Embodiments relate generally to computer data systems, and more particularly, to methods, systems and computer readable media for the dynamic updating of join operations.
Joining two tables to create a third table has historically required combining large sets of data that can tax even large local memory stores and fast processors. Also, standard joins may not provide a user with the desired results. Also, standard joins may require combining large sets of data again after a small change to one of the joined tables to update the result.
Embodiments were conceived in light of the above mentioned needs, problems and/or limitations, among other things.
Some implementations can include a memory and processor efficient computer system for dynamic updating of join operations, the system comprising one or more processors, computer readable storage coupled to the one or more processors, the computer readable storage having stored thereon instructions that, when executed by the one or more processors, cause the one or more processors to perform operations. The operations can include sending a digital request for a remote query processor from a client computer to a remote query processor on a query server computer. The operations can also include at the remote query processor, performing operations including automatically connecting the client computer to the remote query processor via the digital communications network. The operations can include receiving a join-based query digitally from the client computer to the remote query processor that contains two or more input tables to be joined. The operations can also include adding a node for each table providing input to the join operation to the update propagation graph. The operations can further include adding a join operation results node to the update propagation graph for holding results of executing the join-based query. The operations can also include adding a real-time merged notification listener for the join operation node in the update propagation graph. The operations can include applying the join operation to the two or more input tables using indexes from the two or more input tables to identify and retrieve data needed for the join operation in order to minimize local memory and processor usage. The operations can also include using the real-time merged notification listener for the join operation node to listen for any changes to the joined two or more input tables in order to minimize local memory and processor usage by only conducting a join operation when a change has been detected. The operations can further include when the real-time merged notification listener receives notification of changes to any of the joined two or more input tables, using indexes from the two or more input tables to apply the join operation only to the changes to update the join operation results node only for changed index ranges in order to minimize local memory and processor usage.
The operations can include wherein the join-based query is a left_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table. The operations can also include the one or more new columns containing an aggregation of all values from the second input table that match a join criteria. The operations can further include the types of all newly created second input table columns not involved in the join criteria being an array of the second input table's column type.
The operations can include wherein the join-based query is an as_of_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table. The operations can also include the one or more new columns containing all values from the second input table that match a join criteria, the join criteria performing an exact match on N−1 match columns followed by performing a closest-less-than match on the last match column.
The operations can include wherein the join-based query is a reverse_as_of_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table. The operations can also include the one or more new columns containing all values from the input table that match a join criteria, the join criteria performing an exact match on N−1 match columns followed by performing a closest-greater-than match on the last match column.
The operations can include wherein the join-based query is a range_as_of_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table. The operations can also include the one or more new columns containing all values from the input table that match a join criteria, the join criteria returning each cell in the one or more new columns with an array of all values within a designated range for N-M match columns where the match is exact, and M match columns define a range match.
The operations can include wherein the join-based query is a natural_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table. The operations can also include the table having a same number of rows as the source table, the same number of rows containing an original content of the source table rows. The operations can further include the one or more new columns determined by matching one or more values from the input table with the source table.
The operations can include wherein the join-based query is an exact_join resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table. The operations can also include the table having a same number of rows as the source table, the same number of rows containing an original content of the source table rows. The operations can further include the one or more new columns determined by matching one or more values from the input table with the source table. The operations can also include the table containing exactly one match for each row with the input table.
The operations can include wherein the join-based query creates a subset filtered by a match criteria on a full Cartesian product, resulting in a table that has one column for each of a plurality of columns in a first input table's columns, and one or more new corresponding second input table columns with names that do not overlap or are renamed in order to not overlap with a name of one or more columns from a first input table.
The operations can include wherein the join operation node is different than the join operation results node.
The operations can include wherein the real-time merged notification listener for the join operation node is separate from the join operation node.
The operations can include wherein the real-time merged notification listener for the join operation node is separate from the join operation results node.
The operations can include wherein the operations of the remote query processor further include returning join operation results with strict ordering to guarantee ordering.
The operations can include wherein the operations of the remote query processor further include returning the join operation results that can contain arrays mapped to data.
The operations can include wherein the strict ordering is according to time.
The operations can include wherein the strict ordering is dictated by an order of data in the two or more input tables.
The operations can include wherein the changes include one or more of an add, modify, delete, or re-index.
The operations can include wherein the operations of the remote query processor further comprise automatically re-applying the join operation when the real-time merged notification listener detects any one of an add, modify, delete, or re-index message.
The operations can include further comprising when the two or more input tables are derived from a same ancestor table, changes in the same ancestor table cause a cascade of change notifications through the update propagation graph causing the remote query processor to combine the change notifications for efficiency and consistency.
The operations can include wherein the automatically re-applying is only applied to changed portions of the two or more input tables and not to unchanged portions.
The operations can include wherein the join criteria includes a formula.
Some implementations can include a method for dynamic updating of join operations, the method comprising sending a digital request for a remote query processor from a client computer to a remote query processor on a query server computer. The method can also include automatically connecting the client computer to the remote query processor via the digital communications network. The method can further include receiving a join-based query digitally from the client computer to the remote query processor that contains two or more input tables to be joined. The method can also include adding a node for each table providing input to the join operation to the update propagation graph. The method can include adding a join operation results node to the update propagation graph for holding results of executing the join-based query. The method can also include adding a real-time merged notification listener for the join operation node in the update propagation graph. The method can include applying the join operation to the two or more input tables using indexes from the two or more input tables to identify and retrieve data needed for the join operation in order to minimize local memory and processor usage. The method can also include using the real-time merged notification listener for the join operation node to listen for any changes to the joined two or more input tables in order to minimize local memory and processor usage by only conducting a join operation when a change has been detected. The method can further include when the real-time merged notification listener receives notification of changes to any of the joined two or more input tables, using indexes from the two or more input tables to apply the join operation only to the changes to update the join operation results node only for changed index ranges in order to minimize local memory and processor usage.
Some implementations can include a nontransitory computer readable medium having stored thereon software instructions that, when executed by one or more processors, cause the one or more processors to perform operations. The operations can include sending a digital request for a remote query processor from a client computer to a remote query processor on a query server computer. The operations can also include at the remote query processor, performing operations. The operations can include automatically connecting the client computer to the remote query processor via the digital communications network. The operations can also include receiving a join-based query digitally from the client computer to the remote query processor that contains two or more input tables to be joined. The operations can further include adding a node for each table providing input to the join operation to the update propagation graph. The operations can also include adding a join operation results node to the update propagation graph for holding results of executing the join-based query. The operations can include adding a real-time merged notification listener for the join operation node in the update propagation graph. The operations can also include applying the join operation to the two or more input tables using indexes from the two or more input tables to identify and retrieve data needed for the join operation in order to minimize local memory and processor usage. The operations can further include using the real-time merged notification listener for the join operation node to listen for any changes to the joined two or more input tables in order to minimize local memory and processor usage by only conducting a join operation when a change has been detected. The operations can also include when the real-time merged notification listener receives notification of changes to any of the joined two or more input tables, using indexes from the two or more input tables to apply the join operation only to the changes to update the join operation results node only for changed index ranges in order to minimize local memory and processor usage.
Reference is made herein to the Java programming language, Java classes, Java bytecode and the Java Virtual Machine (JVM) for purposes of illustrating example implementations. It will be appreciated that implementations can include other programming languages (e.g., groovy, Scala, R, Go, etc.), other programming language structures as an alternative to or in addition to Java classes (e.g., other language classes, objects, data structures, program units, code portions, script portions, etc.), other types of bytecode, object code and/or executable code, and/or other virtual machines or hardware implemented machines configured to execute a data system query.
The application host 102 can include one or more application processes 112, one or more log files 114 (e.g., sequential, row-oriented log files), one or more data log tailers 116 and a multicast key-value publisher 118. The periodic data import host 104 can include a local table data server, direct or remote connection to a periodic table data store 122 (e.g., a column-oriented table data store) and a data import server 120. The query server host 106 can include a multicast key-value subscriber 126, a performance table logger 128, local table data store 130 and one or more remote query processors (132, 134) each accessing one or more respective tables (136, 138). The long-term file server 108 can include a long-term data store 140. The user data import host 110 can include a remote user table server 142 and a user table data store 144. Row-oriented log files and column-oriented table data stores are discussed herein for illustration purposes and are not intended to be limiting. It will be appreciated that log files and/or data stores may be configured in other ways. In general, any data stores discussed herein could be configured in a manner suitable for a contemplated implementation.
In operation, the input data application process 112 can be configured to receive input data from a source (e.g., a securities trading data source), apply schema-specified, generated code to format the logged data as it's being prepared for output to the log file 114 and store the received data in the sequential, row-oriented log file 114 via an optional data logging process. In some implementations, the data logging process can include a daemon, or background process task, that is configured to log raw input data received from the application process 112 to the sequential, row-oriented log files on disk and/or a shared memory queue (e.g., for sending data to the multicast publisher 118). Logging raw input data to log files can additionally serve to provide a backup copy of data that can be used in the event that downstream processing of the input data is halted or interrupted or otherwise becomes unreliable.
A data log tailer 116 can be configured to access the sequential, row-oriented log file(s) 114 to retrieve input data logged by the data logging process. In some implementations, the data log tailer 116 can be configured to perform strict byte reading and transmission (e.g., to the data import server 120). The data import server 120 can be configured to store the input data into one or more corresponding data stores such as the periodic table data store 122 in a column-oriented configuration. The periodic table data store 122 can be used to store data that is being received within a time period (e.g., a minute, an hour, a day, etc.) and which may be later processed and stored in a data store of the long-term file server 108. For example, the periodic table data store 122 can include a plurality of data servers configured to store periodic securities trading data according to one or more characteristics of the data (e.g., a data value such as security symbol, the data source such as a given trading exchange, etc.).
The data import server 120 can be configured to receive and store data into the periodic table data store 122 in such a way as to provide a consistent data presentation to other parts of the system. Providing/ensuring consistent data in this context can include, for example, recording logged data to a disk or memory, ensuring rows presented externally are available for consistent reading (e.g., to help ensure that if the system has part of a record, the system has all of the record without any errors), and preserving the order of records from a given data source. If data is presented to clients, such as a remote query processor (132, 134), then the data may be persisted in some fashion (e.g., written to disk).
The local table data server 124 can be configured to retrieve data stored in the periodic table data store 122 and provide the retrieved data to one or more remote query processors (132, 134) via an optional proxy.
The remote user table server (RUTS) 142 can include a centralized consistent data writer, as well as a data server that provides processors with consistent access to the data that it is responsible for managing. For example, users can provide input to the system by writing table data that is then consumed by query processors.
The remote query processors (132, 134) can use data from the data import server 120, local table data server 124 and/or from the long-term file server 108 to perform queries. The remote query processors (132, 134) can also receive data from the multicast key-value subscriber 126, which receives data from the multicast key-value publisher 118 in the application host 102. The performance table logger 128 can log performance information about each remote query processor and its respective queries into a local table data store 130. Further, the remote query processors can also read data from the RUTS, from local table data written by the performance logger, or from user table data read over NFS.
