is shown in
The images shown in
Turning now to
Referring now to
Referring now to
Turning now to
Referring now to
An alternative embodiment is shown in
As is mentioned above, the flat magnetic platelets, dispersed in a wet ink vehicle on the surface of a substrate, orient themselves along magnetic lines of an applied magnetic field by their largest diagonals. In contrast to the flat platelets, diffractive magnetic platelets orient themselves in the same conditions along magnetic lines by direction of their grooves as shown in the
Heretofore, embodiments relating to curved or circular arrangements of flakes have been disclosed forming a new class of optical devices. These devices have been characterized by the angular relationship of the flat or diffractive flakes with a substrate they are supported by. Many of these devices form Fresnel structures, such as Fresnel reflectors. For example the conical structures and funnel-like structures described heretofore, form convex and concave Fresnel reflectors. By using flakes fabricated from absorbing materials, Fresnel absorbing structures can be made. By using reflective flakes Fresnel reflectors can be printed upon a substrate. Such Fresnel structures have applications as beam steering devices, for various wavelengths of electromagnetic radiation, in optical and other domains; for example as printable focusing reflectors for antennas.
Referring now to
The Fresnel-like reflective structure formed by the magnetically aligned reflective flakes 273 is clearly illustrated in
Photographs of hemispherical convex mirrors are shown in
Turning now to
When the diffractive platelets 292 are placed in the magnetic field, the platelets 292 become oriented with their grooves along lines of applied magnetic field. The particles in the region around the center axis of the print 297 are parallel with their planes to the surface of the substrate. Many particles but not all in this region are directed with their grooves toward the center axis of the print.
The size of this radial alignment region is relatively small and depends upon dimensions of the magnetic field applied to the print. It may be approximately ⅔ of the width of the magnet (in case if the flat permanent magnet was used there). The direction of the grooves and layout of the particles 292 undergo through significant changes with a change of a distance from the center axis. The second area of the print, adjacent to the area of radial alignment of the grooves and surrounding it, contains the particles that rotate around their normals, i.e lines normal to the surface of the particles as shown in
Referring now to
Referring now to
The image formation in the printed concave Fresnel mirror is essentially the same as in conventional concave mirrors without compensation for their spherical aberration. The mirrors can be compensated to reduse their aberration by correct selection of the shape of applied magnetic field and its intensity, distance between the magnet and the wet ink, ink viscosity and magnetic propertoes of dispersed particles.
A preferred orientation of the grooves of the particles is in the direction of the center of the cone. Upon being exposed to the magnetic field, diffractive platelets 352 become oriented with their grooves along lines of applied magnetic field. The particles in the region around the center axis of the print are parallel to the surface of the substrate. Many particles but not all in this region are directed with their grooves toward the center axis of the print. The size of this region is small, however depends on dimensions of the magnetic field applied to the print. Direction of the grooves and layout of the particles undergo through significant changes with the change of distance from the center axis. The second area of the print, adjacent to the area of radial alignment of the grooves and surrounding it, contains the particles that rotate around their normals as shown in
An embodiment of this invention will now be described that relates to the fabrication of a hemispherical shaped image in accordance with this invention.
An interesting and striking effect is shown in an alternative embodiment of this invention in
The shield in
Furthermore, for example platelet-like magnetic micro-flakes with a rectangular low-modulated low-frequency grating for fabrication of the magnetic ink for printing of images with optical effects may be utilized.
As has been described heretofore, flat particles of reflective magnetic pigment, being dispersed in non-cured paint or ink vehicle, align themselves along lines of applied magnetic field with their longest diagonals; and diffractive particles, being dispersed in a non-cured paint or ink vehicle align themselves along their grooves in the direction of magnetic lines of applied field because demagnetization of a single particle is smaller along the grooves rather across them.
This phenomenon relates to the cross-sectional thickness of a magnetic particle in different directions: it is smaller along the grooves and larger across them. Specular reflectance of the incident light by diffractive pigments is not high because of specifics of their surface morphology. When printed, the pigment shows diffractive colors under a single or multiple light sources and under the sunlight. However, there is very little color on the print under a dimmed light or under skylight.
