Dynamic join processing using real time merged notification listener

Information

  • Patent Grant
  • 10621168
  • Patent Number
    10,621,168
  • Date Filed
    Monday, May 1, 2017
    6 years ago
  • Date Issued
    Tuesday, April 14, 2020
    4 years ago
Abstract
Described are methods, systems and computer readable media for dynamic join operations.
Description

Embodiments relate generally to computer data systems, and more particularly, to methods, systems and computer readable media for the dynamic updating of join operations.


Joining two tables to create a third table has historically required combining large sets of data that can tax even large local memory stores and fast processors. Also, standard joins may not provide a user with the desired results. Also, standard joins may require combining large sets of data again after a small change to one of the joined tables to update the result.


Embodiments were conceived in light of the above mentioned needs, problems and/or limitations, among other things.


Some implementations can include a memory and processor efficient computer system for dynamic updating of join operations, the system comprising one or more processors, computer readable storage coupled to the one or more processors, the computer readable storage having stored thereon instructions that, when executed by the one or more processors, cause the one or more processors to perform operations. The operations can include sending a digital request for a remote query processor from a client computer to a remote query processor on a query server computer. The operations can also include at the remote query processor, performing operations including automatically connecting the client computer to the remote query processor via the digital communications network. The operations can include receiving a join-based query digitally from the client computer to the remote query processor that contains two or more input tables to be joined. The operations can also include adding a node for each table providing input to the join operation to the update propagation graph. The operations can further include adding a join operation results node to the update propagation graph for holding results of executing the join-based query. The operations can also include adding a real-time merged notification listener for the join operation node in the update propagation graph. The operations can include applying the join operation to the two or more input tables using indexes from the two or more input tables to identify and retrieve data needed for the join operation in order to minimize local memory and processor usage. The operations can also include using the real-time merged notification listener for the join operation node to listen for any changes to the joined two or more input tables in order to minimize local memory and processor usage by only conducting a join operation when a change has been detected. The operations can further include when the real-time merged notification listener receives notification of changes to any of the joined two or more input tables, using indexes from the two or more input tables to apply the join operation only to the changes to update the join operation results node only for changed index ranges in order to minimize local memory and processor usage.


The operations can include wherein the join-based query is a left_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table. The operations can also include the one or more new columns containing an aggregation of all values from the second input table that match a join criteria. The operations can further include the types of all newly created second input table columns not involved in the join criteria being an array of the second input table's column type.


The operations can include wherein the join-based query is an as_of_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table. The operations can also include the one or more new columns containing all values from the second input table that match a join criteria, the join criteria performing an exact match on N−1 match columns followed by performing a closest-less-than match on the last match column.


The operations can include wherein the join-based query is a reverse_as_of_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table. The operations can also include the one or more new columns containing all values from the input table that match a join criteria, the join criteria performing an exact match on N−1 match columns followed by performing a closest-greater-than match on the last match column.


The operations can include wherein the join-based query is a range_as_of_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table. The operations can also include the one or more new columns containing all values from the input table that match a join criteria, the join criteria returning each cell in the one or more new columns with an array of all values within a designated range for N-M match columns where the match is exact, and M match columns define a range match.


The operations can include wherein the join-based query is a natural_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table. The operations can also include the table having a same number of rows as the source table, the same number of rows containing an original content of the source table rows. The operations can further include the one or more new columns determined by matching one or more values from the input table with the source table.


The operations can include wherein the join-based query is an exact_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table. The operations can also include the table having a same number of rows as the source table, the same number of rows containing an original content of the source table rows. The operations can further include the one or more new columns determined by matching one or more values from the input table with the source table. The operations can also include the table containing exactly one match for each row with the input table.


The operations can include wherein the join-based query creates a subset filtered by a match criteria on a full Cartesian product, resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table.


The operations can include wherein the join operation node is different than the join operation results node.


The operations can include wherein the real-time merged notification listener for the join operation node is separate from the join operation node.


The operations can include wherein the real-time merged notification listener for the join operation node is separate from the join operation results node.


The operations can include wherein the operations of the remote query processor further include returning join operation results with strict ordering to guarantee ordering.


The operations can include wherein the operations of the remote query processor further include returning the join operation results that can contain arrays mapped to data.


The operations can include wherein the strict ordering is according to time.


The operations can include wherein the strict ordering is dictated by an order of data in the two or more input tables.


The operations can include wherein the changes include one or more of an add, modify, delete, or re-index.


The operations can include wherein the operations of the remote query processor further comprise automatically re-applying the join operation when the real-time merged notification listener detects any one of an add, modify, delete, or re-index message.


The operations can include further comprising when the two or more input tables are derived from a same ancestor table, changes in the same ancestor table cause a cascade of change notifications through the update propagation graph causing the remote query processor to combine the change notifications for efficiency and consistency.


The operations can include wherein the automatically re-applying is only applied to changed portions of the two or more input tables and not to unchanged portions.


The operations can include wherein the join criteria includes a formula.


Some implementations can include a method for dynamic updating of join operations, the method comprising sending a digital request for a remote query processor from a client computer to a remote query processor on a query server computer. The method can also include automatically connecting the client computer to the remote query processor via the digital communications network. The method can further include receiving a join-based query digitally from the client computer to the remote query processor that contains two or more input tables to be joined. The method can also include adding a node for each table providing input to the join operation to the update propagation graph. The method can include adding a join operation results node to the update propagation graph for holding results of executing the join-based query. The method can also include adding a real-time merged notification listener for the join operation node in the update propagation graph. The method can include applying the join operation to the two or more input tables using indexes from the two or more input tables to identify and retrieve data needed for the join operation in order to minimize local memory and processor usage. The method can also include using the real-time merged notification listener for the join operation node to listen for any changes to the joined two or more input tables in order to minimize local memory and processor usage by only conducting a join operation when a change has been detected. The method can further include when the real-time merged notification listener receives notification of changes to any of the joined two or more input tables, using indexes from the two or more input tables to apply the join operation only to the changes to update the join operation results node only for changed index ranges in order to minimize local memory and processor usage.


Some implementations can include a nontransitory computer readable medium having stored thereon software instructions that, when executed by one or more processors, cause the one or more processors to perform operations. The operations can include sending a digital request for a remote query processor from a client computer to a remote query processor on a query server computer. The operations can also include at the remote query processor, performing operations. The operations can include automatically connecting the client computer to the remote query processor via the digital communications network. The operations can also include receiving a join-based query digitally from the client computer to the remote query processor that contains two or more input tables to be joined. The operations can further include adding a node for each table providing input to the join operation to the update propagation graph. The operations can also include adding a join operation results node to the update propagation graph for holding results of executing the join-based query. The operations can include adding a real-time merged notification listener for the join operation node in the update propagation graph. The operations can also include applying the join operation to the two or more input tables using indexes from the two or more input tables to identify and retrieve data needed for the join operation in order to minimize local memory and processor usage. The operations can further include using the real-time merged notification listener for the join operation node to listen for any changes to the joined two or more input tables in order to minimize local memory and processor usage by only conducting a join operation when a change has been detected. The operations can also include when the real-time merged notification listener receives notification of changes to any of the joined two or more input tables, using indexes from the two or more input tables to apply the join operation only to the changes to update the join operation results node only for changed index ranges in order to minimize local memory and processor usage.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of an example computer data system showing an example data distribution configuration in accordance with some implementations.



FIG. 2 is a diagram of an example computer data system showing an example administration/process control arrangement in accordance with some implementations.



FIG. 3 is a diagram of an example computing device configured for remote query processor processing in accordance with some implementations.



FIG. 3A is a diagram of an example query server host data sources in accordance with some implementations.



FIG. 3B is a diagram of an example query server host in accordance with some implementations.



FIG. 4 is a diagram of an example tree-based table storage in accordance with some implementations.



FIG. 4A is a diagram of example basic query components in accordance with some implementations.



FIG. 4B is a diagram of an example update propagation graph for join operations in accordance with some implementations.



FIG. 5 is a flowchart of an example join operation update in accordance with some implementations.



FIG. 5A is a diagram of an example dynamic update of a join in accordance with some implementations.



FIG. 6 is a flowchart of an example remote query processor join operation in accordance with some implementations.



FIG. 7 is a diagram of an example as_of_join in accordance with some implementations.



FIG. 8 is a diagram of an example left_join in accordance with some implementations.



FIG. 9 is a diagram of an example reverse_as_of_join in accordance with some implementations.



FIG. 10 is a diagram of an example range_as_of_join in accordance with some implementations.



FIG. 11 is a diagram of an example natural_join in accordance with some implementations.



FIG. 12 is a diagram of an example exact_join in accordance with some implementations.



FIG. 13 is a diagram of an example join in accordance with some implementations.





DETAILED DESCRIPTION

Reference is made herein to the Java programming language, Java classes, Java bytecode and the Java Virtual Machine (JVM) for purposes of illustrating example implementations. It will be appreciated that implementations can include other programming languages (e.g., groovy, Scala, R, Go, etc.), other programming language structures as an alternative to or in addition to Java classes (e.g., other language classes, objects, data structures, program units, code portions, script portions, etc.), other types of bytecode, object code and/or executable code, and/or other virtual machines or hardware implemented machines configured to execute a data system query.



FIG. 1 is a diagram of an example computer data system and network 100 showing an example data distribution configuration in accordance with some implementations. In particular, the system 100 includes an application host 102, a periodic data import host 104, a query server host 106, a long-term file server 108, and a user data import host 110. While tables are used as an example data object in the description below, it will be appreciated that the data system described herein can also process other data objects such as mathematical objects (e.g., a singular value decomposition of values in a given range of one or more rows and columns of a table), TableMap objects, etc. A TableMap object provides the ability to lookup a Table by some key. This key represents a unique value (or unique tuple of values) from the columns aggregated on in a byExternal( ) statement execution, for example. A TableMap object is can be the result of a byExternal( ) statement executed as part of a query. It will also be appreciated that the configurations shown in FIGS. 1 and 2 are for illustration purposes and in a given implementation each data pool (or data store) may be directly attached or may be managed by a file server.


The application host 102 can include one or more application processes 112, one or more log files 114 (e.g., sequential, row-oriented log files), one or more data log tailers 116 and a multicast key-value publisher 118. The periodic data import host 104 can include a local table data server, direct or remote connection to a periodic table data store 122 (e.g., a column-oriented table data store) and a data import server 120. The query server host 106 can include a multicast key-value subscriber 126, a performance table logger 128, local table data store 130 and one or more remote query processors (132, 134) each accessing one or more respective tables (136, 138). The long-term file server 108 can include a long-term data store 140. The user data import host 110 can include a remote user table server 142 and a user table data store 144. Row-oriented log files and column-oriented table data stores are discussed herein for illustration purposes and are not intended to be limiting. It will be appreciated that log files and/or data stores may be configured in other ways. In general, any data stores discussed herein could be configured in a manner suitable for a contemplated implementation.


In operation, the input data application process 112 can be configured to receive input data from a source (e.g., a securities trading data source), apply schema-specified, generated code to format the logged data as it's being prepared for output to the log file 114 and store the received data in the sequential, row-oriented log file 114 via an optional data logging process. In some implementations, the data logging process can include a daemon, or background process task, that is configured to log raw input data received from the application process 112 to the sequential, row-oriented log files on disk and/or a shared memory queue (e.g., for sending data to the multicast publisher 118). Logging raw input data to log files can additionally serve to provide a backup copy of data that can be used in the event that downstream processing of the input data is halted or interrupted or otherwise becomes unreliable.


A data log tailer 116 can be configured to access the sequential, row-oriented log file(s) 114 to retrieve input data logged by the data logging process. In some implementations, the data log tailer 116 can be configured to perform strict byte reading and transmission (e.g., to the data import server 120). The data import server 120 can be configured to store the input data into one or more corresponding data stores such as the periodic table data store 122 in a column-oriented configuration. The periodic table data store 122 can be used to store data that is being received within a time period (e.g., a minute, an hour, a day, etc.) and which may be later processed and stored in a data store of the long-term file server 108. For example, the periodic table data store 122 can include a plurality of data servers configured to store periodic securities trading data according to one or more characteristics of the data (e.g., a data value such as security symbol, the data source such as a given trading exchange, etc.).


The data import server 120 can be configured to receive and store data into the periodic table data store 122 in such a way as to provide a consistent data presentation to other parts of the system. Providing/ensuring consistent data in this context can include, for example, recording logged data to a disk or memory, ensuring rows presented externally are available for consistent reading (e.g., to help ensure that if the system has part of a record, the system has all of the record without any errors), and preserving the order of records from a given data source. If data is presented to clients, such as a remote query processor (132, 134), then the data may be persisted in some fashion (e.g., written to disk).


The local table data server 124 can be configured to retrieve data stored in the periodic table data store 122 and provide the retrieved data to one or more remote query processors (132, 134) via an optional proxy.


The remote user table server (RUTS) 142 can include a centralized consistent data writer, as well as a data server that provides processors with consistent access to the data that it is responsible for managing. For example, users can provide input to the system by writing table data that is then consumed by query processors.


The remote query processors (132, 134) can use data from the data import server 120, local table data server 124 and/or from the long-term file server 108 to perform queries. The remote query processors (132, 134) can also receive data from the multicast key-value subscriber 126, which receives data from the multicast key-value publisher 118 in the application host 102. The performance table logger 128 can log performance information about each remote query processor and its respective queries into a local table data store 130. Further, the remote query processors can also read data from the RUTS, from local table data written by the performance logger, or from user table data read over NFS.


