Dynamic filter processing

Information

  • Patent Grant
  • 10242041
  • Patent Number
    10,242,041
  • Date Filed
    Monday, May 1, 2017
    7 years ago
  • Date Issued
    Tuesday, March 26, 2019
    5 years ago
Abstract
Described are methods, systems and computer readable media for dynamic filter operations.
Description

Embodiments relate generally to computer data systems, and more particularly, to methods, systems and computer readable media for providing a dynamic data filter.


Filtering clauses can be used to narrow a larger data source into a focused subset of the larger data source based on one or more filtering criteria. For example, traditional Structured Query Language provides a “where” clause for filtering. In a system that has rapidly changing data sources, filtering is additionally complicated by the rapidly changing nature of the data sources. Filtering clauses can contain one or more filtering criteria that can be a single expression or a list of expressions kept in a separate table, file, or other data structure. This method for filtering with a list of expressions creates a static two step process of first retrieving the one or more filtering criteria from a list and then second, filtering a target data table by retrieving all the rows of data from the table where the criteria in the list are a match. An incomplete or incorrect result set can be obtained when a change occurs in the filtering criteria list after step one has been performed but before step two can be completed because the operation performed in step two is unaware of the changes in the filtering criteria list. A table join operation can also be used to join a filtering criteria table with a data table frequently to ensure that a change in the filtering criteria table will be added to the result. Such frequent joins of large tables can be resource expensive.


Embodiments were conceived in light of the above mentioned needs, problems and/or limitations, among other things.


Some implementations can include a system for automatically updating data source objects, the system comprising one or more hardware processors and a computer readable data storage device coupled to the one or more hardware processors, the computer readable data storage device having stored thereon software instructions that, when executed by the one or more hardware processors, cause the one or more hardware processors to perform operations. The operations can include creating a first data source object in memory and mapping the first data source object to a first stored data. The operation can also include creating a second data source object in memory and mapping the second data source object to a second stored data. The operations can further include creating a third data source object in memory and mapping the third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object. The operations can include creating a first listener for the third data source object in memory and listening with the first listener for one or more changes to the first data source object. The operations can also include making one or more changes to the first data source object. The operations can further include detecting by the first listener of one or more changes to the first data source object. The operation can include receiving a notification from the first listener of the change to the first data source object and then updating the mapping of the third data source object with the one or more changes to the first data source object.


The operations can further include creating a second listener for the second data source object in memory and listening with the second listener for one or more changes to the second data source object. The operations can include making one or more changes to the second data source object. The operations can also include detecting by the second listener of one or more changes to the second data source object. The operations can include receiving a notification of one or more changes to the second data source object and requesting a remapping of the third data source object to a second subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object. The operations can further include updating the mapping of the third data source object to a subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object.


In some implementations, the mapping the third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object can include selecting a set of rows from the first stored data with one or more key values that are present in the second stored data.


In some implementations, the mapping the third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object can include selecting a set of rows form the first stored data with one or more key values that are not present in the second stored data.


In some implementations, the operations can further include creating a second listener for the second data source object in memory and listening with the second listener for one or more changes to the second data source object. The operations can include making one or more changes to the second data source object. The operations can also include detecting by the second listener of one or more changes to the second data source object. The operations can further include receiving a notification of one or more changes to the second data source object and determining whether to request a remapping of the third data source object to a second subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object, the determination based on whether the one or more changes to the second data source object effected an overall change in the second data source. The operations can include updating the mapping of the third data source object to a subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object only if the one or more changes to the second data source object effected an overall change in the second data source.


A change to the first data source object can include at least one of adding a row to the first data source object, deleting a row from the first data source object changing the data in a row of the first data source object, and re-indexing the rows of the first data source object.


A change to the second data source object can include at least one of adding a row to the second data source object, deleting a row from the second data source object, changing the data in a row of the second data source object, and re-indexing the rows of the second data source object.


Some implementations can include a method for using a computer system to automatically update data source objects, the method comprising creating a first data source object in memory and mapping the first data source object to a first stored data. The method can also include creating a second data source object in memory and mapping the second data source object to a second stored data. The method can further include creating a third data source object in memory and mapping the third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object. The method can include creating a first listener for the third data source object in memory and listening with the first listener for one or more changes to the first data source object. The method can also include making one or more changes to the first data source object. The method can further include detecting by the first listener of one or more changes to the first data source object. The method can include receiving a notification from the first listener of the change to the first data source object and updating the mapping of the third data source object with the one or more changes to the first data source object.


The method can further include creating a second listener for the second data source object in memory and listening with the second listener for one or more changes to the second data source object. The method can include making one or more changes to the second data source object. The method can also include detecting by the second listener of one or more changes to the second data source object. The method can further include receiving a notification of one or more changes to the second data source object and requesting a remapping of the third data source object to a second subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object. The method can also include updating the mapping of the third data source object to a subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object.


In some implementations, the mapping the third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object can include selecting a set of rows from the first stored data with one or more key values that are present in the second stored data.


In some implementations, the mapping the third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object includes selecting a set of rows form the first stored data with one or more key values that are not present in the second stored data.


The method can further include creating a second listener for the second data source object in memory listening with the second listener for one or more changes to the second data source object. The method can include making one or more changes to the second data source object. The method can also include detecting by the second listener of one or more changes to the second data source object. The method can further include receiving a notification of one or more changes to the second data source object and determining whether to request a remapping of the third data source object to a second subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object, the determination based on whether the one or more changes to the second data source object effected an overall change in the second data source. The method can include updating the mapping of the third data source object to a subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object only if the one or more changes to the second data source object effected an overall change in the second data source.


A change to the first data source object can include at least one of adding a row to the first data source object, deleting a row from the first data source object, changing the data in a row of the first data source object, and re-indexing the rows of the first data source object.


A change to the second data source object can include at least one of adding a row to the second data source object, deleting a row from the second data source object, changing the data in a row of the second data source object, and re-indexing the rows of the second data source object.


Some implementations can include a nontransitory computer readable medium having stored thereon software instructions that, when executed by one or more processors, cause the one or more processors to perform operations. The operations can include creating a first data source object in memory and mapping the first data source object to a first stored data. The operations can also include creating a second data source object in memory and mapping the second data source object to a second stored data. The operations can further include creating a third data source object in memory and mapping the third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object. The operations can include creating a first listener for the third data source object in memory and listening with the first listener for one or more changes to the first data source object. The operations can also include making one or more changes to the first data source object. The operations can further include detecting by the first listener of one or more changes to the first data source object. The operations can include receiving a notification from the first listener of the change to the first data source object and updating the mapping of the third data source object with the one or more changes to the first data source object.


The operations can further include creating a second listener for the second data source object in memory and listening with the second listener for one or more changes to the second data source object. The operations can include making one or more changes to the second data source object. The operations can further include detecting by the second listener of one or more changes to the second data source object. The operations can also include receiving a notification of one or more changes to the second data source object and requesting a remapping of the third data source object to a second subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object. The operations can further include updating the mapping of the third data source object to a subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object.


In some implementations, the mapping the third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object can include selecting a set of rows from the first stored data with one or more key values that are present in the second stored data.


The operations can further include creating a second listener for the second data source object in memory and listening with the second listener for one or more changes to the second data source object. The operations can include making one or more changes to the second data source object. The operations can also include detecting by the second listener of one or more changes to the second data source object. The operations can further include receiving a notification of one or more changes to the second data source object and determining whether to request a remapping of the third data source object to a second subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object, the determination based on whether the one or more changes to the second data source object effected an overall change in the second data source. The operations can include updating the mapping of the third data source object to a subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object only if the one or more changes to the second data source object effected an overall change in the second data source.


A change to the first data source object can includes at least one of adding a row to the first data source object, deleting a row from the first data source object, changing the data in a row of the first data source object, and re-indexing the rows of the first data source object.


A change to the second data source object includes at least one of adding a row to the second data source object, deleting a row from the second data source object, changing the data in a row of the second data source object, and re-indexing the rows of the second data source object.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of an example computer data system showing an example data distribution configuration in accordance with some implementations.



FIG. 2 is a diagram of an example computer data system showing an example administration/process control arrangement in accordance with some implementations.



FIG. 3 is a diagram of an example computing device configured for dynamic filter operations processing in accordance with some implementations.



FIG. 4 is a diagram of an example interest table in accordance with some implementations.



FIG. 5 is a diagram of an example data table in accordance with some implementations.



FIG. 6 is a diagram of an example interest filtered data table in accordance with some implementations.



FIG. 7 is a flowchart of an example dynamic filtering operation in accordance with some implementations.



FIG. 8 is a flowchart of an example dynamic filtering operation in accordance with some implementations.





DETAILED DESCRIPTION

Reference is made herein to the Java programming language, Java classes, Java bytecode and the Java Virtual Machine (JVM) for purposes of illustrating example implementations. It will be appreciated that implementations can include other programming languages (e.g., groovy, Scala, R, Go, etc.), other programming language structures as an alternative to or in addition to Java classes (e.g., other language classes, objects, data structures, program units, code portions, script portions, etc.), other types of bytecode, object code and/or executable code, and/or other virtual machines or hardware implemented machines configured to execute a data system query.



FIG. 1 is a diagram of an example computer data system and network 100 showing an example data distribution configuration in accordance with some implementations. In particular, the system 100 includes an application host 102, a periodic data import host 104, a query server host 106, a long-term file server 108, and a user data import host 110. While tables are used as an example data object in the description below, it will be appreciated that the data system described herein can also process other data objects such as mathematical objects (e.g., a singular value decomposition of values in a given range of one or more rows and columns of a table), TableMap objects, etc. A TableMap object provides the ability to lookup a Table by some key. This key represents a unique value (or unique tuple of values) from the columns aggregated on in a byExternal( ) statement execution, for example. A TableMap object can be the result of a byExternal( ) statement executed as part of a query. It will also be appreciated that the configurations shown in FIGS. 1 and 2 are for illustration purposes and in a given implementation each data pool (or data store) may be directly attached or may be managed by a file server.


