Embodiments relate generally to computer data systems, and more particularly, to methods, systems and computer readable media for dynamic updating of query result displays.
Some graphical user interfaces may provide a display of information from a database query result. However, in the case of data that is changing over time and would cause a change in a query result over time, a typical static query result display may not provide an up-to-date visualization of the changed data. A need may exist to provide a dynamically updating display of a query result that is changing over time. Also, a need may exist to provide a view of data that is time consistent (e.g., processing data up through time t before any data is displayed for time t).
Some implementations were conceived in light of the above mentioned needs, problems and/or limitations, among other things.
Some implementations can include a method for dynamically updating a remote computer data system data object. The method can include determining, with a processor, that a logical clock has transitioned to a state indicating the start of a data object refresh cycle, and receiving notifications with a listener device. The method can also include processing with a processor any received notifications through an update propagation graph (UPG) of nodes, the nodes representing data object dependencies, and transmitting data object change notifications to any nodes corresponding to data objects affected by the received notifications. The method can further include applying data object notifications to respective data objects to generate updated data objects, and, when an updated data object has a link to an exported data object on a client computer, sending one or more data object update notifications to a client corresponding to the updated data object.
The method can also include receiving, at the client, one or more data object update notifications from a server connected to the client, the data object update notifications can include one or more of updated data and updated indexing information. The method can further include applying the notifications to a client data object to generate an updated client data object, and causing the client to display at least a portion of the updated client data object.
The method can also include receiving, at the client, one or more data object update notifications from a server connected to the client, the data object update notifications can include one or more of updated data and updated indexing information. The method can further include applying the notifications to a client data object to generate an updated client data object, and causing the client to access at least a portion of the updated client data object, and propagating changes through a UPG on the client.
The received notifications can include one or more of an add data, delete data, modify data and reindex data notification. The data object update notifications can include one or more of an add data, delete data, modify data and reindex data notification.
Some implementations can include a method comprising determining a viewport change, and sending an updated visible data object area to a server, wherein the updated visible area is based on the viewport change. The method can also include receiving, from the server, a snapshot of data from the data object corresponding to the updated visible area, and updating an in-memory data object based on the received snapshot. The method can further include causing an updated view to be displayed based on the updated in-memory table.
The viewport change can be caused by one or more of scrolling a view of the in-memory data object, showing or hiding a data object, and programmatically accessing the in-memory data object. The snapshot can include data corresponding to a given set of rows and columns of a tabular data object stored in memory of the server. The server can include a remote query processor. The method can also include providing, for non-displayed data objects, providing all rows and one or more columns of the data object to be considered as a visible region to facilitate further processing.
Some implementations can include system for dynamically updating a remote computer data system data object, the system comprising one or more processors coupled to a nontransitory computer readable medium having stored thereon software instructions that, when executed by the one or more processors, cause the one or more processors to perform operations. The operations can include determining that a logical clock has transitioned to a state indicating the start of a data object refresh cycle, and receiving notifications with a listener device.
The operations can also include processing any received notifications through an update propagation graph (UPG) of nodes, the nodes representing data object dependencies, and transmitting data object change notifications to any nodes corresponding to data objects affected by the received notifications. The operations can further include applying data object notifications to respective data objects to generate updated data objects, and when an updated data object has a link to an exported data object on a client computer, sending one or more data object update notifications to a client corresponding to the updated data object.
The operations can further include receiving, at the client, one or more data object update notifications from a server connected to the client, the data object update notifications can include one or more of updated data and updated indexing information, and applying the notifications to a client data object to generate an updated client data object. The operations can also include causing the client to display at least a portion of the updated client data object.
The operations can further include receiving, at the client, one or more data object update notifications from a server connected to the client, the data object update notifications can include one or more of updated data and updated indexing information, and applying the notifications to a client data object to generate an updated client data object. The operations can also include causing the client to access at least a portion of the updated client data object, and propagating changes through a UPG on the client.
The received notifications can include one or more of an add data, delete data, modify data and reindex data notification. The data object update notifications can include one or more of an add data, delete data, modify data and reindex data notification.
Some implementations can include one or more processors coupled to a nontransitory computer readable medium having stored thereon software instructions that, when executed by the one or more processors, cause the one or more processors to perform. The operations can include determining a viewport change, and sending an updated visible data object area to a server, wherein the updated visible area is based on the viewport change. The operations can also include receiving, from the server, a snapshot of data from the data object corresponding to the updated visible area, and updating an in-memory data object based on the received snapshot. The operations can further include causing an updated view to be displayed based on the updated in-memory table.