It will be appreciated that the configuration shown in FIG. 1 is a typical example configuration that may be somewhat idealized for illustration purposes. An actual configuration may include one or more of each server and/or host type. The hosts/servers shown in FIG. 1 (e.g., 102-110, 120, 124 and 142) may each be separate or two or more servers may be combined into one or more combined server systems. Data stores can include local/remote, shared/isolated and/or redundant. Any table data may flow through optional proxies indicated by an asterisk on certain connections to the remote query processors. Also, it will be appreciated that the term “periodic” is being used for illustration purposes and can include, but is not limited to, data that has been received within a given time period (e.g., millisecond, second, minute, hour, day, week, month, year, etc.) and which has not yet been stored to a long-term data store (e.g., 140).



FIG. 2 is a diagram of an example computer data system 200 showing an example administration/process control arrangement in accordance with some implementations. The system 200 includes a production client host 202, a controller host 204, a GUI host or workstation 206, and query server hosts 208 and 210. It will be appreciated that there may be one or more of each of 202-210 in a given implementation.


The production client host 202 can include a batch query application 212 (e.g., a query that is executed from a command line interface or the like) and a real time query data consumer process 214 (e.g., an application that connects to and listens to tables created from the execution of a separate query). The batch query application 212 and the real time query data consumer 214 can connect to a remote query dispatcher 222 and one or more remote query processors (224, 226) within the query server host 1 208.


The controller host 204 can include a persistent query controller 216 configured to connect to a remote query dispatcher 232 and one or more remote query processors 228-230. In some implementations, the persistent query controller 216 can serve as the “primary client” for persistent queries and can request remote query processors from dispatchers, and send instructions to start persistent queries. For example, a user can submit a query to 216, and 216 starts and runs the query every day. In another example, a securities trading strategy could be a persistent query. The persistent query controller can start the trading strategy query every morning before the market opened, for instance. It will be appreciated that 216 can work on times other than days. In some implementations, the controller may require its own clients to request that queries be started, stopped, etc. This can be done manually, or by scheduled (e.g., cron) jobs. Some implementations can include “advanced scheduling” (e.g., auto-start/stop/restart, time-based repeat, etc.) within the controller.


The GUI/host workstation can include a user console 218 and a user query application 220. The user console 218 can be configured to connect to the persistent query controller 216. The user query application 220 can be configured to connect to one or more remote query dispatchers (e.g., 232) and one or more remote query processors (228, 230).



FIG. 3 is a diagram of an example computing device 300 in accordance with at least one implementation. The computing device 300 includes one or more processors 302, operating system 304, computer readable medium 306 and network interface 308. The memory 306 can include a remote query processor application 310 and a data section 312 (e.g., for storing ASTs, precompiled code, etc.).


In operation, the processor 302 may execute the remote query processor application 310 stored in the memory 306. The remote query processor application 310 can include software instructions that, when executed by the processor, cause the processor to perform operations for executing and updating queries in accordance with the present disclosure (e.g., performing one or more of 502-526, 550-572, 602-612 described below).


The remote query processor application program 310 can operate in conjunction with the data section 312 and the operating system 304.


A varied set of join operations can provide a powerful toolset to users for manipulating data with one join command versus the use of several joins or looping code. Each join in a set of joins can be built for particular types of input tables to provide a desired type of result.



FIG. 3A is a diagram of an example query server host 320 with associated data stores in accordance with at least one embodiment. A query server host 320 can contain one or more remote query processors 322 (as described at 310) and high speed memory, for example shared RAM 336 plus access to medium access speed memory 346 and slow access speed storage 354.


The remote query processor 322 can contain one or more processors 324 and high speed memory 326 such as RAM. The high speed memory 326 can contain one or more update propagation graphs 328, one or more table indexes 330, in memory data 332, and recent data cache 334. The high speed memory 326 can request and retrieve data from one or more slow access speed storages 355 and/or from high speed memory 336.


The high speed memory 336 can be memory that is shared with one or more remote query processors 322 and one or more table data cache proxies (not shown). The high speed memory 336 can contain one or more data columns, for example, a symbol column data 338, a date column data 340, a time column data 342, and a quote column data 344. The high speed memory 336 can exchange data with remote query processor 322 high speed memory 326 and/or medium access speed memory 346, and can request and receive data from slow access speed storage 355.


The medium access speed memory 346 can contain one or more data columns, for example, symbol column data 348, a date column data 350, a time column data 352, and a quote column data 354. Medium access speed memory 346 can exchange data with high speed memory 336 and transmit data to a slow access speed storage 355.


The slow access speed storage 355, for example, a file server with one or more hard drives, can contain one or more source columns, for example, a symbol column source 358, a date column source 360, a time column source 362, and a quote column source 364. The one or more column source can be copied into medium speed solid state storage 356, for example, flash, to provide faster access for more frequently accessed data.



FIG. 3B is a diagram of an example query server host 370 as described at 320 in accordance with at least one embodiment. A query server host can contain one or more remote query processors (372, 374, 376) associated with one or more table data cache proxy clients (378, 380, 382), a shared memory 384 as described at 336 that can exchange data (386, 388, 390) with the table data cache proxy clients (378, 380, 382), and one or more table data cache proxies 392 that can exchange data with the shared memory 384.


In general, some implementations can include a computer data system that stores and retrieves data (e.g., time series data) according to strict ordering rules. These rules ensure that data is stored in a strict order and that results of a query are evaluated and returned in the same order each time the query is executed. This can provide an advantage of optimizing the query code for query execution speed by permitting a user and query process (e.g., a remote query processor) to rely on an expected ordering and eliminate a need for performing an additional sorting operation on query results to achieve an expected or needed ordering for downstream operations. It also allows data to be ordered according to the source's data publication order without necessarily including data elements to refer to for query evaluation or result ordering purposes. It should be noted that updates from real-time or changing data, however, may not always be seen in the same order, since data is processed after asynchronous notifications and according to refresh cycles that progress at different speed and frequency in distinct remote query processors or client processes. Updates are not necessarily the results of a query, though. For some implementations order within a partition is always maintained.


For example, in the real-time (or periodic) case, a data system may store data in arrival order (which is typically time-series order) within the partition of the table that corresponds to a given data source. In the permanent-store case (or long term storage case), the computer data system starts with the real-time order and then re-partitions, optionally groups, and optionally sorts the real-time (or periodic) data according to one or more columns or formulas, otherwise respecting the retrieval order for the real-time data when producing the new stored data and its ordering.


Some implementations can include a partitioned data store that has partitions based, at least in part, on a file system and can include physical machine partitions, virtual machine partitions and/or file system directory structure partitions. For example, partitions A, B and C of a data store (e.g., a column data source) may reside in different directories of a file system. In addition to different directories, the data store may be distributed across a plurality of data servers (physical or virtual) such that the data is partitioned to a given server and within that server, the data may be sub-partitioned to one or more directories, and within each directory, the data may be further partitioned into one or more sub-directories and/or one or more files.


Partitioning the data using a file system provides an advantage in that the location keys and retrieval instructions for storage locations of interest for potential query result data can be discovered by means of traversing a directory structure, rather than a separately-maintained location key and location retrieval information discovery service. Once discovered, locations can be narrowed from the full set of locations to a sub-set according to query instructions, which can help speed up query operations by permitting the data system to defer accessing actual data (“lazy loading”) and begin to narrow down the set of rows to evaluate without handling data (e.g., in memory and/or transmitting via a communication network). This is further enhanced by support in the data system's query engine for partitioning columns—columns of the data that are a property of all rows in any location retrieved from a given partition of the location key space, typically embodied in the name of a sub-directory when a file system is used in this way. Certain query operations can thus be executed in whole or in part against location key fields on a per-partition basis rather than against column data on a per-row basis. This may greatly improve execution performance by decreasing the input size of the calculations by several orders of magnitude.


Within a partition, data may be grouped according to a column value. The grouping may have one or more levels, with a multi-level grouping having a logical hierarchy based on the values of two or more columns, such that groups in “higher-level” columns fully-enclose groups in “lower-level” columns. Further, within a partition or group, the data can be ordered according to a given ordering scheme, e.g. strictly by the real-time recording order, or according to some sorting criteria. Grouping in this way can enhance query performance by allowing for very simple, high performance data indexing, and by increasing the physical locality of related data, which in turn can reduce the number of rows or blocks that must be evaluated, and/or allow for extremely performant data caching and pre-fetching, with high cache hit ratios achieved with smaller cache sizes than some other data systems.


For example, securities trading data may be partitioned across servers by a formula that takes ticker symbol as input. Within each server, the data may be partitioned by a directory corresponding to trade data date. Within each date partition directory, data may be in a file grouped by one or more ticker symbol values. Within each ticker symbol group, the data may be ordered by time.


In another example, when generating a query result table, the data system can first focus on a server (or servers) for the symbol (or symbols) being accessed, then one or more partitions for the date(s) of interest, then one or more files and group(s) within the file(s) before any data is actually accessed or moved. Once the data system resolves the actual data responsive to the query, the data (or references to the data in one or more data sources) can be retrieved and stored into a query result table according to a strict ordering and will be evaluated and returned in that same order each time the query is executed.


It will be appreciated that some data stores or tables can include data that may be partitioned, grouped, and/or ordered. For example, some data may be partitioned and ordered, but not grouped (e.g., periodic data such as intraday trading data). Other data may be partitioned, grouped and ordered (e.g., long-term storage data such as historical trading data). Also it will be appreciated that any individual table, partition or group can be ordered. Partitions can be grouped according to a grouping and/or ordering specific to each partition.



FIG. 4 is a diagram of an example tree-based table storage 400 in accordance with at least one embodiment. Tables, especially large tables, can benefit from a hierarchical tree-based structure as shown in 400. The tree root 402 can be a table handle. Underneath the table root 402 can be a series of partition columns (404, 406, 408). The partitioning can be implemented in a filesystem, object store or the like. The partition columns (404, 406, 408) can be visible to a user or hidden from a user. For example, a column could be partitioned by date and each partition could contain data for a single date, such as 2016-03-18. In this example, the date can be a table column visible to a user. The partition columns can also be used to divide the workload for maintaining a column over more than one fileserver.


The leaf nodes of a partition column can be subtables. An example subtable structure is shown at 410. In a subtable structure 410, data in the form of a subtable 418 can be stored for all rows and columns of a table.


For example, a table can have a logical table schema of columns for Date, Ticker Symbol, Timestamp, Bid Price and Ask Price. In this example, two partition columns can be created under the table root, one partition for Date and one partition for FileServer. The Date partition column (for example, 404) can contain directory paths to data for a single date, such as 2016-03-18. Because the data is all of the same date, 2016-03-18, the subtable 418 does not need to contain a Date value. In this example, the data 418 for the same date, 2016-03-18, can be spread across multiple file servers. A second partition column (for example, 406) is set under the Date partition column in the tree to provide a path, such as <table>/<date>/<fileserver>, to locate all the Date data for 2016-03-18. As noted earlier in this example, the Date partition column can be visible to a user, but a fileserver partition column may not be visible.


The data partition column is visible to the user to help the user formulate queries that can take advantage of the tree structure. For example, query performance can be enhanced by applying filters, such as where clauses, in an order based on the location of the data in a tree. Generally, applying the filter to a partition column closer to the table root 402 can minimize the amount of data processed to arrive at a final result. For example, in the Date, Ticker Symbol, Timestamp, Bid Price, Ask Price example, the most efficient filtering order is Date followed by Ticker Symbol. In this example, table.where (“Date=d”, “Sym=‘AAPL’”, “Bid>1000”) can be much faster than table.where (“BID>1000”, “Sym=‘AAPL’”, “Date=d”). In table.where (“Date=d”, “Sym=‘AAPL’”, “Bid>1000”), only the subtables 418 under the date “d” partition column needs to be retrieved for processing because the subtables 418 in this example are already partitioned by date, the system does not need to provide any additional filtering work for date. In contrast table.where (“BID>1000”, “Sym=‘AAPL’”, “Date=d”) can require every bid for every stock ticker for every date to be retrieved and processed because the “BID>1000” is processed first, and a partition column for “BID>1000” may not exist. As shown by this example, partition columns can be used to provide a built-in filter option that does not require the system to re-filter per each query the filters on the contents of the partition columns.


It will be appreciated that if the user had placed “Sym=‘AAPL’” before “BID>1000” in the where statement, the system could have filtered on a grouping by ticker symbols to more efficiently locate AAPL before then finding bids greater than 1000. Without using the group by ticker symbols first, all bids greater than 1000 would be retrieved.


It will also be appreciated that partition columns are not limited to Date or Fileserver. Any common attribute that would provide performance gains if pre-filtered can be a good candidate for partition columns.


It will also be appreciated that query performance gains can be achieved by creating grouping columns (412, 414, 416) underneath the Date partition columns. For example, a grouping column could be created for each distinct ticker symbol.


It will be further appreciated that the system can process each filter and determine which column each filter depends on. Then, based upon where the columns are located in the tree structure, the system can rank the filters based upon how much of the tree the system removes for future filters. For example, when processing date, symbol, and bid columns, date can be the highest in the tree (partition column) followed by Symbol (grouping column) followed by Bid (normal column). If 3 filters are submitted by a user that has dependencies on the date, symbol, and bid columns, the system can make an educated guess at the order the clauses can best be executed for maximum efficiency. For example, given t1.where(“Bid>10”,“Symbol=‘AAPL’”,“Date=today( )”), the system can reorder to t1.where(“Date=today( )”,“Symbol=‘AAPL’”,“Bid>10”) to maximize efficiency.