The application host 102 can include one or more application processes 112, one or more log files 114 (e.g., sequential, row-oriented log files), one or more data log tailers 116 and a multicast key-value publisher 118. The periodic data import host 104 can include a local table data server, direct or remote connection to a periodic table data store 122 (e.g., a column-oriented table data store) and a data import server 120. The query server host 106 can include a multicast key-value subscriber 126, a performance table logger 128, local table data store 130 and one or more remote query processors (132, 134) each accessing one or more respective tables (136, 138). The long-term file server 108 can include a long-term data store 140. The user data import host 110 can include a remote user table server 142 and a user table data store 144. Row-oriented log files and column-oriented table data stores are discussed herein for illustration purposes and are not intended to be limiting. It will be appreciated that log files and/or data stores may be configured in other ways. In general, any data stores discussed herein could be configured in a manner suitable for a contemplated implementation.


In operation, the input data application process 112 can be configured to receive input data from a source (e.g., a securities trading data source), apply schema-specified, generated code to format the logged data as it's being prepared for output to the log file 114 and store the received data in the sequential, row-oriented log file 114 via an optional data logging process. In some implementations, the data logging process can include a daemon, or background process task, that is configured to log raw input data received from the application process 112 to the sequential, row-oriented log files on disk and/or a shared memory queue (e.g., for sending data to the multicast publisher 118). Logging raw input data to log files can additionally serve to provide a backup copy of data that can be used in the event that downstream processing of the input data is halted or interrupted or otherwise becomes unreliable.


A data log tailer 116 can be configured to access the sequential, row-oriented log file(s) 114 to retrieve input data logged by the data logging process. In some implementations, the data log tailer 116 can be configured to perform strict byte reading and transmission (e.g., to the data import server 120). The data import server 120 can be configured to store the input data into one or more corresponding data stores such as the periodic table data store 122 in a column-oriented configuration. The periodic table data store 122 can be used to store data that is being received within a time period (e.g., a minute, an hour, a day, etc.) and which may be later processed and stored in a data store of the long-term file server 108. For example, the periodic table data store 122 can include a plurality of data servers configured to store periodic securities trading data according to one or more characteristics of the data (e.g., a data value such as security symbol, the data source such as a given trading exchange, etc.).


The data import server 120 can be configured to receive and store data into the periodic table data store 122 in such a way as to provide a consistent data presentation to other parts of the system. Providing/ensuring consistent data in this context can include, for example, recording logged data to a disk or memory, ensuring rows presented externally are available for consistent reading (e.g., to help ensure that if the system has part of a record, the system has all of the record without any errors), and preserving the order of records from a given data source. If data is presented to clients, such as a remote query processor (132, 134), then the data may be persisted in some fashion (e.g., written to disk).


The local table data server 124 can be configured to retrieve data stored in the periodic table data store 122 and provide the retrieved data to one or more remote query processors (132, 134) via an optional proxy.


The remote user table server (RUTS) 142 can include a centralized consistent data writer, as well as a data server that provides processors with consistent access to the data that it is responsible for managing. For example, users can provide input to the system by writing table data that is then consumed by query processors.


The remote query processors (132, 134) can use data from the data import server 120, local table data server 124 and/or from the long-term file server 108 to perform queries. The remote query processors (132, 134) can also receive data from the multicast key-value subscriber 126, which receives data from the multicast key-value publisher 118 in the application host 102. The performance table logger 128 can log performance information about each remote query processor and its respective queries into a local table data store 130. Further, the remote query processors can also read data from the RUTS, from local table data written by the performance logger, or from user table data read over NFS.


It will be appreciated that the configuration shown in FIG. 1 is a typical example configuration that may be somewhat idealized for illustration purposes. An actual configuration may include one or more of each server and/or host type. The hosts/servers shown in FIG. 1 (e.g., 102-110, 120, 124 and 142) may each be separate or two or more servers may be combined into one or more combined server systems. Data stores can include local/remote, shared/isolated and/or redundant. Any table data may flow through optional proxies indicated by an asterisk on certain connections to the remote query processors. Also, it will be appreciated that the term “periodic” is being used for illustration purposes and can include, but is not limited to, data that has been received within a given time period (e.g., millisecond, second, minute, hour, day, week, month, year, etc.) and which has not yet been stored to a long-term data store (e.g., 140).



FIG. 2 is a diagram of an example computer data system 200 showing an example administration/process control arrangement in accordance with some implementations. The system 200 includes a production client host 202, a controller host 204, a GUI host or workstation 206, and query server hosts 208 and 210. It will be appreciated that there may be one or more of each of 202-210 in a given implementation.


The production client host 202 can include a batch query application 212 (e.g., a query that is executed from a command line interface or the like) and a real time query data consumer process 214 (e.g., an application that connects to and listens to tables created from the execution of a separate query). The batch query application 212 and the real time query data consumer 214 can connect to a remote query dispatcher 222 and one or more remote query processors (224, 226) within the query server host 1208.


The controller host 204 can include a persistent query controller 216 configured to connect to a remote query dispatcher 232 and one or more remote query processors 228-230. In some implementations, the persistent query controller 216 can serve as the “primary client” for persistent queries and can request remote query processors from dispatchers, and send instructions to start persistent queries. For example, a user can submit a query to 216, and 216 starts and runs the query every day. In another example, a securities trading strategy could be a persistent query. The persistent query controller can start the trading strategy query every morning before the market open, for instance. It will be appreciated that 216 can work on times other than days. In some implementations, the controller may require its own clients to request that queries be started, stopped, etc. This can be done manually, or by scheduled (e.g., cron) jobs. Some implementations can include “advanced scheduling” (e.g., auto-start/stop/restart, time-based repeat, etc.) within the controller.


The GUI/host workstation can include a user console 218 and a user query application 220. The user console 218 can be configured to connect to the persistent query controller 216. The user query application 220 can be configured to connect to one or more remote query dispatchers (e.g., 232) and one or more remote query processors (228, 230).



FIG. 3 is a diagram of an example computing device 300 in accordance with at least one implementation. The computing device 300 includes one or more processors 302, operating system 304, computer readable medium 306 and network interface 308. The memory 306 can include remote query processor application 310 and a data section 312 (e.g., for storing ASTs, precompiled code, etc.).


In operation, the processor 302 may execute the application 310 stored in the memory 306. The application 310 can include software instructions that, when executed by the processor, cause the processor to perform operations for executing and updating queries and dynamic filter operations in accordance with the present disclosure (e.g., performing one or more of 702-712, 802-822 described below).


The application program 310 can operate in conjunction with the data section 312 and the operating system 304.


Large data systems can be dynamic in nature with continuing steams of data being added by the second or even the microsecond. Users of a large data system may only be interested in a subset of the large data. For example, thousands of stock symbols exist but a user may only desire to follow a few favorites. To that end, a user may keep those favorites in a list that can be routinely updated over time. The user can use the favorites list to filter the the large data source to retrieve only the data of interest. The filtering can occur every microsecond, second, minute, hour, day, or longer depending on how quickly the data is being added, deleted, or modified in the large data source. After the initial filtering, only supplemental filtering of the added, deleted, modified, re-indexed data can be required to keep the user up to date as long as the user does not change the favorites list. If the favorites list changes through a deletion or addition in the list, the complete large data source can be filtered to bring the user's result set up to date. To relieve the system from constantly re-filtering the large data set to keep the user up to date, the system can create listeners to monitor for changes to the favorites list and the large data source. If the listener detects an effective change in the favorites list, the system then knows to re-filter the full large data source, but if the listener only detects changes to the large data source, the system knows to only do supplemental updates to the user's result set.



FIG. 4 is a diagram of an example of an interest data source that can be an interest table (user's favorites list) 400 in accordance with some implementations. The interest table 400 can contain one or more rows of data. The one or more rows of data in an interest table 400 can be used to provide filter parameters for filtering another data source. For example, the interest table 400 can contain interest data such as a stock symbol column 402 that can contain stock symbols (AAPL, SPY) that are of interest for filtering a larger data source that can contain additional information about the stock symbols AAPL and SPY.


It will be appreciated that an interest data source can be stored in forms and formats other than a table, such as a table object, a flat file, an array, or the like. It will also be appreciated that interest data is not limited to a single column or field. For example, the interest data could occupy one or more columns or fields that contain key values for filtering such as Symbol or Symbol and Price.



FIG. 5 is a diagram of an example data source that can be a quotes received table 500 in accordance with some implementations. The data source can contain any selection of data. For example, a data source can contain stock symbols 502, the associated quote date 504, associated quote time 506, and the associated quote 508 that occurred on the quote date 504 and at the quote time 506.


It will be appreciated that the data source can be stored in forms and formats other than a table, such as a table object, a flat file, an array, or the like. It will also be appreciated that the data source is not limited to a particular number of columns or fields. For example, the data source could expand to as many columns or fields that can be supported by the data source system.



FIG. 6 is a diagram of an example filtered data source that can be a filtered quote table 600 in accordance with some implementations. The filtered quote table can be the result of the quotes received table 500 filtered by stock symbol 402 of the interest table 400. For example, quotes received table 500 with stock symbol 502 can contain quotes received over time for stock symbols AAPL, CMI, and SPY. The interest table can contain stock symbol 402 that can contain AAPL and SPY. If quotes received table 500 is filtered by selecting only the rows from the interest table 400 that contain symbols from stock symbol 402, the resulting table can be the filtered quotes table 600 that only contains rows with stock symbol 602 that match contents of stock symbol 402.


It will be appreciated that more than one column from an interest table can be used to filter a data source.


It will also be appreciated that a variety of filtering logic can be used in conjunction with the interest table. Selection based on values found in or not found in the interest table are two examples. Other examples include, but are not limited to, applying one or more formulas, less than or equal to and/or greater than or equal qualifiers.



FIG. 7 is a flowchart of an example flow of a dynamic filtering operation 700 using an interest data source and a data source in accordance with some implementations. The components of the example dynamic filtering operation 700 can be a ticking table A 702, a ticking table B 704, a table A modification listener 706, a table B modification listener 710, a filtered results table C 708, and a request to perform a full filtering of table A 712 to update table C 708.


Ticking tables such as table A 702 and table B 704 can be data sources that are changing frequently or that can change. For example, changes can occur due to an addition of one or more rows, a modification to one or more existing rows, deletion of one or more rows, or re-indexing. Re-indexing can be the same data but with different row locations. An example of table A can be the quotes received table 500. An example of table B can be the interest table 400.


It will be appreciated that changes that can occur to data sources are not limited to an addition of one or more rows, a modification to one or more existing rows, deletion of one or more rows, or re-indexing. For example, changes such as column additions, column deletions, column merges, row merges, or the like can occur.