It will be appreciated that the configuration shown in
The production client host 202 can include a batch query application 212 (e.g., a query that is executed from a command line interface or the like) and a real time query data consumer process 214 (e.g., an application that connects to and listens to tables created from the execution of a separate query). The batch query application 212 and the real time query data consumer 214 can connect to a remote query dispatcher 222 and one or more remote query processors (224, 226) within the query server host 1 208.
The controller host 204 can include a persistent query controller 216 configured to connect to a remote query dispatcher 232 and one or more remote query processors 228-230. In some implementations, the persistent query controller 216 can serve as the “primary client” for persistent queries and can request remote query processors from dispatchers, and send instructions to start persistent queries. For example, a user can submit a query to 216, and 216 starts and runs the query every day. In another example, a securities trading strategy could be a persistent query. The persistent query controller can start the trading strategy query every morning before the market opened, for instance. It will be appreciated that 216 can work on times other than days. In some implementations, the controller may require its own clients to request that queries be started, stopped, etc. This can be done manually, or by scheduled (e.g., cron) jobs. Some implementations can include “advanced scheduling” (e.g., auto-start/stop/restart, time-based repeat, etc.) within the controller.
The GUI/host workstation can include a user console 218 and a user query application 220. The user console 218 can be configured to connect to the persistent query controller 216. The user query application 220 can be configured to connect to one or more remote query dispatchers (e.g., 232) and one or more remote query processors (228, 230).
In operation, the processor 302 may execute the remote query processor application 310 stored in the memory 306. The remote query processor application 310 can include software instructions that, when executed by the processor, cause the processor to perform operations for executing and updating queries in accordance with the present disclosure (e.g., performing one or more of 502-526, 550-572, 602-612 described below).
The remote query processor application program 310 can operate in conjunction with the data section 312 and the operating system 304.
A varied set of join operations can provide a powerful toolset to users for manipulating data with one join command versus the use of several joins or looping code. Each join in a set of joins can be built for particular types of input tables to provide a desired type of result.
The remote query processor 322 can contain one or more processors 324 and high speed memory 326 such as RAM. The high speed memory 326 can contain one or more update propagation graphs 328, one or more table indexes 330, in memory data 332, and recent data cache 334. The high speed memory 326 can request and retrieve data from one or more slow access speed storages 355 and/or from high speed memory 336.
The high speed memory 336 can be memory that is shared with one or more remote query processors 322 and one or more table data cache proxies (not shown). The high speed memory 336 can contain one or more data columns, for example, a symbol column data 338, a date column data 340, a time column data 342, and a quote column data 344. The high speed memory 336 can exchange data with remote query processor 322 high speed memory 326 and/or medium access speed memory 346, and can request and receive data from slow access speed storage 355.
The medium access speed memory 346 can contain one or more data columns, for example, symbol column data 348, a date column data 350, a time column data 352, and a quote column data 354. Medium access speed memory 346 can exchange data with high speed memory 336 and transmit data to a slow access speed storage 355.
The slow access speed storage 355, for example, a file server with one or more hard drives, can contain one or more source columns, for example, a symbol column source 358, a date column source 360, a time column source 362, and a quote column source 364. The one or more column source can be copied into medium speed solid state storage 356, for example, flash, to provide faster access for more frequently accessed data.
In general, some implementations can include a computer data system that stores and retrieves data (e.g., time series data) according to strict ordering rules. These rules ensure that data is stored in a strict order and that results of a query are evaluated and returned in the same order each time the query is executed. This can provide an advantage of optimizing the query code for query execution speed by permitting a user and query process (e.g., a remote query processor) to rely on an expected ordering and eliminate a need for performing an additional sorting operation on query results to achieve an expected or needed ordering for downstream operations. It also allows data to be ordered according to the source's data publication order without necessarily including data elements to refer to for query evaluation or result ordering purposes. It should be noted that updates from real-time or changing data, however, may not always be seen in the same order, since data is processed after asynchronous notifications and according to refresh cycles that progress at different speed and frequency in distinct remote query processors or client processes. Updates are not necessarily the results of a query, though. For some implementations order within a partition is always maintained.
For example, in the real-time (or periodic) case, a data system may store data in arrival order (which is typically time-series order) within the partition of the table that corresponds to a given data source. In the permanent-store case (or long term storage case), the computer data system starts with the real-time order and then re-partitions, optionally groups, and optionally sorts the real-time (or periodic) data according to one or more columns or formulas, otherwise respecting the retrieval order for the real-time data when producing the new stored data and its ordering.
Some implementations can include a partitioned data store that has partitions based, at least in part, on a file system and can include physical machine partitions, virtual machine partitions and/or file system directory structure partitions. For example, partitions A, B and C of a data store (e.g., a column data source) may reside in different directories of a file system. In addition to different directories, the data store may be distributed across a plurality of data servers (physical or virtual) such that the data is partitioned to a given server and within that server, the data may be sub-partitioned to one or more directories, and within each directory, the data may be further partitioned into one or more sub-directories and/or one or more files.
Partitioning the data using a file system provides an advantage in that the location keys and retrieval instructions for storage locations of interest for potential query result data can be discovered by means of traversing a directory structure, rather than a separately-maintained location key and location retrieval information discovery service. Once discovered, locations can be narrowed from the full set of locations to a sub-set according to query instructions, which can help speed up query operations by permitting the data system to defer accessing actual data (“lazy loading”) and begin to narrow down the set of rows to evaluate without handling data (e.g., in memory and/or transmitting via a communication network). This is further enhanced by support in the data system's query engine for partitioning columns—columns of the data that are a property of all rows in any location retrieved from a given partition of the location key space, typically embodied in the name of a sub-directory when a file system is used in this way. Certain query operations can thus be executed in whole or in part against location key fields on a per-partition basis rather than against column data on a per-row basis. This may greatly improve execution performance by decreasing the input size of the calculations by several orders of magnitude.
Within a partition, data may be grouped according to a column value. The grouping may have one or more levels, with a multi-level grouping having a logical hierarchy based on the values of two or more columns, such that groups in “higher-level” columns fully-enclose groups in “lower-level” columns. Further, within a partition or group, the data can be ordered according to a given ordering scheme, e.g. strictly by the real-time recording order, or according to some sorting criteria. Grouping in this way can enhance query performance by allowing for very simple, high performance data indexing, and by increasing the physical locality of related data, which in turn can reduce the number of rows or blocks that must be evaluated, and/or allow for extremely performant data caching and pre-fetching, with high cache hit ratios achieved with smaller cache sizes than some other data systems.
For example, securities trading data may be partitioned across servers by a formula that takes ticker symbol as input. Within each server, the data may be partitioned by a directory corresponding to trade data date. Within each date partition directory, data may be in a file grouped by one or more ticker symbol values. Within each ticker symbol group, the data may be ordered by time.
In another example, when generating a query result table, the data system can first focus on a server (or servers) for the symbol (or symbols) being accessed, then one or more partitions for the date(s) of interest, then one or more files and group(s) within the file(s) before any data is actually accessed or moved. Once the data system resolves the actual data responsive to the query, the data (or references to the data in one or more data sources) can be retrieved and stored into a query result table according to a strict ordering and will be evaluated and returned in that same order each time the query is executed.
It will be appreciated that some data stores or tables can include data that may be partitioned, grouped, and/or ordered. For example, some data may be partitioned and ordered, but not grouped (e.g., periodic data such as intraday trading data). Other data may be partitioned, grouped and ordered (e.g., long-term storage data such as historical trading data). Also it will be appreciated that any individual table, partition or group can be ordered. Partitions can be grouped according to a grouping and/or ordering specific to each partition.
The leaf nodes of a partition column can be subtables. An example subtable structure is shown at 410. In a subtable structure 410, data in the form of a subtable 418 can be stored for all rows and columns of a table.
For example, a table can have a logical table schema of columns for Date, Ticker Symbol, Timestamp, Bid Price and Ask Price. In this example, two partition columns can be created under the table root, one partition for Date and one partition for FileServer. The Date partition column (for example, 404) can contain directory paths to data for a single date, such as 2016-03-18. Because the data is all of the same date, 2016-03-18, the subtable 418 does not need to contain a Date value. In this example, the data 418 for the same date, 2016-03-18, can be spread across multiple file servers. A second partition column (for example, 406) is set under the Date partition column in the tree to provide a path, such as <table>/<date>/<fileserver>, to locate all the Date data for 2016-03-18. As noted earlier in this example, the Date partition column can be visible to a user, but a fileserver partition column may not be visible.
The data partition column is visible to the user to help the user formulate queries that can take advantage of the tree structure. For example, query performance can be enhanced by applying filters, such as where clauses, in an order based on the location of the data in a tree. Generally, applying the filter to a partition column closer to the table root 402 can minimize the amount of data processed to arrive at a final result. For example, in the Date, Ticker Symbol, Timestamp, Bid Price, Ask Price example, the most efficient filtering order is Date followed by Ticker Symbol. In this example, table.where (“Date=d”, “Sym=‘AAPL’”, “Bid>1000”) can be much faster than table.where (“BID>1000”, “Sym=‘AAPL’”, “Date=d”). In table.where (“Date=d”, “Sym=‘AAPL’”, “Bid>1000”), only the subtables 418 under the date “d” partition column needs to be retrieved for processing because the subtables 418 in this example are already partitioned by date, the system does not need to provide any additional filtering work for date. In contrast table.where (“BID>1000”, “Sym=‘AAPL’”, “Date=d”) can require every bid for every stock ticker for every date to be retrieved and processed because the “BID>1000” is processed first, and a partition column for “BID>1000” may not exist. As shown by this example, partition columns can be used to provide a built-in filter option that does not require the system to re-filter per each query the filters on the contents of the partition columns.
It will be appreciated that if the user had placed “Sym=‘AAPL’” before “BID>1000” in the where statement, the system could have filtered on a grouping by ticker symbols to more efficiently locate AAPL before then finding bids greater than 1000. Without using the group by ticker symbols first, all bids greater than 1000 would be retrieved.
It will also be appreciated that partition columns are not limited to Date or Fileserver. Any common attribute that would provide performance gains if pre-filtered can be a good candidate for partition columns.
It will also be appreciated that query performance gains can be achieved by creating grouping columns (412, 414, 416) underneath the Date partition columns. For example, a grouping column could be created for each distinct ticker symbol.
It will be further appreciated that the system can process each filter and determine which column each filter depends on. Then, based upon where the columns are located in the tree structure, the system can rank the filters based upon how much of the tree the system removes for future filters. For example, when processing date, symbol, and bid columns, date can be the highest in the tree (partition column) followed by Symbol (grouping column) followed by Bid (normal column). If 3 filters are submitted by a user that has dependencies on the date, symbol, and bid columns, the system can make an educated guess at the order the clauses can best be executed for maximum efficiency. For example, given t1.where(“Bid>10”,“Symbol=‘AAPL’”,“Date=today( )”), the system can reorder to t1.where(“Date=today( )”,“Symbol=‘AAPL’”,“Bid>10”) to maximize efficiency.
It will be appreciated that an update propagation graph can contain dynamic nodes that are table objects that can be updated frequently over time as well as static nodes that do not change over time.
A remote query processor 420 can exchange data with one or more historical data 430 sources and/or one or more real-time data 432 sources. A remote query processor 420 can also receive query tasks from one or more user query applications 428 and provide results back to one or more user query applications 428.