The viewport change can be caused by one or more of scrolling a view of the in-memory data object, showing or hiding a data object, and programmatically accessing the in-memory data object. The snapshot can include data corresponding to a given set of rows and columns of a tabular data object stored in memory of the server. The server can include a remote query processor. The operations can further include providing, for non-displayed data objects, providing all rows and one or more columns of the data object to be considered as a visible region to facilitate further processing.
Reference may be made herein to the Java programming language, Java classes, Java bytecode and the Java Virtual Machine (JVM) for purposes of illustrating example implementations. It will be appreciated that implementations can include other programming languages (e.g., groovy, Scala, R, Go, etc.), other programming language structures as an alternative to or in addition to Java classes (e.g., other language classes, objects, data structures, program units, code portions, script portions, etc.), other types of bytecode, object code and/or executable code, and/or other virtual machines or hardware implemented machines configured to execute a data system query.
The application host 102 can include one or more application processes 112, one or more log files 114 (e.g., sequential, row-oriented log files), one or more data log tailers 116 and a multicast key-value publisher 118. The periodic data import host 104 can include a local table data server, direct or remote connection to a periodic table data store 122 (e.g., a column-oriented table data store) and a data import server 120. The query server host 106 can include a multicast key-value subscriber 126, a performance table logger 128, local table data store 130 and one or more remote query processors (132, 134) each accessing one or more respective tables (136, 138). The long-term file server 108 can include a long-term data store 140. The user data import host 110 can include a remote user table server 142 and a user table data store 144. Row-oriented log files and column-oriented table data stores are discussed herein for illustration purposes and are not intended to be limiting. It will be appreciated that log files and/or data stores may be configured in other ways. In general, any data stores discussed herein could be configured in a manner suitable for a contemplated implementation.
In operation, the input data application process 112 can be configured to receive input data from a source (e.g., a securities trading data source), apply schema-specified, generated code to format the logged data as it's being prepared for output to the log file 114 and store the received data in the sequential, row-oriented log file 114 via an optional data logging process. In some implementations, the data logging process can include a daemon, or background process task, that is configured to log raw input data received from the application process 112 to the sequential, row-oriented log files on disk and/or a shared memory queue (e.g., for sending data to the multicast publisher 118). Logging raw input data to log files can additionally serve to provide a backup copy of data that can be used in the event that downstream processing of the input data is halted or interrupted or otherwise becomes unreliable.
A data log tailer 116 can be configured to access the sequential, row-oriented log file(s) 114 to retrieve input data logged by the data logging process. In some implementations, the data log tailer 116 can be configured to perform strict byte reading and transmission (e.g., to the data import server 120). The data import server 120 can be configured to store the input data into one or more corresponding data stores such as the periodic table data store 122 in a column-oriented configuration. The periodic table data store 122 can be used to store data that is being received within a time period (e.g., a minute, an hour, a day, etc.) and which may be later processed and stored in a data store of the long-term file server 108. For example, the periodic table data store 122 can include a plurality of data servers configured to store periodic securities trading data according to one or more characteristics of the data (e.g., a data value such as security symbol, the data source such as a given trading exchange, etc.).
The data import server 120 can be configured to receive and store data into the periodic table data store 122 in such a way as to provide a consistent data presentation to other parts of the system. Providing/ensuring consistent data in this context can include, for example, recording logged data to a disk or memory, ensuring rows presented externally are available for consistent reading (e.g., to help ensure that if the system has part of a record, the system has all of the record without any errors), and preserving the order of records from a given data source. If data is presented to clients, such as a remote query processor (132, 134), then the data may be persisted in some fashion (e.g., written to disk).
The local table data server 124 can be configured to retrieve data stored in the periodic table data store 122 and provide the retrieved data to one or more remote query processors (132, 134) via an optional proxy.
The remote user table server (RUTS) 142 can include a centralized consistent data writer, as well as a data server that provides processors with consistent access to the data that it is responsible for managing. For example, users can provide input to the system by writing table data that is then consumed by query processors.
The remote query processors (132, 134) can use data from the data import server 120, local table data server 124 and/or from the long-term file server 108 to perform queries. The remote query processors (132, 134) can also receive data from the multicast key-value subscriber 126, which receives data from the multicast key-value publisher 118 in the application host 102. The performance table logger 128 can log performance information about each remote query processor and its respective queries into a local table data store 130. Further, the remote query processors can also read data from the RUTS, from local table data written by the performance logger, or from user table data read over NFS, for example.
