1. Field of the Invention
The present invention is generally related to biometric imaging systems. More particularly, the present invention is related to a live scan optical system.
2. Background Art
Biometrics are a group of technologies that provide a high level of security. Print capture and recognition is an important biometric technology. Law enforcement, banking, voting, commerce, retail, and other industries increasingly rely upon fingerprints as a biometric to recognize or verify identity. See, Biometrics Explained, v. 2.0, G. Roethenbaugh, International Computer Society Assn. Carlisle, Pa. 1998, pages 1–34 (incorporated herein by reference in its entirety). Generally, a biometric is a measurable, physical characteristic or personal behavior trait used to recognize the identity, or verify the claimed identity, of a person who has a biometric reference template (e.g., data that represents a biometric measurement) on file.
Live scanners are used to capture measurable characteristics of a human being, such as fingerprints, palm prints, footprints, etc. Such live scanners include CCD or CMOS cameras and illumination sources for capturing the biometric image. Configurations of the illumination source and camera for a live scanner are typically set by the manufacturer at the factory. Thus, the ability to adaptively adjust gain, integration time, and contrast for the camera, as well as control the illumination for the illumination source does not exist.
To obtain a high quality biometric image, what is therefore needed is a live scan system that adaptively controls the camera and the illumination.
Embodiments of the present invention provide a method for adaptive control of a system used to produce a print image. The method includes detecting an image, identifying a print image region in the image, generating a measured histogram of the print image region, and determining an energy value of the measured histogram. The method also includes generating a desired histogram based on the measured histogram and determining an energy value of the desired histogram. The method further includes determining an adaptive control energy based on the energy of the measured histogram and the energy of the desired histogram and using the adaptive control energy to generate a set of control parameter values to adaptively control the optical scanner system, such that a predetermined quality of the print image is produced.
Other embodiments of the present invention provide a system using adaptive control to produce a print image of a predetermined quality. The system includes an illumination source, a live scanner optical system, a camera, and a controller. The illumination source illuminates an imaging surface of a live scanner optical system. The live scanner optical system scans a biometric object placed on the imaging surface. The camera captures the print image of a biometric object placed on the imaging surface. The controller adaptively controls at least one of the illumination source or the camera to obtain the print image with the predetermined quality.
An aspect of the present invention provides the adaptive control based on adjustments of parameter values. The adjustment can be based on a difference in energy of pixel counts across grey scale values between a desired histogram and a measured histogram.
Further embodiments, features, and advantages of the present invention, as well as the structure and operation of the various embodiments of the present invention, are described in detail below with reference to the accompanying drawings.
The accompanying drawings, which are incorporated herein and form part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art(s) to make and use the invention.
The features and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify corresponding elements throughout. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements. The drawings in which an element first appears is indicated by the leftmost digit(s) in the corresponding reference number.
Overview
Adaptive control of a live scanner according to the present invention can allow the live scanner to capture high quality print images in a variety of environmental conditions. Adaptive controlling of the camera and the illumination source can be performed by adjusting one or more of contrast, gain, and integration time for the camera, and illumination for the illumination source. Such adaptive control can increase a design tolerance for the live scanner. In that way, high quality print images can be obtained over a relatively greater range of illumination sources, cameras, and operating conditions.
While the present invention is described herein with reference to illustrative embodiments for particular applications, it should be understood that the invention is not limited thereto. Those skilled in the art(s) with access to the teachings provided herein will recognize additional modifications, applications, and embodiments within the scope thereof and additional fields in which the present invention would be of significant utility.
To more clearly delineate the present invention, an effort is made throughout the specification to adhere to the following term definitions consistently.
The term “finger” refers to any digit on a hand including, but not limited to, a thumb, an index finger, middle finger, ring finger, or a pinky finger.
The term “print” can be any type of print including, but not limited to, a print of all or part of one or more fingers, palms, toes, foot, hand, etc. A print can also be a rolled print, a flat print, or a slap print.
The term “data” or “information” throughout the specification can be representative of a biometric, a digital or other image of a biometric (e.g., a bitmap or other file), extracted digital or other information relating to the biometric, etc.
The term “live scan” refers to a scan of any type of print or palm image made by a print scanner. A live scan can include, but is not limited to, a scan of a finger, a finger roll, a flat finger, slap print of four fingers, thumb print, palm print, hand print, or a combination of fingers, such as, sets of fingers and/or thumbs from one or more hands or one or more palms disposed on a platen.