FIG. 4A is a diagram an example of basic query components in accordance with at least one embodiment. A remote query processor 420 can contain a one or more processors 422 and memory 424. A remote query processor 420 memory 424 can contain one or more update propagation graphs 426. An update propagation graph 426 can contain a graphical node representation of a query such as a join operation on two tables (t1 and t2) to create a third table (t3).


It will be appreciated that an update propagation graph can contain dynamic nodes that are table objects that can be updated frequently over time as well as static nodes that do not change over time.


A remote query processor 420 can exchange data with one or more historical data 430 sources and/or one or more real-time data 432 sources. A remote query processor 420 can also receive query tasks from one or more user query applications 428 and provide results back to one or more user query applications 428.


It will be appreciated that a remote query processor 420 can provide a client computer with an address assignment of the remote query processor, the address assignment identifying a specific port of the remote query processor 420 on a query server computer available to the client computer to connect over a digital communications network. The remote query processor 420 can automatically connect the client computer to the remote query processor via the digital communications network.



FIG. 4B is a diagram of an example update propagation graph for join operations 440 in accordance with some implementations. A node for table 1 442 and a node for table 2 444 can represent table objects that can be joined by a join operation 446 to create a table 3 containing the join results 448. An update propagation graph for join operations 440 can contain a table 1 listener 443, a table 2 listener 445, and real-time merged notification listener 450. A table 1 listener 443 can listen for changes to table 1 442 and a table 2 listener 445 can listen for changes to table 2 444. A real-time merged notification listener 450 can listen for one or more changes propagated from table 1 442 and table 2 444 that can then be joined by the join operation 446 through a table 1 listener 443 and a table 2 listener 445, respectively. When the real-time merged notification listener 450 is notified by, for example, an add, delete, modify, re-index, or other message, the table 3 join results 448 can be updated for those changes by executing the join operation 446 on the changes that occurred to table 1 442 and/or table 2 444.


It will be appreciated that a real-time merged listener can be a software construct that listens for change notifications, such as add, delete, modify, or re-index messages, or other message types propagated down the update propagation graph. In a real-time environment, changes can happen frequently, for example, every millisecond, second, minute, hour, etc.


It will be appreciated that table 1 442 and table 2 444 can be derived from a common ancestor table. For example, if 442 and 444 share a common ancestor, changes in the ancestor can trigger a cascade of add, modify, delete, or re-index (AMDR) messages through an update propagation graph, which can ultimately cause both 442 and 444 to create AMDR messages. The system can recognize that an ancestor caused both 442 and 444 to send AMDR messages to a join. Before creating its own AMDR message, the system join (various nodes and merge listener) can combine the AMDR messages for efficiency and consistency. The ultimate AMDR from the system join can then give a time-consistent view of processing all information simultaneously.



FIG. 5 is a flowchart of an example join operation update in accordance with some implementations. Processing can begin at 502 and/or 504, when a remote query processor receives a notification of changes to table 1 through add, modify, delete, or re-index (AMDR) messages, or other message types, and/or a remote query processor receives a notification of changes to table 2 through AMDR messages, or other message types.


It will be appreciated that because table 3 has already been created by a join operation on tables 1 and 2 before 502 and 504 that any change to table 1 or table 2 will require an update to the join to update table 3. Processing continues to 506.


At 506, based on the changes to table 1 and/or table 2, the remote query processor determines row changes for table 3. Processing continues to 508.


At 508, for the row changes to be applied to table 3, table 1 and table 2 data that is needed to compute the row for table 3 is loaded. Processing continues to 510.


At 510, a determination is made by the remote query processor as to whether the needed data is in memory. If the data is in memory, processing continues to 522. If the data is not in memory processing continues to 512.


At 512, a determination is made by the remote query processor as to whether the needed data is in high speed cache. If the data is in high speed cache, processing continues to 522. If the data is not in high speed cache, processing continues to 514.


At 514, a determination is made by the remote query processor as to whether the needed data is available from a table data cache proxy (TDCP). If the data is available from a TDCP, processing continues to 516. If the data is not available from a TDCP, processing continues to 518.


At 516, a determination is made by the remote query processor as to whether the needed data is in the TDCP cache. If the data is in the TDCP cache, processing continues to 522. If the data is not in the TDCP cache, processing continues to 520.


At 520, data is requested form an intraday server. Processing continues to 522.


At 518, data is loaded from a file server and/or file server cache. Processing continues to 522.


At 522, data is retrieved from the location where the data was found. Processing continues to 523.


At 523, if the cache is full, enough data is evicted from the cache to make space for the retrieved data. Processing continues to 524.


At 524, the updated row for table 3 is computed according to the join criteria. Processing returns back to 508 to continue the update cycle and continues to 526.


At 526, nodes below table 3 in the update propagation graph (child nodes of table 3) are notified of the changes to table 3.



FIG. 5A is a flowchart of an example dynamic update of a join operation to table 1 and table 2 to update table 3 in accordance with some implementations. Processing can begin at 552 and/or 554, when an update propagation graph receives notification of changes to either table 1 and/or table 2 through AMDR messages to table 1 and/or table 2 objects in the update propagation graph within the update propagation graph clock cycle.


It will be appreciated that table 1 and table 2 can be derived for a common ancestor data store, such as a table as discussed in the FIG. 4B section above. Processing continues to 556.


At 556, the remote query processor receives notification of changes to table 1 and/or table 2. Processing continues to 558.


At 558, the remote query processor uses the table 1 and table 2 objects from the update propagation graph and the table 1 and table 2 AMDR update messages to determine the data that needs to be used in a join operation for updating table 3. Processing continues to 560.


At 560, the remote query operation determines the location of data needed for table 1 and table 2 for updating table 3. Processing continues to 562 and 564.


At 562, the location of table 1 data is determined to be located in either persistent (e.g. on-disk) column sources, remote query processor memory, such as RAM, or a table data cache proxy (TDCP). Processing continues to 570 if the location is column sources, to 568 if the location is TDCP, or to 566 if the location is remote query processor memory, such as RAM.


It will be appreciated that not all column sources or rows may be required to perform an update. The system defer loading of data until a particular section of data required to either perform the join operation or is requested by a downstream consumer of the table.


At 564, the location of table 2 data is determined to be located in either column sources, remote query processor memory, such as RAM, or a table data cache proxy (TDCP). Processing continues to 570 if the location is column sources, to 568 if the location is TDCP, or to 566 if the location is remote query processor memory, such as RAM.


At 566, data is retrieved from the remote query processor memory, such as RAM. Processing continues to 572.


At 568, data is retrieved from TDCP cache or intraday server. Processing continues to 572.


At 570, data is retrieved from table column sources flash or column sources storage.


It will be appreciated that any arbitrary storage hierarchy can be used. Processing continues to 572.


At 572, the remote query processor performs a join operation on table 1 and table 2 column sources by re-computing the necessary rows and then sending the results to the update propagation graph.


It will be appreciated the t3 can be added to the update query graph when the query is first executed. After the initial execution of the query, messages can be passed to a child after an update.



FIG. 6 is a flowchart of an example remote query processor join action in accordance with some implementations. Processing begins at 602 when a remote query processor receives a request from a client machine to perform a join operation on two or more input tables.


It will be appreciated that a join operation can include without limitation, an as_of_join, left_join, a reverse_as_of_join, a range_as_of_join, a natural_join, an exact_join, or a join. Processing continues to 604.


At 604, the remote query processor adds a node for each table providing input to the join operation to the update propagation graph. Processing continues to 606.


At 606, the remote query processor adds a node to the update propagation graph for the join operation resulting table. Processing continues to 608.


At 608, the remote query processor adds a real-time merged notification listener to the join operation node to listen for changes to the joined tables. Processing continues to 610.


At 610, the real-time merged notification listener listens for changes to any of the tables used in the join operation. Processing continues to 612.


At 612, when the real-time merged notification listener receives notification of changes to any of the tables used in the join operation, the join operation is applied to capture the changes and apply the changes to the join operation resulting table.


It will be appreciated that a match for a join operation can be based on a formula.



FIG. 7 is a diagram of an example as_of_join in accordance with some implementations. In this example, a join operation can be used on Table_A (leftTable) and Table_B (rightTable) to create Table_C. The join operation in this example is an as_of_join 720. An exemplary command string for an as_of_join can be Table_C=leftTable aj(Table rightTable, String columnsToMatch, String columnsToAdd). The command can cause the system to look up columns in the rightTable that meet the match conditions in the columnsToMatch list. The columnsToMatch can be a comma separated list of match conditions such as “leftColumn=rightColumn” or “columnFoundInBoth”, with the last match condition meaning really “leftColumn matches the highest value of rightColumn that is <=leftColumn” or “leftTable.columnFoundInBoth matches the highest value of rightTable.columnFoundInBoth that is <=leftTable.columnFoundInBoth”. Matching is done exactly for the first n−1 columns and with less-than (e.g., via a binary search with a saved cursor to improve adjacent lookups) for the last match pair. The columns of the leftTable can be returned intact, together with the columns from the rightTable defined in a comma separated list “columnsToAdd”. The separated list “columnsToAdd” can be a comma separated list with columns form the rightTable that need to be added to the leftTable as a result of a match, expressed either as columnName or newColumnName=oldColumnName if renaming is desired or necessary. The keys of the last column to match should be monotonically increasing in the rightTable for any existing combination of the previous n−1 match columns. If more than one row matches, then any one of the matching rows may be selected. Which row is selected can be decided by the search algorithm.


In the as_of_join example shown in FIG. 7, leftTable table_A 702 is as_of_joined with rightTable Table_B 712 with an as_of_join command 720 that creates the resultant table, Table_C 732. In this example, the values for ticker 704, price 706, and TradeTime 708 columns from Table_A remain the same in Table_C as ticker 734, price 736, TradeTime 738. The TradeTime 716 column from rightTable Table_B 712 is renamed in Table_C 732 as TradeTimeB 740. The MidPrice 718 column in Table_B 712 retains the same column name, MidPrice 742. In this example, the A1, $100, 9:30 first row in Table_A 702 does not have a match in Table_B 712 because every time value in TradeTime 716 for A1 is greater than 9:30. Accordingly, in Table_C 732, the TradeTimeB 740 and MidPrice 742 columns contain NULL values for the A1, $100, 9:30 row.



FIG. 8 is a diagram of an example left_join in accordance with some implementations. In this example, a join operation can be used on Table_A and Table_B to create Table_C. The join operation in this example is a left_join. An exemplary command string for a left_join can be Table_C=leftTable leftJoin(Table rightTable, String columnsToMatch, String columnsToAdd).


The left_join operation can return a table that has one column for each of the leftTable's columns, and one column corresponding to each of the rightTable columns whose name does not overlap or are renamed in order to not overlap with the name of a column from the leftTable.


The new columns (those corresponding to the rightTable) can contain an aggregation of all values from the leftTable that match the join criteria. Consequently, the types of all rightTable columns not involved in a join criteria, is an array of the rightTable column type. If the two tables have columns with matching names, then the method can fail with an exception unless the columns with corresponding names are found in one of the matching criteria. A left_join operation does not necessarily involve an actual data copy, or an in-memory table creation.


It will be appreciated that the values for columns in a result table derived from a right table need not immediately be computed, but can be generated on demand when a user requests the values.


In the left_join example shown in FIG. 8, leftTable table_A 802 is left joined with rightTable table_B 812 with a left_join command 820 that creates the resultant table, table_C 832. In this example, the values for column 1 804, column 2 806, and column 3 808 columns from table_A remain the same in table_C 832. The A1, B1, C1; A1, B2, C2; and A2, B5, C8 rows of table_A have matches in column 1 814 of table_B. The table_A row of A3, B9, C11 does not find an A3 match in table_B and the result is an empty array in column 4 840 of table_C 832. Alternative embodiments may instead use a sentinel result value instead of an empty array (e.g., NULL). Because two rows exist for A1 in table_B 812, a two value array of “E1” and “E3” is created in column 4 840 of table_C 832. A2 has one value in table_B 312 and thus has a single value array in column 4 840 of table_C.



FIG. 9 is a diagram of an example reverse_as_of_join in accordance with some implementations. In this example, a join operation can be used on Table_A and Table_B to create Table_C. The join operation in this example is a reverse_as_of_join. An exemplary command string for a reverse_as_of_join can be Table_C=leftTable raj(Table rightTable, String columnsToMatch, String columnsToAdd). The reverse_as_of_join can function as the reverse of the as_of_join operation. In comparison to the as_of_join operation selecting the previous value, the reverse_as_of_join operation can select the next value. For example, the reverse_as_of_join operation can select the value that is greater than or equal to rather than less than or equal to the timestamp.


In the reverse_as_of_join example shown in FIG. 9, leftTable table_A 902 is reverse_as_of_joined with rightTable tableB 912 with a reverse_as_of_join command 920 that creates the resultant table, table_C 932. In this example, the values for ticker 904, price 906, and tradetime 908 columns from table_A remain the same in table_C 932 as ticker 934, price 936, tradetime 938. The tradetime 916 column from rightTable table_B 912 is renamed in Table_C 932 as tradetimeB 940. The midprice 918 column in table_B 912 retains the same column name, midprice 942. In this example, the A1, $101, 9:40 and A1, $99, 16:00 rows in table_A 902 do not have a match in table_B 912 because every time value in tradetime 916 for A1 is less than 9:40. Accordingly, in table_C 932, the tradetimeB 940 and midprice 942 columns contain NULL values for the A1, $101, 9:40 and A1, $99, 16:00 rows.