It will be appreciated that table A 702 and table B 704 can change asynchronously. For example, table A 702 can be a table that adds new rows every microsecond, second, minute, hour, day or the like. Table B 704 can be a table that never or rarely adds, modifies, or deletes rows. The changes to table A 702 can be made independent of changes to table B 704 and the changes to table B 704 can be made independent of the changes to table A 702.


Table modification listeners such as table A modification listener 706 and table B modification listener 710 can be a software construct associated with a changing data source that can listen for events or changes that can occur in a changing data source. Examples of events or changes can include an addition of one or more rows to a table, a modification of one or more rows of a table, a deletion of one or more rows of a table, or a re-indexing of the rows of a table. A modification listener (706, 710) can trigger filtering to occur after an event or change is detected by the modification listener (706, 710).


Filtered data source results such as table C 708 can be a filtered result of table A. An example of table C can be the filtered quotes table 600. Table C can be formed by an example command such as table_C=table A.DynamicFilteringOperation (table_B, “interest column”). The DynamicFilteringOperation portion of the command can alert a compiler or an interpreter that the filter will remain dynamic through the life of table C. The table B portion of the command can alert a compiler or an interpreter that table B will provide the filtering by designation of the table B filtering column or columns, “interest column.”


It will be appreciated that an example command such as table_C=table_A NotInDynamicFilteringOperation (table_B, “interest column”) can create a resultant table C that does not contain rows that contain any of the items designated in the table B interest column.


It will also be appreciated that a formula or formulas can be substituted for interest column or columns.



FIG. 7 demonstrates example flow possibilities for updating a table C that has already been created from the filtering of table A at least once with a table B through the application of an DynamicFilteringOperation command in accordance with some implementations. As part of the application of the DynamicFilteringOperation command, listeners 706, 710 for input to table A 702 and table B 704 can be configured to listen for any changes to table A 702 and table B 704 respectively, in order to determine when, where, and how to apply the dynamic filter operation.


Listener 706 can continuously listen for changes to table A 702. If the listener 706 detects a change to table A 702 through either an addition of one or more rows, a deletion of one or more rows, a modification of one or more rows, or a re-indexing of table A 702, the listener 706 can trigger a re-filtering of table C 708 for only those rows affected by the addition, deletion, modification or re-indexing.


It will be appreciated that changes that can be detected by the listener are not limited to an addition of one or more rows, a modification to one or more existing rows, deletion of one or more rows, or re-indexing. For example, changes such as column additions, column deletions, column merges, row merges, or the like can be detected.


Listener 710 can continuously listen for messages containing changes to table B 704. If listener 710 does not detect a message regarding an addition of one or more rows, a deletion of one or more rows, or a modification of one or more rows, re-indexing or other message types in table B 704, listener 710 does not take any action toward re-filtering table C 708. If listener 710 detects an addition of one or more rows, a deletion of one or more rows, or a modification of one or more rows, re-indexing, or other message types in table B 704, listener 710 can initiate a request for full table filtering 712 of table A 702, which causes table C 708 to be updated to reflect the new interest set in table B 704. The updated table C 708 can then send a notification message of the changes to any downstream listeners for children created from operations on table C. This can be an equivalent replacement of table C without the table C object being deleted and recreated. The listener 710 can also maintain additional state to prevent re-filtering when modifications to table B 704 does not result in a new interest set, for example, adding and removing rows with duplicate values.


It will be appreciated that filtering on only changed table A 702 rows and only completing a full filtering of table A 702 when table B 704 changes can provide a significant system efficiency savings for large tables or large data sources.


It will be appreciated that a DynamicFilteringOperation can be implemented with constructs other than listeners, such as any construct that can monitor events such as an addition of one or more rows, a deletion of one or more rows, a modification of one or more rows, or re-indexing in a table or other data source.


It will also be appreciated that a DynamicFilteringOperation can be executed in a remote query processor application 310 but is not limited to being executed in a remote processor application.



FIG. 8 is a diagram of an example dynamic filtering operation 800 using the example tables from FIGS. 4, 5, and 6 in accordance with some implementations. Processing begins at 802, when a quotes received table 500 is created and populated with data. Alternatively, processing can begin at 804 with the creation and populating of an interest table 400. The quotes received table 500 and the interest table 400 can also be created and populated simultaneously. Processing continues to 806 and 808.


It will be appreciated that a dynamic filtering operation can be executed in a remote query processor application 310 but is not limited to being executed in a remote processor application.


At 806, a listener is created to detect changes to the quotes received table 500. Changes that can occur to the quotes received table 500 include an addition of rows, a deletion of rows, a modification of row content, or a re-indexing of rows.


It will be appreciated that changes that can be detected by the listener are not limited to an addition of one or more rows, a modification to one or more existing rows, deletion of one or more rows, or re-indexing. For example, changes such as column additions, column deletions, column merges, row merges, or the like can be detected.


At 808, a listener is created to detect messages containing changes to the interest table 400. Examples of messages of changes that can occur to the interest table 400 include an addition of rows, a deletion of rows, a modification of row content, a re-indexing, or other message types. It will be appreciated that the creation of the listener 806, 808, follows the creation of the associated table, respectively quotes received table 500 and interest table 400. Accordingly, whether listener 806 precedes the creation of listener 808 or whether listener 808 precedes the creation of listener 806 or whether listener 808 and listener 806 are created simultaneously depends on the timing of the creation of the quotes received table 500 and the interest table 400. Processing continues to 810.


At 810, the filtered quotes table 600 can be created by executing the following example dynamic filtering operation command: Filtered_Quotes_Table=Quotes_Received_Table.WhereDynamicIn (Interest_Table, “Stock_Symbol”). The execution of the dynamic filtering operation command also configures the listeners (806, 808) to trigger an update to the the filtered quotes table (600) for a change detected to the quotes received table 500 and to trigger a full filtering of the quotes received table 500 causing a full update of the filtered quotes table 600 for a change detected to the interest table 400. Processing continues to 812.


It will be appreciated that 812 and 818 and their connected next steps can be run in parallel or asynchronously. For clarity of process, steps 812 through 816 are addressed first before returning to 818.


At 812, the listener detects whether one or more rows have been added, modified, deleted or re-indexed in the quotes received table 500. Processing continues to 814.


At 814, when the listener detects the addition, modification, deletion or other change, the listener triggers the execution of the dynamic filtering command on only the added, modified, deleted, or changed portion of the quotes received table 500. Processing continues to 816.


At 816, the filtered quotes table 600 is updated with only the changes made to the quotes received table 500. For example, if a new row for AAPL has been added to the quotes received table 500, then the dynamic filter is executed on that row. The filtered quotes table 600 is updated with the new AAPL row because AAPL is also found in the interest table 400. In another example, if a new row for CMI has been added to the quotes received table 500, then the dynamic filter is executed on that row. But the filtered quotes table 600 is not updated with the new CMI row because CMI is not found in the interest table 400. Process returns to 812.


At 812, the process from 812 to 816 will continue to loop as long as the dynamic filter command remains active. Continue discussion of flowchart at 818.


At 818, the listener created in 810 listens for the addition of one or more rows, the modification of one or more rows, the deletion of one or more rows, or other changes to the interest table 400. Processing continues to 820.


At 820, if the listener detects the addition, modification, deletion or other change that can result in a change to the interest set, the listener triggers the execution of the dynamic filtering operation command on the entirety of the quotes received table 500. For example, if CMI is added to the interest table, then the entire quotes received table 500 will be filtered on AAPL, CMI, and SPY to pick up all the CMI rows that were not previously part of the filtered quotes table 600.


It will be appreciated that in some cases, the system may not need to apply the change to the entirety of the table, thus avoiding the need to re-compute the entirety of the filter operation. For example, if the interest table only had one row removed, the system can update only the removed element rather than re-compute the whole table. Processing continues to 822.


At 822, the filtered quotes table is updated by applying the dynamic filtering to the entirety of the quotes received table. Process returns to 818.


At 818, the process from 818 to 822 will continue to loop as long as the dynamic filtering operation command remains active.


It will be appreciated that the modules, processes, systems, and sections described above can be implemented in hardware, hardware programmed by software, software instructions stored on a nontransitory computer readable medium or a combination of the above. A system as described above, for example, can include a processor configured to execute a sequence of programmed instructions stored on a nontransitory computer readable medium. For example, the processor can include, but not be limited to, a personal computer or workstation or other such computing system that includes a processor, microprocessor, microcontroller device, or is comprised of control logic including integrated circuits such as, for example, an Application Specific Integrated Circuit (ASIC), a field programmable gate array (FPGA), graphics processing unit (GPU), or the like. The instructions can be compiled from source code instructions provided in accordance with a programming language such as Java, C, C++, C#.net, assembly or the like. The instructions can also comprise code and data objects provided in accordance with, for example, the Visual Basic™ language, a specialized database query language, or another structured or object-oriented programming language. The sequence of programmed instructions, or programmable logic device configuration software, and data associated therewith can be stored in a nontransitory computer-readable medium such as a computer memory or storage device which may be any suitable memory apparatus, such as, but not limited to ROM, PROM, EEPROM, RAM, flash memory, disk drive and the like.


Furthermore, the modules, processes systems, and sections can be implemented as a single processor or as a distributed processor. Further, it should be appreciated that the steps mentioned above may be performed on a single or distributed processor (single and/or multi-core, or cloud computing system). Also, the processes, system components, modules, and sub-modules described in the various figures of and for embodiments above may be distributed across multiple computers or systems or may be co-located in a single processor or system. Example structural embodiment alternatives suitable for implementing the modules, sections, systems, means, or processes described herein are provided below.


The modules, processors or systems described above can be implemented as a programmed general purpose computer, an electronic device programmed with microcode, a hard-wired analog logic circuit, software stored on a computer-readable medium or signal, an optical computing device, a networked system of electronic and/or optical devices, a special purpose computing device, an integrated circuit device, a semiconductor chip, and/or a software module or object stored on a computer-readable medium or signal, for example.


Embodiments of the method and system (or their sub-components or modules), may be implemented on a general-purpose computer, a special-purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element, an ASIC or other integrated circuit, a digital signal processor, a hardwired electronic or logic circuit such as a discrete element circuit, a programmed logic circuit such as a PLD, PLA, FPGA, PAL, or the like. In general, any processor capable of implementing the functions or steps described herein can be used to implement embodiments of the method, system, or a computer program product (software program stored on a nontransitory computer readable medium).


