The present invention relates to standing desks designed for use by people while standing and to techniques for reducing fatigue caused by standing for prolonged periods.
Many people spend most of their day sitting with relatively idle muscles. Physical inactivity has many known deleterious effects on the body. Obesity, heart disease, and metabolic diseases such as type 2 diabetes are just a few examples of the consequences of a sedentary lifestyle. Exercise is generally viewed as important to the promotion of good health and slowing the effects of aging, particularly for the cardiovascular and musculoskeletal systems. Exercise also is thought to improve brain function, particularly cognition (Kramer et al., 2006). Although exercise therapy has the potential to treat both cognitive and motor decline in the elderly, long-term compliance with intense exercise regimens may be limited.
Advances in diabetes mellitus and obesity research have touted the benefits of “upright” standing or low-intensity walking activities while performing routine activities of daily living. A novel approach in combating metabolic disorders such as diabetes and obesity has been developed by the Mayo Clinic endocrinologist James Levine (Levine et al., 2005) who noted that non-exercise activity thermogenesis (NEAT), which reflects human energy expenditure through changes in posture and movement associated with routines of daily life, predicts obesity in office workers. Levine developed an “office of the future” by creating a “walk-and-work” desk for office workers (U.S. Pat. No. 7,892,148 Stauffer) (Levine and Miller, 2007).
Although Levine's work focused on office workers, there are many activities of daily living like talking on the phone, watching television, reading the newspaper, playing games, or using the home computer that can be done just as enjoyably upright. Hamilton et al. found that more standing and less sitting, promoted “optimal metabolism” (Hamilton et al., 2007). These authors found that sitting has negative effects on fat and cholesterol metabolism because of lack of lipase enzyme activation when muscles are idle. In contrast, standing and other non-exercise activities can double the metabolic rate in most adults even if they do no formal exercise at all. These metabolic effects come on top of physical conditioning benefits, including training of postural reflexes.
A disadvantage of the more intense walking movements in Levine's “office of the future” treadmill desk is that it may limit cognitive or office productivity performance when the user must focus on small objects on a computer screen and/or enter precision data on a keyboard. For example, a 2009 study investigated the effects of different workstation conditions—sitting, static standing, walking, and cycling—on standardized computerized tasks (Straker et al., 2009). Computer task performances were lower when walking and slightly lower when cycling, compared with chair sitting. Standing performance was not different from sitting performance. Computer mouse performances were more affected than typing performance. Performance decrements were equal for females and males and for touch typists and no touch typists (Straker et al., 2009). Another study of performance on a cognitive and fine motor test battery in young adults in seated and walking conditions found that treadmill walking causes a 6% to 11% decrease in measures of fine motor skills and math problem solving, but did not affect selective attention and processing speed or reading comprehension (John et al., 2009). Another study evaluated the productivity of transcriptionists using a treadmill desk and found that, despite no significant change in the accuracy of transcription, the speed of typing was 16% slower while walking than while sitting (Thompson and Levine, 2011). Although dynamic and able to provide a relatively high amount of physical exercise, the treadmill workstation may have a cognitive cost that potentially reduces work performance in users in spite of any health benefits. Furthermore, long-term utilization of treadmill desk in office workers is limited.
While static standing may overcome some of the cognitive and task performance disadvantages of the treadmill desktop, actual use of available height-adjustable standing tends to decline over the long-term. This may be due to poor human tolerance of prolonged static postural conditions. Declining use over time of an available height-adjustable table in the standing position reduces or eliminates the metabolic and productivity benefit of such a workstation.