FIG. 10 is a diagram of an example range_as_of_join in accordance with some implementations. In this example, a join operation can be used on Table_A and Table_B to create Table_C. The join operation in this example is a range_as_of_join 1020. The range_as_of_join can be a combination of an as-of-join, a reverse-as-of-join, and a left_join. The range-as-of-join can search for a range of rows in a rightTable. There can be several alternatives for specifying the range to be matched in the rightTable. One possible syntax for specifying the range to be matched can be to match columns C1 . . . CN. C1 . . . CN-2 can be exact matches. CN-1 can be a range matching column that indicates the start of the range in the right table, CN can be a range matching column that indicates the end of the range in the rightTable. An exemplary command string for a range_as_of_join can be t3=t1.rangeJoin(t2,“A,B,StartTime=Time,EndTime=Time”, “Time,C”), which can create result types such as:


A—AType from t1


B—BType from t1


StartTime—DBDateTime from t1


EndTime—DBDateTime from t1


Time—Array{DBDateTime} from t2


C—Array{CType} from t2


One possible syntax for specifying the range to be matched can be to match columns columns C1 . . . CN with C1 . . . CN-1 being exact matches. CN can be a range matching column. A separate argument can indicate how the range will be computed. The range can be a combination of a time-period (e.g. five minutes before/after), a row count (e.g., 10 rows before), or a formula (e.g., include all prior/subsequent rows as long as a formula is true).


An exemplary command string for a range_as_of_join can be t3=t1.rangeJoin(t2, “A,B,Time”, Period(′05:00′), Count(1), “Time2=Time,C”), which can create result types such as:


A—AType from t1


B—BType from t1


Time—DBDateTime from t1


Time2—Array{DBDateTime} from t2


C—Array{CType} from t2


Another exemplary command string for range_as_of_join can be t3=t1.rangeJoin(t2, “A,B,Time”, Count(‘0’), Formula(‘C>D’), “Time2=Time,C,D”), which can create result type such as:


A—AType from t1


B—BType from t1


Time—DBDateTime from t1


Time2—Array{DBDateTime} from t2


C—Array{CType} from t2


D—Array {DType} from t2


In this example, the range can include all rows subsequent to Time in t1; until C is not greater than D.


It will be appreciated that an index from a leftTable can be reused, and all leftTable columns can be passed through to the result table, and that rightTable arrays do not need to be stored.


In the range_as_of_join example shown in FIG. 10, leftTable table_A 1002 is range_as_of_joined with rightTable table_B 1012 with a range_as_of_join command 1020 that creates the resultant table, table_C 1032. In this example, the values for ticker 1004, price 1006, and tradetime 1008 columns from table_A remain the same in table_C 1032 as ticker 1034, price 1036, tradetime 1038. The tradetime 1016 column form rightTable table_B 1012 is renamed in Table_C 1032 as tradetimeB 1040. The midprice 1018 column in table_B 1012 retains the same column name, midprice 1042. In this example, the A1, $99, 16:00 row in table_A 1002 does not have a match in table_B 1012 because every time value in tradetime 1016 for A1 is not within the period 5, 10 (5 minutes before to 10 minutes after) range. Accordingly, in table_C 1032, the tradetimeB 1040 and midprice 1042 columns can contain either a NULL value or an empty array for the A1, $99, 16:00 row.



FIG. 11 is a diagram of an example natural_join in accordance with some implementations. In this example, a join operation can be used on Table_A and Table_B to create Table_C. The join operation in this example is a natural_join 1120. An exemplary command string for an as_of_join can be Table_C=leftTable naturalJoin(Table rightTable, String columnsToMatch, String columnsToAdd). Table_C can have the exact same number of rows as the leftTable with all the columns from the leftTable with the exact original content. The rightTable can be expected to have one or no rows matching the columnsToMatch constraints. ColumnsToMatch can be comma separated constraints, expressed either as columnName (if the names are identical) or columnNameFromA=columnNameFromB. The resulting table, Table_C can contain one column for each column specified by columnToAdd, containing the matching rightTable values or null. ColumnsToAdd can be comma separated columns from B to be added to the final result, expressed either as columnName or newColumnName=oldColumnName when renaming the column is desired or necessary.


In the natural_join example shown in FIG. 11, leftTable employee table 1102 is natural joined with rightTable department table 1112 with a natural_join command 1120 that creates the resultant table, table_C 1132. In this example, the values for last name 1104 and department ID 806 from employee table remain the same in table_C 1132. Each of the department ID 1106 values in employee table 1102 have corresponding department ID 1114 values in department table 1112 with the exception of the last row of employee table 1102, “John” and “36”. Because a value for “36” does not exist in the department ID 1114 column of the department table 1112, the row for “John” and “36” in table_C has a NULL value for department name 1138.



FIG. 12 is a diagram of an example exact_join in accordance with some implementations. In this example, a join operation can be used on a securities table 1202 and a view of the securities table to create Table_C 1232. The join operation in this example is an exact_join 1220. An exemplary command string for an as_of_join can be Table_C=leftTable exactJoin(Table table, String columnsToMatche, String columnsToAdd).


An exact_join can function identical to a natural_join with the exception that an exact_join expects exactly one match for each of its columns with the rightTable.


It will be appreciated that one method to ensure a match for each column is to join a table with a view of itself.


In the exact_join example shown in FIG. 12, leftTable securities table 1202 is exact joined with a view of securities table 1202 with an exact_join command 1220 that creates the resultant table, table_C 1232. In this example, the underlying ticker symbol 1242 is added to the row containing the ticker 1236 symbol for a derivative product of the underlying ticker symbol 1241.



FIG. 13 is a diagram of an example join in accordance with some implementations. In this example, a join operation can be used on Table_A and Table_B to create Table_C. The join operation in this example is a join 1320. An exemplary command string for a join can be table_C=leftTable.join (rightTable, String columnsToMatch, String columnsToAdd), which can return the join of the leftTable with the rightTable. The result can be defined as the outcome of first taking the Cartesian product (or cross-join) of all records in the tables (combining every record in the leftTable with every record in the rightTable, with optional renamings of rightTable columns induced by columnToAdd)—then returning all records which satisfy the match constraints, with all the columns of leftTable and the columns of rightTable in columnsToAdd as selected columns. ColumnsToMatch can be comma separated constraints, expressed either as columnName (when the column names in leftTable and rightTable are the same) or columnNameFromleftTable=columnNameFromrightTable. ColumnsToAdd can be comma separated columns from rightTable to be added to the final result, expressed either as columnName or newColumnName=oldColumnName when renaming is desired or necessary.


In the join example shown in FIG. 13, leftTable employee table 1302 is joined with rightTable department table 1312 with a join command 1320 that creates the resultant table, table_C 1332. In this example, the values for last name 1304, department ID 1306, and telephone 1308 from employee table remain the same in table_C 1332. Each of the department ID 1306 values in employee table 1302 have corresponding department ID 1314 values in department table 1312 with the exception of the last row of employee table 1302, “John” and “36”. Because a value for “36” does not exist in the department ID 1314 column of the department table 1312, a row for “John” and “36” in table_C does not exist because there was no match. Also, because the department table 1312 contains two rows for 31, sales, table_C contains two rows for Rafferty for 31 and sales with each row containing a different department telephone number.


It will be appreciated that the modules, processes, systems, and sections described above can be implemented in hardware, hardware programmed by software, software instructions stored on a nontransitory computer readable medium or a combination of the above. A system as described above, for example, can include a processor configured to execute a sequence of programmed instructions stored on a nontransitory computer readable medium. For example, the processor can include, but not be limited to, a personal computer or workstation or other such computing system that includes a processor, microprocessor, microcontroller device, or is comprised of control logic including integrated circuits such as, for example, an Application Specific Integrated Circuit (ASIC), a field programmable gate array (FPGA), graphics processing unit (GPU), or the like. The instructions can be compiled from source code instructions provided in accordance with a programming language such as Java, C, C++, C #.net, assembly or the like. The instructions can also comprise code and data objects provided in accordance with, for example, the Visual Basic™ language, a specialized database query language, or another structured or object-oriented programming language. The sequence of programmed instructions, or programmable logic device configuration software, and data associated therewith can be stored in a nontransitory computer-readable medium such as a computer memory or storage device which may be any suitable memory apparatus, such as, but not limited to ROM, PROM, EEPROM, RAM, flash memory, disk drive and the like.


Furthermore, the modules, processes systems, and sections can be implemented as a single processor or as a distributed processor. Further, it should be appreciated that the steps mentioned above may be performed on a single or distributed processor (single and/or multi-core, or cloud computing system). Also, the processes, system components, modules, and sub-modules described in the various figures of and for embodiments above may be distributed across multiple computers or systems or may be co-located in a single processor or system. Example structural embodiment alternatives suitable for implementing the modules, sections, systems, means, or processes described herein are provided below.


The modules, processors or systems described above can be implemented as a programmed general purpose computer, an electronic device programmed with microcode, a hard-wired analog logic circuit, software stored on a computer-readable medium or signal, an optical computing device, a networked system of electronic and/or optical devices, a special purpose computing device, an integrated circuit device, a semiconductor chip, and/or a software module or object stored on a computer-readable medium or signal, for example.


Embodiments of the method and system (or their sub-components or modules), may be implemented on a general-purpose computer, a special-purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element, an ASIC or other integrated circuit, a digital signal processor, a hardwired electronic or logic circuit such as a discrete element circuit, a programmed logic circuit such as a PLD, PLA, FPGA, PAL, or the like. In general, any processor capable of implementing the functions or steps described herein can be used to implement embodiments of the method, system, or a computer program product (software program stored on a nontransitory computer readable medium).


Furthermore, embodiments of the disclosed method, system, and computer program product (or software instructions stored on a nontransitory computer readable medium) may be readily implemented, fully or partially, in software using, for example, object or object-oriented software development environments that provide portable source code that can be used on a variety of computer platforms. Alternatively, embodiments of the disclosed method, system, and computer program product can be implemented partially or fully in hardware using, for example, standard logic circuits or a VLSI design. Other hardware or software can be used to implement embodiments depending on the speed and/or efficiency requirements of the systems, the particular function, and/or particular software or hardware system, microprocessor, or microcomputer being utilized. Embodiments of the method, system, and computer program product can be implemented in hardware and/or software using any known or later developed systems or structures, devices and/or software by those of ordinary skill in the applicable art from the function description provided herein and with a general basic knowledge of the software engineering and computer networking arts.


Moreover, embodiments of the disclosed method, system, and computer readable media (or computer program product) can be implemented in software executed on a programmed general purpose computer, a special purpose computer, a microprocessor, or the like.


It is, therefore, apparent that there is provided, in accordance with the various embodiments disclosed herein, methods, systems and computer readable media for the dynamic updating of join operations.


Application Ser. No. 15/154,974, entitled “DATA PARTITIONING AND ORDERING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,975, entitled “COMPUTER DATA SYSTEM DATA SOURCE REFRESHING USING AN UPDATE PROPAGATION GRAPH” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,979, entitled “COMPUTER DATA SYSTEM POSITION-INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,980, entitled “SYSTEM PERFORMANCE LOGGING OF COMPLEX REMOTE QUERY PROCESSOR QUERY OPERATIONS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,983, entitled “DISTRIBUTED AND OPTIMIZED GARBAGE COLLECTION OF REMOTE AND EXPORTED TABLE HANDLE LINKS TO UPDATE PROPAGATION GRAPH NODES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,984, entitled “COMPUTER DATA SYSTEM CURRENT ROW POSITION QUERY LANGUAGE CONSTRUCT AND ARRAY PROCESSING QUERY LANGUAGE CONSTRUCTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,985, entitled “PARSING AND COMPILING DATA SYSTEM QUERIES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,987, entitled “DYNAMIC FILTER PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,988, entitled “DYNAMIC JOIN PROCESSING USING REAL-TIME MERGED NOTIFICATION LISTENER” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,990, entitled “DYNAMIC TABLE INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,991, entitled “QUERY TASK PROCESSING BASED ON MEMORY ALLOCATION AND PERFORMANCE CRITERIA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,993, entitled “A MEMORY-EFFICIENT COMPUTER SYSTEM FOR DYNAMIC UPDATING OF JOIN PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,995, entitled “QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,996, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,997, entitled “DYNAMIC UPDATING OF QUERY RESULT DISPLAYS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,998, entitled “DYNAMIC CODE LOADING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,999, entitled “IMPORTATION, PRESENTATION, AND PERSISTENT STORAGE OF DATA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,001, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,005, entitled “PERSISTENT QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,006, entitled “SINGLE INPUT GRAPHICAL USER INTERFACE CONTROL ELEMENT AND METHOD” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,007, entitled “GRAPHICAL USER INTERFACE DISPLAY EFFECTS FOR A COMPUTER DISPLAY SCREEN” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,009, entitled “COMPUTER ASSISTED COMPLETION OF HYPERLINK COMMAND SEGMENTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,010, entitled “HISTORICAL DATA REPLAY UTILIZING A COMPUTER SYSTEM” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,011, entitled “DATA STORE ACCESS PERMISSION SYSTEM WITH INTERLEAVED APPLICATION OF DEFERRED ACCESS CONTROL FILTERS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,012, entitled “REMOTE DATA OBJECT PUBLISHING/SUBSCRIBING SYSTEM HAVING A MULTICAST KEY-VALUE PROTOCOL” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


While the disclosed subject matter has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be, or are, apparent to those of ordinary skill in the applicable arts. Accordingly, Applicants intend to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of the disclosed subject matter.