Another aspect of this invention is a pigment that combines two particular features of reflective and diffractive pigments: high reflectivity without noticeable diffractive colors and ability to align with grooves along the lines of an applied magnetic field. The pigment has a microstructure with a low-modulated square diffractive grating at a small frequency. Typically, the frequency can be in the range of 2 lines/mm to 500 lines/mm more preferably in the range of 50 lines/mm to 150 lines/mm. Modulation of the grating varies in the range of 20 nm to 1000 nm (more preferably in the range of 30 nm to 200 nm).
Plan views of single pigment particles are shown in
Multi-layered structure MgF2/Al/Ni/Al/MgF2 was vacuum-deposited on the top of a polyester rectangular grating similar to shown in
Before the MgF2/Al/Ni/Al/MgF2 coating was stripped off the substrate, the results were compared with those of the same optical multi-layered stack deposited onto a different polyester diffractive grating having frequency of 1500 lines/mm. The color performance of the coating on both low-frequency and high-frequency substrates was characterized with the gonio-spectrophotometer (Murakami Color Research Labs). Experimental results are shown in
Results in
The diffuse near-normal angle spectral reflectance of these both samples was measured with spectrophotometer Datacolor SF600. Experimental results of % R are shown in
The results show that the foils sample with the low-frequency grating has a silver-like appearance. There is no color peaks on the curves of reflectance neither along the grooves nor across them. On the contrary, the sample of high-frequency foil shows presence of reflectance peaks generated by diffraction of incident light.
In summary if the grating frequency is low enough, for example less than 200 lines/mm and preferably less than 100 lines/mm, no diffractive effects are seen by the human eye, however this grating advantageously allows alignment along the grating lines. Preferably the grating depth is less than 100 nm.
In another embodiment of this invention, flakes used in the images described in the embodiments heretofore are shaped in hexagonal shapes, which allows for a greater packing density of the flakes within the image and also which advantageously provides flakes which are uniform. A description of manufacturing shaped flakes is found in United States published application 20060035080.
The present application is a continuation-in-part of U.S. patent application Ser. No. 11/313,165 filed Dec. 20, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 11/022,106, filed Dec. 22, 2004, now U.S. Pat. No. 7,517,578 which is a continuation-in-part from U.S. patent application Ser. No. 10/386,894 filed Mar. 11, 2003, now U.S. Pat. No. 7,047,883 which claims priority from U.S. Provisional Patent Application Ser. No. 60/410,546 filed Sep. 13, 2002; from U.S. Provisional Patent Application Ser. No. 60/410,547 filed Sep. 13, 2002; from U.S. Provisional Patent Application Ser. No. 60/396,210 filed Jul. 15, 2002 by the disclosures of which are hereby incorporated in their entirety for all purposes; and the present application is a continuation-in-part of U.S. patent application Ser. No. 