Commercially available height-adjustable tables provide a heavy base of support that allow a user to alternate between standing and sitting positions to use the table. The table can be lowered to a sitting level or raised to a standing level using an electronic controller or hand crank when desired. Occupational studies have demonstrated short-term benefits associated with the use of height-adjustable tables when provided to workers in an office setting, including increased office productivity, reduced low back pain, and reduced absenteeism (Nerhood and Thompson, 1994). When height adjustable tables are provided to office workers, a majority of office work participants prefer the height adjustable table over a normal desk (Hedge and Ray, 2004). But these studies also show that the use of stand-up desks tends to rapidly decline after about a month—likely because people may not tolerate standing all day. Prolonged use of such stand-up desks can result in physical discomfort in the legs, spine, and/or other body regions due to relative lack of leg or body movements when standing at a static location. Lack of lower extremity or body weight shifting movements may be the most important contributor to the physical discomfort of prolonged standing.
Sedentariness is not only a common problem in office workers but also in persons with neurological or medical conditions that limit gait and balance functions because of poor postural or gait control or limitations in energy expenditure, such as metabolic disorders. Consequently, these persons will enter a vicious cycle where increasing sedentariness results in physical deconditioning and frailty that in turn will aggravate gait and balance disturbances increasing their risk of falls and traumatic fractures. Current clinical practice recommends a series of physical therapy to try to break the vicious cycle. However, clinical experience and studies have shown that, after completion of physical therapy, any early gains in mobility functions in these patient populations are short-lived, and afflicted persons quickly return to their sedentary lifestyle and continuing a downward clinical course.
In accordance with an aspect of the invention, there is provided a dynamic standing desk comprising a work surface configured to move with planar motion parallel with the ground and with a range of movement that adjusts as a function of the size of a user of the desk.
In various embodiments, the standing desk may include one or more of the following features, either singly or any technically-feasible combination.
In accordance with another aspect of the invention, there is provided a method of reducing lower musculoskeletal discomfort of a user of a standing desk, the method comprising the step of oscillating a work surface of the desk with a range of movement based on a length of a limb of the user.
In various embodiments, the standing desk may include one or more of the following features, either singly or any technically-feasible combination.
In accordance with one or more other embodiments, a dynamic standing desk may be provided with a table base and attached tabletop which is controlled electronically and moveable independently both in the X (left-right) and Y (anterior-posterior) directions. The table base may be height-adjustable, controlled manually or electronically, so that it is moveable in the Z-direction (up-down). Programmable continuous unidirectional or multidirectional XY movements or patterns of movements of the tabletop encourage or require a user of the desk to continuously take small steps in order to remain centered in front of the tabletop. An optional in-cut or cutout in the tabletop allows for additional human user step cueing. The tabletop is continuously or intermittently moveable and can be programmed with a predetermined rate of movement and range of movement in the X- and/or Y-directions or variable combinations of these. These parameters of tabletop movement can be input via a tabletop-mounted or remote Human Interface Device (HID). Planar XY tabletop movement can be enabled by mounting the tabletop on independent support bases movable in the X and Y directions. X and Y support base movement may be established through linear actuators directly moving the X and Y support bases, via rotary actuators moving the X and Y tabletop support bases by cogwheel or other directional switch transfer of rotary movement to linear movement, or other mechanisms of displacement.
The desk may include one or more controllers and electronic memory for collecting the user's stepping physical activity measurements either wired or wireless from body-attached accelerometers and other activity measurement devices. The desk may be configured to provide visual feedback of the user's activity levels, such as via an electronic display. The standing desk may be used with an anti-fatigue mat on which the user stands during use of the desk. Such a mat may be part of the dynamic standing desk itself or may be separately provided. An optional desk-attached fall-prevention belt attachment system may also be provided.
Another available safety feature is the use of individualized start-up and use of the dynamic standing desk based on user-worn sensors, such as radiofrequency identification (RFID) tagging, and desk-mounted sensors that track the height of the table and will allow automatic shut-off once the individual users stops using the desk. The tabletop of the desk can be vertically adjusted to the particular human user's individual height preference or preference to intermittent alternations between sitting and standing. The dynamic standing desk may be an effective solution to combat sedentariness, the quick development of musculoskeletal discomfort when standing at a stationary height-adjustable workstation, and/or inactivity and prolonged sitting in populations with conditions that affect mobility or energy expenditure during physical activity and that generally benefit from low-intensity physical activity.