It will be appreciated that the configuration shown in
The production client host 202 can include a batch query application 212 (e.g., a query that is executed from a command line interface or the like) and a real time query data consumer process 214 (e.g., an application that connects to and listens to tables created from the execution of a separate query). The batch query application 212 and the real time query data consumer 214 can connect to a remote query dispatcher 222 and one or more remote query processors (224, 226) within the query server host 1208.
The controller host 204 can include a persistent query controller 216 configured to connect to a remote query dispatcher 232 and one or more remote query processors 228-230. In some implementations, the persistent query controller 216 can serve as the “primary client” for persistent queries and can request remote query processors from dispatchers, and send instructions to start persistent queries. For example, a user can submit a query to 216, and 216 starts and runs the query every day. In another example, a securities trading strategy could be a persistent query. The persistent query controller can start the trading strategy query every morning before the market opened, for instance. It will be appreciated that 216 can work on times other than days. In some implementations, the controller may require its own clients to request that queries be started, stopped, etc. This can be done manually, or by scheduled (e.g., cron) jobs. Some implementations can include “advanced scheduling” (e.g., auto-start/stop/restart, time-based repeat, etc.) within the controller.
The GUI/host workstation can include a user console 218 and a user query application 220. The user console 218 can be configured to connect to the persistent query controller 216. The user query application 220 can be configured to connect to one or more remote query dispatchers (e.g., 232) and one or more remote query processors (228, 230).
In operation, the processor 302 may execute the application 310 stored in the memory 306. The application 310 can include software instructions that, when executed by the processor, cause the processor to perform operations for dynamic updating of query result displays in accordance with the present disclosure (e.g., performing one or more of 502-512 and/or 702-710 described below).
The application program 310 can operate in conjunction with the data section 312 and the operating system 304.
In general, some implementations can include pushing new data to clients when a data source is updated. A data object may have dependencies to one or more data sources. The data object can include, but is not limited to, a tabular data object (e.g., table or the like), a scalable graph, a mathematical equation object, etc. Also, in some implementations a client may request a particular “slice” of a data object such as a table in two dimensions (e.g., a set of rows and a set of columns) for a corresponding viewport. A viewport can include, for example, a displayed or accessed portion of a table. When the two-dimensional slice changes, a snapshot mechanism sends data which is newly within the viewport, and optionally adjacent data to provide for display in the event a user scrolls a graphical user interface element corresponding to the viewport.
As used herein, a data source can include, but is not limited to, a real time or near real time data source such as securities market data (e.g., over a multicast distribution mechanism (e.g., 118/126) or through a tailer (e.g., 116), system generated data, historical data, user input data from a remote user table server, tables programmatically generated in-memory, or an element upstream in an update propagation graph (UPG) such as a directed acyclic graph (DAG), and/or any data (e.g., a table, mathematical object, etc.) having a capability to refresh itself/provide updated data.
When a data source is updated, it will send add, delete, modify, reindex (AMDR) notifications through the DAG. It will be appreciated that a DAG is used herein for illustration purposes of a possible implementation of the UPG, and that the UPG can include other implementations. A reindex message is a message to change the indexing of a data item, but not change the value. When a table is exported from the server to a client, there is an exported table handle created and that handle attaches itself to the DAG; as a child of the table to be displayed. When the DAG updates, that handle's node in the DAG is reached and a notification is sent across the network to the client that includes the rows which have been added/modified/deleted/reindexed. On the client side, those rows are reconstructed and an in-memory copy of the table (or portion thereof) is maintained for display (or other access).
There can be two cases in which a view is updated. In the first case, a system clock ticks, and there is new data for one or more source (parent) nodes in the DAG, which percolates down to the exported table handle. In the second case, a user changes the “viewport”, which is the active set of rows and columns.
There can be various ways the viewport is caused to be updated, such as: (i) scrolling the view of the table, (ii) showing or hiding a table, (iii) when the user or client program programmatically accesses the table, and/or (iv) adding/removing columns from a view. When the viewport is updated, the viewport is automatically adjusted to include the rows/columns that the user is trying to access with exponential expansion up to a limit for efficiency. After a timeout, any automatically created viewports are closed.