Claims
  • 1. A memory and processor efficient computer system for dynamic updating of join operations, the system comprising: one or more processors;computer readable storage coupled to the one or more processors, the computer readable storage having stored thereon instructions that, when executed by the one or more processors, cause the one or more processors to perform operations including: receiving a join-based query directed to a remote query processor that contains two or more input tables to be joined;adding a node for each table providing input to the join operation to an update propagation graph;adding a join operation results node to the update propagation graph for holding results of executing the join-based query;adding a real-time merged notification listener for the join operation node in the update propagation graph;applying the join operation to the two or more input tables using indexes from the two or more input tables to identify and retrieve data needed for the join operation in order to minimize local memory and processor usage;using the real-time merged notification listener for the join operation node to listen for any changes to the joined two or more input tables in order to minimize local memory and processor usage by only conducting a join operation when a change has been detected; andwhen the real-time merged notification listener receives notification of changes to any of the joined two or more input tables, using indexes from the two or more input tables to apply the join operation only to the changes to update the join operation results node only for changed index ranges in order to minimize local memory and processor usage.
  • 2. The computer system of claim 1, wherein the join-based query is a left_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table; the one or more new corresponding second input table columns containing an aggregation of all values from the second input table that match a join criteria; andtypes of all newly created second input table columns not involved in the join criteria being an array of the second input table's column type.
  • 3. The computer system of claim 1, wherein the join-based query is an as_of_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table; the one or more new columns containing all values from the second input table that match a join criteria, the join criteria performing an exact match on all match columns except for one last match column of the match columns followed by performing a closest-less-than match on the last match column.
  • 4. The computer system of claim 1, wherein the join-based query is a reverse_as_of_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table; and the one or more new columns containing all values from the input table that match a join criteria, the join criteria performing an exact match on all match columns except for one last match column of the match columns followed by performing a closest-greater-than match on the last match column.
  • 5. The computer system of claim 1, wherein the join-based query is a range_as_of_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table; and the one or more new columns containing all values from the input table that match a join criteria, the join criteria returning each cell in the one or more new columns with an array of all values within a designated range for all match columns except for M match columns of the match columns where the match is exact, and the M match columns define a range match.
  • 6. The computer system of claim 1, wherein the join-based query is a natural_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table; the table having a same number of rows as the source table, the same number of rows containing an original content of the source table rows; andthe one or more new columns determined by matching one or more values from the input table with the source table.
  • 7. The computer system of claim 1, wherein the join-based query is an exact_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table; the table having a same number of rows as the source table, the same number of rows containing an original content of the source table rows;the one or more new columns determined by matching one or more values from the input table with the source table; andthe table containing exactly one match for each row with the input table.
  • 8. The computer system of claim 1, wherein the join-based query creates a subset filtered by a match criteria on a full Cartesian product, resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table.
  • 9. The computer system of claim 1, wherein the join operation node is different than the join operation results node.
  • 10. The computer system of claim 1, wherein the real-time merged notification listener for the join operation node is separate from the join operation node.
  • 11. The computer system of claim 1, wherein the real-time merged notification listener for the join operation node is separate from the join operation results node.
  • 12. The computer system of claim 1 wherein the operations of the remote query processor further include returning join operation results with strict ordering to guarantee ordering.
  • 13. The computer system of claim 1 wherein the operations of the remote query processor further include returning the join operation results that can contain arrays mapped to data.
  • 14. The computer system of claim 12 wherein the strict ordering is according to time.
  • 15. The computer system of claim 12 wherein the strict ordering is dictated by an order of data in the two or more input tables.
  • 16. The computer system of claim 1, wherein the changes include one or more of an add, modify, delete, or re-index.
  • 17. The computer system of claim 1, wherein the operations of the remote query processor further comprise automatically re-applying the join operation when the real-time merged notification listener detects any one of an add, modify, delete, or re-index message.
  • 18. The computer system of claim 1, further comprising when the two or more input tables are derived from a same ancestor table, changes in the same ancestor table cause a cascade of change notifications through the update propagation graph causing the remote query processor to combine the change notifications for efficiency and consistency.
  • 19. The computer system of claim 17, wherein the automatically re-applying is only applied to changed portions of the two or more input tables and not to unchanged portions.
  • 20. The computer system of claim 2, wherein the join criteria includes a formula.
  • 21. A method for dynamic updating of join operations, the method comprising: receiving a join-based query directed to a remote query processor that contains two or more input tables to be joined;adding a node for each table providing input to the join operation to an update propagation graph;adding a join operation results node to the update propagation graph for holding results of executing the join-based query;adding a real-time merged notification listener for the join operation node in the update propagation graph;applying the join operation to the two or more input tables using indexes from the two or more input tables to identify and retrieve data needed for the join operation in order to minimize local memory and processor usage; andusing the real-time merged notification listener for the join operation node to listen for any changes to the joined two or more input tables in order to minimize local memory and processor usage by only conducting a join operation when a change has been detected.
  • 22. The method of claim 21, further comprising: sending a digital request for a remote query processor from a client computer to a remote query processor on a query server computer;automatically connecting the client computer to the remote query processor via a digital communications network,wherein the receiving includes receiving the join-based query digitally from the client computer to the remote query processor that contains two or more input tables to be joined.
  • 23. The method of claim 21, further comprising: the real-time merged notification listener receiving notification of changes to any of the joined two or more input tables; andafter the real-time merged notification listener receives notification of changes to any of the joined two or more input tables, using indexes from the two or more input tables to apply the join operation only to the changes to update the join operation results node only for changed index ranges in order to minimize local memory and processor usage.
  • 24. A nontransitory computer readable medium having stored thereon software instructions that, when executed by one or more processors, cause the one or more processors to perform operations including: receiving a join-based query directed to a remote query processor that contains two or more input tables to be joined;adding a node for each table providing input to the join operation to an update propagation graph;adding a join operation results node to the update propagation graph for holding results of executing the join-based query;adding a real-time merged notification listener for the join operation node in the update propagation graph;applying the join operation to the two or more input tables using indexes from the two or more input tables to identify and retrieve data needed for the join operation in order to minimize local memory and processor usage; andusing the real-time merged notification listener for the join operation node to listen for any changes to the joined two or more input tables in order to minimize local memory and processor usage by only conducting a join operation when a change has been detected.
  • 25. The nontransitory computer readable medium of claim 24, the operations further including: automatically connecting a client computer to the remote query processor via a digital communications network,wherein the receiving includes receiving the join-based query digitally from the client computer to the remote query processor that contains two or more input tables to be joined.
  • 26. The nontransitory computer readable medium of claim 24, the operations further including: after the real-time merged notification listener receives notification of changes to any of the joined two or more input tables, using indexes from the two or more input tables to apply the join operation only to the changes to update the join operation results node only for changed index ranges in order to minimize local memory and processor usage.
  • 27. A memory and processor efficient computer system for dynamic updating of join operations, the system comprising: one or more processors;computer readable storage coupled to the one or more processors, the computer readable storage having stored thereon instructions that, when executed by the one or more processors, cause the one or more processors to perform operations including: receiving a join-based query digitally directed to a remote query processor that contains two or more input tables to be joined;adding a node for each table providing input to the join operation to an update propagation structure;adding a join operation results node to the update propagation structure for holding results of executing the join-based query;adding a real-time merged notification listener for the join operation node in the update propagation structure; andwhen the real-time merged notification listener receives notification of changes to any of the joined two or more input tables, using indexes from the two or more input tables to apply the join operation only to the changes to update the join operation results node only for changed index ranges in order to minimize local memory and processor usage.
Parent Case Info

This application claims the benefit of U.S. Provisional Application No. 62/161,813, entitled “Computer Data System” and filed on May 14, 2015, which is incorporated herein by reference in its entirety.