In a live scan, one or more fingers or palms from either a left hand or a right hand or both hands are placed on a platen of a scanner. Different types of print images are detected depending upon a particular application. For example, a flat print consists of a fingerprint image of a digit (finger or thumb) pressed flat against the platen. A roll print consists of an image of a digit (finger or thumb) made while the digit (finger or thumb) is rolled from one side of the digit to another side of the digit over the surface of the platen. A slap print consists of an image of four flat fingers pressed flat against the platen. A palm print involves pressing all or part of a palm upon the platen. A hand print consists of all or part of one or more hands placed on a platen. A platen can be movable or stationary depending upon the particular type of scanner and the type ofprint being captured by the scanner.
The terms “biometric imaging system,” “scanner,” “live scanner,” “live print scanner,” “fingerprint scanner,” and “print scanner” are used interchangeably, and refer to any type of scanner which can obtain an image of a print in a live scan. The obtained images can be combined in any format including, but not limited to, an FBI, state, or international tenprint format.
The term “platen” refers to a component that includes an imaging surface upon which at least one biometric object having a print is placed during a live scan. A platen can include, but is not limited to, a surface of an optical prism, set of prisms, or set of micro-prisms, or a surface of a silicone layer or other element disposed in optical contact with a surface of an optical prism, set of prisms, or set of micro-prisms.
System Overview
Embodiments of the present invention provide a system and method for adaptively controlling a live scanner. The system and method may be used in any type of live scanner, including but not limited to, any type of fingerprint and/or palm print scanner.
Camera 130 can be a solid state digital camera, such as a charged coupled device (CCD) or complimentary MOSFET (CMOS) camera, or the like. Live scanner optical system 120 can be any optical system in which biometric print images can be captured. An example of live scanner optical system 120 may include, but is not limited to, the optical system in any live scanner manufactured by Cross Match Technologies, Inc. Live scanner optical systems, such as live scanner optical system 120, are well known to those skilled in the relevant art(s).
Adaptive live scan controller 140 is used to adaptively control system 100 to obtain high quality biometric prints. Adaptive live scan controller 140 adaptively controls illumination source 110 and camera 130 by adjusting one or more parameters, such as illumination for illumination source 110 and contrast, gain, and integration time for camera 130. One method used by adaptive live scan controller 140 to adaptively control system 100 is described below with reference to
Method for Adaptive Control of a Live Scanner System
In step 210, an image is detected during a live scan. As previously stated, a live scan is a scan of any type of print and/or palm print image made by a print scanner.
In step 220, a print image region is identified within the image. The print image region is a region containing pixel data associated with a print image. In one embodiment, groups of pixels are evaluated to determine a standard deviation between the pixels in each of the groups. A group of the pixels with a largest standard deviation is masked as the print image region. In another embodiment, the image is masked and a gray area within the image, usually in the shape of a square or rectangle, is identified as the print image region.
In step 230, a measured histogram of the print image region is determined. The histogram is a plot of pixel counts of gray scale values across a two dimensional region of the print image region identified in step 220.
Returning to
In step 250, characteristic points of the measured histogram, hm, are identified. Characteristic points may include a starting point, an ending point, and intermediate points. Intermediate points can be maxima and minima points.
Referring back to
Returning to
In the example shown in
Returning to
In step 280, an adaptive control energy is determined. The adaptive control energy is based on the difference between the energy of the measured histogram and the energy of the desired histogram. The adaptive control energy can be equal to the difference or a function of the difference in the energies of the measured and the desired histograms. The adaptive control energy is used to determine the adaptive control of camera 130 and illumination source 110.
In step 290, a set of control parameter values that provide the required adaptive control energy is determined. In one embodiment, the set of control parameters can include contrast, gain adjustment, and integration time for camera 130 and illumination for illumination source 110. Determination of the set of control parameter values is further described below with reference to
In step 300, system 100 is adaptively controlled based on the set of control parameter values determined in step 290.
As will become apparent to persons skilled in the relevant arts given the description herein, an optional memory can be added to system 100 to enhance the functionality of system 100. Such enhancements might include, for example, an ability to more reliably estimate imaging performance. This optional memory can be added between camera 130 and adaptive live scan controller 140.