It will be appreciated that a remote query processor 420 can provide a client computer with an address assignment of the remote query processor, the address assignment identifying a specific port of the remote query processor 420 on a query server computer available to the client computer to connect over a digital communications network. The remote query processor 420 can automatically connect the client computer to the remote query processor via the digital communications network.
It will be appreciated that a real-time merged listener can be a software construct that listens for change notifications, such as add, delete, modify, or re-index messages, or other message types propagated down the update propagation graph. In a real-time environment, changes can happen frequently, for example, every millisecond, second, minute, hour, etc.
It will be appreciated that table 1 442 and table 2 444 can be derived from a common ancestor table. For example, if 442 and 444 share a common ancestor, changes in the ancestor can trigger a cascade of add, modify, delete, or re-index (AMDR) messages through an update propagation graph, which can ultimately cause both 442 and 444 to create AMDR messages. The system can recognize that an ancestor caused both 442 and 444 to send AMDR messages to a join. Before creating its own AMDR message, the system join (various nodes and merge listener) can combine the AMDR messages for efficiency and consistency. The ultimate AMDR from the system join can then give a time-consistent view of processing all information simultaneously.
It will be appreciated that because table 3 has already been created by a join operation on tables 1 and 2 before 502 and 504 that any change to table 1 or table 2 will require an update to the join to update table 3. Processing continues to 506.
At 506, based on the changes to table 1 and/or table 2, the remote query processor determines row changes for table 3. Processing continues to 508.
At 508, for the row changes to be applied to table 3, table 1 and table 2 data that is needed to compute the row for table 3 is loaded. Processing continues to 510.
At 510, a determination is made by the remote query processor as to whether the needed data is in memory. If the data is in memory, processing continues to 522. If the data is not in memory processing continues to 512.
At 512, a determination is made by the remote query processor as to whether the needed data is in high speed cache. If the data is in high speed cache, processing continues to 522. If the data is not in high speed cache, processing continues to 514.
At 514, a determination is made by the remote query processor as to whether the needed data is available from a table data cache proxy (TDCP). If the data is available from a TDCP, processing continues to 516. If the data is not available from a TDCP, processing continues to 518.
At 516, a determination is made by the remote query processor as to whether the needed data is in the TDCP cache. If the data is in the TDCP cache, processing continues to 522. If the data is not in the TDCP cache, processing continues to 520.
At 520, data is requested form an intraday server. Processing continues to 522.
At 518, data is loaded from a file server and/or file server cache. Processing continues to 522.
At 522, data is retrieved from the location where the data was found. Processing continues to 523.
At 523, if the cache is full, enough data is evicted from the cache to make space for the retrieved data. Processing continues to 524.
At 524, the updated row for table 3 is computed according to the join criteria. Processing returns back to 508 to continue the update cycle and continues to 526.
At 526, nodes below table 3 in the update propagation graph (child nodes of table 3) are notified of the changes to table 3.
It will be appreciated that table 1 and table 2 can be derived for a common ancestor data store, such as a table as discussed in the
At 556, the remote query processor receives notification of changes to table 1 and/or table 2. Processing continues to 558.
At 558, the remote query processor uses the table 1 and table 2 objects from the update propagation graph and the table 1 and table 2 AMDR update messages to determine the data that needs to be used in a join operation for updating table 3. Processing continues to 560.
At 560, the remote query operation determines the location of data needed for table 1 and table 2 for updating table 3. Processing continues to 562 and 564.
At 562, the location of table 1 data is determined to be located in either persistent (e.g. on-disk) column sources, remote query processor memory, such as RAM, or a table data cache proxy (TDCP). Processing continues to 570 if the location is column sources, to 568 if the location is TDCP, or to 566 if the location is remote query processor memory, such as RAM.
It will be appreciated that not all column sources or rows may be required to perform an update. The system defer loading of data until a particular section of data required to either perform the join operation or is requested by a downstream consumer of the table.
At 564, the location of table 2 data is determined to be located in either column sources, remote query processor memory, such as RAM, or a table data cache proxy (TDCP). Processing continues to 570 if the location is column sources, to 568 if the location is TDCP, or to 566 if the location is remote query processor memory, such as RAM.
At 566, data is retrieved from the remote query processor memory, such as RAM. Processing continues to 572.
At 568, data is retrieved from TDCP cache or intraday server. Processing continues to 572.
At 570, data is retrieved from table column sources flash or column sources storage.
It will be appreciated that any arbitrary storage hierarchy can be used. Processing continues to 572.
At 572, the remote query processor performs a join operation on table 1 and table 2 column sources by re-computing the necessary rows and then sending the results to the update propagation graph.
It will be appreciated the t3 can be added to the update query graph when the query is first executed. After the initial execution of the query, messages can be passed to a child after an update.
It will be appreciated that a join operation can include without limitation, an as_of_join, left_join, a reverse_as_of_join, a range_as_of_join, a natural_join, an exact_join, or a join. Processing continues to 604.
At 604, the remote query processor adds a node for each table providing input to the join operation to the update propagation graph. Processing continues to 606.
At 606, the remote query processor adds a node to the update propagation graph for the join operation resulting table. Processing continues to 608.
At 608, the remote query processor adds a real-time merged notification listener to the join operation node to listen for changes to the joined tables. Processing continues to 610.
At 610, the real-time merged notification listener listens for changes to any of the tables used in the join operation. Processing continues to 612.
At 612, when the real-time merged notification listener receives notification of changes to any of the tables used in the join operation, the join operation is applied to capture the changes and apply the changes to the join operation resulting table.
It will be appreciated that a match for a join operation can be based on a formula.
In the as_of_join example shown in
The left_join operation can return a table that has one column for each of the leftTable's columns, and one column corresponding to each of the rightTable columns whose name does not overlap or are renamed in order to not overlap with the name of a column from the leftTable.
The new columns (those corresponding to the rightTable) can contain an aggregation of all values from the leftTable that match the join criteria. Consequently, the types of all rightTable columns not involved in a join criteria, is an array of the rightTable column type. If the two tables have columns with matching names, then the method can fail with an exception unless the columns with corresponding names are found in one of the matching criteria. A left_join operation does not necessarily involve an actual data copy, or an in-memory table creation.
It will be appreciated that the values for columns in a result table derived from a right table need not immediately be computed, but can be generated on demand when a user requests the values.
In the left_join example shown in
In the reverse_as_of_join example shown in
A—AType from t1
B—BType from t1
StartTime—DBDateTime from t1
EndTime—DBDateTime from t1
Time—Array{DBDateTime} from t2
C—Array{CType} from t2
One possible syntax for specifying the range to be matched can be to match columns columns C1 . . . CN with C1 . . . CN-1 being exact matches. CN can be a range matching column. A separate argument can indicate how the range will be computed. The range can be a combination of a time-period (e.g. five minutes before/after), a row count (e.g., 10 rows before), or a formula (e.g., include all prior/subsequent rows as long as a formula is true).
An exemplary command string for a range_as_of_join can be t3=t1.rangeJoin(t2, “A,B,Time”, Period(′05:00′), Count(1), “Time2=Time,C”), which can create result types such as:
A—AType from t1
B—BType from t1
Time—DBDateTime from t1
Time2—Array{DBDateTime} from t2
C—Array{CType} from t2
Another exemplary command string for range_as_of_join can be t3=t1.rangeJoin(t2, “A,B,Time”, Count(‘0’), Formula(‘C>D’), “Time2=Time,C,D”), which can create result type such as:
A—AType from t1
B—BType from t1
Time—DBDateTime from t1
Time2—Array{DBDateTime} from t2
C—Array{CType} from t2
D—Array {DType} from t2
In this example, the range can include all rows subsequent to Time in t1; until C is not greater than D.
It will be appreciated that an index from a leftTable can be reused, and all leftTable columns can be passed through to the result table, and that rightTable arrays do not need to be stored.
In the range_as_of_join example shown in
In the natural_join example shown in
An exact_join can function identical to a natural_join with the exception that an exact_join expects exactly one match for each of its columns with the rightTable.
It will be appreciated that one method to ensure a match for each column is to join a table with a view of itself.
In the exact_join example shown in
In the join example shown in
It will be appreciated that the modules, processes, systems, and sections described above can be implemented in hardware, hardware programmed by software, software instructions stored on a nontransitory computer readable medium or a combination of the above. A system as described above, for example, can include a processor configured to execute a sequence of programmed instructions stored on a nontransitory computer readable medium. For example, the processor can include, but not be limited to, a personal computer or workstation or other such computing system that includes a processor, microprocessor, microcontroller device, or is comprised of control logic including integrated circuits such as, for example, an Application Specific Integrated Circuit (ASIC), a field programmable gate array (FPGA), graphics processing unit (GPU), or the like. The instructions can be compiled from source code instructions provided in accordance with a programming language such as Java, C, C++, C #.net, assembly or the like. The instructions can also comprise code and data objects provided in accordance with, for example, the Visual Basic™ language, a specialized database query language, or another structured or object-oriented programming language. The sequence of programmed instructions, or programmable logic device configuration software, and data associated therewith can be stored in a nontransitory computer-readable medium such as a computer memory or storage device which may be any suitable memory apparatus, such as, but not limited to ROM, PROM, EEPROM, RAM, flash memory, disk drive and the like.
Furthermore, the modules, processes systems, and sections can be implemented as a single processor or as a distributed processor. Further, it should be appreciated that the steps mentioned above may be performed on a single or distributed processor (single and/or multi-core, or cloud computing system). Also, the processes, system components, modules, and sub-modules described in the various figures of and for embodiments above may be distributed across multiple computers or systems or may be co-located in a single processor or system. Example structural embodiment alternatives suitable for implementing the modules, sections, systems, means, or processes described herein are provided below.
The modules, processors or systems described above can be implemented as a programmed general purpose computer, an electronic device programmed with microcode, a hard-wired analog logic circuit, software stored on a computer-readable medium or signal, an optical computing device, a networked system of electronic and/or optical devices, a special purpose computing device, an integrated circuit device, a semiconductor chip, and/or a software module or object stored on a computer-readable medium or signal, for example.
Embodiments of the method and system (or their sub-components or modules), may be implemented on a general-purpose computer, a special-purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element, an ASIC or other integrated circuit, a digital signal processor, a hardwired electronic or logic circuit such as a discrete element circuit, a programmed logic circuit such as a PLD, PLA, FPGA, PAL, or the like. In general, any processor capable of implementing the functions or steps described herein can be used to implement embodiments of the method, system, or a computer program product (software program stored on a nontransitory computer readable medium).
Furthermore, embodiments of the disclosed method, system, and computer program product (or software instructions stored on a nontransitory computer readable medium) may be readily implemented, fully or partially, in software using, for example, object or object-oriented software development environments that provide portable source code that can be used on a variety of computer platforms. Alternatively, embodiments of the disclosed method, system, and computer program product can be implemented partially or fully in hardware using, for example, standard logic circuits or a VLSI design. Other hardware or software can be used to implement embodiments depending on the speed and/or efficiency requirements of the systems, the particular function, and/or particular software or hardware system, microprocessor, or microcomputer being utilized. Embodiments of the method, system, and computer program product can be implemented in hardware and/or software using any known or later developed systems or structures, devices and/or software by those of ordinary skill in the applicable art from the function description provided herein and with a general basic knowledge of the software engineering and computer networking arts.