One or more embodiments will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements, and wherein:
Described below is a dynamic standing desk capable of reducing musculoskeletal fatigue normally caused by prolonged standing. The desk has a movable work surface that causes the user to repeatedly shift their body weight and alter their posture, thereby providing the health and productivity benefits of a standing position without the discomfort that normally sets in after standing for prolonged periods in a static posture. These benefits extend beyond the office environment and into rehabilitation therapy for persons afflicted with health conditions, including metabolic or neurological conditions.
The illustrated base 12 is intended to remain static with respect to the ground and may be made from a relatively heavy material (e.g., steel or other metal) and/or with longer support legs for stability. The base 12 of
The work surface 18 of the tabletop 14 may be generally flat and designed to support items such as a desktop or laptop computer, computer monitor, video screen, and, at times, part of the weight of the user. The illustrated tabletop 14 is generally rectangular with an optional vertical wall extending downward away from the work surface 18 at its perimeter. A cavity or recess is can thus be formed beneath the work surface 18, which houses the coupling assembly 16 and/or other components. Other non-rectangular work surfaces are possible, such as more oval or shell-shape configurations. The tabletop 14 may additionally include a cut-out 20 along its perimeter as a visual or tactile cue to the user as to where to stand when using the desk 10. The cut-out 20 can be made deeper into the tabletop 14 so that the user is partly surrounded by the work surface 18. In some cases, the effective depth of the cut-out 20 is enhanced by extensions 22 in the y-direction (see
With continued reference to
The illustrated frame 24 is rectangular with a symmetric cross-shape connecting its pairs of opposite sides. One half of each of the guide sets 26, 28 is rigidly mounted to the frame 24. Each of the first guide sets 26 includes a guide 34 and a follower 36. The guides 34 in this case are rails with a U-shaped channel and are rigidly mounted to the frame 24. The followers 36 are sliders rigidly mounted to the tabletop 14 with downward-facing protrusions complimentary in shape with the guide channels. The first guide sets 26 thus provide a single linear degree of freedom of movement between the tabletop 14 and the frame 24 and restrict movement of the tabletop 14 relative to the frame 24 in other directions. In other words, the first guide sets 26 permit movement of the tabletop 14 with respect to the frame 24 in a first (x) direction and prevent relative movement of the tabletop 14 and frame 24 in a different second (y) direction.
Each of the second guide sets 28 also includes a guide 38 and a follower 40. The guides 38 in this case are rails with a U-shaped channel and are rigidly mounted to the frame 24. The followers 40 are sliders rigidly mounted to the base 12 with downward-facing protrusions complimentary in shape with the guide channels. The second guide sets 28 thus provide a single linear degree of freedom of movement between the frame 24 and the base 12 in a first direction (along the y-axis in the figures) and restrict movement of the frame 24 relative to the base 12 in a different second direction (along the x-axis in the figures).