US Referenced Citations (518)
Number Name Date Kind
5335202 Manning et al. Aug 1994 A
5452434 Macdonald Sep 1995 A
5469567 Okada Nov 1995 A
5504885 Alashqur Apr 1996 A
5530939 Mansfield et al. Jun 1996 A
5568632 Nelson Oct 1996 A
5673369 Kim Sep 1997 A
5701461 Dalal et al. Dec 1997 A
5701467 Freeston Dec 1997 A
5764953 Collins et al. Jun 1998 A
5787411 Groff et al. Jul 1998 A
5787428 Hart Jul 1998 A
5806059 Tsuchida et al. Sep 1998 A
5808911 Tucker et al. Sep 1998 A
5859972 Subramaniam et al. Jan 1999 A
5873075 Cochrane et al. Feb 1999 A
5875334 Chow et al. Feb 1999 A
5878415 Olds Mar 1999 A
5890167 Bridge et al. Mar 1999 A
5899990 Maritzen et al. May 1999 A
5920860 Maheshwari et al. Jul 1999 A
5943672 Yoshida Aug 1999 A
5960087 Tribble et al. Sep 1999 A
5991810 Shapiro et al. Nov 1999 A
5999918 Williams et al. Dec 1999 A
6006220 Haderle et al. Dec 1999 A
6032144 Srivastava et al. Feb 2000 A
6032148 Wilkes Feb 2000 A
6038563 Bapat et al. Mar 2000 A
6058394 Bakow et al. May 2000 A
6061684 Glasser et al. May 2000 A
6138112 Slutz Oct 2000 A
6160548 Lea et al. Dec 2000 A
6253195 Hudis et al. Jun 2001 B1
6266669 Brodersen et al. Jul 2001 B1
6289357 Parker Sep 2001 B1
6292803 Richardson et al. Sep 2001 B1
6304876 Isip Oct 2001 B1
6317728 Kane Nov 2001 B1
6327702 Sauntry et al. Dec 2001 B1
6336114 Garrison Jan 2002 B1
6353819 Edwards et al. Mar 2002 B1
6367068 Vaidyanathan et al. Apr 2002 B1
6389414 Delo et al. May 2002 B1
6389462 Cohen et al. May 2002 B1
6397206 Hill et al. May 2002 B1
6438537 Netz et al. Aug 2002 B1
6446069 Yaung et al. Sep 2002 B1
6460037 Weiss et al. Oct 2002 B1
6473750 Petculescu et al. Oct 2002 B1
6487552 Lei et al. Nov 2002 B1
6496833 Goldberg et al. Dec 2002 B1
6505189 Au et al. Jan 2003 B1
6505241 Pitts Jan 2003 B2
6510551 Miller Jan 2003 B1
6519604 Acharya et al. Feb 2003 B1
6530075 Beadle et al. Mar 2003 B1
6538651 Hayman et al. Mar 2003 B1
6546402 Beyer et al. Apr 2003 B1
6553375 Huang et al. Apr 2003 B1
6584474 Pereira Jun 2003 B1
6604104 Smith Aug 2003 B1
6618720 Au et al. Sep 2003 B1
6631374 Klein et al. Oct 2003 B1
6640234 Coffen et al. Oct 2003 B1
6697880 Dougherty Feb 2004 B1
6701415 Hendren Mar 2004 B1
6714962 Helland et al. Mar 2004 B1
6725243 Snapp Apr 2004 B2
6732100 Brodersen et al. May 2004 B1
6745332 Wong et al. Jun 2004 B1
6748374 Madan et al. Jun 2004 B1
6748455 Hinson et al. Jun 2004 B1
6760719 Hanson et al. Jul 2004 B1
6775660 Lin et al. Aug 2004 B2
6785668 Polo et al. Aug 2004 B1
6795851 Noy Sep 2004 B1
6801908 Fuloria et al. Oct 2004 B1
6816855 Hartel et al. Nov 2004 B2
6820082 Cook et al. Nov 2004 B1
6829620 Michael et al. Dec 2004 B2
6832229 Reed Dec 2004 B2
6851088 Conner et al. Feb 2005 B1
6882994 Yoshimura et al. Apr 2005 B2
6925472 Kong Aug 2005 B2
6934717 James Aug 2005 B1
6947928 Dettinger et al. Sep 2005 B2
6983291 Cochrane et al. Jan 2006 B1
6985895 Witkowski et al. Jan 2006 B2
6985899 Chan Jan 2006 B2
6985904 Kaluskar et al. Jan 2006 B1
7020649 Cochrane et al. Mar 2006 B2
7024414 Sah et al. Apr 2006 B2
7031962 Moses Apr 2006 B2
7047484 Becker et al. May 2006 B1
7058657 Berno Jun 2006 B1
7089228 Arnold et al. Aug 2006 B2
7089245 George et al. Aug 2006 B1
7096216 Anonsen Aug 2006 B2
7099927 Cudd et al. Aug 2006 B2
7103608 Ozbutun et al. Sep 2006 B1
7110997 Turkel et al. Sep 2006 B1
7127462 Hiraga et al. Oct 2006 B2
7146357 Suzuki et al. Dec 2006 B2
7149742 Eastham et al. Dec 2006 B1
7167870 Avvari et al. Jan 2007 B2
7171469 Ackaouy et al. Jan 2007 B2
7174341 Ghukasyan et al. Feb 2007 B2
7181686 Bahrs Feb 2007 B1
7188105 Dettinger et al. Mar 2007 B2
7200620 Gupta Apr 2007 B2
7216115 Walters et al. May 2007 B1
7216116 Nilsson et al. May 2007 B1
7219302 O'Shaughnessy et al. May 2007 B1
7225189 McCormack et al. May 2007 B1
7254808 Trappen et al. Aug 2007 B2
7257689 Baird Aug 2007 B1
7272605 Hinshaw et al. Sep 2007 B1
7308580 Nelson et al. Dec 2007 B2
7316003 Dulepet et al. Jan 2008 B1
7330969 Harrison et al. Feb 2008 B2
7333941 Choi Feb 2008 B1
7343585 Lau et al. Mar 2008 B1
7350237 Vogel et al. Mar 2008 B2
7380242 Alaluf May 2008 B2
7401088 Chintakayala et al. Jul 2008 B2
7426521 Harter Sep 2008 B2
7430549 Zane et al. Sep 2008 B2
7433863 Zane et al. Oct 2008 B2
7447865 Uppala et al. Nov 2008 B2
7478094 Ho et al. Jan 2009 B2
7484096 Garg et al. Jan 2009 B1
7493311 Cutsinger et al. Feb 2009 B1
7506055 McClain et al. Mar 2009 B2
7529734 Dirisala May 2009 B2
7529750 Bair May 2009 B2
7542958 Warren et al. Jun 2009 B1
7552223 Ackaouy et al. Jun 2009 B1
7596550 Mordvinov et al. Sep 2009 B2
7610351 Gollapudi et al. Oct 2009 B1
7620687 Chen et al. Nov 2009 B2
7624126 Pizzo et al. Nov 2009 B2
7627603 Rosenblum et al. Dec 2009 B2
7661141 Dutta et al. Feb 2010 B2
7664778 Yagoub et al. Feb 2010 B2
7672275 Yajnik et al. Mar 2010 B2
7680782 Chen et al. Mar 2010 B2
7711716 Stonecipher May 2010 B2
7711740 Minore et al. May 2010 B2
7711788 Ran et al. May 2010 B2
7747640 Dettinger et al. Jun 2010 B2
7761444 Zhang et al. Jul 2010 B2
7797356 Iyer et al. Sep 2010 B2
7827204 Heinzel et al. Nov 2010 B2
7827403 Wong et al. Nov 2010 B2
7827523 Ahmed et al. Nov 2010 B2
7882121 Bruno et al. Feb 2011 B2
7882132 Ghatare Feb 2011 B2
7895191 Colossi et al. Feb 2011 B2
7904487 Ghatare Mar 2011 B2
7908259 Branscome et al. Mar 2011 B2
7908266 Zeringue et al. Mar 2011 B2
7930412 Yeap et al. Apr 2011 B2
7966311 Haase Jun 2011 B2
7966312 Nolan et al. Jun 2011 B2
7966343 Yang et al. Jun 2011 B2
7970777 Saxena et al. Jun 2011 B2
7979431 Dazi et al. Jul 2011 B2
7984043 Waas Jul 2011 B1
8019795 Anderson et al. Sep 2011 B2
8027293 Spaur et al. Sep 2011 B2
8032525 Bowers et al. Oct 2011 B2
8037542 Taylor et al. Oct 2011 B2
8046394 Shatdal Oct 2011 B1
8046749 Owen et al. Oct 2011 B1
8055672 Djugash et al. Nov 2011 B2
8060484 Bandera et al. Nov 2011 B2
8171018 Zane et al. May 2012 B2
8180789 Wasserman et al. May 2012 B1
8196121 Peshansky et al. Jun 2012 B2
8209356 Roesler Jun 2012 B1
8286189 Kukreja et al. Oct 2012 B2
8321833 Langworthy et al. Nov 2012 B2
8332435 Ballard et al. Dec 2012 B2
8359305 Burke et al. Jan 2013 B1
8375127 Lita Feb 2013 B1
8380757 Bailey et al. Feb 2013 B1
8418142 Ao et al. Apr 2013 B2
8433701 Sargeant et al. Apr 2013 B2
8458218 Wildermuth Jun 2013 B2
8473897 Box et al. Jun 2013 B2
8478713 Cotner et al. Jul 2013 B2
8515942 Marum et al. Aug 2013 B2
8543620 Ching Sep 2013 B2
8553028 Urbach Oct 2013 B1
8555263 Allen et al. Oct 2013 B2
8560502 Vora Oct 2013 B2
8595151 Hao et al. Nov 2013 B2
8601016 Briggs et al. Dec 2013 B2
8621424 Kejariwal et al. Dec 2013 B2
8631034 Peloski Jan 2014 B1
8635251 Chan Jan 2014 B1
8650182 Murthy Feb 2014 B2
8660869 MacIntyre et al. Feb 2014 B2
8676863 Connell et al. Mar 2014 B1
8683488 Kukreja et al. Mar 2014 B2
8713518 Pointer et al. Apr 2014 B2
8719252 Miranker et al. May 2014 B2
8725707 Chen et al. May 2014 B2
8726254 Rohde et al. May 2014 B2
8745014 Travis Jun 2014 B2
8745510 D'Alo' et al. Jun 2014 B2
8751823 Myles et al. Jun 2014 B2
8768961 Krishnamurthy Jul 2014 B2
8788254 Peloski Jul 2014 B2
8793243 Weyerhaeuser et al. Jul 2014 B2
8805875 Bawcom et al. Aug 2014 B1
8805947 Kuzkin et al. Aug 2014 B1
8806133 Hay et al. Aug 2014 B2
8812625 Chitilian et al. Aug 2014 B1
8838656 Cheriton Sep 2014 B1
8855999 Elliot Oct 2014 B1
8863156 Lepanto et al. Oct 2014 B1
8874512 Jin et al. Oct 2014 B2
8880569 Draper et al. Nov 2014 B2
8880787 Kimmel et al. Nov 2014 B1
8881121 Ali Nov 2014 B2
8886631 Abadi et al. Nov 2014 B2
8903717 Elliot Dec 2014 B2
8903842 Bloesch et al. Dec 2014 B2
8922579 Mi et al. Dec 2014 B2
8924384 Driesen et al. Dec 2014 B2
8930892 Pointer et al. Jan 2015 B2
8954418 Faerber et al. Feb 2015 B2
8959495 Chafi et al. Feb 2015 B2
8996864 Maigne et al. Mar 2015 B2
9031930 Valentin May 2015 B2
9077611 Cordray et al. Jul 2015 B2
9122765 Chen Sep 2015 B1
9177079 Ramachandran et al. Nov 2015 B1
9195712 Freedman et al. Nov 2015 B2
9298768 Varakin et al. Mar 2016 B2
9311357 Ramesh et al. Apr 2016 B2
9372671 Balan et al. Jun 2016 B2
9384184 Cervantes et al. Jul 2016 B2
9477702 Ramachandran et al. Oct 2016 B1
9612959 Caudy et al. Apr 2017 B2
9613018 Zeldis et al. Apr 2017 B2
9613109 Wright et al. Apr 2017 B2
9619210 Kent et al. Apr 2017 B2
9633060 Caudy et al. Apr 2017 B2
9639570 Wright et al. May 2017 B2
9672238 Wright et al. Jun 2017 B2
9679006 Wright et al. Jun 2017 B2
9690821 Wright et al. Jun 2017 B2
9710511 Wright et al. Jul 2017 B2
9760591 Caudy et al. Sep 2017 B2
9805084 Wright et al. Oct 2017 B2
9832068 McSherry et al. Nov 2017 B2
9836494 Caudy et al. Dec 2017 B2
9836495 Wright Dec 2017 B2
9886469 Kent et al. Feb 2018 B2
9898496 Caudy et al. Feb 2018 B2
9934266 Wright et al. Apr 2018 B2
10002153 Teodorescu et al. Jun 2018 B2
10002154 Kent et al. Jun 2018 B1
10002155 Caudy et al. Jun 2018 B1
10003673 Caudy et al. Jun 2018 B2
10019138 Zeldis et al. Jul 2018 B2
10069943 Teodorescu et al. Sep 2018 B2
20020002576 Wollrath et al. Jan 2002 A1
20020007331 Lo et al. Jan 2002 A1
20020054587 Baker et al. May 2002 A1
20020065981 Jenne et al. May 2002 A1
20020129168 Kanai et al. Sep 2002 A1
20020156722 Greenwood Oct 2002 A1
20030004952 Nixon et al. Jan 2003 A1
20030061216 Moses Mar 2003 A1
20030074400 Brooks et al. Apr 2003 A1
20030110416 Morrison et al. Jun 2003 A1
20030167261 Grust et al. Sep 2003 A1
20030182261 Patterson Sep 2003 A1
20030208484 Chang et al. Nov 2003 A1
20030208505 Mullins et al. Nov 2003 A1
20030233632 Aigen et al. Dec 2003 A1
20040002961 Dettinger et al. Jan 2004 A1
20040015566 Anderson et al. Jan 2004 A1
20040076155 Yajnik et al. Apr 2004 A1
20040111492 Nakahara et al. Jun 2004 A1
20040148630 Choi Jul 2004 A1
20040186813 Tedesco et al. Sep 2004 A1
20040216150 Scheifler et al. Oct 2004 A1
20040220923 Nica Nov 2004 A1
20040254876 Coval et al. Dec 2004 A1
20050015490 Saare et al. Jan 2005 A1
20050060693 Robison et al. Mar 2005 A1
20050097447 Serra et al. May 2005 A1
20050102284 Srinivasan et al. May 2005 A1
20050102636 McKeon et al. May 2005 A1
20050131893 Glan Jun 2005 A1
20050132384 Morrison et al. Jun 2005 A1
20050138624 Morrison et al. Jun 2005 A1
20050144189 Edwards et al. Jun 2005 A1
20050165866 Bohannon et al. Jul 2005 A1
20050198001 Cunningham et al. Sep 2005 A1
20050228828 Chandrasekar et al. Oct 2005 A1
20060059253 Goodman et al. Mar 2006 A1
20060074901 Pirahesh et al. Apr 2006 A1
20060085490 Baron et al. Apr 2006 A1
20060100989 Chinchwadkar et al. May 2006 A1
20060101019 Nelson et al. May 2006 A1
20060116983 Dettinger et al. Jun 2006 A1
20060116999 Dettinger et al. Jun 2006 A1
20060131383 Battagin et al. Jun 2006 A1
20060136361 Peri et al. Jun 2006 A1
20060173693 Arazi et al. Aug 2006 A1
20060195460 Nod et al. Aug 2006 A1
20060212847 Tarditi et al. Sep 2006 A1
20060218123 Chowdhuri et al. Sep 2006 A1
20060218200 Factor et al. Sep 2006 A1
20060230016 Cunningham et al. Oct 2006 A1
20060253311 Yin et al. Nov 2006 A1
20060271510 Harward et al. Nov 2006 A1
20060277162 Smith Dec 2006 A1
20070011211 Reeves et al. Jan 2007 A1
20070027884 Heger et al. Feb 2007 A1
20070033518 Kenna et al. Feb 2007 A1
20070073765 Chen Mar 2007 A1
20070101252 Chamberlain et al. May 2007 A1
20070113014 Manolov et al. May 2007 A1
20070116287 Rasizade et al. May 2007 A1
20070169003 Branda et al. Jul 2007 A1
20070198479 Cai et al. Aug 2007 A1
20070256060 Ryu et al. Nov 2007 A1
20070258508 Werb et al. Nov 2007 A1
20070271280 Chandasekaran Nov 2007 A1
20070294217 Chen et al. Dec 2007 A1
20070299822 Jopp et al. Dec 2007 A1
20080022136 Mattsson et al. Jan 2008 A1
20080033907 Woehler et al. Feb 2008 A1
20080034084 Pandya Feb 2008 A1
20080046804 Rui et al. Feb 2008 A1
20080072150 Chan et al. Mar 2008 A1
20080097748 Haley et al. Apr 2008 A1
20080120283 Liu et al. May 2008 A1
20080155565 Poduri Jun 2008 A1
20080168135 Redlich et al. Jul 2008 A1
20080172639 Keysar et al. Jul 2008 A1
20080235238 Jalobeanu et al. Sep 2008 A1
20080263179 Buttner et al. Oct 2008 A1