Moreover, embodiments of the disclosed method, system, and computer readable media (or computer program product) can be implemented in software executed on a programmed general purpose computer, a special purpose computer, a microprocessor, or the like.
It is, therefore, apparent that there is provided, in accordance with the various embodiments disclosed herein, methods, systems and computer readable media for the dynamic updating of join operations.
Application Ser. No. 15/154,974, entitled “DATA PARTITIONING AND ORDERING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,975, entitled “COMPUTER DATA SYSTEM DATA SOURCE REFRESHING USING AN UPDATE PROPAGATION GRAPH” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,979, entitled “COMPUTER DATA SYSTEM POSITION-INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,980, entitled “SYSTEM PERFORMANCE LOGGING OF COMPLEX REMOTE QUERY PROCESSOR QUERY OPERATIONS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,983, entitled “DISTRIBUTED AND OPTIMIZED GARBAGE COLLECTION OF REMOTE AND EXPORTED TABLE HANDLE LINKS TO UPDATE PROPAGATION GRAPH NODES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,984, entitled “COMPUTER DATA SYSTEM CURRENT ROW POSITION QUERY LANGUAGE CONSTRUCT AND ARRAY PROCESSING QUERY LANGUAGE CONSTRUCTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,985, entitled “PARSING AND COMPILING DATA SYSTEM QUERIES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,987, entitled “DYNAMIC FILTER PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,988, entitled “DYNAMIC JOIN PROCESSING USING REAL-TIME MERGED NOTIFICATION LISTENER” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,990, entitled “DYNAMIC TABLE INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,991, entitled “QUERY TASK PROCESSING BASED ON MEMORY ALLOCATION AND PERFORMANCE CRITERIA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,993, entitled “A MEMORY-EFFICIENT COMPUTER SYSTEM FOR DYNAMIC UPDATING OF JOIN PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,995, entitled “QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,996, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,997, entitled “DYNAMIC UPDATING OF QUERY RESULT DISPLAYS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,998, entitled “DYNAMIC CODE LOADING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,999, entitled “IMPORTATION, PRESENTATION, AND PERSISTENT STORAGE OF DATA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,001, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,005, entitled “PERSISTENT QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,006, entitled “SINGLE INPUT GRAPHICAL USER INTERFACE CONTROL ELEMENT AND METHOD” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,007, entitled “GRAPHICAL USER INTERFACE DISPLAY EFFECTS FOR A COMPUTER DISPLAY SCREEN” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,009, entitled “COMPUTER ASSISTED COMPLETION OF HYPERLINK COMMAND SEGMENTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,010, entitled “HISTORICAL DATA REPLAY UTILIZING A COMPUTER SYSTEM” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,011, entitled “DATA STORE ACCESS PERMISSION SYSTEM WITH INTERLEAVED APPLICATION OF DEFERRED ACCESS CONTROL FILTERS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,012, entitled “REMOTE DATA OBJECT PUBLISHING/SUBSCRIBING SYSTEM HAVING A MULTICAST KEY-VALUE PROTOCOL” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
While the disclosed subject matter has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be, or are, apparent to those of ordinary skill in the applicable arts. Accordingly, Applicants intend to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of the disclosed subject matter.
This application claims the benefit of U.S. Provisional Application No. 62/161,813, entitled “Computer Data System” and filed on May 14, 2015, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5335202 | Manning et al. | Aug 1994 | A |
5452434 | Macdonald | Sep 1995 | A |
5469567 | Okada | Nov 1995 | A |
5504885 | Alashqur | Apr 1996 | A |
5530939 | Mansfield et al. | Jun 1996 | A |
5568632 | Nelson | Oct 1996 | A |
5673369 | Kim | Sep 1997 | A |
5701461 | Dalal et al. | Dec 1997 | A |
5701467 | Freeston | Dec 1997 | A |
5764953 | Collins et al. | Jun 1998 | A |
5787411 | Groff et al. | Jul 1998 | A |
5787428 | Hart | Jul 1998 | A |
5806059 | Tsuchida et al. | Sep 1998 | A |
5808911 | Tucker et al. | Sep 1998 | A |
5859972 | Subramaniam et al. | Jan 1999 | A |
5873075 | Cochrane et al. | Feb 1999 | A |
5875334 | Chow et al. | Feb 1999 | A |
5878415 | Olds | Mar 1999 | A |
5890167 | Bridge et al. | Mar 1999 | A |
5899990 | Maritzen et al. | May 1999 | A |
5920860 | Maheshwari et al. | Jul 1999 | A |
5943672 | Yoshida | Aug 1999 | A |
5960087 | Tribble et al. | Sep 1999 | A |
5991810 | Shapiro et al. | Nov 1999 | A |
5999918 | Williams et al. | Dec 1999 | A |
6006220 | Haderle et al. | Dec 1999 | A |
6032144 | Srivastava et al. | Feb 2000 | A |
6032148 | Wilkes | Feb 2000 | A |
6038563 | Bapat et al. | Mar 2000 | A |
6058394 | Bakow et al. | May 2000 | A |
6061684 | Glasser et al. | May 2000 | A |
6138112 | Slutz | Oct 2000 | A |
6160548 | Lea et al. | Dec 2000 | A |
6253195 | Hudis et al. | Jun 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6289357 | Parker | Sep 2001 | B1 |
6292803 | Richardson et al. | Sep 2001 | B1 |
6304876 | Isip | Oct 2001 | B1 |
6317728 | Kane | Nov 2001 | B1 |
6327702 | Sauntry et al. | Dec 2001 | B1 |
6336114 | Garrison | Jan 2002 | B1 |
6353819 | Edwards et al. | Mar 2002 | B1 |
6367068 | Vaidyanathan et al. | Apr 2002 | B1 |
6389414 | Delo et al. | May 2002 | B1 |
6389462 | Cohen et al. | May 2002 | B1 |
6397206 | Hill et al. | May 2002 | B1 |
6438537 | Netz et al. | Aug 2002 | B1 |
6446069 | Yaung et al. | Sep 2002 | B1 |
6460037 | Weiss et al. | Oct 2002 | B1 |
6473750 | Petculescu et al. | Oct 2002 | B1 |
6487552 | Lei et al. | Nov 2002 | B1 |
6496833 | Goldberg et al. | Dec 2002 | B1 |
6505189 | Au et al. | Jan 2003 | B1 |
6505241 | Pitts | Jan 2003 | B2 |
6510551 | Miller | Jan 2003 | B1 |
6519604 | Acharya et al. | Feb 2003 | B1 |
6530075 | Beadle et al. | Mar 2003 | B1 |
6538651 | Hayman et al. | Mar 2003 | B1 |
6546402 | Beyer et al. | Apr 2003 | B1 |
6553375 | Huang et al. | Apr 2003 | B1 |
6584474 | Pereira | Jun 2003 | B1 |
6604104 | Smith | Aug 2003 | B1 |
6618720 | Au et al. | Sep 2003 | B1 |
6631374 | Klein et al. | Oct 2003 | B1 |
6640234 | Coffen et al. | Oct 2003 | B1 |
6697880 | Dougherty | Feb 2004 | B1 |
6701415 | Hendren | Mar 2004 | B1 |
6714962 | Helland et al. | Mar 2004 | B1 |
6725243 | Snapp | Apr 2004 | B2 |
6732100 | Brodersen et al. | May 2004 | B1 |
6745332 | Wong et al. | Jun 2004 | B1 |
6748374 | Madan et al. | Jun 2004 | B1 |
6748455 | Hinson et al. | Jun 2004 | B1 |
6760719 | Hanson et al. | Jul 2004 | B1 |
6775660 | Lin et al. | Aug 2004 | B2 |
6785668 | Polo et al. | Aug 2004 | B1 |
6795851 | Noy | Sep 2004 | B1 |
6801908 | Fuloria et al. | Oct 2004 | B1 |
6816855 | Hartel et al. | Nov 2004 | B2 |
6820082 | Cook et al. | Nov 2004 | B1 |
6829620 | Michael et al. | Dec 2004 | B2 |
6832229 | Reed | Dec 2004 | B2 |
6851088 | Conner et al. | Feb 2005 | B1 |
6882994 | Yoshimura et al. | Apr 2005 | B2 |
6925472 | Kong | Aug 2005 | B2 |
6934717 | James | Aug 2005 | B1 |
6947928 | Dettinger et al. | Sep 2005 | B2 |
6983291 | Cochrane et al. | Jan 2006 | B1 |
6985895 | Witkowski et al. | Jan 2006 | B2 |
6985899 | Chan | Jan 2006 | B2 |
6985904 | Kaluskar et al. | Jan 2006 | B1 |
7020649 | Cochrane et al. | Mar 2006 | B2 |
7024414 | Sah et al. | Apr 2006 | B2 |
7031962 | Moses | Apr 2006 | B2 |
7047484 | Becker et al. | May 2006 | B1 |
7058657 | Berno | Jun 2006 | B1 |
7089228 | Arnold et al. | Aug 2006 | B2 |
7089245 | George et al. | Aug 2006 | B1 |
7096216 | Anonsen | Aug 2006 | B2 |
7099927 | Cudd et al. | Aug 2006 | B2 |
7103608 | Ozbutun et al. | Sep 2006 | B1 |
7110997 | Turkel et al. | Sep 2006 | B1 |
7127462 | Hiraga et al. | Oct 2006 | B2 |
7146357 | Suzuki et al. | Dec 2006 | B2 |
7149742 | Eastham et al. | Dec 2006 | B1 |
7167870 | Avvari et al. | Jan 2007 | B2 |
7171469 | Ackaouy et al. | Jan 2007 | B2 |
7174341 | Ghukasyan et al. | Feb 2007 | B2 |
7181686 | Bahrs | Feb 2007 | B1 |
7188105 | Dettinger et al. | Mar 2007 | B2 |
7200620 | Gupta | Apr 2007 | B2 |
7216115 | Walters et al. | May 2007 | B1 |
7216116 | Nilsson et al. | May 2007 | B1 |
7219302 | O'Shaughnessy et al. | May 2007 | B1 |
7225189 | McCormack et al. | May 2007 | B1 |
7254808 | Trappen et al. | Aug 2007 | B2 |
7257689 | Baird | Aug 2007 | B1 |
7272605 | Hinshaw et al. | Sep 2007 | B1 |
7308580 | Nelson et al. | Dec 2007 | B2 |
7316003 | Dulepet et al. | Jan 2008 | B1 |