In this example, one of the actuators 30 is configured to provide movement of the tabletop 14 with respect to the base 12 in the first (x) direction. The illustrated actuator 30 is an electric motor rigidly mounted to the frame 24 with its axis of rotation oriented parallel with the y-axis. Rotational motion of the actuator 30 is converted to linear motion via a transmission, which in this case includes a pinion or worm gear mounted to the motor shaft and engaged with a toothed linear rack rigidly mounted to the tabletop 14. The other actuator 32 (
This configuration provides independently controllable movement of the work surface 18 in two perpendicular directions parallel with the ground, including simple mediolateral (left-to-right) movement, simple anteroposterior movement, and any combination of those movements, such as circular, elliptical, or oblique movement in an x-y plane. The illustrated configuration also permits the x- and y-guide sets 26, 28 to be located within the same layer of the stack-up of the coupling assembly 16. The weight of the tabletop 14 is borne by bearings 42 mounted along the base 12. The illustrated coupling assembly 16 is merely illustrative and can be embodied in numerous variations, such as with the x- and y-directions switched, the guides and followers inverted, the uses of linear actuators and/or omission of transmission components, etc. The desk of
Both the range of movement and the rate of movement of the work surface 18 relative to the ground are controllable and adjustable. More particularly, the range of movement of the work surface 18 is adjusted as a function of the size of the user of the desk 10. It has been determined that particular amounts and rates of work surface movement relative to the user can reduce musculoskeletal discomfort enough to encourage the user to remain in the standing position longer than they otherwise would and to continue daily use of the standing desk for weeks or months longer than they otherwise would. As used herein, the “range of movement” of the work surface 18 or tabletop 14 is the extent of movement in an arbitrary direction in the XY plane before the work surface at least partially reverses direction. Generally speaking, the optimal ranges of movement are relatively greater for relatively tall users and relatively less for relatively short users. In particular, the optimal ranges of movement are related to the length of one of the user's limbs. For example, the optimal ranges of movement of the work surface relative to the user is a function of the length (L) of a leg of the user or the average length of the legs of the user. This length (L) can be measured from the center of the hip joint to the heel of the user or from the anterior superior iliac spine to the medial malleolus.
In one embodiment, the work surface 18 is configured to move relative to the user with a range of movement equal to an amount between 25% and 35% of the length (L) of the leg of the user. In another embodiment, the range of movement is equal to an amount between 55% and 65% of the length (L) of the leg of the user. In another embodiment, the range of movement is exclusive of amounts between 40% and 50% of the length (L) of the leg of the user. The range of tabletop movement may be measured in the mediolateral (x) direction and/or the anteroposterior (y) direction. The rate of movement of the work surface 18 with respect to the user may be in a range from 2 mm/sec to 10 mm/sec in any planar direction, or between 2 mm/sec and 7 mm/sec in the mediolateral (x) direction and/or the anteroposterior (y) direction. In a specific embodiment, the rate of movement in the mediolateral (x) direction and/or the anteroposterior (y) direction is between 6 mm/sec and 7 mm/sec.
The standing desk 10 may further include a controller 44 configured to receive information pertinent to the size of the user and to set the range of movement based on the received information. The controller 44 can receive this information (e.g., length of user leg information) from a variety of sources, such as a human interface device (HID), a dial or switch, a sensor, a measurement device, a communication device such as a wireless transceiver, or from computer memory. In one embodiment, the standing desk 10 includes a sensor that determines the resonant frequency of an RFID tag carried by the user. The controller 44 receives the information from the sensor, matches it to a known user stored in computer memory, and sets the range of movement based on the known leg length of that user. In another embodiment, a vision system is used to determine the leg length of the user with the controller subsequently receiving that information and using it to set the range of movement. In another embodiment, the leg length of the user is entered by the user or another person manually, such as via touch screen, keyboard, or dial setting, or by voice command, and the controller 44 receives the information and sets the range of movement accordingly.
Where a sensor such as a vision system or RFID is employed, the presence or absence of the user may also be determined by the controller with the actuators being deactivated in the absence of the user. Other types of sensors such as motion or proximity sensors can be used to provide this safety function. A tether or safety harness may also be used to attach the user to the desk or to a nearby structure for further safety.
Various other features, benefits, and experimental verification of benefits of the dynamic standing desk are provided below.
Use of the dynamic standing desk may be referred to as a “step-and-work” auto-exercise or “step-and-treat” clinical rehabilitation and is a time- and cost-effective lifestyle modification to facilitate lower extremity or body weight shifting movements. Targeted users are, but not limited to, office workers, fitness workers, or clinical rehabilitation patients, including those with metabolic or neurological disorders that affect gait and balance functions. Users stand at the desk with an automatically moving tabletop that moves in the transverse plane (X-Y movements). The range of X-Y movements can be adjusted such that the tabletop moves away farther than practical physical arm length use when using, for example, a keyboard. Tabletop movement necessitates physical and bodyweight shifting adjustment steps by the user to stay centered in front of the work surface. Built-in or attached cueing systems, such as a centered cut-out in the tabletop, attached flexible and adjustable gooseneck or cutouts at the level of the torso, or sensory (e.g., tactile, visual, auditory) sensor-driven cueing signals may produce the same effects.