Furthermore, embodiments of the disclosed method, system, and computer program product (or software instructions stored on a nontransitory computer readable medium) may be readily implemented, fully or partially, in software using, for example, object or object-oriented software development environments that provide portable source code that can be used on a variety of computer platforms. Alternatively, embodiments of the disclosed method, system, and computer program product can be implemented partially or fully in hardware using, for example, standard logic circuits or a VLSI design. Other hardware or software can be used to implement embodiments depending on the speed and/or efficiency requirements of the systems, the particular function, and/or particular software or hardware system, microprocessor, or microcomputer being utilized. Embodiments of the method, system, and computer program product can be implemented in hardware and/or software using any known or later developed systems or structures, devices and/or software by those of ordinary skill in the applicable art from the function description provided herein and with a general basic knowledge of the software engineering and computer networking arts.


Moreover, embodiments of the disclosed method, system, and computer readable media (or computer program product) can be implemented in software executed on a programmed general purpose computer, a special purpose computer, a microprocessor, or the like.


It is, therefore, apparent that there is provided, in accordance with the various embodiments disclosed herein, methods, systems and computer readable media for dynamic filter operations.


Application Ser. No. 15/154,974, entitled “DATA PARTITIONING AND ORDERING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,975, entitled “COMPUTER DATA SYSTEM DATA SOURCE REFRESHING USING AN UPDATE PROPAGATION GRAPH” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,979, entitled “COMPUTER DATA SYSTEM POSITION-INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,980, entitled “SYSTEM PERFORMANCE LOGGING OF COMPLEX REMOTE QUERY PROCESSOR QUERY OPERATIONS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,983, entitled “DISTRIBUTED AND OPTIMIZED GARBAGE COLLECTION OF REMOTE AND EXPORTED TABLE HANDLE LINKS TO UPDATE PROPAGATION GRAPH NODES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,984, entitled “COMPUTER DATA SYSTEM CURRENT ROW POSITION QUERY LANGUAGE CONSTRUCT AND ARRAY PROCESSING QUERY LANGUAGE CONSTRUCTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,985, entitled “PARSING AND COMPILING DATA SYSTEM QUERIES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,987, entitled “DYNAMIC FILTER PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,988, entitled “DYNAMIC JOIN PROCESSING USING REAL-TIME MERGED NOTIFICATION LISTENER” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,990, entitled “DYNAMIC TABLE INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,991, entitled “QUERY TASK PROCESSING BASED ON MEMORY ALLOCATION AND PERFORMANCE CRITERIA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,993, entitled “A MEMORY-EFFICIENT COMPUTER SYSTEM FOR DYNAMIC UPDATING OF JOIN PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,995, entitled “QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,996, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,997, entitled “DYNAMIC UPDATING OF QUERY RESULT DISPLAYS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,998, entitled “DYNAMIC CODE LOADING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,999, entitled “IMPORTATION, PRESENTATION, AND PERSISTENT STORAGE OF DATA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,001, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,005, entitled “PERSISTENT QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,006, entitled “SINGLE INPUT GRAPHICAL USER INTERFACE CONTROL ELEMENT AND METHOD” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,007, entitled “GRAPHICAL USER INTERFACE DISPLAY EFFECTS FOR A COMPUTER DISPLAY SCREEN” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,009, entitled “COMPUTER ASSISTED COMPLETION OF HYPERLINK COMMAND SEGMENTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,010, entitled “HISTORICAL DATA REPLAY UTILIZING A COMPUTER SYSTEM” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,011, entitled “DATA STORE ACCESS PERMISSION SYSTEM WITH INTERLEAVED APPLICATION OF DEFERRED ACCESS CONTROL FILTERS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,012, entitled “REMOTE DATA OBJECT PUBLISHING/SUBSCRIBING SYSTEM HAVING A MULTICAST KEY-VALUE PROTOCOL” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


While the disclosed subject matter has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be, or are, apparent to those of ordinary skill in the applicable arts. Accordingly, Applicants intend to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of the disclosed subject matter.

Claims
  • 1. A system for automatically updating data source objects, the system comprising: one or more hardware processors;a computer readable data storage device coupled to the one or more hardware processors, the computer readable data storage device having stored thereon software instructions that, when executed by the one or more hardware processors, cause the one or more hardware processors to perform operations including:creating a first data source object in a first memory;mapping the first data source object to a first stored data;creating a second data source object in a second memory, the second data source object different than the first data source object;mapping the second data source object to a second stored data;creating a third data source object in a third memory, the third data source object different than the first data source object and the second data source object;mapping the third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object;receiving a notification of one or more changes to the second data source object; andrequesting a remapping of the third data source object to a second subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object.
  • 2. The system of claim 1, the operations further comprising: updating the mapping of the third data source object to a subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object.
  • 3. The system of claim 1, wherein the mapping the third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object includes selecting a set of rows from the first stored data with one or more key values that are present in the second stored data.
  • 4. The system of claim 1, wherein the mapping the third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object includes selecting a set of rows form the first stored data with one or more key values that are not present in the second stored data.
  • 5. The system of claim 2, the operations further comprising: determining whether to request a remapping of the third data source object to a second subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object, the determination based on whether the one or more changes to the second data source object effected an overall change in the second data source,wherein the updating the mapping of the third data source object to a subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object is performed only when the one or more changes to the second data source object effected an overall change in the second data source.
  • 6. The system of claim 1, wherein the change to the first data source object includes at least re-indexing the rows of the first data source object.
  • 7. The system of claim 1, wherein a change to the second data source object includes at least one of: adding a row to the second data source object;deleting a row from the second data source object;changing the data in a row of the second data source object; andre-indexing the rows of the second data source object.
  • 8. The system of claim 1, wherein the first memory, the second memory, and the third memory are all different.
  • 9. The system of claim 1, the operations further comprising: sending a notification message of changes to the third data source object to any downstream listeners of one or more children created from operations on the third data source object.
  • 10. The system of claim 1, wherein the remapping includes remapping of the third data source object to a second subset of first stored data by full data filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object; andwherein the first data source object is different than the second data source object.
  • 11. A method for using a computer system to automatically update data source objects, the method comprising: mapping a first data source object to a first stored data;mapping a second data source object to a second stored data;mapping a third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object;receiving a notification of one or more changes to the second data source object; andrequesting a remapping of the third data source object to a second subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object.
  • 12. The method of claim 11, further comprising: updating the mapping of the third data source object to a subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object.
  • 13. The method of claim 11, wherein the mapping the third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object includes selecting a set of rows from the first stored data with one or more key values that are present in the second stored data.
  • 14. The method of claim 11, wherein the mapping the third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object includes selecting a set of rows form the first stored data with one or more key values that are not present in the second stored data.
  • 15. The method of claim 12, further comprising: determining whether to request a remapping of the third data source object to a second subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object, the determination based on whether the one or more changes to the second data source object effected an overall change in the second data source,wherein the updating the mapping of the third data source object to a subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object is performed only when the one or more changes to the second data source object effected an overall change in the second data source.
  • 16. The method of claim 11, wherein a change to the first data source object includes at least re-indexing the rows of the first data source object.
  • 17. The method of claim 11, wherein a change to the second data source object includes at least one of: adding a row to the second data source object;deleting a row from the second data source object;changing the data in a row of the second data source object; andre-indexing the rows of the second data source object.
  • 18. The method of claim 11, wherein the first data source object, the second data source object, and the third data source object are all stored in different memory devices.
  • 19. The method of claim 11, further comprising: sending a notification message of changes to the third data source object to any downstream listeners of one or more children created from operations on the third data source object.
  • 20. The method of claim 11, the operations further comprising: wherein the remapping includes remapping of the third data source object to a second subset of first stored data by full data filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object; andwherein the first data source object is different than the second data source object.
  • 21. A non-transitory computer readable medium having stored thereon software instructions that, when executed by one or more processors, cause the one or more processors to perform operations including: mapping a first data source object to a first stored data;mapping a second data source object to a second stored data;mapping a third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object;receiving a notification of one or more changes to the second data source object; andrequesting a remapping of the third data source object to a second subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object.
  • 22. The non-transitory computer readable medium of claim 21, the operations further comprising: updating the mapping of the third data source object to a subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object.
  • 23. The non-transitory computer readable medium of claim 21, wherein mapping the third data source object to a first subset of the first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object includes selecting a set of rows from the first stored data with one or more key values that are present in the second stored data.
  • 24. The non-transitory computer readable medium of claim 22, the operations further comprising: determining whether to request a remapping of the third data source object to a second subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object, the determination based on whether the one or more changes to the second data source object effected an overall change in the second data source,wherein the updating the mapping of the third data source object to a subset of first stored data by filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object is performed only when the one or more changes to the second data source object effected an overall change in the second data source.
  • 25. The non-transitory computer readable medium of claim 21, wherein a change to the first data source object includes at least re-indexing the rows of the first data source object.
  • 26. The non-transitory computer readable medium of claim 21, wherein a change to the second data source object includes at least one of: adding a row to the second data source object;deleting a row from the second data source object;changing the data in a row of the second data source object; andre-indexing the rows of the second data source object.
  • 27. The non-transitory computer readable medium of claim 21, wherein the first data source object, the second data source object, and the third data source object are all stored in different memory devices.
  • 28. The non-transitory computer readable medium of claim 21, the operations further comprising: sending a notification message of changes to the third data source object to any downstream listeners of one or more children created from operations on the third data source object.
  • 29. The non-transitory computer readable medium of claim 21, the operations further comprising: wherein the remapping includes remapping of the third data source object to a second subset of first stored data by full data filtering the first stored data mapped to the first data source object with the second stored data mapped to the second data source object; andwherein the first data source object is different than the second data source object.
Parent Case Info

This application claims the benefit of U.S. Provisional Application No. 62/161,813, entitled “Computer Data System” and filed on May 14, 2015, which is incorporated herein by reference in its entirety.