11/028,819 filed Jan. 4, 2005 now U.S. Pat. No. 7,300,695 which is a divisional of U.S. patent application Ser. No. 10/243,111 filed Sep. 13, 2002, now U.S. Pat. No. 6,902,807 issued as U.S. Pat. No. 6,902,807 on Jun. 7, 2005 by the disclosures of which are hereby incorporated in their entirety for all purposes. The present application also claims priority from U.S. Provisional Patent Applications Ser. No. 60/777,086 filed Feb. 27, 2006 and Ser. No. 60/668,852 filed Apr. 6, 2005 which are all incorporated herein by reference. This application is related to U.S. patent application Ser. Nos. 10/029,405, filed Dec. 20, 2001 now issued as U.S. Pat. No. 6,749,936; Ser. No. 09/919,346, filed Jul. 31, 2001 now issued as U.S. Pat. No. 6,692,830; and Ser. No. 10/117,307 filed Apr. 5, 2002 now issued as U.S. Pat. No. 6,841,238; which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2570856 | Pratt et al. | Oct 1951 | A |
3011383 | Sylvester et al. | Dec 1961 | A |
3123490 | Bolomey et al. | Mar 1964 | A |
3338730 | Slade et al. | Aug 1967 | A |
3610721 | Abramson et al. | Oct 1971 | A |
3627580 | Krall | Dec 1971 | A |
3633720 | Tyler | Jan 1972 | A |
3676273 | Graves | Jul 1972 | A |
3790407 | Merton et al. | Feb 1974 | A |
3791864 | Steingroever | Feb 1974 | A |
3845499 | Ballinger | Oct 1974 | A |
3853676 | Graves | Dec 1974 | A |
3873975 | Miklos et al. | Mar 1975 | A |
4011009 | Lama et al. | Mar 1977 | A |
4054922 | Fichter | Oct 1977 | A |
4066280 | LaCapria | Jan 1978 | A |
4099838 | Cook et al. | Jul 1978 | A |
4126373 | Moraw | Nov 1978 | A |
4155627 | Gale et al. | May 1979 | A |
4168983 | Vittands et al. | Sep 1979 | A |
4197563 | Michaud | Apr 1980 | A |
4244998 | Smith | Jan 1981 | A |
4271782 | Bate et al. | Jun 1981 | A |
4310584 | Cooper et al. | Jan 1982 | A |
4398798 | Krawczak et al. | Aug 1983 | A |
4434010 | Ash | Feb 1984 | A |
4543551 | Petersen | Sep 1985 | A |
4705300 | Berning et al. | Nov 1987 | A |
4705356 | Berning et al. | Nov 1987 | A |
4721217 | Phillips et al. | Jan 1988 | A |
4756771 | Brodalla et al. | Jul 1988 | A |
4779898 | Berning et al. | Oct 1988 | A |
4788116 | Hochberg | Nov 1988 | A |
4838648 | Phillips et al. | Jun 1989 | A |
4867793 | Franz et al. | Sep 1989 | A |
4923533 | Shigeta et al. | May 1990 | A |
4930866 | Berning et al. | Jun 1990 | A |
4931309 | Komatsu et al. | Jun 1990 | A |
5002312 | Phillips et al. | Mar 1991 | A |
5009486 | Dobrowolski et al. | Apr 1991 | A |
5059245 | Phillips et al. | Oct 1991 | A |
5079058 | Tomiyama | Jan 1992 | A |
5079085 | Hashimoto et al. | Jan 1992 | A |
5084351 | Philips et al. | Jan 1992 | A |
5106125 | Antes | Apr 1992 | A |
5128779 | Mallik | Jul 1992 | A |
5135812 | Phillips et al. | Aug 1992 | A |
5142383 | Mallik | Aug 1992 | A |
5171363 | Phillips et al. | Dec 1992 | A |
5177344 | Pease | Jan 1993 | A |
5186787 | Phillips et al. | Feb 1993 | A |
5192611 | Tomiyama et al. | Mar 1993 | A |
5214530 | Coombs et al. | May 1993 | A |
5223360 | Prengel et al. | Jun 1993 | A |
5254390 | Lu | Oct 1993 | A |
5278590 | Phillips et al. | Jan 1994 | A |
5279657 | Phillips et al. | Jan 1994 | A |
5339737 | Lewis et al. | Aug 1994 | A |
5364467 | Schmid et al. | Nov 1994 | A |
5364689 | Kashiwagi et al. | Nov 1994 | A |