In step 410, a set of control parameters available for adjustment are determined. For example, if the desired histogram is that shown in
In step 420, values for the control parameters that minimize an adjustment cost/benefit function are determined. Some example “costs” can be that: (1) adjusting contrast may cause a large drop out noise and/or compromise a dynamic range of system; (2) adjusting gain may cause some drop out noise; (3) adjustments in illumination may shorten product life and/or cause large power consumption; and (4) adjustments in integration time may cause drop out noise and/or latency of image capture. Thus, in one embodiment, each of the control parameters is adjusted until a tolerance (e.g., a desired energy value) is met. The desired energy value can be a maximum or minimum value depending on whether the measured energy was too high or low relative to the desired energy. Then, ranges in which to adjust the control parameters must be set by determining, for example, scale factors for each parameter, which vary from system to system. For example, in an embodiment illumination adjustment may range from 5 mA per LED to 30 mA per LED, integration time may range from 9 msec to 30 msec, gain may be multiplied by a factor between 1 and 8.2, and contrast may be multiplied by a factor between 1 and 2. In this way, adaptive control is provided to the illumination source and camera, such that a subsequent measured histogram's pixel counts of grey scale value in a print image region are closer to a desired histogram associated with a high quality print image. A method according to an embodiment of the present invention that is used to determine the desired adjustments is described below with reference to
In step 510, a determination is made whether an adjustment in contrast is needed or allowed. For example, as previously discussed, if the desired histogram is indicative of
In step 520, a contrast value that minimizes an adjustment of contrast is determined.
In step 530, energy generated from the contrast adjustment value determined in step 520 is determined.
In step 540, an amount of energy (either positive or negative) required to meet a desired energy value is determined. As generally discussed above, the amount of energy is determined by subtracting the energy generated from the contrast adjustment value determined in step 520 from the total adaptive control energy determined in step 280 of
Returning to step 510, if the desired histogram is indicative of
In step 550, an optimum combination of illumination value, integration time, and gain value is determined in order to meet the desired energy value. In one embodiment, the order in which the control parameter values are determined is illumination, integration time, and gain. Methods such as gradient search may be used to determine the optimum combination of illumination, integration time, and gain. The order is preferably selected based on achieving a high quality print image. Other orders can be chosen depending upon the choice or preference of a particular designer.
It is to be appreciated that in various embodiments, the process 420 can begin in determination step 510 determining whether an adjustment in contrast, illumination, integration time, or gain is needed or allowed to meet the desired energy value. Then, successive steps would be used to see if one or more of the other parameters can and need to be adjusted to meet the desired energy value. For example, when illumination is the first parameter, if by adjusting the illumination the desired energy value is satisfied, the process ends. If the desired energy value is not satisfied, integration time can be adjusted. If the addition of the adjustment of integration time provides the desired energy value, gain will not be adjusted. But in the alternative, if the addition of the adjustment of integration does not provide the desired energy value, gain can be adjusted to provide the desired energy value. This process may be repeated until the optimum combination of contrast, illumination, integration time, and gain values is achieved in order to satisfy the desired energy value.
Therefore, through use of the above systems and methods, adaptive control of a live scanner can allow the live scanner to capture high quality print images in a variety of environmental conditions. Adaptive controlling of the camera and the illumination source can be performed by adjusting one or more of contrast, gain, and integration time for the camera, and illumination for the illumination source. Such adaptive control can increase a design tolerance for the live scanner. In that way, high quality print images can be obtained over a relatively greater range of illumination sources, cameras, and operating conditions.
Environment
Computer system 600 also includes a main memory 608, preferably random access memory (RAM), and may also include a secondary memory 610. The secondary memory 610 may include, for example, a hard disk drive 612 and/or a removable storage drive 614, representing a floppy disk drive, a magnetic tape drive, an optical disk drive, etc. The removable storage drive 614 reads from and/or writes to a removable storage unit 618 in a well known manner. Removable storage unit 618, represents a floppy disk, magnetic tape, optical disk, etc. which is read by and written to by removable storage drive 614. As will be appreciated, the removable storage unit 618 includes a computer usable storage medium having stored therein computer software and/or data.