US Referenced Citations (475)
Number Name Date Kind
5335202 Manning et al. Aug 1994 A
5452434 Macdonald Sep 1995 A
5469567 Okada Nov 1995 A
5504885 Alashqur Apr 1996 A
5530939 Mansfield et al. Jun 1996 A
5568632 Nelson Oct 1996 A
5673369 Kim Sep 1997 A
5701461 Dalal et al. Dec 1997 A
5701467 Freeston Dec 1997 A
5764953 Collins et al. Jun 1998 A
5787428 Hart Jul 1998 A
5806059 Tsuchida et al. Sep 1998 A
5859972 Subramaniam et al. Jan 1999 A
5875334 Chow et al. Feb 1999 A
5878415 Olds Mar 1999 A
5890167 Bridge et al. Mar 1999 A
5899990 Maritzen et al. May 1999 A
5920860 Maheshwari et al. Jul 1999 A
5943672 Yoshida Aug 1999 A
5960087 Tribble et al. Sep 1999 A
5991810 Shapiro et al. Nov 1999 A
5999918 Williams et al. Dec 1999 A
6006220 Haderle et al. Dec 1999 A
6032144 Srivastava et al. Feb 2000 A
6032148 Wilkes Feb 2000 A
6038563 Bapat et al. Mar 2000 A
6058394 Bakow et al. May 2000 A
6061684 Glasser et al. May 2000 A
6138112 Slutz Oct 2000 A
6160548 Lea et al. Dec 2000 A
6266669 Brodersen et al. Jul 2001 B1
6289357 Parker Sep 2001 B1
6292803 Richardson et al. Sep 2001 B1
6304876 Isip Oct 2001 B1
6317728 Kane Nov 2001 B1
6327702 Sauntry et al. Dec 2001 B1
6336114 Garrison Jan 2002 B1
6353819 Edwards et al. Mar 2002 B1
6367068 Vaidyanathan et al. Apr 2002 B1
6389414 Delo et al. May 2002 B1
6389462 Cohen et al. May 2002 B1
6438537 Netz et al. Aug 2002 B1
6446069 Yaung et al. Sep 2002 B1
6460037 Weiss et al. Oct 2002 B1
6473750 Petculescu et al. Oct 2002 B1
6487552 Lei et al. Nov 2002 B1
6496833 Goldberg et al. Dec 2002 B1
6505189 Au et al. Jan 2003 B1
6505241 Pitts Jan 2003 B2
6510551 Miller Jan 2003 B1
6530075 Beadle et al. Mar 2003 B1
6538651 Hayman et al. Mar 2003 B1
6546402 Beyer et al. Apr 2003 B1
6553375 Huang et al. Apr 2003 B1
6584474 Pereira Jun 2003 B1
6604104 Smith Aug 2003 B1
6618720 Au et al. Sep 2003 B1
6631374 Klein et al. Oct 2003 B1
6640234 Coffen et al. Oct 2003 B1
6697880 Dougherty Feb 2004 B1
6701415 Hendren Mar 2004 B1
6714962 Helland et al. Mar 2004 B1
6725243 Snapp Apr 2004 B2
6732100 Brodersen et al. May 2004 B1
6745332 Wong et al. Jun 2004 B1
6748374 Madan et al. Jun 2004 B1
6748455 Hinson et al. Jun 2004 B1
6760719 Hanson et al. Jul 2004 B1
6775660 Lin et al. Aug 2004 B2
6785668 Polo et al. Aug 2004 B1
6795851 Noy Sep 2004 B1
6816855 Hartel et al. Nov 2004 B2
6820082 Cook et al. Nov 2004 B1
6829620 Michael et al. Dec 2004 B2
6832229 Reed Dec 2004 B2
6851088 Conner et al. Feb 2005 B1
6882994 Yoshimura et al. Apr 2005 B2
6925472 Kong Aug 2005 B2
6934717 James Aug 2005 B1
6947928 Dettinger et al. Sep 2005 B2
6983291 Cochrane et al. Jan 2006 B1
6985895 Witkowski et al. Jan 2006 B2
6985899 Chan et al. Jan 2006 B2
6985904 Kaluskar et al. Jan 2006 B1
7020649 Cochrane et al. Mar 2006 B2
7024414 Sah et al. Apr 2006 B2
7031962 Moses Apr 2006 B2
7058657 Berno Jun 2006 B1
7089228 Arnold et al. Aug 2006 B2
7089245 George et al. Aug 2006 B1
7096216 Anonsen Aug 2006 B2
7099927 Cudd et al. Aug 2006 B2
7103608 Ozbutun et al. Sep 2006 B1
7110997 Turkel et al. Sep 2006 B1
7127462 Hiraga et al. Oct 2006 B2
7146357 Suzuki et al. Dec 2006 B2
7149742 Eastham et al. Dec 2006 B1
7167870 Avvari et al. Jan 2007 B2
7171469 Ackaouy et al. Jan 2007 B2
7174341 Ghukasyan et al. Feb 2007 B2
7181686 Bahrs Feb 2007 B1
7188105 Dettinger et al. Mar 2007 B2
7200620 Gupta Apr 2007 B2
7216115 Walters et al. May 2007 B1
7216116 Nilsson et al. May 2007 B1
7219302 O'Shaughnessy et al. May 2007 B1
7225189 McCormack et al. May 2007 B1
7254808 Trappen et al. Aug 2007 B2
7257689 Baird Aug 2007 B1
7272605 Hinshaw et al. Sep 2007 B1
7308580 Nelson et al. Dec 2007 B2
7316003 Dulepet et al. Jan 2008 B1
7330969 Harrison et al. Feb 2008 B2
7333941 Choi Feb 2008 B1
7343585 Lau et al. Mar 2008 B1
7350237 Vogel et al. Mar 2008 B2
7380242 Alaluf May 2008 B2
7401088 Chintakayala et al. Jul 2008 B2
7426521 Harter Sep 2008 B2
7430549 Zane et al. Sep 2008 B2
7433863 Zane et al. Oct 2008 B2
7447865 Uppala et al. Nov 2008 B2
7478094 Ho et al. Jan 2009 B2
7484096 Garg et al. Jan 2009 B1
7493311 Cutsinger et al. Feb 2009 B1
7506055 McClain et al. Mar 2009 B2
7529734 Dirisala May 2009 B2
7529750 Bair May 2009 B2
7542958 Warren et al. Jun 2009 B1
7552223 Ackaouy et al. Jun 2009 B1
7610351 Gollapudi et al. Oct 2009 B1
7620687 Chen et al. Nov 2009 B2
7624126 Pizzo et al. Nov 2009 B2
7627603 Rosenblum et al. Dec 2009 B2
7661141 Dutta et al. Feb 2010 B2
7664778 Yagoub et al. Feb 2010 B2
7672275 Yajnik et al. Mar 2010 B2
7680782 Chen et al. Mar 2010 B2
7711716 Stonecipher May 2010 B2
7711740 Minore et al. May 2010 B2
7747640 Dettinger et al. Jun 2010 B2
7761444 Zhang et al. Jul 2010 B2
7797356 Iyer et al. Sep 2010 B2
7827204 Heinzel et al. Nov 2010 B2
7827403 Wong et al. Nov 2010 B2
7827523 Ahmed et al. Nov 2010 B2
7882121 Bruno et al. Feb 2011 B2
7882132 Ghatare Feb 2011 B2
7904487 Ghatare Mar 2011 B2
7908259 Branscome et al. Mar 2011 B2
7908266 Zeringue et al. Mar 2011 B2
7930412 Yeap et al. Apr 2011 B2
7966311 Haase Jun 2011 B2
7966312 Nolan et al. Jun 2011 B2
7966343 Yang et al. Jun 2011 B2
7970777 Saxena et al. Jun 2011 B2
7979431 Qazi et al. Jul 2011 B2
7984043 Waas Jul 2011 B1
8019795 Anderson et al. Sep 2011 B2
8027293 Spaur et al. Sep 2011 B2
8032525 Bowers et al. Oct 2011 B2
8037542 Taylor et al. Oct 2011 B2
8046394 Shatdal Oct 2011 B1
8046749 Owen et al. Oct 2011 B1
8055672 Djugash et al. Nov 2011 B2
8060484 Bandera et al. Nov 2011 B2
8171018 Zane et al. May 2012 B2
8180789 Wasserman et al. May 2012 B1
8196121 Peshansky et al. Jun 2012 B2
8209356 Roesler Jun 2012 B1
8286189 Kukreja et al. Oct 2012 B2
8321833 Langworthy et al. Nov 2012 B2
8332435 Ballard et al. Dec 2012 B2
8359305 Burke et al. Jan 2013 B1
8375127 Lita Feb 2013 B1
8380757 Bailey et al. Feb 2013 B1
8418142 Ao et al. Apr 2013 B2
8433701 Sargeant et al. Apr 2013 B2
8458218 Wildermuth Jun 2013 B2
8473897 Box et al. Jun 2013 B2
8478713 Cotner et al. Jul 2013 B2
8515942 Marum et al. Aug 2013 B2
8543620 Ching Sep 2013 B2
8553028 Urbach Oct 2013 B1
8555263 Allen et al. Oct 2013 B2
8560502 Vora Oct 2013 B2
8595151 Hao et al. Nov 2013 B2
8601016 Briggs et al. Dec 2013 B2
8631034 Peloski Jan 2014 B1
8650182 Murthy Feb 2014 B2
8660869 MacIntyre et al. Feb 2014 B2
8676863 Connell et al. Mar 2014 B1
8683488 Kukreja et al. Mar 2014 B2
8713518 Pointer et al. Apr 2014 B2
8719252 Miranker et al. May 2014 B2
8725707 Chen et al. May 2014 B2
8726254 Rohde et al. May 2014 B2
8745014 Travis Jun 2014 B2
8745510 D'Alo′ et al. Jun 2014 B2
8751823 Myles et al. Jun 2014 B2
8768961 Krishnamurthy Jul 2014 B2
8788254 Peloski Jul 2014 B2
8793243 Weyerhaeuser et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806133 Hay et al. Aug 2014 B2
8812625 Chitilian et al. Aug 2014 B1
8838656 Cheriton Sep 2014 B1
8855999 Elliot Oct 2014 B1
8863156 Lepanto et al. Oct 2014 B1
8874512 Jin et al. Oct 2014 B2
8880569 Draper et al. Nov 2014 B2
8880787 Kimmel et al. Nov 2014 B1
8881121 Ali Nov 2014 B2
8886631 Abadi et al. Nov 2014 B2
8903717 Elliot Dec 2014 B2
8903842 Bloesch et al. Dec 2014 B2
8922579 Mi et al. Dec 2014 B2
8924384 Driesen et al. Dec 2014 B2
8930892 Pointer et al. Jan 2015 B2
8954418 Faerber et al. Feb 2015 B2
8959495 Chafi et al. Feb 2015 B2
8996864 Maigne et al. Mar 2015 B2
9031930 Valentin May 2015 B2
9077611 Cordray et al. Jul 2015 B2
9122765 Chen Sep 2015 B1
9195712 Freedman et al. Nov 2015 B2
9298768 Varakin et al. Mar 2016 B2
9311357 Ramesh et al. Apr 2016 B2
9372671 Balan et al. Jun 2016 B2
9384184 Cervantes et al. Jul 2016 B2
9612959 Caudy et al. Apr 2017 B2
9613018 Zeldis et al. Apr 2017 B2
9613109 Wright et al. Apr 2017 B2
9619210 Kent et al. Apr 2017 B2
9633060 Caudy et al. Apr 2017 B2
9639570 Wright et al. May 2017 B2
9672238 Wright et al. Jun 2017 B2
9679006 Wright et al. Jun 2017 B2
9690821 Wright et al. Jun 2017 B2
9710511 Wright et al. Jul 2017 B2
9760591 Caudy et al. Sep 2017 B2
9805084 Wright et al. Oct 2017 B2
9832068 McSherry et al. Nov 2017 B2
9836494 Caudy et al. Dec 2017 B2
9836495 Wright Dec 2017 B2
9886469 Kent et al. Feb 2018 B2
9898496 Caudy et al. Feb 2018 B2
9934266 Wright et al. Apr 2018 B2
10002153 Teodorescu et al. Jun 2018 B2
10002154 Kent et al. Jun 2018 B1
10002155 Caudy et al. Jun 2018 B1
10003673 Caudy et al. Jun 2018 B2