7330969 | Harrison et al. | Feb 2008 | B2 |
7333941 | Choi | Feb 2008 | B1 |
7343585 | Lau et al. | Mar 2008 | B1 |
7350237 | Vogel et al. | Mar 2008 | B2 |
7380242 | Alaluf | May 2008 | B2 |
7401088 | Chintakayala et al. | Jul 2008 | B2 |
7426521 | Harter | Sep 2008 | B2 |
7430549 | Zane et al. | Sep 2008 | B2 |
7433863 | Zane et al. | Oct 2008 | B2 |
7447865 | Uppala et al. | Nov 2008 | B2 |
7478094 | Ho et al. | Jan 2009 | B2 |
7484096 | Garg et al. | Jan 2009 | B1 |
7493311 | Cutsinger et al. | Feb 2009 | B1 |
7506055 | McClain et al. | Mar 2009 | B2 |
7529734 | Dirisala | May 2009 | B2 |
7529750 | Bair | May 2009 | B2 |
7542958 | Warren et al. | Jun 2009 | B1 |
7552223 | Ackaouy et al. | Jun 2009 | B1 |
7596550 | Mordvinov et al. | Sep 2009 | B2 |
7610351 | Gollapudi et al. | Oct 2009 | B1 |
7620687 | Chen et al. | Nov 2009 | B2 |
7624126 | Pizzo et al. | Nov 2009 | B2 |
7627603 | Rosenblum et al. | Dec 2009 | B2 |
7661141 | Dutta et al. | Feb 2010 | B2 |
7664778 | Yagoub et al. | Feb 2010 | B2 |
7672275 | Yajnik et al. | Mar 2010 | B2 |
7680782 | Chen et al. | Mar 2010 | B2 |
7711716 | Stonecipher | May 2010 | B2 |
7711740 | Minore et al. | May 2010 | B2 |
7711788 | Ran et al. | May 2010 | B2 |
7747640 | Dettinger et al. | Jun 2010 | B2 |
7761444 | Zhang et al. | Jul 2010 | B2 |
7797356 | Iyer et al. | Sep 2010 | B2 |
7827204 | Heinzel et al. | Nov 2010 | B2 |
7827403 | Wong et al. | Nov 2010 | B2 |
7827523 | Ahmed et al. | Nov 2010 | B2 |
7882121 | Bruno et al. | Feb 2011 | B2 |
7882132 | Ghatare | Feb 2011 | B2 |
7895191 | Colossi et al. | Feb 2011 | B2 |
7904487 | Ghatare | Mar 2011 | B2 |
7908259 | Branscome et al. | Mar 2011 | B2 |
7908266 | Zeringue et al. | Mar 2011 | B2 |
7930412 | Yeap et al. | Apr 2011 | B2 |
7966311 | Haase | Jun 2011 | B2 |
7966312 | Nolan et al. | Jun 2011 | B2 |
7966343 | Yang et al. | Jun 2011 | B2 |
7970777 | Saxena et al. | Jun 2011 | B2 |
7979431 | Dazi et al. | Jul 2011 | B2 |
7984043 | Waas | Jul 2011 | B1 |
8019795 | Anderson et al. | Sep 2011 | B2 |
8027293 | Spaur et al. | Sep 2011 | B2 |
8032525 | Bowers et al. | Oct 2011 | B2 |
8037542 | Taylor et al. | Oct 2011 | B2 |
8046394 | Shatdal | Oct 2011 | B1 |
8046749 | Owen et al. | Oct 2011 | B1 |
8055672 | Djugash et al. | Nov 2011 | B2 |
8060484 | Bandera et al. | Nov 2011 | B2 |
8171018 | Zane et al. | May 2012 | B2 |
8180789 | Wasserman et al. | May 2012 | B1 |
8196121 | Peshansky et al. | Jun 2012 | B2 |
8209356 | Roesler | Jun 2012 | B1 |
8286189 | Kukreja et al. | Oct 2012 | B2 |
8321833 | Langworthy et al. | Nov 2012 | B2 |
8332435 | Ballard et al. | Dec 2012 | B2 |
8359305 | Burke et al. | Jan 2013 | B1 |
8375127 | Lita | Feb 2013 | B1 |
8380757 | Bailey et al. | Feb 2013 | B1 |
8418142 | Ao et al. | Apr 2013 | B2 |
8433701 | Sargeant et al. | Apr 2013 | B2 |
8458218 | Wildermuth | Jun 2013 | B2 |
8473897 | Box et al. | Jun 2013 | B2 |
8478713 | Cotner et al. | Jul 2013 | B2 |
8515942 | Marum et al. | Aug 2013 | B2 |
8543620 | Ching | Sep 2013 | B2 |
8553028 | Urbach | Oct 2013 | B1 |
8555263 | Allen et al. | Oct 2013 | B2 |
8560502 | Vora | Oct 2013 | B2 |
8595151 | Hao et al. | Nov 2013 | B2 |
8601016 | Briggs et al. | Dec 2013 | B2 |
8621424 | Kejariwal et al. | Dec 2013 | B2 |
8631034 | Peloski | Jan 2014 | B1 |
8635251 | Chan | Jan 2014 | B1 |
8650182 | Murthy | Feb 2014 | B2 |
8660869 | MacIntyre et al. | Feb 2014 | B2 |
8676863 | Connell et al. | Mar 2014 | B1 |
8683488 | Kukreja et al. | Mar 2014 | B2 |
8713518 | Pointer et al. | Apr 2014 | B2 |
8719252 | Miranker et al. | May 2014 | B2 |
8725707 | Chen et al. | May 2014 | B2 |
8726254 | Rohde et al. | May 2014 | B2 |
8745014 | Travis | Jun 2014 | B2 |
8745510 | D'Alo' et al. | Jun 2014 | B2 |
8751823 | Myles et al. | Jun 2014 | B2 |
8768961 | Krishnamurthy | Jul 2014 | B2 |
8788254 | Peloski | Jul 2014 | B2 |
8793243 | Weyerhaeuser et al. | Jul 2014 | B2 |
8805875 | Bawcom et al. | Aug 2014 | B1 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806133 | Hay et al. | Aug 2014 | B2 |
8812625 | Chitilian et al. | Aug 2014 | B1 |
8838656 | Cheriton | Sep 2014 | B1 |
8855999 | Elliot | Oct 2014 | B1 |
8863156 | Lepanto et al. | Oct 2014 | B1 |
8874512 | Jin et al. | Oct 2014 | B2 |
8880569 | Draper et al. | Nov 2014 | B2 |
8880787 | Kimmel et al. | Nov 2014 | B1 |
8881121 | Ali | Nov 2014 | B2 |
8886631 | Abadi et al. | Nov 2014 | B2 |
8903717 | Elliot | Dec 2014 | B2 |
8903842 | Bloesch et al. | Dec 2014 | B2 |
8922579 | Mi et al. | Dec 2014 | B2 |
8924384 | Driesen et al. | Dec 2014 | B2 |
8930892 | Pointer et al. | Jan 2015 | B2 |
8954418 | Faerber et al. | Feb 2015 | B2 |
8959495 | Chafi et al. | Feb 2015 | B2 |
8996864 | Maigne et al. | Mar 2015 | B2 |
9031930 | Valentin | May 2015 | B2 |
9077611 | Cordray et al. | Jul 2015 | B2 |
9122765 | Chen | Sep 2015 | B1 |
9177079 | Ramachandran et al. | Nov 2015 | B1 |
9195712 | Freedman et al. | Nov 2015 | B2 |
9298768 | Varakin et al. | Mar 2016 | B2 |
9311357 | Ramesh et al. | Apr 2016 | B2 |
9372671 | Balan et al. | Jun 2016 | B2 |
9384184 | Cervantes et al. | Jul 2016 | B2 |
9477702 | Ramachandran et al. | Oct 2016 | B1 |
9612959 | Caudy et al. | Apr 2017 | B2 |
9613018 | Zeldis et al. | Apr 2017 | B2 |
9613109 | Wright et al. | Apr 2017 | B2 |
9619210 | Kent et al. | Apr 2017 | B2 |
9633060 | Caudy et al. | Apr 2017 | B2 |
9639570 | Wright et al. | May 2017 | B2 |
9672238 | Wright et al. | Jun 2017 | B2 |
9679006 | Wright et al. | Jun 2017 | B2 |
9690821 | Wright et al. | Jun 2017 | B2 |
9710511 | Wright et al. | Jul 2017 | B2 |
9760591 | Caudy et al. | Sep 2017 | B2 |
9805084 | Wright et al. | Oct 2017 | B2 |
9832068 | McSherry et al. | Nov 2017 | B2 |
9836494 | Caudy et al. | Dec 2017 | B2 |
9836495 | Wright | Dec 2017 | B2 |
9886469 | Kent et al. | Feb 2018 | B2 |
9898496 | Caudy et al. | Feb 2018 | B2 |
9934266 | Wright et al. | Apr 2018 | B2 |
10002153 | Teodorescu et al. | Jun 2018 | B2 |
10002154 | Kent et al. | Jun 2018 | B1 |
10002155 | Caudy et al. | Jun 2018 | B1 |
10003673 | Caudy et al. | Jun 2018 | B2 |
10019138 | Zeldis et al. | Jul 2018 | B2 |
10069943 | Teodorescu et al. | Sep 2018 | B2 |
20020002576 | Wollrath et al. | Jan 2002 | A1 |
20020007331 | Lo et al. | Jan 2002 | A1 |
20020054587 | Baker et al. | May 2002 | A1 |
20020065981 | Jenne et al. | May 2002 | A1 |
20020129168 | Kanai et al. | Sep 2002 | A1 |
20020156722 | Greenwood | Oct 2002 | A1 |
20030004952 | Nixon et al. | Jan 2003 | A1 |
20030061216 | Moses | Mar 2003 | A1 |
20030074400 | Brooks et al. | Apr 2003 | A1 |
20030110416 | Morrison et al. | Jun 2003 | A1 |
20030167261 | Grust et al. | Sep 2003 | A1 |
20030182261 | Patterson | Sep 2003 | A1 |
20030208484 | Chang et al. | Nov 2003 | A1 |
20030208505 | Mullins et al. | Nov 2003 | A1 |
20030233632 | Aigen et al. | Dec 2003 | A1 |
20040002961 | Dettinger et al. | Jan 2004 | A1 |
20040015566 | Anderson et al. | Jan 2004 | A1 |
20040076155 | Yajnik et al. | Apr 2004 | A1 |
20040111492 | Nakahara et al. | Jun 2004 | A1 |
20040148630 | Choi | Jul 2004 | A1 |
20040186813 | Tedesco et al. | Sep 2004 | A1 |
20040216150 | Scheifler et al. | Oct 2004 | A1 |
20040220923 | Nica | Nov 2004 | A1 |
20040254876 | Coval et al. | Dec 2004 | A1 |
20050015490 | Saare et al. | Jan 2005 | A1 |
20050060693 | Robison et al. | Mar 2005 | A1 |
20050097447 | Serra et al. | May 2005 | A1 |
20050102284 | Srinivasan et al. | May 2005 | A1 |
20050102636 | McKeon et al. | May 2005 | A1 |
20050131893 | Glan | Jun 2005 | A1 |
20050132384 | Morrison et al. | Jun 2005 | A1 |
20050138624 | Morrison et al. | Jun 2005 | A1 |
20050144189 | Edwards et al. | Jun 2005 | A1 |
20050165866 | Bohannon et al. | Jul 2005 | A1 |
20050198001 | Cunningham et al. | Sep 2005 | A1 |
20050228828 | Chandrasekar et al. | Oct 2005 | A1 |
20060059253 | Goodman et al. | Mar 2006 | A1 |
20060074901 | Pirahesh et al. | Apr 2006 | A1 |
20060085490 | Baron et al. | Apr 2006 | A1 |
20060100989 | Chinchwadkar et al. | May 2006 | A1 |
20060101019 | Nelson et al. | May 2006 | A1 |
20060116983 | Dettinger et al. | Jun 2006 | A1 |
20060116999 | Dettinger et al. | Jun 2006 | A1 |
20060131383 | Battagin et al. | Jun 2006 | A1 |
20060136361 | Peri et al. | Jun 2006 | A1 |
20060173693 | Arazi et al. | Aug 2006 | A1 |
20060195460 | Nod et al. | Aug 2006 | A1 |
20060212847 | Tarditi et al. | Sep 2006 | A1 |
20060218123 | Chowdhuri et al. | Sep 2006 | A1 |
20060218200 | Factor et al. | Sep 2006 | A1 |
20060230016 | Cunningham et al. | Oct 2006 | A1 |
20060253311 | Yin et al. | Nov 2006 | A1 |
20060271510 | Harward et al. | Nov 2006 | A1 |
20060277162 | Smith | Dec 2006 | A1 |
20070011211 | Reeves et al. | Jan 2007 | A1 |
20070027884 | Heger et al. | Feb 2007 | A1 |
20070033518 | Kenna et al. | Feb 2007 | A1 |
20070073765 | Chen | Mar 2007 | A1 |