In alternative implementations, secondary memory 610 may include other similar means for allowing computer programs or other instructions to be loaded into computer system 600. Such means may include, for example, a removable storage unit 622 and an interface 620. Examples of such means may include a program cartridge and cartridge interface (such as that found in video game devices), a removable memory chip (such as an EPROM, or PROM) and associated socket, and other removable storage units 622 and interfaces 620 which allow software and data to be transferred from the removable storage unit 622 to computer system 600.
Computer system 600 may also include a communications interface 624. Communications interface 624 allows software and data to be transferred between computer system 600 and external devices. Examples of communications interface 624 may include a modem, a network interface (such as an Ethernet card), a communications port, a PCMCIA slot and card, etc. Software and data transferred via communications interface 624 are in the form of signals 628 which may be electronic, electromagnetic, optical or other signals capable of being received by communications interface 624. These signals 628 are provided to communications interface 624 via a communications path 626. Communications path 626 carries signals 628 and may be implemented using wire or cable, fiber optics, a phone line, a cellular phone link, an RF link and other communications channels.
In this document, the terms “computer program medium” and “computer usable medium” are used to generally refer to media such as removable storage drive 614, a hard disk installed in hard disk drive 612, and signals 628. These computer program products are means for providing software to computer system 600.
Computer programs (also called computer control logic) are stored in main memory 608 and/or secondary memory 610. Computer programs may also be received via communications interface 624. Such computer programs, when executed, enable the computer system 600 to implement the present invention as discussed herein. In particular, the computer programs, when executed, enable the processor 604 to implement the processes of the present invention, such as the methods in
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2500017 | Altman | Mar 1950 | A |
3200701 | White | Aug 1965 | A |
3475588 | McMaster | Oct 1969 | A |
3482498 | Becker | Dec 1969 | A |
3495259 | Rocholl et al. | Feb 1970 | A |
3527535 | Monroe | Sep 1970 | A |
3540025 | Levin et al. | Nov 1970 | A |
3617120 | Roka | Nov 1971 | A |
3699519 | Campbell | Oct 1972 | A |
3906520 | Phillips | Sep 1975 | A |
3947128 | Weinberger et al. | Mar 1976 | A |
3968476 | McMahon | Jul 1976 | A |
3975711 | McMahon | Aug 1976 | A |
4032975 | Malueg et al. | Jun 1977 | A |
4063226 | Kozma et al. | Dec 1977 | A |
4120585 | DePalma et al. | Oct 1978 | A |
4152056 | Fowler | May 1979 | A |
4209481 | Kashiro et al. | Jun 1980 | A |
4210889 | Swonger et al. | Jul 1980 | A |
4253086 | Szwarcbier | Feb 1981 | A |
4322163 | Schiller | Mar 1982 | A |
4414684 | Blonder | Nov 1983 | A |
4537484 | Fowler et al. | Aug 1985 | A |
4544267 | Schiller | Oct 1985 | A |
4553837 | Marcus | Nov 1985 | A |
4601195 | Garritano | Jul 1986 | A |
4669487 | Frieling | Jun 1987 | A |