10019138 Zeldis et al. Jul 2018 B2
10069943 Teodorescu et al. Sep 2018 B2
20020002576 Wollrath et al. Jan 2002 A1
20020007331 Lo et al. Jan 2002 A1
20020054587 Baker et al. May 2002 A1
20020065981 Jenne et al. May 2002 A1
20020129168 Kanai et al. Sep 2002 A1
20020156722 Greenwood Oct 2002 A1
20030004952 Nixon et al. Jan 2003 A1
20030061216 Moses Mar 2003 A1
20030074400 Brooks et al. Apr 2003 A1
20030110416 Morrison et al. Jun 2003 A1
20030167261 Grust et al. Sep 2003 A1
20030182261 Patterson Sep 2003 A1
20030208484 Chang et al. Nov 2003 A1
20030208505 Mullins et al. Nov 2003 A1
20030233632 Aigen et al. Dec 2003 A1
20040002961 Dettinger et al. Jan 2004 A1
20040076155 Yajnik et al. Apr 2004 A1
20040111492 Nakahara et al. Jun 2004 A1
20040148630 Choi Jul 2004 A1
20040186813 Tedesco et al. Sep 2004 A1
20040216150 Scheifler et al. Oct 2004 A1
20040220923 Nica Nov 2004 A1
20040254876 Coval et al. Dec 2004 A1
20050015490 Saare et al. Jan 2005 A1
20050060693 Robison et al. Mar 2005 A1
20050097447 Serra et al. May 2005 A1
20050102284 Srinivasan et al. May 2005 A1
20050102636 McKeon et al. May 2005 A1
20050131893 Glan Jun 2005 A1
20050132384 Morrison et al. Jun 2005 A1
20050138624 Morrison et al. Jun 2005 A1
20050165866 Bohannon et al. Jul 2005 A1
20050198001 Cunningham et al. Sep 2005 A1
20060059253 Goodman et al. Mar 2006 A1
20060074901 Pirahesh et al. Apr 2006 A1
20060085490 Baron et al. Apr 2006 A1
20060100989 Chinchwadkar et al. May 2006 A1
20060101019 Nelson et al. May 2006 A1
20060116983 Dettinger et al. Jun 2006 A1
20060116999 Dettinger et al. Jun 2006 A1
20060136361 Peri et al. Jun 2006 A1
20060173693 Arazi et al. Aug 2006 A1
20060195460 Nori et al. Aug 2006 A1
20060212847 Tarditi et al. Sep 2006 A1
20060218123 Chowdhuri et al. Sep 2006 A1
20060218200 Factor et al. Sep 2006 A1
20060230016 Cunningham et al. Oct 2006 A1
20060253311 Yin et al. Nov 2006 A1
20060271510 Harward et al. Nov 2006 A1
20060277162 Smith Dec 2006 A1
20070011211 Reeves et al. Jan 2007 A1
20070027884 Heger et al. Feb 2007 A1
20070033518 Kenna et al. Feb 2007 A1
20070073765 Chen Mar 2007 A1
20070101252 Chamberlain et al. May 2007 A1
20070116287 Rasizade et al. May 2007 A1
20070169003 Branda et al. Jul 2007 A1
20070256060 Ryu et al. Nov 2007 A1
20070258508 Werb et al. Nov 2007 A1
20070271280 Chandasekaran Nov 2007 A1
20070299822 Jopp et al. Dec 2007 A1
20080022136 Mattsson et al. Jan 2008 A1
20080033907 Woehler et al. Feb 2008 A1
20080034084 Pandya Feb 2008 A1
20080046804 Rui et al. Feb 2008 A1
20080072150 Chan et al. Mar 2008 A1
20080120283 Liu et al. May 2008 A1
20080155565 Poduri Jun 2008 A1
20080168135 Redlich et al. Jul 2008 A1
20080235238 Jalobeanu et al. Sep 2008 A1
20080263179 Buttner et al. Oct 2008 A1
20080276241 Bajpai et al. Nov 2008 A1
20080319951 Ueno et al. Dec 2008 A1
20090019029 Tommaney et al. Jan 2009 A1
20090022095 Spaur et al. Jan 2009 A1
20090024615 Pedro et al. Jan 2009 A1
20090037391 Agrawal et al. Feb 2009 A1
20090055370 Dagum et al. Feb 2009 A1
20090083215 Burger Mar 2009 A1
20090089312 Chi et al. Apr 2009 A1
20090248902 Blue Oct 2009 A1
20090254516 Meiyyappan et al. Oct 2009 A1
20090271472 Scheifler et al. Oct 2009 A1
20090300770 Rowney et al. Dec 2009 A1
20090319058 Rovaglio et al. Dec 2009 A1
20090319484 Golbandi et al. Dec 2009 A1
20090327242 Brown et al. Dec 2009 A1
20100036801 Pirvali et al. Feb 2010 A1
20100042587 Johnson et al. Feb 2010 A1
20100047760 Best et al. Feb 2010 A1
20100049715 Jacobsen et al. Feb 2010 A1
20100161555 Nica et al. Jun 2010 A1
20100186082 Ladki et al. Jul 2010 A1
20100199161 Aureglia et al. Aug 2010 A1
20100205017 Sichelman et al. Aug 2010 A1
20100205351 Wiener et al. Aug 2010 A1
20100281005 Carlin et al. Nov 2010 A1
20100281071 Ben-Zvi et al. Nov 2010 A1
20110126110 Vilke et al. May 2011 A1
20110126154 Boehler et al. May 2011 A1
20110153603 Adiba et al. Jun 2011 A1
20110161378 Williamson Jun 2011 A1
20110167020 Yang et al. Jul 2011 A1
20110178984 Talius et al. Jul 2011 A1
20110194563 Shen et al. Aug 2011 A1
20110219020 Oks et al. Sep 2011 A1
20110314019 Pens Dec 2011 A1
20120110030 Pomponio May 2012 A1
20120144234 Clark et al. Jun 2012 A1
20120159303 Friedrich et al. Jun 2012 A1
20120191446 Binsztok et al. Jul 2012 A1
20120192096 Bowman et al. Jul 2012 A1
20120197868 Fauser et al. Aug 2012 A1
20120209886 Henderson Aug 2012 A1
20120215741 Poole et al. Aug 2012 A1
20120221528 Renkes Aug 2012 A1
20120246052 Taylor et al. Sep 2012 A1
20120254143 Varma et al. Oct 2012 A1
20120259759 Crist et al. Oct 2012 A1
20120296846 Teeter Nov 2012 A1
20130041946 Joel et al. Feb 2013 A1
20130080514 Gupta et al. Mar 2013 A1
20130086107 Genochio et al. Apr 2013 A1
20130166556 Baeumges et al. Jun 2013 A1
20130173667 Soderberg et al. Jul 2013 A1
20130179460 Cervantes et al. Jul 2013 A1
20130185619 Ludwig Jul 2013 A1
20130191370 Chen et al. Jul 2013 A1
20130198232 Shamgunov et al. Aug 2013 A1
20130226959 Dittrich et al. Aug 2013 A1
20130246560 Feng et al. Sep 2013 A1
20130263123 Zhou et al. Oct 2013 A1
20130290243 Hazel et al. Oct 2013 A1
20130304725 Nee et al. Nov 2013 A1
20130304744 McSherry et al. Nov 2013 A1
20130311352 Kayanuma et al. Nov 2013 A1
20130311488 Erdogan et al. Nov 2013 A1
20130318129 Vingralek et al. Nov 2013 A1
20130346365 Kan et al. Dec 2013 A1
20140019494 Tang Jan 2014 A1
20140040203 Lu et al. Feb 2014 A1
20140059646 Hannel et al. Feb 2014 A1
20140082724 Pearson et al. Mar 2014 A1
20140136521 Pappas May 2014 A1
20140143123 Banke et al. May 2014 A1
20140149997 Kukreja et al. May 2014 A1
20140156618 Castellano Jun 2014 A1
20140173023 Varney et al. Jun 2014 A1
20140181036 Dhamankar et al. Jun 2014 A1
20140181081 Veldhuizen Jun 2014 A1
20140188924 Ma et al. Jul 2014 A1
20140195558 Murthy et al. Jul 2014 A1
20140201194 Reddy et al. Jul 2014 A1
20140215446 Araya et al. Jul 2014 A1
20140222768 Rambo et al. Aug 2014 A1
20140229506 Lee Aug 2014 A1
20140229874 Strauss Aug 2014 A1
20140244687 Shmueli et al. Aug 2014 A1
20140279810 Mann et al. Sep 2014 A1
20140280522 Watte Sep 2014 A1
20140282227 Nixon et al. Sep 2014 A1
20140282444 Araya et al. Sep 2014 A1
20140282540 Bonnet et al. Sep 2014 A1
20140292765 Maruyama et al. Oct 2014 A1
20140297611 Abbour et al. Oct 2014 A1
20140317084 Chaudhry et al. Oct 2014 A1
20140324821 Meiyyappan et al. Oct 2014 A1
20140330700 Studnitzer et al. Nov 2014 A1
20140330807 Weyerhaeuser et al. Nov 2014 A1
20140344186 Nadler Nov 2014 A1
20140344391 Varney et al. Nov 2014 A1
20140359574 Beckwith et al. Dec 2014 A1
20140372482 Martin et al. Dec 2014 A1
20140380051 Edward et al. Dec 2014 A1
20150019516 Wein et al. Jan 2015 A1
20150026155 Martin Jan 2015 A1
20150067640 Booker et al. Mar 2015 A1
20150074066 Li et al. Mar 2015 A1
20150082218 Affoneh et al. Mar 2015 A1
20150088894 Czarlinska et al. Mar 2015 A1
20150095381 Chen et al. Apr 2015 A1
20150120261 Giannacopoulos et al. Apr 2015 A1
20150127599 Schiebeler May 2015 A1
20150154262 Yang et al. Jun 2015 A1
20150172117 Dolinsky et al. Jun 2015 A1
20150188778 Asayag et al. Jul 2015 A1
20150205588 Bates et al. Jul 2015 A1
20150205589 Dally Jul 2015 A1
20150254298 Bourbonnais et al. Sep 2015 A1
20150304182 Brodsky et al. Oct 2015 A1
20150317359 Tran et al. Nov 2015 A1
20150356157 Anderson et al. Dec 2015 A1
20160026442 Chhaparia Jan 2016 A1
20160065670 Kimmel et al. Mar 2016 A1
20160092599 Barsness et al. Mar 2016 A1
20160125018 Tomoda et al. May 2016 A1
20160171070 Hrle et al. Jun 2016 A1
20160179754 Borza et al. Jun 2016 A1
20160253294 Allen et al. Sep 2016 A1
20160316038 Jolfaei Oct 2016 A1
20160335281 Teodoresou et al. Nov 2016 A1
20160335304 Teodoresou et al. Nov 2016 A1
20160335317 Teodoresou et al. Nov 2016 A1
20160335323 Teodoresou et al. Nov 2016 A1
20160335330 Teodorescu et al. Nov 2016 A1
20160335361 Teodorescu et al. Nov 2016 A1
20170161514 Dettinger et al. Jun 2017 A1
20170177677 Wright et al. Jun 2017 A1
20170185385 Kent et al. Jun 2017 A1
20170192910 Wright et al. Jul 2017 A1
20170206229 Caudy et al. Jul 2017 A1
20170206256 Tsirogiannis et al. Jul 2017 A1
20170235794 Wright et al. Aug 2017 A1
20170249350 Wright et al. Aug 2017 A1
20170270150 Wright et al. Sep 2017 A1
20170316046 Caudy et al. Nov 2017 A1
20170359415 Venkatraman et al. Dec 2017 A1
20180004796 Kent et al. Jan 2018 A1