20070101252 | Chamberlain et al. | May 2007 | A1 |
20070113014 | Manolov et al. | May 2007 | A1 |
20070116287 | Rasizade et al. | May 2007 | A1 |
20070169003 | Branda et al. | Jul 2007 | A1 |
20070198479 | Cai et al. | Aug 2007 | A1 |
20070256060 | Ryu et al. | Nov 2007 | A1 |
20070258508 | Werb et al. | Nov 2007 | A1 |
20070271280 | Chandasekaran | Nov 2007 | A1 |
20070294217 | Chen et al. | Dec 2007 | A1 |
20070299822 | Jopp et al. | Dec 2007 | A1 |
20080022136 | Mattsson et al. | Jan 2008 | A1 |
20080033907 | Woehler et al. | Feb 2008 | A1 |
20080034084 | Pandya | Feb 2008 | A1 |
20080046804 | Rui et al. | Feb 2008 | A1 |
20080072150 | Chan et al. | Mar 2008 | A1 |
20080097748 | Haley et al. | Apr 2008 | A1 |
20080120283 | Liu et al. | May 2008 | A1 |
20080155565 | Poduri | Jun 2008 | A1 |
20080168135 | Redlich et al. | Jul 2008 | A1 |
20080172639 | Keysar et al. | Jul 2008 | A1 |
20080235238 | Jalobeanu et al. | Sep 2008 | A1 |
20080263179 | Buttner et al. | Oct 2008 | A1 |
20080276241 | Bajpai et al. | Nov 2008 | A1 |
20080319951 | Ueno et al. | Dec 2008 | A1 |
20090019029 | Tommaney et al. | Jan 2009 | A1 |
20090022095 | Spaur et al. | Jan 2009 | A1 |
20090024615 | Pedro et al. | Jan 2009 | A1 |
20090037391 | Agrawal et al. | Feb 2009 | A1 |
20090037500 | Kirshenbaum | Feb 2009 | A1 |
20090055370 | Dagum et al. | Feb 2009 | A1 |
20090083215 | Burger | Mar 2009 | A1 |
20090089312 | Chi et al. | Apr 2009 | A1 |
20090248902 | Blue | Oct 2009 | A1 |
20090254516 | Meiyyappan et al. | Oct 2009 | A1 |
20090271472 | Scheifler et al. | Oct 2009 | A1 |
20090300770 | Rowney et al. | Dec 2009 | A1 |
20090319058 | Rovaglio et al. | Dec 2009 | A1 |
20090319484 | Golbandi et al. | Dec 2009 | A1 |
20090327242 | Brown et al. | Dec 2009 | A1 |
20100023952 | Sandoval et al. | Jan 2010 | A1 |
20100036801 | Pirvali et al. | Feb 2010 | A1 |
20100042587 | Johnson et al. | Feb 2010 | A1 |
20100047760 | Best et al. | Feb 2010 | A1 |
20100049715 | Jacobsen et al. | Feb 2010 | A1 |
20100070721 | Pugh et al. | Mar 2010 | A1 |
20100114890 | Hagar et al. | May 2010 | A1 |
20100161555 | Mica et al. | Jun 2010 | A1 |
20100186082 | Ladki et al. | Jul 2010 | A1 |
20100199161 | Aureglia et al. | Aug 2010 | A1 |
20100205017 | Sichelman et al. | Aug 2010 | A1 |
20100205351 | Wiener et al. | Aug 2010 | A1 |
20100281005 | Carlin et al. | Nov 2010 | A1 |
20100281071 | Ben-Zvi et al. | Nov 2010 | A1 |
20110126110 | Vilke et al. | May 2011 | A1 |
20110126154 | Boehler et al. | May 2011 | A1 |
20110153603 | Adiba et al. | Jun 2011 | A1 |
20110161378 | Williamson | Jun 2011 | A1 |
20110167020 | Yang et al. | Jul 2011 | A1 |
20110178984 | Talius et al. | Jul 2011 | A1 |
20110194563 | Shen et al. | Aug 2011 | A1 |
20110219020 | Oks et al. | Sep 2011 | A1 |
20110314019 | Pens | Dec 2011 | A1 |
20120110030 | Pomponio | May 2012 | A1 |
20120144234 | Clark et al. | Jun 2012 | A1 |
20120159303 | Friedrich et al. | Jun 2012 | A1 |
20120191446 | Binsztok et al. | Jul 2012 | A1 |
20120192096 | Bowman et al. | Jul 2012 | A1 |
20120197868 | Fauser et al. | Aug 2012 | A1 |
20120209886 | Henderson | Aug 2012 | A1 |
20120215741 | Poole et al. | Aug 2012 | A1 |
20120221528 | Renkes | Aug 2012 | A1 |
20120246052 | Taylor et al. | Sep 2012 | A1 |
20120254143 | Varma et al. | Oct 2012 | A1 |
20120259759 | Crist et al. | Oct 2012 | A1 |
20120296846 | Teeter | Nov 2012 | A1 |
20130041946 | Joel et al. | Feb 2013 | A1 |
20130080514 | Gupta et al. | Mar 2013 | A1 |
20130086107 | Genochio et al. | Apr 2013 | A1 |
20130166551 | Wong et al. | Jun 2013 | A1 |
20130166556 | Baeumges et al. | Jun 2013 | A1 |
20130173667 | Soderberg et al. | Jul 2013 | A1 |
20130179460 | Cervantes et al. | Jul 2013 | A1 |
20130185619 | Ludwig | Jul 2013 | A1 |
20130191370 | Chen et al. | Jul 2013 | A1 |
20130198232 | Shamgunov et al. | Aug 2013 | A1 |
20130226959 | Dittrich et al. | Aug 2013 | A1 |
20130246560 | Feng et al. | Sep 2013 | A1 |
20130263123 | Zhou et al. | Oct 2013 | A1 |
20130290243 | Hazel et al. | Oct 2013 | A1 |
20130304725 | Nee et al. | Nov 2013 | A1 |
20130304744 | McSherry et al. | Nov 2013 | A1 |
20130311352 | Kayanuma et al. | Nov 2013 | A1 |
20130311488 | Erdogan et al. | Nov 2013 | A1 |
20130318129 | Vingralek et al. | Nov 2013 | A1 |
20130346365 | Kan et al. | Dec 2013 | A1 |
20140019494 | Tang | Jan 2014 | A1 |
20140026121 | Jackson et al. | Jan 2014 | A1 |
20140040203 | Lu et al. | Feb 2014 | A1 |
20140046638 | Peloski | Feb 2014 | A1 |
20140059646 | Flannel et al. | Feb 2014 | A1 |
20140082724 | Pearson et al. | Mar 2014 | A1 |
20140136521 | Pappas | May 2014 | A1 |
20140143123 | Banke et al. | May 2014 | A1 |
20140149997 | Kukreja et al. | May 2014 | A1 |
20140156618 | Castellano | Jun 2014 | A1 |
20140173023 | Vamey et al. | Jun 2014 | A1 |
20140181036 | Dhamankar et al. | Jun 2014 | A1 |
20140181081 | Veldhuizen | Jun 2014 | A1 |
20140188924 | Ma et al. | Jul 2014 | A1 |
20140195558 | Murthy et al. | Jul 2014 | A1 |
20140201194 | Reddy et al. | Jul 2014 | A1 |
20140215446 | Araya et al. | Jul 2014 | A1 |
20140222768 | Rambo et al. | Aug 2014 | A1 |
20140229506 | Lee | Aug 2014 | A1 |
20140229874 | Strauss | Aug 2014 | A1 |
20140244687 | Shmueli et al. | Aug 2014 | A1 |
20140279810 | Mann et al. | Sep 2014 | A1 |
20140280522 | Watte | Sep 2014 | A1 |
20140282227 | Nixon et al. | Sep 2014 | A1 |
20140282444 | Araya et al. | Sep 2014 | A1 |
20140282540 | Bonnet et al. | Sep 2014 | A1 |
20140289700 | Srinivasaraghavan et al. | Sep 2014 | A1 |
20140292765 | Maruyama et al. | Oct 2014 | A1 |
20140297611 | Abbour et al. | Oct 2014 | A1 |
20140317084 | Chaudhry et al. | Oct 2014 | A1 |
20140324821 | Meiyyappan et al. | Oct 2014 | A1 |
20140330700 | Studnitzer et al. | Nov 2014 | A1 |
20140330807 | Weyerhaeuser et al. | Nov 2014 | A1 |
20140344186 | Nadler | Nov 2014 | A1 |
20140344391 | Vamey et al. | Nov 2014 | A1 |
20140358892 | Nizami et al. | Dec 2014 | A1 |
20140359574 | Beckwith et al. | Dec 2014 | A1 |
20140372482 | Martin et al. | Dec 2014 | A1 |
20140380051 | Edward et al. | Dec 2014 | A1 |
20150019516 | Wein et al. | Jan 2015 | A1 |
20150026155 | Martin | Jan 2015 | A1 |
20150032789 | Nguyen et al. | Jan 2015 | A1 |
20150067640 | Booker et al. | Mar 2015 | A1 |
20150074066 | Li et al. | Mar 2015 | A1 |
20150082218 | Affoneh et al. | Mar 2015 | A1 |
20150088894 | Czarlinska et al. | Mar 2015 | A1 |
20150095381 | Chen et al. | Apr 2015 | A1 |
20150120261 | Giannacopoulos et al. | Apr 2015 | A1 |
20150127599 | Schiebeler | May 2015 | A1 |
20150154262 | Yang et al. | Jun 2015 | A1 |
20150172117 | Dolinsky et al. | Jun 2015 | A1 |
20150188778 | Asayag et al. | Jul 2015 | A1 |
20150205588 | Bates et al. | Jul 2015 | A1 |
20150205589 | Dally | Jul 2015 | A1 |
20150254298 | Bourbonnais et al. | Sep 2015 | A1 |
20150304182 | Brodsky et al. | Oct 2015 | A1 |
20150317359 | Tran et al. | Nov 2015 | A1 |
20150356157 | Anderson et al. | Dec 2015 | A1 |
20160026383 | Lee et al. | Jan 2016 | A1 |
20160026442 | Chhaparia | Jan 2016 | A1 |
20160065670 | Kimmel et al. | Mar 2016 | A1 |
20160085772 | Vermeulen et al. | Mar 2016 | A1 |
20160092599 | Barsness et al. | Mar 2016 | A1 |
20160103897 | Nysewander et al. | Apr 2016 | A1 |
20160125018 | Tomoda et al. | May 2016 | A1 |
20160147748 | Florendo et al. | May 2016 | A1 |
20160171070 | Hrle et al. | Jun 2016 | A1 |
20160179754 | Borza et al. | Jun 2016 | A1 |
20160253294 | Allen et al. | Sep 2016 | A1 |
20160316038 | Jolfaei | Oct 2016 | A1 |
20160335281 | Teodorescu et al. | Nov 2016 | A1 |
20160335304 | Teodorescu et al. | Nov 2016 | A1 |
20160335317 | Teodorescu et al. | Nov 2016 | A1 |
20160335323 | Teodorescu et al. | Nov 2016 | A1 |
20160335330 | Teodorescu et al. | Nov 2016 | A1 |
20160335361 | Teodorescu et al. | Nov 2016 | A1 |
20170032016 | Linner et al. | Feb 2017 | A1 |
20170161514 | Dettinger et al. | Jun 2017 | A1 |
20170177677 | Wright et al. | Jun 2017 | A1 |
20170185385 | Kent et al. | Jun 2017 | A1 |
20170192910 | Wright et al. | Jul 2017 | A1 |
20170206229 | Caudy et al. | Jul 2017 | A1 |
20170206256 | Tsirogiannis et al. | Jul 2017 | A1 |
20170235794 | Wright et al. | Aug 2017 | A1 |
20170235798 | Wright et al. | Aug 2017 | A1 |
20170249350 | Wright et al. | Aug 2017 | A1 |
20170270150 | Wright et al. | Sep 2017 | A1 |
20170316046 | Caudy et al. | Nov 2017 | A1 |
20170329740 | Crawford et al. | Nov 2017 | A1 |
20170357708 | Ramachandran et al. | Dec 2017 | A1 |
20170359415 | Venkatraman et al. | Dec 2017 | A1 |
20180004796 | Kent et al. | Jan 2018 | A1 |
20180011891 | Wright et al. | Jan 2018 | A1 |
20180052879 | Wright | Feb 2018 | A1 |
20180137175 | Teodorescu et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2309462 | Dec 2000 | CA |
1406463 | Apr 2004 | EP |
1198769 | Jun 2008 | EP |
2199961 | Jun 2010 | EP |