4681435 | Kubota et al. | Jul 1987 | A |
4684802 | Hakenewerth et al. | Aug 1987 | A |
4701772 | Anderson et al. | Oct 1987 | A |
4783823 | Tasaki et al. | Nov 1988 | A |
4784484 | Jensen | Nov 1988 | A |
4792226 | Fishbine et al. | Dec 1988 | A |
4811414 | Fishbine et al. | Mar 1989 | A |
4876726 | Capello et al. | Oct 1989 | A |
4905293 | Asai et al. | Feb 1990 | A |
4924085 | Kato et al. | May 1990 | A |
4933976 | Fishbine et al. | Jun 1990 | A |
4942482 | Kakinuma et al. | Jul 1990 | A |
4946276 | Chilcott | Aug 1990 | A |
4995086 | Lilley et al. | Feb 1991 | A |
5054090 | Knight et al. | Oct 1991 | A |
5067162 | Driscoll, Jr. et al. | Nov 1991 | A |
5067749 | Land | Nov 1991 | A |
5131038 | Puhl et al. | Jul 1992 | A |
5146102 | Higuchi et al. | Sep 1992 | A |
5157497 | Topper et al. | Oct 1992 | A |
5185673 | Sobol | Feb 1993 | A |
5187747 | Capello et al. | Feb 1993 | A |
5210588 | Lee | May 1993 | A |
5222152 | Fishbine et al. | Jun 1993 | A |
5222153 | Beiswenger | Jun 1993 | A |
5230025 | Fishbine et al. | Jul 1993 | A |
5233404 | Lougheed et al. | Aug 1993 | A |
5249370 | Stanger et al. | Oct 1993 | A |
5253085 | Maruo et al. | Oct 1993 | A |
5261266 | Lorenz et al. | Nov 1993 | A |
5285293 | Webb et al. | Feb 1994 | A |
5291318 | Genovese | Mar 1994 | A |
D348445 | Fishbine et al. | Jul 1994 | S |
5351127 | King et al. | Sep 1994 | A |
D351144 | Fishbine et al. | Oct 1994 | S |
5363318 | McCauley | Nov 1994 | A |
5384621 | Hatch et al. | Jan 1995 | A |
5412463 | Sibbald et al. | May 1995 | A |
5416573 | Sartor, Jr. | May 1995 | A |
5448649 | Chen et al. | Sep 1995 | A |
5467403 | Fishbine et al. | Nov 1995 | A |
5469506 | Berson et al. | Nov 1995 | A |
5471240 | Prager et al. | Nov 1995 | A |
5473144 | Mathurin, Jr. | Dec 1995 | A |
5483601 | Faulkner | Jan 1996 | A |
5509083 | Abtahi et al. | Apr 1996 | A |
5517528 | Johnson | May 1996 | A |
5528355 | Maase et al. | Jun 1996 | A |
5548394 | Giles et al. | Aug 1996 | A |
5591949 | Bernstein | Jan 1997 | A |
5596454 | Hebert | Jan 1997 | A |
5598474 | Johnson | Jan 1997 | A |
5604537 | Yamazaki et al. | Feb 1997 | A |
5613014 | Eshera et al. | Mar 1997 | A |
5615277 | Hoffman | Mar 1997 | A |
5625448 | Ranalli et al. | Apr 1997 | A |
5633947 | Sibbald | May 1997 | A |
5640422 | Johnson | Jun 1997 | A |
5649128 | Hartley | Jul 1997 | A |
5650842 | Maase et al. | Jul 1997 | A |
5661451 | Pollag | Aug 1997 | A |
5680205 | Borza | Oct 1997 | A |
5689529 | Johnson | Nov 1997 | A |
5717777 | Wong et al. | Feb 1998 | A |
5729334 | Van Ruyven | Mar 1998 | A |
5736734 | Marcus et al. | Apr 1998 | A |
5745684 | Oskouy et al. | Apr 1998 | A |
5748766 | Maase et al. | May 1998 | A |
5748768 | Sivers et al. | May 1998 | A |
5755748 | Borza | May 1998 | A |
5757278 | Itsumi | May 1998 | A |
5767989 | Sakaguchi | Jun 1998 | A |
5778089 | Borza | Jul 1998 | A |
5781647 | Fishbine et al. | Jul 1998 | A |
5793218 | Oster et al. | Aug 1998 | A |
5801681 | Sayag | Sep 1998 | A |
5805777 | Kuchta | Sep 1998 | A |
5809172 | Melen | Sep 1998 | A |
5812067 | Bergholz et al. | Sep 1998 | A |
5815252 | Price-Francis | Sep 1998 | A |
5818956 | Tuli | Oct 1998 | A |
5822445 | Wong | Oct 1998 | A |
5825005 | Behnke | Oct 1998 | A |
5825474 | Maase | Oct 1998 | A |
5828773 | Setlak et al. | Oct 1998 | A |
5832244 | Jolley et al. | Nov 1998 | A |