A query result may not change without a clock tick that has one or more AMDR messages which traverse the DAG. However, the portion of a query result that is displayed by the user (e.g., the viewport) might change. When a user displays a table, a set of visible columns and rows is computed. In addition to the visible set of rows/columns, the system may compute (and make available for possible display) more data than is visible. For example, the system may compute and make available for possible display three screens of data: the currently visible screen and one screen before and one screen after. If there are multiple views of the same table, either multiple exported table handles are created in which case the views are independent or if a single exported table handle is created, the viewport is the union of the visible sets. As the user scrolls the table, the viewport may change. When the viewport changes, the visible area (with a buffer of rows up and down, and columns left and right, so that scrolling is smooth) is computed and the updated visible area is sent to the server. In response, the server sends a snapshot with relevant portions of those newly visible rows/columns. For non-displayed tables, the visible area can be considered the whole table by the system for further processing so that a consistent table view is available for further processing (e.g., all rows and one or more columns of the data object may be sent to the client).
The snapshot can be generated asynchronously from the DAG update/table refresh loop under the condition that a consistent snapshot (i.e., the clock value remains the same throughout the snapshot) is able to be obtained. If a consistent snapshot is not obtained after a given number of attempts (e.g., three attempts), a lock can be obtained (e.g., the LiveTableMonitor lock) at the end of the current DAG update cycle to lock out updates while the snapshot is created.
Further, the remote query processor (or server) has knowledge of the visible regions and will send data updates for the visible rows/columns (e.g., it can send the entire AMDR message information so the client has information about what has been updated, just not what the actual data is outside of its viewport). This enables the client optionally to cache data even if the data is outside the viewport and only invalidate the data once the data actually changes.
The DAG structure can be maintained in the memory of a remote query processor. Child nodes have hard references back to their parents, and parents have weak references to their children. This ensures that if a child exists, its parent will also exist, but if there are no external references to a child, then a garbage collection event can properly clean the child up (and the parent won't hold onto the child). For the exported table handles, a component (e.g., an ExportedTableHandleManager component) can be configured to hold hard references to the exported tables. If a client disconnects, then the references for its tables can be cleaned up. Clients can also proactively release references.
At 404, AMDR update notifications from one or more upstream data sources are received. All notifications derived from the same source data update will typically occur during a single Updating phase.
The DAG update processing method executes when the clock state changes to updating. The received change information (e.g., AMDR notifications 404) is processed during the update cycle. Changes are sent to one or more dynamic nodes 408 of the DAG, which can send AMDR messages to one or more downstream data sources 410. The data source 412 can update based on the AMDR notification(s) and send an update notification to 414 to a client 416 having a handle associated with the data source 412.
The client can apply the AMDR notification(s) to an in-memory copy of a table portion 418 and can signal a viewport 420 to update based on the changed table portion 418.
At 504, the received AMDR notifications are processed through the DAG. Processing continues to 506.
At 506, the DAG sends AMDR notification messages to data sources corresponding to dynamic nodes of the DAG affected by the AMDR notification messages being processed through the DAG. Processing continues to 508.
At 508, the AMDR messages from the DAG are applied to corresponding tables. Processing continues to 510.
At 510, for tables with portions exported to a client, notifications of AMDR messages for the corresponding tables are sent to the respective client. Processing continues to 512.
At 512, each client updates an in-memory copy of a portion of a table based on corresponding AMDR notifications received from the server (e.g., remote query processor).
At 704, the client sends the updated visible area to the server (e.g., remote query processor). The updated visible area could include an indication of the rows and/or columns within the updated viewport. Processing continues to 706.
At 706, the server responds to the client with a snapshot of the data from the newly visible rows and/or columns visible in the viewport. The snapshot may include additional data around the viewport area. Some implementations can use “pages” of data (e.g., 5 k chunk of a column). These pages for a column are what get buffered. A system can determine the size of a page on a user's display. The span of the table can be defined as the first row to the last row+2 (to account for partially displayed rows); with a minimum size of 10. The first row of the viewport can be the first visible row less the span (with a minimum of row 0). The last row can be the first row of the viewport plus 3 times the span. The viewport may purposefully be larger than the table, so that if new updates come in and the user is already at the bottom of the table; those updates will be displayed. This may result in the viewport being updated (if the table view is following the end of the data). Processing continues to 708.
At 708, the client updates an in-memory copy of a portion of the table using the snapshot received from the server. Processing continues to 710.
At 710, a viewport listener receives a signal that the viewport data has been updated and causes an updated viewport to be displayed. For example, in some implementations, an I/O subsystem can receive the snapshot (or delta update) and enqueue it for a monitoring process (e.g., a LiveTableMonitor or LTM) on the client. Once an update is received, the LiveTableMonitor cycle can be accelerated so there are no intervening sleeps and process the table updates. The LTM will activate a GUI signal (e.g., a Java swing event) that causes a repaint or refresh of the GUI on a display.