5368898 | Akedo | Nov 1994 | A |
5411296 | Mallik | May 1995 | A |
5424119 | Phillips et al. | Jun 1995 | A |
5437931 | Tsai et al. | Aug 1995 | A |
5447335 | Haslop | Sep 1995 | A |
5464710 | Yang | Nov 1995 | A |
5474814 | Komatsu et al. | Dec 1995 | A |
5549774 | Miekka et al. | Aug 1996 | A |
5549953 | Li | Aug 1996 | A |
5571624 | Phillips et al. | Nov 1996 | A |
5591527 | Lu | Jan 1997 | A |
5613022 | Odhner et al. | Mar 1997 | A |
5624076 | Miekka et al. | Apr 1997 | A |
RE35512 | Nowak et al. | May 1997 | E |
5627663 | Horan et al. | May 1997 | A |
5629068 | Miekka et al. | May 1997 | A |
5630877 | Kashiwagi et al. | May 1997 | A |
5648165 | Phillips et al. | Jul 1997 | A |
5650248 | Miekka et al. | Jul 1997 | A |
5672410 | Miekka et al. | Sep 1997 | A |
5700550 | Uyama et al. | Dec 1997 | A |
5742411 | Walters | Apr 1998 | A |
5744223 | Abersfelder et al. | Apr 1998 | A |
5763086 | Schmid et al. | Jun 1998 | A |
5811775 | Lee | Sep 1998 | A |
5815292 | Walters | Sep 1998 | A |
5856048 | Tahara et al. | Jan 1999 | A |
5858078 | Andes et al. | Jan 1999 | A |
5907436 | Perry et al. | May 1999 | A |
5912767 | Lee | Jun 1999 | A |
5989626 | Coombs et al. | Nov 1999 | A |
5991078 | Yoshitake et al. | Nov 1999 | A |
6013370 | Coulter et al. | Jan 2000 | A |
6031457 | Bonkowski et al. | Feb 2000 | A |
6033782 | Hubbard et al. | Mar 2000 | A |
6043936 | Large | Mar 2000 | A |
6045230 | Dreyer et al. | Apr 2000 | A |
6060143 | Tompkin et al. | May 2000 | A |
6068691 | Miekka et al. | May 2000 | A |
6103361 | Batzar et al. | Aug 2000 | A |
6112388 | Kimoto et al. | Sep 2000 | A |
6114018 | Phillips et al. | Sep 2000 | A |
6150022 | Coulter et al. | Nov 2000 | A |
6157489 | Bradley, Jr. et al. | Dec 2000 | A |
6168100 | Kato et al. | Jan 2001 | B1 |
6241858 | Phillips et al. | Jun 2001 | B1 |
6242510 | Killey | Jun 2001 | B1 |
6243204 | Bradley, Jr. et al. | Jun 2001 | B1 |
6403169 | Hardwick et al. | Jun 2002 | B1 |
6549131 | Cote et al. | Apr 2003 | B1 |
6586098 | Coulter et al. | Jul 2003 | B1 |
6589331 | Ostertag et al. | Jul 2003 | B2 |
6643001 | Faris | Nov 2003 | B1 |
6649256 | Buczek et al. | Nov 2003 | B1 |
6686027 | Caporaletti et al. | Feb 2004 | B1 |
6692031 | McGrew | Feb 2004 | B2 |
6692830 | Argoitia et al. | Feb 2004 | B2 |
6712399 | Drinkwater et al. | Mar 2004 | B1 |
6749777 | Argoitia et al. | Jun 2004 | B2 |
6749936 | Argoitia et al. | Jun 2004 | B2 |
6751022 | Phillips | Jun 2004 | B2 |
6759097 | Phillips et al. | Jul 2004 | B2 |
6761959 | Bonkowski et al. | Jul 2004 | B1 |
6808806 | Phillips et al. | Oct 2004 | B2 |
6815065 | Argoitia et al. | Nov 2004 | B2 |
6818299 | Phillips et al. | Nov 2004 | B2 |
6838166 | Phillips et al. | Jan 2005 | B2 |
6841238 | Argoitia et al. | Jan 2005 | B2 |
6902607 | Matsumoto et al. | Jun 2005 | B2 |
6902807 | Argoitia et al. | Jun 2005 | B1 |
6987590 | Phillips et al. | Jan 2006 | B2 |
7029525 | Mehta | Apr 2006 | B1 |
7047883 | Raksha et al. | May 2006 | B2 |
20020182383 | Phillips et al. | Dec 2002 | A1 |
20030058491 | Holmes et al. | Mar 2003 | A1 |
20030087070 | Souparis | May 2003 | A1 |
20030165637 | Phillips et al. | Sep 2003 | A1 |
20030190473 | Argoitia et al. | Oct 2003 | A1 |
20040009309 | Raksha et al. | Jan 2004 | A1 |