5848231 | Teitelbaum et al. | Dec 1998 | A |
5855433 | Velho et al. | Jan 1999 | A |
5859420 | Borza | Jan 1999 | A |
5859710 | Hannah | Jan 1999 | A |
5862247 | Fisun et al. | Jan 1999 | A |
5867802 | Borza | Feb 1999 | A |
5869822 | Meadows, II et al. | Feb 1999 | A |
5872834 | Teitelbaum | Feb 1999 | A |
5892599 | Bahuguna | Apr 1999 | A |
5900993 | Betensky | May 1999 | A |
5907627 | Borza | May 1999 | A |
5920384 | Borza | Jul 1999 | A |
5920640 | Salatino et al. | Jul 1999 | A |
5928347 | Jones | Jul 1999 | A |
5942761 | Tuli | Aug 1999 | A |
5946135 | Auerswald et al. | Aug 1999 | A |
5960100 | Hargrove | Sep 1999 | A |
5973731 | Schwab | Oct 1999 | A |
5974162 | Metz et al. | Oct 1999 | A |
5987155 | Dunn et al. | Nov 1999 | A |
5991467 | Kamiko | Nov 1999 | A |
5995014 | DiMaria | Nov 1999 | A |
5999307 | Whitehead et al. | Dec 1999 | A |
6005963 | Bolle et al. | Dec 1999 | A |
6018739 | McCoy et al. | Jan 2000 | A |
6023522 | Draganoff et al. | Feb 2000 | A |
6038332 | Fishbine et al. | Mar 2000 | A |
6041372 | Hart et al. | Mar 2000 | A |
6055071 | Kuwata et al. | Apr 2000 | A |
6064398 | Ellenby et al. | May 2000 | A |
6064753 | Bolle et al. | May 2000 | A |
6064779 | Neukermans et al. | May 2000 | A |
6072891 | Hamid et al. | Jun 2000 | A |
6075876 | Draganoff | Jun 2000 | A |
6078265 | Bonder et al. | Jun 2000 | A |
6088585 | Schmitt et al. | Jul 2000 | A |
6097873 | Filas et al. | Aug 2000 | A |
6104809 | Berson et al. | Aug 2000 | A |
6115484 | Bowker et al. | Sep 2000 | A |
6122394 | Neukermans et al. | Sep 2000 | A |
6144408 | MacLean | Nov 2000 | A |
6150665 | Suga | Nov 2000 | A |
6151073 | Steinberg et al. | Nov 2000 | A |
6154285 | Teng et al. | Nov 2000 | A |
6162486 | Samouilhan et al. | Dec 2000 | A |
6166787 | Akins et al. | Dec 2000 | A |
6178255 | Scott et al. | Jan 2001 | B1 |
6195447 | Ross | Feb 2001 | B1 |
6198836 | Hauke | Mar 2001 | B1 |
6204331 | Sullivans et al. | Mar 2001 | B1 |
6259108 | Antonelli et al. | Jul 2001 | B1 |
6272562 | Scott et al. | Aug 2001 | B1 |
6281931 | Tsao et al. | Aug 2001 | B1 |
6327047 | Motamed | Dec 2001 | B1 |
6347163 | Roustaei | Feb 2002 | B1 |
20020030668 | Hoshino et al. | Mar 2002 | A1 |
Number | Date | Country |
---|---|---|
0 101 772 | Mar 1984 | EP |
0 308 162 | Mar 1989 | EP |
0 308 162 | Mar 1989 | EP |
0 379 333 | Jul 1990 | EP |
0 623 890 | Nov 1994 | EP |
0 623 890 | Nov 1994 | EP |
0 653 882 | May 1995 | EP |
0 379 333 | Jul 1995 | EP |
0 889 432 | Jan 1999 | EP |
0 889 432 | Jan 1999 | EP |
0 905 646 | Mar 1999 | EP |
0 785 750 | Jun 1999 | EP |
0 924 656 | Jun 1999 | EP |
0 623 890 | Aug 2001 | EP |
2 089 545 | Jun 1982 | GB |
2 313 441 | Nov 1997 | GB |
62-212892 | Sep 1987 | JP |
1-205392 | Aug 1989 | JP |
3-161884 | Jul 1991 | JP |
3-194674 | Aug 1991 | JP |
3-194675 | Aug 1991 | JP |
11-225272 | Aug 1999 | JP |
11-289421 | Oct 1999 | JP |
WO 8702491 | Apr 1987 | WO |
WO 9003260 | Apr 1990 | WO |
WO 9211608 | Jul 1992 | WO |
WO 9422371 | Oct 1994 | WO |
WO 9422371 | Oct 1994 | WO |
WO 9617480 | Jun 1996 | WO |
WO 9617480 | Jun 1996 | WO |
WO 9729477 | Aug 1997 | WO |
WO 9741528 | Nov 1997 | WO |
WO 9809246 | Mar 1998 | WO |
WO 9812670 | Mar 1998 | WO |
WO 9912123 | Mar 1999 | WO |
WO 9926187 | May 1999 | WO |
WO 9940535 | Aug 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040170303 A1 | Sep 2004 | US |