It will be appreciated that 502-512 and/or 702-710 can be repeated in whole or in part in order to accomplish a given dynamic query result/table display updating task.
It will be appreciated that the modules, processes, systems, and sections described above can be implemented in hardware, hardware programmed by software, software instructions stored on a nontransitory computer readable medium or a combination of the above. A system as described above, for example, can include a processor configured to execute a sequence of programmed instructions stored on a nontransitory computer readable medium. For example, the processor can include, but not be limited to, a personal computer or workstation or other such computing system that includes a processor, microprocessor, microcontroller device, or is comprised of control logic including integrated circuits such as, for example, an Application Specific Integrated Circuit (ASIC), a field programmable gate array (FPGA), GPGPU, GPU, or the like. The instructions can be compiled from source code instructions provided in accordance with a programming language such as Java, C, C++, C#.net, assembly or the like. The instructions can also comprise code and data objects provided in accordance with, for example, the Visual Basic™ language, a specialized database query language, or another structured or object-oriented programming language. The sequence of programmed instructions, or programmable logic device configuration software, and data associated therewith can be stored in a nontransitory computer-readable medium such as a computer memory or storage device which may be any suitable memory apparatus, such as, but not limited to ROM, PROM, EEPROM, RAM, flash memory, disk drive and the like.
Furthermore, the modules, processes systems, and sections can be implemented as a single processor or as a distributed processor. Further, it should be appreciated that the steps mentioned above may be performed on a single or distributed processor (single and/or multi-core, or cloud computing system). Also, the processes, system components, modules, and sub-modules described in the various figures of and for embodiments above may be distributed across multiple computers or systems or may be co-located in a single processor or system. Example structural embodiment alternatives suitable for implementing the modules, sections, systems, means, or processes described herein are provided below.
The modules, processors or systems described above can be implemented as a programmed general purpose computer, an electronic device programmed with microcode, a hard-wired analog logic circuit, software stored on a computer-readable medium or signal, an optical computing device, a networked system of electronic and/or optical devices, a special purpose computing device, an integrated circuit device, a semiconductor chip, and/or a software module or object stored on a computer-readable medium or signal, for example.
Embodiments of the method and system (or their sub-components or modules), may be implemented on a general-purpose computer, a special-purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element, an ASIC or other integrated circuit, a digital signal processor, a hardwired electronic or logic circuit such as a discrete element circuit, a programmed logic circuit such as a PLD, PLA, FPGA, PAL, or the like. In general, any processor capable of implementing the functions or steps described herein can be used to implement embodiments of the method, system, or a computer program product (software program stored on a nontransitory computer readable medium).
Furthermore, embodiments of the disclosed method, system, and computer program product (or software instructions stored on a nontransitory computer readable medium) may be readily implemented, fully or partially, in software using, for example, object or object-oriented software development environments that provide portable source code that can be used on a variety of computer platforms. Alternatively, embodiments of the disclosed method, system, and computer program product can be implemented partially or fully in hardware using, for example, standard logic circuits or a VLSI design. Other hardware or software can be used to implement embodiments depending on the speed and/or efficiency requirements of the systems, the particular function, and/or particular software or hardware system, microprocessor, or microcomputer being utilized. Embodiments of the method, system, and computer program product can be implemented in hardware and/or software using any known or later developed systems or structures, devices and/or software by those of ordinary skill in the applicable art from the function description provided herein and with a general basic knowledge of the software engineering and computer networking arts.
Moreover, embodiments of the disclosed method, system, and computer readable media (or computer program product) can be implemented in software executed on a programmed general purpose computer, a special purpose computer, a microprocessor, or the like.
It is, therefore, apparent that there is provided, in accordance with the various embodiments disclosed herein, methods, systems and computer readable media for dynamic updating of query result displays.