The dynamic standing desk will generate variable work surface movement parameters—i.e., from slow to fast in terms of rate of movement, from continuous to discontinuous work surface movement, and from smaller to larger ranges of displacements. Relatively slow rates of movement will provide more smooth and slow stepping movements and will allow non-disrupted visual focus on an object on the desk, such as a display screen. Slow rates of movement will also allow non-disrupted use of a small object on the desk, such as a computer mouse, and will not interfere with handwriting, for example. Faster rates of movement and/or large ranges of movement of the work surface will increase the physical activity of the user. Bidirectional or multidirectional displacements (left-to-right or anterior-to-posterior or rotational variations of these) will induce weight-shifting stepping movements with truncal adjustments for the user. The dynamic standing table will increase physical activity and mobility compared to the sitting position and prevent or slow down the development of musculoskeletal discomfort associated with prolonged static body positions. Unlike the treadmill walk station mentioned above, the dynamic standing table can allow the user to maintain a stable eye-to-computer screen position and distance, which will allow continued fine oculomotor desktop activities. This may prevent cognitive cost and ocular strain effects while using a desktop computer or screens.
Advantages and features of the dynamic standing desk disclosed herein may include the programmable human use movable tabletop for office, personal, recreational, or clinical therapy uses. Built-in physical activity monitoring functions and monitoring systems can provide the user's advantageous functions of losing weight, improving energy and fitness functions, improving mobility and balance, maintaining cognitive productivity, and preventing or reducing musculoskeletal and mental fatigue and stress symptoms.
As described above, a height-adjustable (e.g., electrical, hydraulic, or hand-cranked) table base (one or multi-legged) may include, among other components, a moveable tabletop, a software-controlled programmable controller, a physical activity measurement device (e.g., user-mounted accelerometer), feedback device (e.g., electronic display or auditory information), and an optional tabletop cut-out or attached or cut-out physical cueing device. Tabletop XY planar movement can be established by mounting the tabletop on independent support bases movable in the X and Y directions. X and Y support base movement can established via linear actuators directly moving the X and Y support bases or rotary actuators or other motors moving the X and Y support bases by cogwheel transfer of the rotary movement to linear movement or other mechanisms of displacement. The tabletop is continuously or intermittently moveable and positioned with a predetermined rate and range of X and/or Y movement. These parameters may be input via a tabletop-mounted or remote computer and/or controller containing human-user activated software selections.
The computer and/or controller may include an input/output assembly that can be mounted to the tabletop or controlled remotely via wireless control. The computer may include components (e.g., numerical, light, voice, video-type or touch-screen buttons and displays) that enable the user to input control command to the actuator and/or actuator controller and to receive feedback regarding an exercise or use session (e.g., calories burned, distance traveled, heart rate, time elapsed, time remaining, limb and truncal movements, etc.).
The moveable tabletop may include at least one top layer (e.g., the work surface layer) with or without a variable number of one to two or more support layers (e.g., the coupling assembly). Displacement of one layer relative to the base can include a sliding, gliding, wheeled, cogwheeled, or gear-based mechanical translation or rotation mechanism. Variants of the dynamic standing table include an X-X′ oscillating tabletop capable of exclusive left-to-right bidirectional movement relative to the user, or a Y-Y′ oscillating tabletop capable of exclusive anterior-to-posterior bidirectional movement relative to the user. The construction of an exclusively X-X′ or Y-Y′ oscillating tabletop will be simplified compared to a multi-directional moving tabletop, as they do not require the extra materials (e.g., actuators) and/or translation layer for the opposite direction.