2423816 | Feb 2012 | EP |
2743839 | Jun 2014 | EP |
2397906 | Aug 2004 | GB |
2421798 | Jun 2011 | RU |
2000000879 | Jan 2000 | WO |
2001079964 | Oct 2001 | WO |
2011120161 | Oct 2011 | WO |
2012136627 | Oct 2012 | WO |
2014026220 | Feb 2014 | WO |
2014143208 | Sep 2014 | WO |
2016183563 | Nov 2016 | WO |
Entry |
---|
Non-final Office Action dated Sep. 22, 2016, in U.S. Appl. No. 15/154,987. |
Non-final Office Action dated Sep. 26, 2016, in U.S. Appl. No. 15/155,005. |
Non-final Office Action dated Sep. 29, 2016, in U.S. Appl. No. 15/154,990. |
Non-final Office Action dated Sep. 8, 2016, in U.S. Appl. No. 15/154,975. |
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/154,996. |
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/155,010. |
Notice of Allowance dated Dec. 19, 2016, in U.S. Appl. No. 15/155,001. |
Notice of Allowance dated Dec. 22, 2016, in U.S. Appl. No. 15/155,011. |
Notice of Allowance dated Dec. 7, 2016, in U.S. Appl. No. 15/154,985. |
Notice of Allowance dated Feb. 1, 2017, in U.S. Appl. No. 15/154,988. |
Notice of Allowance dated Feb. 14, 2017, in U.S. Appl. No. 15/154,979. |
Notice of Allowance dated Feb. 28, 2017, in U.S. Appl. No. 15/154,990. |
Notice of Allowance dated Jan. 30, 2017, in U.S. Appl. No. 15/154,987. |
Notice of Allowance dated Jul. 28, 2017, in U.S. Appl. No. 15/155,009. |
Notice of Allowance dated Jun. 19, 2017, in U.S. Appl. No. 15/154,980. |
Notice of Allowance dated Jun. 20, 2017, in U.S. Appl. No. 15/154,975. |
Notice of Allowance dated Mar. 2, 2017, in U.S. Appl. No. 15/154,998. |
Notice of Allowance dated Mar. 31, 2017, in U.S. Appl. No. 15/154,998. |
Notice of Allowance dated May 10, 2017, in U.S. Appl. No. 15/154,988. |
Notice of Allowance dated Nov. 17, 2016, in U.S. Appl. No. 15/154,991. |
Notice of Allowance dated Nov. 17, 2017, in U.S. Appl. No. 15/154,993. |
Notice of Allowance dated Nov. 21, 2016, in U.S. Appl. No. 15/154,983. |
Notice of Allowance dated Nov. 8, 2016, in U.S. Appl. No. 15/155,007. |
Notice of Allowance dated Oct. 11, 2016, in U.S. Appl. No. 15/155,007. |
Notice of Allowance dated Oct. 21, 2016, in U.S. Appl. No. 15/154,999. |
Notice of Allowance dated Oct. 6, 2017, in U.S. Appl. No. 15/610,162. |
Palpanas, Themistoklis et al. “Incremental Maintenance for Non-Distributive Aggregate Functions”, Proceedings of the 28th VLDB Conference, 2002. Retreived from http://www.vldb.org/conf/2002/S22P04.pdf. |
PowerShell Team, Intellisense in Windows PowerShell ISE 3.0, dated Jun. 12, 2012, Windows PowerShell Blog, pp. 1-6 Retrieved: https://biogs.msdn.microsoft.com/powershell/2012/06/12/intellisense-in-windows-powershell-ise-3-0/. |
Smith, Ian. “Guide to Using SQL: Computed and Automatic Columns.” Rdb Jornal, dated Sep. 2008, retrieved Aug. 15, 2016, retrieved from the Internet <URL: http://www.oracle.com/technetwork/products/rdb/automatic-columns-132042.pdf>. |
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.16.1” Dated May 11, 2015. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.16.1/index.html. |
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.18.1” Dated May 3, 2016. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.18.1/index.html. |
Wu, Buwen et al. “Scalable SPARQL Querying using Path Partitioning”, 31st IEEE International Conference on Data Engineering (ICDE 2015), Seoul, Korea, Apr. 13-17, 2015. Retreived from http://imada.sdu.dk/˜zhou/papers/icde2015.pdf. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032605 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032590 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032592 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 4, 2016, in International Appln. No. PCT/US2016/032581 filed May 14, 2016. |
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032586 filed May 14, 2016. |
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032587 filed May 14, 2016. |
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032589 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032596 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032598 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032601 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032602 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032607 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032591 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032594 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032600 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032595 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032606 filed May 14, 2016. |
nternational Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032603 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032604 filed May 14, 2016. |
Jellema, Lucas. “Implementing Cell Highlighting in JSF-based Rich Enterprise Apps (Part 1)”, dated Nov. 2008. Retrieved from http://www.oracle.com/technetwork/articles/adf/jellema-adfcellhighlighting-087850.html (last accessed Jun. 16, 2016). |
Lou, Yuan. “A Multi-Agent Decision Support System for Stock Trading”, IEEE Network, Jan./Feb. 2002. Retreived from http://www.reading.ac.uk/AcaDepts/si/sisweb13/ais/papers/journal12-A%20multi-agent%20Framework.pdf. |
Mallet, “Relational Database Support for Spatio-Temporal Data”, Technical Report TR 04-21, Sep. 2004, University of Alberta, Department of Computing Science. |
Mariyappan, Balakrishnan. “10 Useful Linux Bash_Completion Complete Command Examples (Bash Command Line completion on Steroids)”, dated Dec. 2, 2013. Retrieved from http://www.thegeekstuff.com/2013/12/bash-completion-complete/ (last accessed Jun. 16, 2016). |
Murray, Derek G. et al. “Naiad: a timely dataflow system.” SOSP '13 Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. pp. 439-455. Nov. 2013. |
Non-final Office Action dated Apr. 19, 2017, in U.S. Appl. No. 15/154,974. |
Non-final Office Action dated Aug. 12, 2016, in U.S. Appl. No. 15/155,001. |
Non-final Office Action dated Aug. 14, 2017, in U.S. Appl. No. 15/464,314. |
Non-final Office Action dated Aug. 16, 2016, in U.S. Appl. No. 15/154,993. |
Non-final Office Action dated Aug. 19, 2016, in U.S. Appl. No. 15/154,991. |
Non-final Office Action dated Aug. 25, 2016, in U.S. Appl. No. 15/154,980. |
Non-final Office Action dated Aug. 26, 2016, in U.S. Appl. No. 15/154,995. |
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,983. |
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,985. |
Non-final Office Action dated Dec. 13, 2017, in U.S. Appl. No. 15/608,963. |
Non-final Office Action dated Feb. 8, 2017, in U.S. Appl. No. 15/154,997. |
Non-final Office Action dated Jul. 27, 2017, in U.S. Appl. No. 15/154,995. |
Non-final Office Action dated Mar. 2, 2017, in U.S. Appl. No. 15/154,984. |
Non-final Office Action dated Nov. 15, 2017, in U.S. Appl. No. 15/654,461. |
Non-final Office Action dated Nov. 17, 2016, in U.S. Appl. No. 15/154,999. |
Non-final Office Action dated Nov. 21, 2017, in U.S. Appl. No. 15/155,005. |
Non-final Office Action dated Nov. 30, 2017, in U.S. Appl. No. 15/155,012. |
Non-final Office Action dated Oct. 13, 2016, in U.S. Appl. No. 15/155,009. |
Non-final Office Action dated Oct. 27, 2016, in U.S. Appl. No. 15/155,006. |
Non-final Office Action dated Oct. 5, 2017, in U.S. Appl. No. 15/428,145. |
Non-final Office Action dated Oct. 7, 2016, in U.S. Appl. No. 15/154,998. |
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/154,979. |
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,011. |
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,012. |
Non-final Office Action dated Sep. 14, 2016, in U.S. Appl. No. 15/154,984. |
Non-final Office Action dated Sep. 16, 2016, in U.S. Appl. No. 15/154,988. |
“About Entering Commands in the Command Window”, dated Dec. 16, 2015. Retrieved from https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/AutoCAD-Core/files/GUID-BB0C3E79-66AF-4557-9140-D31B4CF3C9CF-htm.html (last accessed Jun. 16, 2016). |
“Change Data Capture”, Oracle Database Online Documentation 11g Release 1 (11.1), dated Apr. 5, 2016. Retreived from https://web.archive.org/web/20160405032625/http://docs.oracle.com/cd/B28359_01/server.111/b28313/cdc.htm. |
“Chapter 24. Query access plans”, Tuning Database Performance, DB2 Version 9.5 for Linux, UNIX, and Windows, pp. 301-462, dated Dec. 2010. Retreived from http://public.dhe.ibm.com/ps/products/db2/info/vr95/pdf/en_US/DB2PerfTuneTroubleshoot-db2d3e953.pdf. |
“GNU Emacs Manual”, dated Apr. 15, 2016, pp. 43-47. Retrieved from https://web.archive.org/web/20160415175915/http://www.gnu.org/software/emacs/manual/html_mono/emacs.html. |
“Google Protocol RPC Library Overview”, dated Apr. 27, 2016. Retrieved from https://cloud.google.com/appengine/docs/python/tools/protorpc/ (last accessed Jun. 16, 2016). |