Application Ser. No. 15/154,974, entitled “DATA PARTITIONING AND ORDERING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,975, entitled “COMPUTER DATA SYSTEM DATA SOURCE REFRESHING USING AN UPDATE PROPAGATION GRAPH” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,979, entitled “COMPUTER DATA SYSTEM POSITION-INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,980, entitled “SYSTEM PERFORMANCE LOGGING OF COMPLEX REMOTE QUERY PROCESSOR QUERY OPERATIONS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,983, entitled “DISTRIBUTED AND OPTIMIZED GARBAGE COLLECTION OF REMOTE AND EXPORTED TABLE HANDLE LINKS TO UPDATE PROPAGATION GRAPH NODES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,984, entitled “COMPUTER DATA SYSTEM CURRENT ROW POSITION QUERY LANGUAGE CONSTRUCT AND ARRAY PROCESSING QUERY LANGUAGE CONSTRUCTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,985, entitled “PARSING AND COMPILING DATA SYSTEM QUERIES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,987, entitled “DYNAMIC FILTER PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,988, entitled “DYNAMIC JOIN PROCESSING USING REAL-TIME MERGED NOTIFICATION LISTENER” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,990, entitled “DYNAMIC TABLE INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,991, entitled “QUERY TASK PROCESSING BASED ON MEMORY ALLOCATION AND PERFORMANCE CRITERIA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,993, entitled “A MEMORY-EFFICIENT COMPUTER SYSTEM FOR DYNAMIC UPDATING OF JOIN
PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,995, entitled “QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,996, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,997, entitled “DYNAMIC UPDATING OF QUERY RESULT DISPLAYS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,998, entitled “DYNAMIC CODE LOADING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,999, entitled “IMPORTATION, PRESENTATION, AND PERSISTENT STORAGE OF DATA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,001, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,005, entitled “PERSISTENT QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,006, entitled “SINGLE INPUT GRAPHICAL USER INTERFACE CONTROL ELEMENT AND METHOD” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,007, entitled “GRAPHICAL USER INTERFACE DISPLAY EFFECTS FOR A COMPUTER DISPLAY SCREEN” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,009, entitled “COMPUTER ASSISTED COMPLETION OF HYPERLINK COMMAND SEGMENTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,010, entitled “HISTORICAL DATA REPLAY UTILIZING A COMPUTER SYSTEM” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,011, entitled “DATA STORE ACCESS PERMISSION SYSTEM WITH INTERLEAVED APPLICATION OF DEFERRED ACCESS CONTROL FILTERS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,012, entitled “REMOTE DATA OBJECT PUBLISHING/SUBSCRIBING SYSTEM HAVING A MULTICAST KEY-VALUE PROTOCOL” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
While the disclosed subject matter has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be, or are, apparent to those of ordinary skill in the applicable arts. Accordingly, Applicants intend to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of the disclosed subject matter.
This application claims the benefit of U.S. Provisional Application No. 62/161,813, entitled “Computer Data System” and filed on May 14, 2015, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5335202 | Manning et al. | Aug 1994 | A |
5452434 | Macdonald | Sep 1995 | A |