20180011891 Wright et al. Jan 2018 A1
20180052879 Wright Feb 2018 A1
20180137175 Teodorescu et al. May 2018 A1
Foreign Referenced Citations (13)
Number Date Country
2309462 Dec 2000 CA
1406463 Apr 2004 EP
1198769 Jun 2008 EP
2199961 Jun 2010 EP
2423816 Feb 2012 EP
2743839 Jun 2014 EP
2421798 Jun 2011 RU
2000000879 Jan 2000 WO
2001079964 Oct 2001 WO
2011120161 Oct 2011 WO
2012136627 Oct 2012 WO
2014026220 Feb 2014 WO
2014143208 Sep 2014 WO
Non-Patent Literature Citations (161)
Entry
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032605 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032590 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032592 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 4, 2016, in International Appln. No. PCT/US2016/032581 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032586 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032587 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032589 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032596 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032598 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032601 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032602 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032607 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032591 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032594 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032600 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032595 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032606 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032603 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032604 filed May 14, 2016.
Jellema, Lucas. “Implementing Cell Highlighting in JSF-based Rich Enterprise Apps (Part 1)”, dated Nov. 2008. Retrieved from http://www.oracle.com/technetwork/articles/adf/jellema-adfcellhighlighting-087850.html (last accessed Jun. 16, 2016).
Lou, Yuan. “A Multi-Agent Decision Support System for Stock Trading”, IEEE Network, Jan./Feb. 2002. Retreived from http://www.reading.ac.uk/AcaDepts/si/sisweb13/ais/papers/journal12-A%20multi-agent%20Framework.pdf.
Mallet, “Relational Database Support for Spatia-Temporal Data”, Technical Report TR 04-21, Sep. 2004, University of Alberta, Department of Computing Science.
Mariyappan, Balakrishnan. “10 Useful Linux Bash_Completion Complete Command Examples (Bash Command Line Completion on Steroids)”, dated Dec. 2, 2013. Retrieved from http://www.thegeekstuff.com/2013/12/bash-completion-complete/ (last accessed Jun. 16, 2016).
Murray, Derek G. et al. “Naiad: a timely dataflow system.” SOSP '13 Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. pp. 439-455. Nov. 2013.
Non-final Office Action dated Apr. 19, 2017, in U.S. Appl. No. 15/154,974.
Non-final Office Action dated Aug. 12, 2016, in U.S. Appl. No. 15/155,001.
Non-final Office Action dated Aug. 14, 2017, in U.S. Appl. No. 15/464,314.
Non-final Office Action dated Aug. 16, 2016, in U.S. Appl. No. 15/154,993.
Non-final Office Action dated Aug. 19, 2016, in U.S. Appl. No. 15/154,991.
Non-final Office Action dated Aug. 25, 2016, in U.S. Appl. No. 15/154,980.
Non-final Office Action dated Aug. 26, 2016, in U.S. Appl. No. 15/154,995.
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,981.
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,985.
Non-final Office Action dated Dec. 13, 2017, in U.S. Appl. No. 15/608,963.
Non-final Office Action dated Feb. 8, 2017, in U.S. Appl. No. 15/154,997.
Non-final Office Action dated Jul. 27, 2017, in U.S. Appl. No. 15/154,995.
Non-final Office Action dated Mar. 2, 2017, in U.S. Appl. No. 15/154,984.
Non-final Office Action dated Nov. 15, 2017, in U.S. Appl. No. 15/654,461.
Non-final Office Action dated Nov. 17, 2016, in U.S. Appl. No. 15/154,999.
Non-final Office Action dated Nov. 21, 2017, in U.S. Appl. No. 15/155,005.
Non-final Office Action dated Nov. 30, 2017, in U.S. Appl. No. 15/155,012.
Non-final Office Action dated Oct. 13, 2016, in U.S. Appl. No. 15/155,009.
Non-final Office Action dated Oct. 27, 2016, in U.S. Appl. No. 15/155,006.
Non-final Office Action dated Oct. 5, 2017, in U.S. Appl. No. 15/428,145.
Non-final Office Action dated Oct. 7, 2016, in U.S. Appl. No. 15/154,998.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/154,979.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,011.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,012.
Non-final Office Action dated Sep. 14, 2016, in U.S. Appl. No. 15/154,984.
Non-final Office Action dated Sep. 16, 2016, in U.S. Appl. No. 15/154,988.
Non-final Office Action dated Sep. 22, 2016, in U.S. Appl. No. 15/154,987.
Non-final Office Action dated Sep. 26, 2016, in U.S. Appl. No. 15/155,005.
Non-final Office Action dated Sep. 29, 2016, in U.S. Appl. No. 15/154,990.
Non-final Office Action dated Sep. 8, 2016, in U.S. Appl. No. 15/154,975.
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/154,996.
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/155,010.
Notice of Allowance dated Dec. 19, 2016, in U.S. Appl. No. 15/155,001.
Notice of Allowance dated Dec. 22, 2016, in U.S. Appl. No. 15/155,011.
Notice of Allowance dated Dec. 7, 2016, in U.S. Appl. No. 15/154,985.
Notice of Allowance dated Feb. 1, 2017, in U.S. Appl. No. 15/154,988.
Notice of Allowance dated Feb. 14, 2017, in U.S. Appl. No. 15/154,979.
Notice of Allowance dated Feb. 28, 2017, in U.S. Appl. No. 15/154,990.
Notice of Allowance dated Jan. 30, 2017, in U.S. Appl. No. 15/154,987.
Notice of Allowance dated Jul. 28, 2017, in U.S. Appl. No. 15/155,009.
Notice of Allowance dated Jun. 19, 2017, in U.S. Appl. No. 15/154,980.
Notice of Allowance dated Jun. 20, 2017, in U.S. Appl. No. 15/154,975.
Notice of Allowance dated Mar. 2, 2017, in U.S. Appl. No. 15/154,998.
Notice of Allowance dated Mar. 31, 2017, in U.S. Appl. No. 15/154,998.
Notice of Allowance dated May 10, 2017, in U.S. Appl. No. 15/154,988.
Notice of Allowance dated Nov. 17, 2016, in U.S. Appl. No. 15/154,991.
Notice of Allowance dated Nov. 17, 2017, in U.S. Appl. No. 15/154,993.
Notice of Allowance dated Nov. 21, 2016, in U.S. Appl. No. 15/154,983.
Notice of Allowance dated Nov. 8, 2016, in U.S. Appl. No. 15/155,007.
Notice of Allowance dated Oct. 11, 2016, in U.S. Appl. No. 15/155,007.
Notice of Allowance dated Oct. 21, 2016, in U.S. Appl. No. 15/154,999.
Notice of Allowance dated Oct. 6, 2017, in U.S. Appl. No. 15/610,162.
Palpanas, Themistoklis et al. “Incremental Maintenance for Non-Distributive Aggregate Functions”, Proceedings of the 28th VLDB Conference, 2002. Retreived from http://www.vldb.org/conf/2002/S22P04.pdf.
PowerShell Team, Intellisense in Windows PowerShell ISE 3.0, dated Jun. 12, 2012, Windows PowerShell Blog, pp. 1-6 Retrieved: https://biogs.msdn.microsoft.com/powershell/2012/06/12/intellisense-in-windows-powershell-ise-3-0/.
Smith, Ian. “Guide to Using SQL: Computed and Automatic Columns.” Rdb Jornal, dated Sep. 2008, retrieved Aug. 15, 2016, retrieved from the Internet <URL: http://www.oracle.com/technetwork/products/rdb/automatic-columns-132042.pdf>.
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.16.1” Dated May 11, 2015. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.16.1/index.html.
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.18.1” Dated May 3, 2016. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.18.1/index.html.
Wu, Buwen et al. “Scalable SPARQL Querying using Path Partitioning”, 31st IEEE International Conference on Data Engineering (ICDE 2015), Seoul, Korea, Apr. 13-17, 2015. Retreived from http://imada.sdu.dk/˜zhou/papers/icde2015.pdf.
“About Entering Commands in the Command Window”, dated Dec. 16, 2015. Retrieved from https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/AutoCAD-Core/files/GUID-BB0C3E79-66AF-4557-9140-D31B4CF3C9CF-htm.html (last accessed Jun. 16, 2016).
“Change Data Capture”, Oracle Database Online Documentation 11g Release 1 (11.1), dated Apr. 5, 2016. Retreived from https://web.archive.org/web/20160405032625/http://docs.oracle.com/cd/B28359_01/server.111/b28313/cdc.htm.
“Chapter 24. Query access plans”, Tuning Database Performance, DB2 Version 9.5 for Linux, UNIX, and Windows, pp. 301-462, dated Dec. 2010. Retreived from http://public.dhe.ibm.com/ps/products/db2/info/vr95/pdf/en_US/DB2PerfTuneTroubleshoot-db2d3e953.pdf.