“IBM—What is HBase?”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906022050/http://www-01.ibm.com/software/data/infosphere/hadoop/hbase/. |
“IBM Informix TimeSeries data management”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118072141/http://www-01.ibm.com/software/data/informix/timeseries/. |
“IBM InfoSphere BigInsights 3.0.0—Importing data from and exporting data to DB2 by using Sqoop”, dated Jan. 15, 2015. Retrieved from https://web.archive.org/web/20150115034058/http://www-01.ibm.com/support/knowledgecenter/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.import.doc/doc/data_warehouse_sqoop.html. |
“Maximize Data Value with Very Large Database Management by SAP Sybase IQ”, dated 2013. Retrieved from http://www.sap.com/bin/sapcom/en_us/downloadasset.2013-06-jun-11-11.maximize-data-value-with-very-large-database-management-by-sap-sybase-iq-pdf.html. |
“Microsoft Azure—Managing Access Control Lists (ACLs) for Endpoints by using PowerShell”, dated Nov. 12, 2014. Retrieved from https://web.archive.org/web/20150110170715/http://msdn.microsoft.com/en-us/library/azure/dn376543.aspx. |
“Oracle Big Data Appliance—Perfect Balance Java API”, dated Sep. 20, 2015. Retrieved from https://web.archive.org/web/20131220040005/http://docs.oracle.com/cd/E41604_01/doc.22/e41667/toc.htm. |
“Oracle Big Data Appliance—X5-2”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906185409/http://www.oracle.com/technetwork/database/bigdata-appliance/overview/bigdataappliance-datasheet-1883358.pdf. |
“Oracle Big Data Appliance Software User's Guide”, dated Feb. 2015. Retrieved from https://docs.oracle.com/cd/E55905_01/doc.40/e55814.pdf. |
“SAP HANA Administration Guide”, dated Mar. 29, 2016, pp. 290-294. Retrieved from https://web.archive.org/web/20160417053656/http://help.sap.com/hana/SAP_HANA_Administration_Guide_en.pdf. |
“Sophia Database—Architecture”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118052919/http://sphia.org/architecture.html. |
“Tracking Data Changes”, SQL Server 2008 R2, dated Sep. 22, 2015. Retreived from https://web.archive.org/web/20150922000614/https://technet.microsoft.com/en-us/library/bb933994(v=sql.105).aspx. |
“Use Formula AutoComplete”, dated 2010. Retrieved from https://support.office.com/en-us/article/Use-Formula-AutoComplete-c7c46fa6-3a94-4150-a2f7-34140c1ee4d9 (last accessed Jun. 16, 2016). |
Adelfio et al. “Schema Extraction for Tabular Data on the Web”, Proceedings of the VLDB Endowment, vol. 6, No. 6. Apr. 2013. Retrieved from http://www.cs.umd.edu/˜hjs/pubs/spreadsheets-vldb13.pdf. |
Advisory Action dated Apr. 19, 2017, in U.S. Appl. No. 15/154,999. |
Advisory Action dated Apr. 20, 2017, in U.S. Appl. No. 15/154,980. |
Advisory Action dated Apr. 6, 2017, in U.S. Appl. No. 15/154,995. |
Advisory Action dated Mar. 31, 2017, in U.S. Appl. No. 15/154,996. |
Advisory Action dated May 3, 2017, in U.S. Appl. No. 15/154,993. |
Borror, Jefferey A. “Q for Mortals 2.0”, dated Nov. 1, 2011. Retreived from http://code.kx.com/wiki/JB:QforMortals2/contents. |
Cheusheva, Svetlana. “How to change the row color based on a cell's value in Excel”, dated Oct. 29, 2013. Retrieved from https://www.ablebits.com/office-addins-blog/2013/10/29/excel-change-row-background-color/ (last accessed Jun. 16, 2016). |
Corrected Notice of Allowability dated Aug. 9, 2017, in U.S. Appl. No. 15/154,980. |
Corrected Notice of Allowability dated Jul. 31, 2017, in U.S. Appl. No. 15/154,999. |
Corrected Notice of Allowability dated Mar. 10, 2017, in U.S. Appl. No. 15/154,979. |
Corrected Notice of Allowability dated Oct. 26, 2017, in U.S. Appl. No. 15/610,162. |
Decision on Pre-Appeal Conference Request dated Nov. 20, 2017, in U.S. Appl. No. 15/154,997. |
Ex Parte Quayle Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,999. |
Final Office Action dated Apr. 10, 2017, in U.S. Appl. No. 15/155,006. |
Final Office Action dated Dec. 19, 2016, in U.S. Appl. No. 15/154,995. |
Final Office Action dated Feb. 24, 2017, in U.S. Appl. No. 15/154,993. |
Final Office Action dated Jan. 27, 2017, in U.S. Appl. No. 15/154,980. |
Final Office Action dated Jan. 31, 2017, in U.S. Appl. No. 15/154,996. |
Final Office Action dated Jul. 27, 2017, in U.S. Appl. No. 15/154,993. |
Final Office Action dated Jun. 23, 2017, in U.S. Appl. No. 15/154,997. |
Final Office Action dated Mar. 1, 2017, in U.S. Appl. No. 15/154,975. |
Final Office Action dated Mar. 13, 2017, in U.S. Appl. No. 15/155,012. |
Final Office Action dated Mar. 31, 2017, in U.S. Appl. No. 15/155,005. |
Final Office Action dated May 15, 2017, in U.S. Appl. No. 15/155,010. |
Final Office Action dated May 4, 2017, in U.S. Appl. No. 15/155,009. |
Gai, Lei et al. “An Efficient Summary Graph Driven Method for RDF Query Processing”, dated Oct. 27, 2015. Retreive from http://arxiv.org/pdf/1510.07749.pdf. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032582 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032584 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032588 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032593 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032597 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032599 filed May 14, 2016. |
Advisory Action dated Dec. 21, 2017, in U.S. Appl. No. 15/154,984. |
Breitbart, Update Propagation Protocols for Replicated Databases, SIGMOD '99 Philadelphia PA, 1999, pp. 97-108. |
Final Office Action dated Aug. 10, 2018, in U.S. Appl. No. 15/796,230. |
Final Office Action dated Aug. 2, 2018, in U.S. Appl. No. 15/154,996. |
Final Office Action dated Aug. 28, 2018, in U.S. Appl. No. 15/813,119. |
Final Office Action dated Dec. 29, 2017, in U.S. Appl. No. 15/154,974. |
Final Office Action dated Jun. 18, 2018, in U.S. Appl. No. 15/155,005. |
Final Office Action dated May 18, 2018, in U.S. Appl. No. 15/654,461. |
Kramer, The Combining DQ: A Technique for Parallel Data Flow Analysis, IEEE Transactions on Parallel and Distributed Systems, vol. 5, No. 8, Aug. 1994, pp. 805-813. |
Non-final Office Action dated Apr. 12, 2018, in U.S. Appl. No. 15/154,997. |
Non-final Office Action dated Apr. 23, 2018, in U.S. Appl. No. 15/813,127. |
Non-final Office Action dated Apr. 5, 2018, in U.S. Appl. No. 15/154,984. |
Non-final Office Action dated Aug. 10, 2018, in U.S. Appl. No. 16/004,578. |
Non-final Office Action dated Dec. 28, 2017, in U.S. Appl. No. 15/154,996. |
Non-final Office Action dated Dec. 28, 2017, in U.S. Appl. No. 15/796,230. |
Non-final Office Action dated Feb. 12, 2018, in U.S. Appl. No. 15/466,836. |
Non-final Office Action dated Feb. 15, 2018, in U.S. Appl. No. 15/813,112. |
Non-final Office Action dated Feb. 28, 2018, in U.S. Appl. No. 15/813,119. |
Non-final Office Action dated Jan. 4, 2018, in U.S. Appl. No. 15/583,777. |
Non-final Office Action dated Jun. 29, 2018, in U.S. Appl. No. 15/154,974. |
Non-final Office Action dated Jun. 8, 2018, in U.S. Appl. No. 15/452,574. |
Non-final Office Action dated Mar. 20, 2018, in U.S. Appl. No. 15/155,006. |
Notice of Allowance dated Apr. 30, 2018, in U.S. Appl. No. 15/155,012. |
Notice of Allowance dated Feb. 12, 2018, in U.S. Appl. No. 15/813,142. |
Notice of Allowance dated Feb. 26, 2018, in U.S. Appl. No. 15/428,145. |
Notice of Allowance dated Jul. 11, 2018, in U.S. Appl. No. 15/154,995. |
Notice of Allowance dated Mar. 1, 2018, in U.S. Appl. No. 15/464,314. |
Notice of Allowance dated May 4, 2018, in U.S. Appl. No. 15/897,547. |
Notice of Allowance dated Sep. 11, 2018, in U.S. Appl. No. 15/608,961. |
Sobell, Mark G. “A Practical Guide to Linux, Commands, Editors and Shell Programming.” Third Edition, dated Sep. 14, 2012. Retrieved from: http://techbus.safaribooksonline.com/book/operating-systems-and-server-administration/linux/9780133085129. |
Hartle, Thom, Conditional Formatting in Excel using CQG's RTD Bate Function (2011), http://news.cqg.com/blogs/exce/I2011/05/conditional-formatting-excel-using-cqgs-rtd-bate-function (last visited Apr. 3, 2019). |
Azbel, Maria, How to hide and group columns in Excel AbleBits (2014), https://www.ablebits.com/office-addins-blog/2014/08/06/excel-hide-columns/ (last visited Jan. 18, 2019). |
Dodge, Mark & Craig Stinson, Microsoft Excel 2010 inside out (2011). |
Cheusheve, Svetlana, Excel formulas for conditional formatting based on another cell AbleBits (2014), https://www.ablebits.com/office-addins-blog/2014/06/10/excel-conditional-formatting-formulas/omment-page-6/(last visited Jan. 14, 2019). |
Posey, Brien, “How to Combine PowerShell Cmdlets”, Jun. 14, 2013 Redmond the Independent Voice of the Microsoft Community (Year: 2013). |
Number | Date | Country | |
---|---|---|---|
20170235794 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
62161813 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15154988 | May 2016 | US |
Child | 15583934 | US |