20080276241 Bajpai et al. Nov 2008 A1
20080319951 Ueno et al. Dec 2008 A1
20090019029 Tommaney et al. Jan 2009 A1
20090022095 Spaur et al. Jan 2009 A1
20090024615 Pedro et al. Jan 2009 A1
20090037391 Agrawal et al. Feb 2009 A1
20090037500 Kirshenbaum Feb 2009 A1
20090055370 Dagum et al. Feb 2009 A1
20090083215 Burger Mar 2009 A1
20090089312 Chi et al. Apr 2009 A1
20090248902 Blue Oct 2009 A1
20090254516 Meiyyappan et al. Oct 2009 A1
20090271472 Scheifler et al. Oct 2009 A1
20090300770 Rowney et al. Dec 2009 A1
20090319058 Rovaglio et al. Dec 2009 A1
20090319484 Golbandi et al. Dec 2009 A1
20090327242 Brown et al. Dec 2009 A1
20100023952 Sandoval et al. Jan 2010 A1
20100036801 Pirvali et al. Feb 2010 A1
20100042587 Johnson et al. Feb 2010 A1
20100047760 Best et al. Feb 2010 A1
20100049715 Jacobsen et al. Feb 2010 A1
20100070721 Pugh et al. Mar 2010 A1
20100114890 Hagar et al. May 2010 A1
20100161555 Mica et al. Jun 2010 A1
20100186082 Ladki et al. Jul 2010 A1
20100199161 Aureglia et al. Aug 2010 A1
20100205017 Sichelman et al. Aug 2010 A1
20100205351 Wiener et al. Aug 2010 A1
20100281005 Carlin et al. Nov 2010 A1
20100281071 Ben-Zvi et al. Nov 2010 A1
20110126110 Vilke et al. May 2011 A1
20110126154 Boehler et al. May 2011 A1
20110153603 Adiba et al. Jun 2011 A1
20110161378 Williamson Jun 2011 A1
20110167020 Yang et al. Jul 2011 A1
20110178984 Talius et al. Jul 2011 A1
20110194563 Shen et al. Aug 2011 A1
20110219020 Oks et al. Sep 2011 A1
20110314019 Pens Dec 2011 A1
20120110030 Pomponio May 2012 A1
20120144234 Clark et al. Jun 2012 A1
20120159303 Friedrich et al. Jun 2012 A1
20120191446 Binsztok et al. Jul 2012 A1
20120192096 Bowman et al. Jul 2012 A1
20120197868 Fauser et al. Aug 2012 A1
20120209886 Henderson Aug 2012 A1
20120215741 Poole et al. Aug 2012 A1
20120221528 Renkes Aug 2012 A1
20120246052 Taylor et al. Sep 2012 A1
20120254143 Varma et al. Oct 2012 A1
20120259759 Crist et al. Oct 2012 A1
20120296846 Teeter Nov 2012 A1
20130041946 Joel et al. Feb 2013 A1
20130080514 Gupta et al. Mar 2013 A1
20130086107 Genochio et al. Apr 2013 A1
20130166551 Wong et al. Jun 2013 A1
20130166556 Baeumges et al. Jun 2013 A1
20130173667 Soderberg et al. Jul 2013 A1
20130179460 Cervantes et al. Jul 2013 A1
20130185619 Ludwig Jul 2013 A1
20130191370 Chen et al. Jul 2013 A1
20130198232 Shamgunov et al. Aug 2013 A1
20130226959 Dittrich et al. Aug 2013 A1
20130246560 Feng et al. Sep 2013 A1
20130263123 Zhou et al. Oct 2013 A1
20130290243 Hazel et al. Oct 2013 A1
20130304725 Nee et al. Nov 2013 A1
20130304744 McSherry et al. Nov 2013 A1
20130311352 Kayanuma et al. Nov 2013 A1
20130311488 Erdogan et al. Nov 2013 A1
20130318129 Vingralek et al. Nov 2013 A1
20130346365 Kan et al. Dec 2013 A1
20140019494 Tang Jan 2014 A1
20140026121 Jackson et al. Jan 2014 A1
20140040203 Lu et al. Feb 2014 A1
20140046638 Peloski Feb 2014 A1
20140059646 Flannel et al. Feb 2014 A1
20140082724 Pearson et al. Mar 2014 A1
20140136521 Pappas May 2014 A1
20140143123 Banke et al. May 2014 A1
20140149997 Kukreja et al. May 2014 A1
20140156618 Castellano Jun 2014 A1
20140173023 Vamey et al. Jun 2014 A1
20140181036 Dhamankar et al. Jun 2014 A1
20140181081 Veldhuizen Jun 2014 A1
20140188924 Ma et al. Jul 2014 A1
20140195558 Murthy et al. Jul 2014 A1
20140201194 Reddy et al. Jul 2014 A1
20140215446 Araya et al. Jul 2014 A1
20140222768 Rambo et al. Aug 2014 A1
20140229506 Lee Aug 2014 A1
20140229874 Strauss Aug 2014 A1
20140244687 Shmueli et al. Aug 2014 A1
20140279810 Mann et al. Sep 2014 A1
20140280522 Watte Sep 2014 A1
20140282227 Nixon et al. Sep 2014 A1
20140282444 Araya et al. Sep 2014 A1
20140282540 Bonnet et al. Sep 2014 A1
20140289700 Srinivasaraghavan et al. Sep 2014 A1
20140292765 Maruyama et al. Oct 2014 A1
20140297611 Abbour et al. Oct 2014 A1
20140317084 Chaudhry et al. Oct 2014 A1
20140324821 Meiyyappan et al. Oct 2014 A1
20140330700 Studnitzer et al. Nov 2014 A1
20140330807 Weyerhaeuser et al. Nov 2014 A1
20140344186 Nadler Nov 2014 A1
20140344391 Vamey et al. Nov 2014 A1
20140358892 Nizami et al. Dec 2014 A1
20140359574 Beckwith et al. Dec 2014 A1
20140372482 Martin et al. Dec 2014 A1
20140380051 Edward et al. Dec 2014 A1
20150019516 Wein et al. Jan 2015 A1
20150026155 Martin Jan 2015 A1
20150032789 Nguyen et al. Jan 2015 A1
20150067640 Booker et al. Mar 2015 A1
20150074066 Li et al. Mar 2015 A1
20150082218 Affoneh et al. Mar 2015 A1
20150088894 Czarlinska et al. Mar 2015 A1
20150095381 Chen et al. Apr 2015 A1
20150120261 Giannacopoulos et al. Apr 2015 A1
20150127599 Schiebeler May 2015 A1
20150154262 Yang et al. Jun 2015 A1
20150172117 Dolinsky et al. Jun 2015 A1
20150188778 Asayag et al. Jul 2015 A1
20150205588 Bates et al. Jul 2015 A1
20150205589 Dally Jul 2015 A1
20150254298 Bourbonnais et al. Sep 2015 A1
20150304182 Brodsky et al. Oct 2015 A1
20150317359 Tran et al. Nov 2015 A1
20150356157 Anderson et al. Dec 2015 A1
20160026383 Lee et al. Jan 2016 A1
20160026442 Chhaparia Jan 2016 A1
20160065670 Kimmel et al. Mar 2016 A1
20160085772 Vermeulen et al. Mar 2016 A1
20160092599 Barsness et al. Mar 2016 A1
20160103897 Nysewander et al. Apr 2016 A1
20160125018 Tomoda et al. May 2016 A1
20160147748 Florendo et al. May 2016 A1
20160171070 Hrle et al. Jun 2016 A1
20160179754 Borza et al. Jun 2016 A1
20160253294 Allen et al. Sep 2016 A1
20160316038 Jolfaei Oct 2016 A1
20160335281 Teodorescu et al. Nov 2016 A1
20160335304 Teodorescu et al. Nov 2016 A1
20160335317 Teodorescu et al. Nov 2016 A1
20160335323 Teodorescu et al. Nov 2016 A1
20160335330 Teodorescu et al. Nov 2016 A1
20160335361 Teodorescu et al. Nov 2016 A1
20170032016 Linner et al. Feb 2017 A1
20170161514 Dettinger et al. Jun 2017 A1
20170177677 Wright et al. Jun 2017 A1
20170185385 Kent et al. Jun 2017 A1
20170192910 Wright et al. Jul 2017 A1
20170206229 Caudy et al. Jul 2017 A1
20170206256 Tsirogiannis et al. Jul 2017 A1
20170235794 Wright et al. Aug 2017 A1
20170235798 Wright et al. Aug 2017 A1
20170249350 Wright et al. Aug 2017 A1
20170270150 Wright et al. Sep 2017 A1
20170316046 Caudy et al. Nov 2017 A1
20170329740 Crawford et al. Nov 2017 A1
20170357708 Ramachandran et al. Dec 2017 A1
20170359415 Venkatraman et al. Dec 2017 A1
20180004796 Kent et al. Jan 2018 A1
20180011891 Wright et al. Jan 2018 A1
20180052879 Wright Feb 2018 A1
20180137175 Teodorescu et al. May 2018 A1
Foreign Referenced Citations (15)
Number Date Country
2309462 Dec 2000 CA
1406463 Apr 2004 EP
1198769 Jun 2008 EP
2199961 Jun 2010 EP
2423816 Feb 2012 EP
2743839 Jun 2014 EP
2397906 Aug 2004 GB
2421798 Jun 2011 RU
2000000879 Jan 2000 WO
2001079964 Oct 2001 WO
2011120161 Oct 2011 WO
2012136627 Oct 2012 WO
2014026220 Feb 2014 WO
2014143208 Sep 2014 WO
2016183563 Nov 2016 WO
Non-Patent Literature Citations (167)
Entry
Non-final Office Action dated Sep. 22, 2016, in U.S. Appl. No. 15/154,987.
Non-final Office Action dated Sep. 26, 2016, in U.S. Appl. No. 15/155,005.
Non-final Office Action dated Sep. 29, 2016, in U.S. Appl. No. 15/154,990.
Non-final Office Action dated Sep. 8, 2016, in U.S. Appl. No. 15/154,975.
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/154,996.
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/155,010.
Notice of Allowance dated Dec. 19, 2016, in U.S. Appl. No. 15/155,001.
Notice of Allowance dated Dec. 22, 2016, in U.S. Appl. No. 15/155,011.
Notice of Allowance dated Dec. 7, 2016, in U.S. Appl. No. 15/154,985.
Notice of Allowance dated Feb. 1, 2017, in U.S. Appl. No. 15/154,988.
Notice of Allowance dated Feb. 14, 2017, in U.S. Appl. No. 15/154,979.
Notice of Allowance dated Feb. 28, 2017, in U.S. Appl. No. 15/154,990.
Notice of Allowance dated Jan. 30, 2017, in U.S. Appl. No. 15/154,987.
Notice of Allowance dated Jul. 28, 2017, in U.S. Appl. No. 15/155,009.
Notice of Allowance dated Jun. 19, 2017, in U.S. Appl. No. 15/154,980.
Notice of Allowance dated Jun. 20, 2017, in U.S. Appl. No. 15/154,975.
Notice of Allowance dated Mar. 2, 2017, in U.S. Appl. No. 15/154,998.
Notice of Allowance dated Mar. 31, 2017, in U.S. Appl. No. 15/154,998.
Notice of Allowance dated May 10, 2017, in U.S. Appl. No. 15/154,988.
Notice of Allowance dated Nov. 17, 2016, in U.S. Appl. No. 15/154,991.
Notice of Allowance dated Nov. 17, 2017, in U.S. Appl. No. 15/154,993.
Notice of Allowance dated Nov. 21, 2016, in U.S. Appl. No. 15/154,983.
Notice of Allowance dated Nov. 8, 2016, in U.S. Appl. No. 15/155,007.
Notice of Allowance dated Oct. 11, 2016, in U.S. Appl. No. 15/155,007.
Notice of Allowance dated Oct. 21, 2016, in U.S. Appl. No. 15/154,999.
Notice of Allowance dated Oct. 6, 2017, in U.S. Appl. No. 15/610,162.
Palpanas, Themistoklis et al. “Incremental Maintenance for Non-Distributive Aggregate Functions”, Proceedings of the 28th VLDB Conference, 2002. Retreived from http://www.vldb.org/conf/2002/S22P04.pdf.
PowerShell Team, Intellisense in Windows PowerShell ISE 3.0, dated Jun. 12, 2012, Windows PowerShell Blog, pp. 1-6 Retrieved: https://biogs.msdn.microsoft.com/powershell/2012/06/12/intellisense-in-windows-powershell-ise-3-0/.
Smith, Ian. “Guide to Using SQL: Computed and Automatic Columns.” Rdb Jornal, dated Sep. 2008, retrieved Aug. 15, 2016, retrieved from the Internet <URL: http://www.oracle.com/technetwork/products/rdb/automatic-columns-132042.pdf>.
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.16.1” Dated May 11, 2015. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.16.1/index.html.
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.18.1” Dated May 3, 2016. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.18.1/index.html.
Wu, Buwen et al. “Scalable SPARQL Querying using Path Partitioning”, 31st IEEE International Conference on Data Engineering (ICDE 2015), Seoul, Korea, Apr. 13-17, 2015. Retreived from http://imada.sdu.dk/˜zhou/papers/icde2015.pdf.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032605 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032590 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032592 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 4, 2016, in International Appln. No. PCT/US2016/032581 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032586 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032587 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032589 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032596 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032598 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032601 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032602 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032607 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032591 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032594 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032600 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032595 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032606 filed May 14, 2016.
nternational Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032603 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032604 filed May 14, 2016.
Jellema, Lucas. “Implementing Cell Highlighting in JSF-based Rich Enterprise Apps (Part 1)”, dated Nov. 2008. Retrieved from http://www.oracle.com/technetwork/articles/adf/jellema-adfcellhighlighting-087850.html (last accessed Jun. 16, 2016).
Lou, Yuan. “A Multi-Agent Decision Support System for Stock Trading”, IEEE Network, Jan./Feb. 2002. Retreived from http://www.reading.ac.uk/AcaDepts/si/sisweb13/ais/papers/journal12-A%20multi-agent%20Framework.pdf.
Mallet, “Relational Database Support for Spatio-Temporal Data”, Technical Report TR 04-21, Sep. 2004, University of Alberta, Department of Computing Science.
Mariyappan, Balakrishnan. “10 Useful Linux Bash_Completion Complete Command Examples (Bash Command Line completion on Steroids)”, dated Dec. 2, 2013. Retrieved from http://www.thegeekstuff.com/2013/12/bash-completion-complete/ (last accessed Jun. 16, 2016).