20040051297 | Raksha et al. | Mar 2004 | A1 |
20040081807 | Bonkowski et al. | Apr 2004 | A1 |
20040094850 | Bonkowski et al. | May 2004 | A1 |
20040100707 | Kay et al. | May 2004 | A1 |
20040105963 | Bonkowski et al. | Jun 2004 | A1 |
20040151827 | Argoitia et al. | Aug 2004 | A1 |
20050037192 | Argoitia et al. | Feb 2005 | A1 |
20050063067 | Phillips et al. | Mar 2005 | A1 |
20050106367 | Raksha et al. | May 2005 | A1 |
20050123755 | Argoitia et al. | Jun 2005 | A1 |
20050128543 | Phillips et al. | Jun 2005 | A1 |
20050189060 | Huang et al. | Sep 2005 | A1 |
20060035080 | Argoitia | Feb 2006 | A1 |
20060077496 | Argoitia | Apr 2006 | A1 |
20060263539 | Argoitia | Nov 2006 | A1 |
20070058227 | Raksha et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
488652 | Nov 1977 | AU |
1696245 | Jan 1972 | DE |
3932505 | Apr 1991 | DE |
4212290 | May 1993 | DE |
4343387 | Jun 1995 | DE |
19611383 | Sep 1997 | DE |
19731968 | Jan 1999 | DE |
19744953 | Apr 1999 | DE |
19639165 | Oct 2003 | DE |
0138194 | Oct 1984 | EP |
0185396 | Dec 1985 | EP |
0341002 | Nov 1989 | EP |
0341002 | Nov 1989 | EP |
0420261 | Apr 1991 | EP |
0453131 | Oct 1991 | EP |
0556449 | Aug 1993 | EP |
0556449 | Aug 1993 | EP |
0406667 | Jan 1995 | EP |
406667 | Jan 1995 | EP |
0660262 | Jan 1995 | EP |
0170439 | Apr 1995 | EP |
0710508 | May 1996 | EP |
710508 | May 1996 | EP |
0756945 | Feb 1997 | EP |
0395410 | Aug 1997 | EP |
0698256 | Oct 1997 | EP |
0741370 | May 1998 | EP |
0914261 | May 1999 | EP |
0953937 | Nov 1999 | EP |
0953937 | Nov 1999 | EP |
0978373 | Feb 2000 | EP |
1174278 | Jan 2002 | EP |
1239307 | Sep 2002 | EP |
1 353 197 | Oct 2003 | EP |
1353197 | Oct 2003 | EP |
1 498 545 | Jan 2005 | EP |
1516957 | Mar 2005 | EP |
1529653 | May 2005 | EP |
1719636 | Nov 2006 | EP |
1 741 757 | Jan 2007 | EP |
1107395 | Mar 1968 | GB |
1131038 | Oct 1968 | GB |
63172779 | Jul 1988 | JP |
63172279 | Jul 1998 | JP |
11010771 | Jan 1999 | JP |
WO 8807214 | Sep 1988 | WO |
9323251 | Nov 1993 | WO |
9517475 | Jan 1995 | WO |
9513569 | May 1995 | WO |
9719820 | Jun 1997 | WO |
9812583 | Mar 1998 | WO |
0008596 | Feb 2000 | WO |
0103945 | Jan 2001 | WO |
0253677 | Jan 2001 | WO |
WO 0153113 | Jul 2001 | WO |
0200446 | Jan 2002 | WO |
0204234 | Jan 2002 | WO |
0240599 | May 2002 | WO |
0240600 | May 2002 | WO |
WO0240600 | May 2002 | WO |
WO02090002 | Nov 2002 | WO |
WO 03011980 | Feb 2003 | WO |
03102084 | Dec 2003 | WO |
WO 2004007096 | Jan 2004 | WO |
2004024836 | Mar 2004 | WO |
2005017048 | Feb 2005 | WO |
WO 2005017048 | Feb 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060198998 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
60410546 | Sep 2002 | US | |
60410547 | Sep 2002 | US | |
60396210 | Jul 2002 | US | |
60777086 | Feb 2006 | US | |
60668852 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10243111 | Sep 2002 | US |
Child | 11028819 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11313165 | Dec 2005 | US |
Child | 11278600 | US | |
Parent | 11022106 | Dec 2004 | US |
Child | 11313165 | US | |
Parent | 10386894 | Mar 2003 | US |
Child | 11022106 | US | |
Parent | 11278600 | Apr 2006 | US |
Child | 11022106 | US | |
Parent | 11028819 | Apr 2005 | US |
Child | 11278600 | US |