“GNU Emacs Manual”, dated Apr. 15, 2016, pp. 43-47. Retrieved from https://web.archive.org/web/20160415175915/http://www.gnu.org/software/emacs/manual/html_mono/emacs.html.
“Google Protocol RPC Library Overview”, dated Apr. 27, 2016. Retrieved from https://cloud.google.com/appengine/docs/python/tools/protorpc/ (last accessed Jun. 16, 2016).
“IBM—What is HBase?”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906022050/http://www-01.ibm.com/software/data/infosphere/hadoop/hbase/.
“IBM Informix TimeSeries data management”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118072141/http://www-01.ibm.com/software/data/informix/timeseries/.
“IBM InfoSphere BigInsights 3.0.0—Importing data from and exporting data to DB2 by using Sqoop”, dated Jan. 15, 2015. Retrieved from https://web.archive.org/web/20150115034058/http://www-01.ibm.com/support/knowledgecenter/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.import.doc/doc/data_warehouse_sqoop.html.
“Maximize Data Value with Very Large Database Management by SAP Sybase IQ”, dated 2013. Retrieved from http://www.sap.com/bin/sapcom/en_us/downloadasset.2013-06-jun-11-11.maximize-data-value-with-very-large-database-management-by-sap-sybase-iq-pdf.html.
“Microsoft Azure—Managing Access Control Lists (ACLs) for Endpoints by using PowerShell”, dated Nov. 12, 2014. Retrieved from https://web.archive.org/web/20150110170715/http://msdn.microsoft.com/en-us/library/azure/dn376543.aspx.
“Oracle Big Data Appliance—Perfect Balance Java API”, dated Sep. 20, 2015. Retrieved from https://web.archive.org/web/20131220040005/http://docs.oracle.com/cd/E41604_01/doc.22/e41667/toc.htm.
“Oracle Big Data Appliance—X5-2”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906185409/http://www.oracle.com/technetwork/database/bigdata-appliance/overview/bigdataappliance-datasheet-1883358.pdf.
“Oracle Big Data Appliance Software User's Guide”, dated Feb. 2015. Retrieved from https://docs.oracle.com/cd/E55905_01/doc.40/e55814.pdf.
“SAP HANA Administration Guide”, dated Mar. 29, 2016, pp. 290-294. Retrieved from https://web.archive.org/web/20160417053656/http://help.sap.com/hana/SAP_HANA_Administration_Guide_en.pdf.
“Sophia Database—Architecture”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118052919/http://sphia.org/architecture.html.
“Tracking Data Changes”, SQL Server 2008 R2, dated Sep. 22, 2015. Retreived from https://web.archive.org/web/20150922000614/https://technet.microsoft.com/en-us/library/bb933994(v=sql.105).aspx.
“Use Formula AutoComplete”, dated 2010. Retrieved from https://support.office.com/en-us/article/Use-Formula-AutoComplete-c7c46fa6-3a94-4150-a2f7-34140c1ee4d9 (last accessed Jun. 16, 2016).
Adelfio et al. “Schema Extraction for Tabular Data on the Web”, Proceedings of the VLDB Endowment, vol. 6, No. 6. Apr. 2013. Retrieved from http://www.cs.umd.edu/˜hjs/pubs/spreadsheets-vldb13.pdf.
Advisory Action dated Apr. 19, 2017, in U.S. Appl. No. 15/154,999.
Advisory Action dated Apr. 20, 2017, in U.S. Appl. No. 15/154,980.
Advisory Action dated Apr. 6, 2017, in U.S. Appl. No. 15/154,995.
Advisory Action dated Mar. 31, 2017, in U.S. Appl. No. 15/154,996.
Advisory Action dated May 3, 2017, in U.S. Appl. No. 15/154,993.
Borror, Jefferey A. “Q for Mortals 2.0”, dated Nov. 1, 2011. Retreived from http://code.kx.com/wiki/JB:QforMortals2/contents.
Cheusheva, Svetlana. “How to change the row color based on a cell's value in Excel”, dated Oct. 29, 2013. Retrieved from https://www.ablebits.com/office-addins-blog/2013/10/29/excel-change-row-background-color/ (last accessed Jun. 16, 2016).
Corrected Notice of Allowability dated Aug. 9, 2017, in U.S. Appl. No. 15/154,980.
Corrected Notice of Allowability dated Jul. 31, 2017, in U.S. Appl. No. 15/154,999.
Corrected Notice of Allowability dated Mar. 10, 2017, in U.S. Appl. No. 15/154,979.
Corrected Notice of Allowability dated Oct. 26, 2017, in U.S. Appl. No. 15/610,162.
Decision on Pre-Appeal Conference Request dated Nov. 20, 2017, in U.S. Appl. No. 15/154,997.
Ex Parte Quayle Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,999.
Final Office Action dated Apr. 10, 2017, in U.S. Appl. No. 15/155,006.
Final Office Action dated Dec. 19, 2016, in U.S. Appl. No. 15/154,995.
Final Office Action dated Feb. 24, 2017, in U.S. Appl. No. 15/154,993.
Final Office Action dated Jan. 27, 2017, in U.S. Appl. No. 15/154,980.
Final Office Action dated Jan. 31, 2017, in U.S. Appl. No. 15/154,996.
Final Office Action dated Jul. 27, 2017, in U.S. Appl. No. 15/154,993.
Final Office Action dated Jun. 23, 2017, in U.S. Appl. No. 15/154,997.
Final Office Action dated Mar. 1, 2017, in U.S. Appl. No. 15/154,975.
Final Office Action dated Mar. 13, 2017, in U.S. Appl. No. 15/155,012.
Final Office Action dated Mar. 31, 2017, in U.S. Appl. No. 15/155,005.
Final Office Action dated May 15, 2017, in U.S. Appl. No. 15/155,010.
Final Office Action dated May 4, 2017, in U.S. Appl. No. 15/155,009.
Gai, Lei et al. “An Efficient Summary Graph Driven Method for RDF Query Processing”, dated Oct. 27, 2015. Retreived from http://arxiv.org/pdf/1510.07749.pdf.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032582 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032584 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032588 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032593 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032597 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032599 filed May 14, 2016.
Advisory Action dated Dec. 21, 2017, in U.S. Appl. No. 15/154,984.
Breitbart, Update Propagation Protocols for Replicated Databases, SIGMOD '99 Philadelphia PA, 1999, pp. 97-108.
Final Office Action dated Dec. 29, 2017, in U.S. Appl. No. 15/154,974.
Final Office Action dated Jun. 18, 2018, in U.S. Appl. No. 15/155,005.
Final Office Action dated May 18, 2018, in U.S. Appl. No. 15/654,461.
Kramer, The Combining DAG: A Technique for Parallel Data Flow Analysis, IEEE Transactions on Parallel and Distributed Systems, vol. 5, No. 8, Aug. 1994, pp. 805-813.
Non-final Office Action dated Apr. 12, 2018, in U.S. Appl. No. 15/154,997.
Non-final Office Action dated Apr. 23, 2018, in U.S. Appl. No. 15/813,127.
Non-final Office Action dated Apr. 5, 2018, in U.S. Appl. No. 15/154,984.
Non-final Office Action dated Dec. 28, 2017, in U.S. Appl. No. 15/154,996.
Non-final Office Action dated Dec. 28, 2017, in U.S. Appl. No. 15/796,230.
Non-final Office Action dated Feb. 12, 2018, in U.S. Appl. No. 15/466,836.
Non-final Office Action dated Feb. 15, 2018, in U.S. Appl. No. 15/813,112.
Non-final Office Action dated Feb. 28, 2018, in U.S. Appl. No. 15/813,119.
Non-final Office Action dated Jun. 29, 2018, in U.S. Appl. No. 15/154,974.
Non-final Office Action dated Jun. 8, 2018, in U.S. Appl. No. 15/452,574.
Non-final Office Action dated Mar. 20, 2018, in U.S. Appl. No. 15/155,006.
Notice of Allowance dated Apr. 30, 2018, in U.S. Appl. No. 15/155,012.
Notice of Allowance dated Feb. 12, 2018, in U.S. Appl. No. 15/813,142.
Notice of Allowance dated Feb. 26, 2018, in U.S. Appl. No. 15/428,145.
Notice of Allowance dated Jul. 11, 2018, in U.S. Appl. No. 15/154,995.
Notice of Allowance dated Mar. 1, 2018, in U.S. Appl. No. 15/464,314.
Notice of Allowance dated May 4, 2018, in U.S. Appl. No. 15/897,547.
Sobell, Mark G. “A Practical Guide to Linux, Commands, Editors and Shell Programming.” Third Edition, dated Sep. 14, 2012. Retrieved from: http://techbus.safaribooksonline.com/book/operating-systems-and-server-administration/linux/9780133085129.
Final Office Action dated Aug. 10, 2018, in U.S. Appl. No. 15/796,230.
Final Office Action dated Aug. 2, 2018, in U.S. Appl. No. 15/154,996.
Final Office Action dated Aug. 28, 2018, in U.S. Appl. No. 15/813,119.
Non-final Office Action dated Aug. 10, 2018, in U.S. Appl. No. 16/004,578.
Notice of Allowance dated Sep. 11, 2018, in U.S. Appl. No. 15/608,963.
Related Publications (1)
Number Date Country
20170235798 A1 Aug 2017 US
Provisional Applications (1)
Number Date Country
62161813 May 2015 US
Continuations (1)
Number Date Country
Parent 15154987 May 2016 US
Child 15583777 US