Murray, Derek G. et al. “Naiad: a timely dataflow system.” SOSP '13 Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. pp. 439-455. Nov. 2013.
Non-final Office Action dated Apr. 19, 2017, in U.S. Appl. No. 15/154,974.
Non-final Office Action dated Aug. 12, 2016, in U.S. Appl. No. 15/155,001.
Non-final Office Action dated Aug. 14, 2017, in U.S. Appl. No. 15/464,314.
Non-final Office Action dated Aug. 16, 2016, in U.S. Appl. No. 15/154,993.
Non-final Office Action dated Aug. 19, 2016, in U.S. Appl. No. 15/154,991.
Non-final Office Action dated Aug. 25, 2016, in U.S. Appl. No. 15/154,980.
Non-final Office Action dated Aug. 26, 2016, in U.S. Appl. No. 15/154,995.
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,983.
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,985.
Non-final Office Action dated Dec. 13, 2017, in U.S. Appl. No. 15/608,963.
Non-final Office Action dated Feb. 8, 2017, in U.S. Appl. No. 15/154,997.
Non-final Office Action dated Jul. 27, 2017, in U.S. Appl. No. 15/154,995.
Non-final Office Action dated Mar. 2, 2017, in U.S. Appl. No. 15/154,984.
Non-final Office Action dated Nov. 15, 2017, in U.S. Appl. No. 15/654,461.
Non-final Office Action dated Nov. 17, 2016, in U.S. Appl. No. 15/154,999.
Non-final Office Action dated Nov. 21, 2017, in U.S. Appl. No. 15/155,005.
Non-final Office Action dated Nov. 30, 2017, in U.S. Appl. No. 15/155,012.
Non-final Office Action dated Oct. 13, 2016, in U.S. Appl. No. 15/155,009.
Non-final Office Action dated Oct. 27, 2016, in U.S. Appl. No. 15/155,006.
Non-final Office Action dated Oct. 5, 2017, in U.S. Appl. No. 15/428,145.
Non-final Office Action dated Oct. 7, 2016, in U.S. Appl. No. 15/154,998.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/154,979.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,011.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,012.
Non-final Office Action dated Sep. 14, 2016, in U.S. Appl. No. 15/154,984.
Non-final Office Action dated Sep. 16, 2016, in U.S. Appl. No. 15/154,988.
“About Entering Commands in the Command Window”, dated Dec. 16, 2015. Retrieved from https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/AutoCAD-Core/files/GUID-BB0C3E79-66AF-4557-9140-D31B4CF3C9CF-htm.html (last accessed Jun. 16, 2016).
“Change Data Capture”, Oracle Database Online Documentation 11g Release 1 (11.1), dated Apr. 5, 2016. Retreived from https://web.archive.org/web/20160405032625/http://docs.oracle.com/cd/B28359_01/server.111/b28313/cdc.htm.
“Chapter 24. Query access plans”, Tuning Database Performance, DB2 Version 9.5 for Linux, UNIX, and Windows, pp. 301-462, dated Dec. 2010. Retreived from http://public.dhe.ibm.com/ps/products/db2/info/vr95/pdf/en_US/DB2PerfTuneTroubleshoot-db2d3e953.pdf.
“GNU Emacs Manual”, dated Apr. 15, 2016, pp. 43-47. Retrieved from https://web.archive.org/web/20160415175915/http://www.gnu.org/software/emacs/manual/html_mono/emacs.html.
“Google Protocol RPC Library Overview”, dated Apr. 27, 2016. Retrieved from https://cloud.google.com/appengine/docs/python/tools/protorpc/ (last accessed Jun. 16, 2016).
“IBM—What is HBase?”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906022050/http://www-01.ibm.com/software/data/infosphere/hadoop/hbase/.
“IBM Informix TimeSeries data management”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118072141/http://www-01.ibm.com/software/data/informix/timeseries/.
“IBM InfoSphere BigInsights 3.0.0—Importing data from and exporting data to DB2 by using Sqoop”, dated Jan. 15, 2015. Retrieved from https://web.archive.org/web/20150115034058/http://www-01.ibm.com/support/knowledgecenter/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.import.doc/doc/data_warehouse_sqoop.html.
“Maximize Data Value with Very Large Database Management by SAP Sybase IQ”, dated 2013. Retrieved from http://www.sap.com/bin/sapcom/en_us/downloadasset.2013-06-jun-11-11.maximize-data-value-with-very-large-database-management-by-sap-sybase-iq-pdf.html.
“Microsoft Azure—Managing Access Control Lists (ACLs) for Endpoints by using PowerShell”, dated Nov. 12, 2014. Retrieved from https://web.archive.org/web/20150110170715/http://msdn.microsoft.com/en-us/library/azure/dn376543.aspx.
“Oracle Big Data Appliance—Perfect Balance Java API”, dated Sep. 20, 2015. Retrieved from https://web.archive.org/web/20131220040005/http://docs.oracle.com/cd/E41604_01/doc.22/e41667/toc.htm.
“Oracle Big Data Appliance—X5-2”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906185409/http://www.oracle.com/technetwork/database/bigdata-appliance/overview/bigdataappliance-datasheet-1883358.pdf.
“Oracle Big Data Appliance Software User's Guide”, dated Feb. 2015. Retrieved from https://docs.oracle.com/cd/E55905_01/doc.40/e55814.pdf.
“SAP HANA Administration Guide”, dated Mar. 29, 2016, pp. 290-294. Retrieved from https://web.archive.org/web/20160417053656/http://help.sap.com/hana/SAP_HANA_Administration_Guide_en.pdf.
“Sophia Database—Architecture”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118052919/http://sphia.org/architecture.html.
“Tracking Data Changes”, SQL Server 2008 R2, dated Sep. 22, 2015. Retreived from https://web.archive.org/web/20150922000614/https://technet.microsoft.com/en-us/library/bb933994(v=sql.105).aspx.
“Use Formula AutoComplete”, dated 2010. Retrieved from https://support.office.com/en-us/article/Use-Formula-AutoComplete-c7c46fa6-3a94-4150-a2f7-34140c1ee4d9 (last accessed Jun. 16, 2016).
Adelfio et al. “Schema Extraction for Tabular Data on the Web”, Proceedings of the VLDB Endowment, vol. 6, No. 6. Apr. 2013. Retrieved from http://www.cs.umd.edu/˜hjs/pubs/spreadsheets-vldb13.pdf.
Advisory Action dated Apr. 19, 2017, in U.S. Appl. No. 15/154,999.
Advisory Action dated Apr. 20, 2017, in U.S. Appl. No. 15/154,980.
Advisory Action dated Apr. 6, 2017, in U.S. Appl. No. 15/154,995.
Advisory Action dated Mar. 31, 2017, in U.S. Appl. No. 15/154,996.
Advisory Action dated May 3, 2017, in U.S. Appl. No. 15/154,993.
Borror, Jefferey A. “Q for Mortals 2.0”, dated Nov. 1, 2011. Retreived from http://code.kx.com/wiki/JB:QforMortals2/contents.
Cheusheva, Svetlana. “How to change the row color based on a cell's value in Excel”, dated Oct. 29, 2013. Retrieved from https://www.ablebits.com/office-addins-blog/2013/10/29/excel-change-row-background-color/ (last accessed Jun. 16, 2016).
Corrected Notice of Allowability dated Aug. 9, 2017, in U.S. Appl. No. 15/154,980.
Corrected Notice of Allowability dated Jul. 31, 2017, in U.S. Appl. No. 15/154,999.
Corrected Notice of Allowability dated Mar. 10, 2017, in U.S. Appl. No. 15/154,979.
Corrected Notice of Allowability dated Oct. 26, 2017, in U.S. Appl. No. 15/610,162.
Decision on Pre-Appeal Conference Request dated Nov. 20, 2017, in U.S. Appl. No. 15/154,997.
Ex Parte Quayle Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,999.
Final Office Action dated Apr. 10, 2017, in U.S. Appl. No. 15/155,006.
Final Office Action dated Dec. 19, 2016, in U.S. Appl. No. 15/154,995.
Final Office Action dated Feb. 24, 2017, in U.S. Appl. No. 15/154,993.
Final Office Action dated Jan. 27, 2017, in U.S. Appl. No. 15/154,980.
Final Office Action dated Jan. 31, 2017, in U.S. Appl. No. 15/154,996.
Final Office Action dated Jul. 27, 2017, in U.S. Appl. No. 15/154,993.
Final Office Action dated Jun. 23, 2017, in U.S. Appl. No. 15/154,997.
Final Office Action dated Mar. 1, 2017, in U.S. Appl. No. 15/154,975.
Final Office Action dated Mar. 13, 2017, in U.S. Appl. No. 15/155,012.
Final Office Action dated Mar. 31, 2017, in U.S. Appl. No. 15/155,005.
Final Office Action dated May 15, 2017, in U.S. Appl. No. 15/155,010.
Final Office Action dated May 4, 2017, in U.S. Appl. No. 15/155,009.
Gai, Lei et al. “An Efficient Summary Graph Driven Method for RDF Query Processing”, dated Oct. 27, 2015. Retreive from http://arxiv.org/pdf/1510.07749.pdf.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032582 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032584 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032588 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032593 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032597 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032599 filed May 14, 2016.
Advisory Action dated Dec. 21, 2017, in U.S. Appl. No. 15/154,984.
Breitbart, Update Propagation Protocols for Replicated Databases, SIGMOD '99 Philadelphia PA, 1999, pp. 97-108.
Final Office Action dated Aug. 10, 2018, in U.S. Appl. No. 15/796,230.
Final Office Action dated Aug. 2, 2018, in U.S. Appl. No. 15/154,996.
Final Office Action dated Aug. 28, 2018, in U.S. Appl. No. 15/813,119.
Final Office Action dated Dec. 29, 2017, in U.S. Appl. No. 15/154,974.
Final Office Action dated Jun. 18, 2018, in U.S. Appl. No. 15/155,005.
Final Office Action dated May 18, 2018, in U.S. Appl. No. 15/654,461.
Kramer, The Combining DQ: A Technique for Parallel Data Flow Analysis, IEEE Transactions on Parallel and Distributed Systems, vol. 5, No. 8, Aug. 1994, pp. 805-813.
Non-final Office Action dated Apr. 12, 2018, in U.S. Appl. No. 15/154,997.
Non-final Office Action dated Apr. 23, 2018, in U.S. Appl. No. 15/813,127.
Non-final Office Action dated Apr. 5, 2018, in U.S. Appl. No. 15/154,984.
Non-final Office Action dated Aug. 10, 2018, in U.S. Appl. No. 16/004,578.
Non-final Office Action dated Dec. 28, 2017, in U.S. Appl. No. 15/154,996.
Non-final Office Action dated Dec. 28, 2017, in U.S. Appl. No. 15/796,230.
Non-final Office Action dated Feb. 12, 2018, in U.S. Appl. No. 15/466,836.
Non-final Office Action dated Feb. 15, 2018, in U.S. Appl. No. 15/813,112.
Non-final Office Action dated Feb. 28, 2018, in U.S. Appl. No. 15/813,119.
Non-final Office Action dated Jan. 4, 2018, in U.S. Appl. No. 15/583,777.
Non-final Office Action dated Jun. 29, 2018, in U.S. Appl. No. 15/154,974.
Non-final Office Action dated Jun. 8, 2018, in U.S. Appl. No. 15/452,574.
Non-final Office Action dated Mar. 20, 2018, in U.S. Appl. No. 15/155,006.
Notice of Allowance dated Apr. 30, 2018, in U.S. Appl. No. 15/155,012.
Notice of Allowance dated Feb. 12, 2018, in U.S. Appl. No. 15/813,142.
Notice of Allowance dated Feb. 26, 2018, in U.S. Appl. No. 15/428,145.
Notice of Allowance dated Jul. 11, 2018, in U.S. Appl. No. 15/154,995.
Notice of Allowance dated Mar. 1, 2018, in U.S. Appl. No. 15/464,314.
Notice of Allowance dated May 4, 2018, in U.S. Appl. No. 15/897,547.
Notice of Allowance dated Sep. 11, 2018, in U.S. Appl. No. 15/608,961.
Sobell, Mark G. “A Practical Guide to Linux, Commands, Editors and Shell Programming.” Third Edition, dated Sep. 14, 2012. Retrieved from: http://techbus.safaribooksonline.com/book/operating-systems-and-server-administration/linux/9780133085129.
Hartle, Thom, Conditional Formatting in Excel using CQG's RTD Bate Function (2011), http://news.cqg.com/blogs/exce/I2011/05/conditional-formatting-excel-using-cqgs-rtd-bate-function (last visited Apr. 3, 2019).
Azbel, Maria, How to hide and group columns in Excel AbleBits (2014), https://www.ablebits.com/office-addins-blog/2014/08/06/excel-hide-columns/ (last visited Jan. 18, 2019).
Dodge, Mark & Craig Stinson, Microsoft Excel 2010 inside out (2011).
Cheusheve, Svetlana, Excel formulas for conditional formatting based on another cell AbleBits (2014), https://www.ablebits.com/office-addins-blog/2014/06/10/excel-conditional-formatting-formulas/omment-page-6/(last visited Jan. 14, 2019).
Posey, Brien, “How to Combine PowerShell Cmdlets”, Jun. 14, 2013 Redmond the Independent Voice of the Microsoft Community (Year: 2013).
Related Publications (1)
Number Date Country
20170235794 A1 Aug 2017 US
Provisional Applications (1)
Number Date Country
62161813 May 2015 US
Continuations (1)
Number Date Country
Parent 15154988 May 2016 US
Child 15583934 US