The physical activity monitoring and fitness feedback system may include a portable monitoring device with a feedback system to collect information wired or wirelessly from body-attached accelerometers and other activity measurement devices to enable feedback of the user's activity levels, such as by displaying the feedback.
Embodiments of the dynamic standing table can be made to include one or more of the following features:
Individual tolerance of static standing is limited (e.g., 30 minutes or less), making static standing insufficient to achieve worthy bipedal use exceeding 4-6 hours or more per day. Stepping movements induced by the dynamic stepping desk will result in less complaints of lower extremity and truncal discomfort, thereby providing a means to achieve longer duration bipedal body use and reciprocally reduced sedentariness.
The dynamic standing desk has been found to provide physical activity in users while at the same time reducing development of musculoskeletal discomfort and providing health benefits compared to regular height-adjustable standing desk use and sitting in healthy adults.
The effects of range of movement of the work surface of the dynamic standing desk were also studied. Among three different ranges of work surface movement, including 30%, 45%, and 60% of the individual user's leg length, the shorter and longer ranges of movement resulted in additional attenuation of the levels and rates of development of musculoskeletal discomfort in healthy adults. Participants first completed a baseline sitting session, then completed a 2-hour static or dynamic standing desk session, then completed whichever 2-hour static or dynamic standing desk session had not yet been completed. The dynamic standing sessions were completed with the aforementioned different ranges of movement. As shown in
As shown in
The dynamic standing desk has also been shown to provide metabolic health improvements in persons with metabolic disorders, such as diabetes mellitus.
The dynamic standing desk has also been shown to extend clinical effects of physical therapy in physically deconditioned persons afflicted with age or disease-related conditions affecting mobility, such as persons with Parkinson's disease. As the benefits of physical therapy in patients with mobility impairments may be short-lived, a clinical rehabilitation dynamic standing desk may augment or extend the early clinical gain of physical therapy to serve as a post-physical therapy extension or supplementation that can be provided in the home of the person with the mobility condition with long-term sustained clinical benefits and without serious adverse effects. For example, data from a clinical trial in patients with Parkinson's disease who had gait and balance disturbances received 12 sessions of physical therapy, after which the patients improved on walking and balance control (functional mobility) measures, such as the Timed Up and Go (TUG) test and walking time at the time of completion of the therapy. The patients were then randomized into one of two groups. One group used a dynamic standing desk at home after completion of physical therapy, while the other group use no desk at home (the usual care) for a 4-month post-physical therapy extension period. Clinical assessment was repeated at the end of the 4-month extension period and compared to assessments prior to and at the time of completion of the physical therapy.
Analysis of the group differences showed a clinical effect in favor of maintaining the post-physical therapy effects in the dynamic standing desk group compared to the control (usual care) group. In
Additionally, as shown in
The dynamic standing desk may thus provide one of more of the following benefits:
It is to be understood that the foregoing description is of one or more embodiments of the invention. The invention is not limited to the particular embodiment(s) disclosed herein, but rather is defined solely by the claims below. Furthermore, the statements contained in the foregoing description relate to the disclosed embodiment(s) and are not to be construed as limitations on the scope of the invention or on the definition of terms used in the claims, except where a term or phrase is expressly defined above. Various other embodiments and various changes and modifications to the disclosed embodiment(s) will become apparent to those skilled in the art.
As used in this specification and claims, the terms “e.g.,” “for example,” “for instance,” “such as,” and “like,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that the listing is not to be considered as excluding other, additional components or items. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation. In addition, the term “and/or” is to be construed as an inclusive OR. Therefore, for example, the phrase “A, B, and/or C” is to be interpreted as covering all of the following: “A”; “B”; “C”; “A and B”; “A and C”; “B and C”; and “A, B, and C.”
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US21/61473 | 12/1/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63119965 | Dec 2020 | US |