5469567 | Okada | Nov 1995 | A |
5504885 | Alashqur | Apr 1996 | A |
5530939 | Mansfield et al. | Jun 1996 | A |
5568632 | Nelson | Oct 1996 | A |
5673369 | Kim | Sep 1997 | A |
5701461 | Dalal et al. | Dec 1997 | A |
5701467 | Freeston | Dec 1997 | A |
5764953 | Collins et al. | Jun 1998 | A |
5787411 | Groff et al. | Jul 1998 | A |
5787428 | Hart | Jul 1998 | A |
5806059 | Tsuchida et al. | Sep 1998 | A |
5808911 | Tucker et al. | Sep 1998 | A |
5859972 | Subramaniam et al. | Jan 1999 | A |
5873075 | Cochrane et al. | Feb 1999 | A |
5875334 | Chow et al. | Feb 1999 | A |
5878415 | Olds | Mar 1999 | A |
5890167 | Bridge et al. | Mar 1999 | A |
5899990 | Maritzen et al. | May 1999 | A |
5920860 | Maheshwari et al. | Jul 1999 | A |
5943672 | Yoshida | Aug 1999 | A |
5960087 | Tribble et al. | Sep 1999 | A |
5991810 | Shapiro et al. | Nov 1999 | A |
5999918 | Williams et al. | Dec 1999 | A |
6006220 | Haderle et al. | Dec 1999 | A |
6026390 | Ross et al. | Feb 2000 | A |
6032144 | Srivastava et al. | Feb 2000 | A |
6032148 | Wilkes | Feb 2000 | A |
6038563 | Bapat et al. | Mar 2000 | A |
6058394 | Bakow et al. | May 2000 | A |
6061684 | Glasser et al. | May 2000 | A |
6138112 | Slutz | Oct 2000 | A |
6160548 | Lea | Dec 2000 | A |
6253195 | Hudis et al. | Jun 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6289357 | Parker | Sep 2001 | B1 |
6292803 | Richardson et al. | Sep 2001 | B1 |
6304876 | Isip | Oct 2001 | B1 |
6317728 | Kane | Nov 2001 | B1 |
6327702 | Sauntry et al. | Dec 2001 | B1 |
6336114 | Garrison | Jan 2002 | B1 |
6353819 | Edwards et al. | Mar 2002 | B1 |
6367068 | Vaidyanathan et al. | Apr 2002 | B1 |
6389414 | Delo et al. | May 2002 | B1 |
6389462 | Cohen et al. | May 2002 | B1 |
6397206 | Hill et al. | May 2002 | B1 |
6438537 | Netz et al. | Aug 2002 | B1 |
6446069 | Yaung et al. | Sep 2002 | B1 |
6460037 | Weiss et al. | Oct 2002 | B1 |
6473750 | Petculescu et al. | Oct 2002 | B1 |
6487552 | Lei et al. | Nov 2002 | B1 |
6496833 | Goldberg et al. | Dec 2002 | B1 |
6505189 | Au et al. | Jan 2003 | B1 |
6505241 | Pitts | Jan 2003 | B2 |
6510551 | Miller | Jan 2003 | B1 |
6519604 | Acharya et al. | Feb 2003 | B1 |
6530075 | Beadle et al. | Mar 2003 | B1 |
6538651 | Hayman et al. | Mar 2003 | B1 |
6546402 | Beyer et al. | Apr 2003 | B1 |
6553375 | Huang et al. | Apr 2003 | B1 |
6584474 | Pereira | Jun 2003 | B1 |
6604104 | Smith | Aug 2003 | B1 |
6618720 | Au et al. | Sep 2003 | B1 |
6631374 | Klein et al. | Oct 2003 | B1 |
6640234 | Coffen et al. | Oct 2003 | B1 |
6697880 | Dougherty | Feb 2004 | B1 |
6701415 | Hendren | Mar 2004 | B1 |
6714962 | Helland et al. | Mar 2004 | B1 |
6725243 | Snapp | Apr 2004 | B2 |
6732100 | Brodersen et al. | May 2004 | B1 |
6745332 | Wong et al. | Jun 2004 | B1 |
6748374 | Madan et al. | Jun 2004 | B1 |
6748455 | Hinson et al. | Jun 2004 | B1 |
6760719 | Hanson et al. | Jul 2004 | B1 |
6775660 | Lin et al. | Aug 2004 | B2 |
6785668 | Polo et al. | Aug 2004 | B1 |
6795851 | Noy | Sep 2004 | B1 |
6801908 | Fuloria et al. | Oct 2004 | B1 |
6816855 | Hartel et al. | Nov 2004 | B2 |
6820082 | Cook et al. | Nov 2004 | B1 |
6829620 | Michael et al. | Dec 2004 | B2 |
6832229 | Reed | Dec 2004 | B2 |
6851088 | Conner et al. | Feb 2005 | B1 |
6882994 | Yoshimura et al. | Apr 2005 | B2 |
6925472 | Kong | Aug 2005 | B2 |
6934717 | James | Aug 2005 | B1 |
6947928 | Dettinger et al. | Sep 2005 | B2 |
6983291 | Cochrane et al. | Jan 2006 | B1 |
6985895 | Witkowski et al. | Jan 2006 | B2 |
6985899 | Chan et al. | Jan 2006 | B2 |
6985904 | Kaluskar et al. | Jan 2006 | B1 |
7020649 | Cochrane et al. | Mar 2006 | B2 |
7024414 | Sah et al. | Apr 2006 | B2 |
7031962 | Moses | Apr 2006 | B2 |
7047484 | Becker et al. | May 2006 | B1 |
7058657 | Berno | Jun 2006 | B1 |
7089228 | Arnold et al. | Aug 2006 | B2 |
7089245 | George et al. | Aug 2006 | B1 |
7096216 | Anonsen | Aug 2006 | B2 |
7099927 | Cudd et al. | Aug 2006 | B2 |
7103608 | Ozbutun et al. | Sep 2006 | B1 |
7110997 | Turkel et al. | Sep 2006 | B1 |
7127462 | Hiraga et al. | Oct 2006 | B2 |
7146357 | Suzuki et al. | Dec 2006 | B2 |
7149742 | Eastham et al. | Dec 2006 | B1 |
7167870 | Avvari et al. | Jan 2007 | B2 |
7171469 | Ackaouy et al. | Jan 2007 | B2 |
7174341 | Ghukasyan et al. | Feb 2007 | B2 |
7181686 | Bahrs | Feb 2007 | B1 |
7188105 | Dettinger et al. | Mar 2007 | B2 |
7200620 | Gupta | Apr 2007 | B2 |
7216115 | Walters et al. | May 2007 | B1 |
7216116 | Nilsson et al. | May 2007 | B1 |
7219302 | O'Shaughnessy et al. | May 2007 | B1 |
7225189 | McCormack et al. | May 2007 | B1 |
7254808 | Trappen et al. | Aug 2007 | B2 |
7257689 | Baird | Aug 2007 | B1 |
7272605 | Hinshaw et al. | Sep 2007 | B1 |
7308580 | Nelson et al. | Dec 2007 | B2 |
7316003 | Dulepet et al. | Jan 2008 | B1 |
7330969 | Harrison et al. | Feb 2008 | B2 |
7333941 | Choi | Feb 2008 | B1 |
7343585 | Lau et al. | Mar 2008 | B1 |
7350237 | Vogel et al. | Mar 2008 | B2 |
7380242 | Alaluf | May 2008 | B2 |
7401088 | Chintakayala et al. | Jul 2008 | B2 |
7426521 | Harter | Sep 2008 | B2 |
7430549 | Zane et al. | Sep 2008 | B2 |
7433863 | Zane et al. | Oct 2008 | B2 |
7447865 | Uppala et al. | Nov 2008 | B2 |
7478094 | Ho et al. | Jan 2009 | B2 |
7484096 | Garg et al. | Jan 2009 | B1 |
7493311 | Cutsinger et al. | Feb 2009 | B1 |
7506055 | McClain et al. | Mar 2009 | B2 |
7523462 | Nesamoney et al. | Apr 2009 | B1 |
7529734 | Dirisala | May 2009 | B2 |
7529750 | Bair | May 2009 | B2 |
7542958 | Warren et al. | Jun 2009 | B1 |
7552223 | Ackaouy et al. | Jun 2009 | B1 |
7596550 | Mordvinov et al. | Sep 2009 | B2 |
7610351 | Gollapudi et al. | Oct 2009 | B1 |
7620687 | Chen et al. | Nov 2009 | B2 |
7624126 | Pizzo et al. | Nov 2009 | B2 |
7627603 | Rosenblum et al. | Dec 2009 | B2 |
7661141 | Dutta et al. | Feb 2010 | B2 |
7664778 | Yagoub et al. | Feb 2010 | B2 |
7672275 | Yajnik et al. | Mar 2010 | B2 |
7680782 | Chen et al. | Mar 2010 | B2 |
7711716 | Stonecipher | May 2010 | B2 |
7711740 | Minore et al. | May 2010 | B2 |
7711788 | Ran et al. | May 2010 | B2 |
7747640 | Dettinger et al. | Jun 2010 | B2 |
7761444 | Zhang et al. | Jul 2010 | B2 |
7797356 | Iyer et al. | Sep 2010 | B2 |
7827204 | Heinzel et al. | Nov 2010 | B2 |
7827403 | Wong et al. | Nov 2010 | B2 |
7827523 | Ahmed et al. | Nov 2010 | B2 |
7882121 | Bruno et al. | Feb 2011 | B2 |
7882132 | Ghatare | Feb 2011 | B2 |
7895191 | Colossi et al. | Feb 2011 | B2 |
7904487 | Ghatare | Mar 2011 | B2 |
7908259 | Branscome et al. | Mar 2011 | B2 |
7908266 | Zeringue et al. | Mar 2011 | B2 |
7930412 | Yeap et al. | Apr 2011 | B2 |
7966311 | Haase | Jun 2011 | B2 |
7966312 | Nolan et al. | Jun 2011 | B2 |
7966343 | Yang et al. | Jun 2011 | B2 |
7970777 | Saxena et al. | Jun 2011 | B2 |
7979431 | Qazi et al. | Jul 2011 | B2 |
7984043 | Waas | Jul 2011 | B1 |
8019795 | Anderson et al. | Sep 2011 | B2 |
8027293 | Spaur et al. | Sep 2011 | B2 |
8032525 | Bowers et al. | Oct 2011 | B2 |
8037542 | Taylor et al. | Oct 2011 | B2 |
8046394 | Shatdal | Oct 2011 | B1 |
8046749 | Owen et al. | Oct 2011 | B1 |
8055672 | Djugash et al. | Nov 2011 | B2 |
8060484 | Bandera et al. | Nov 2011 | B2 |
8171018 | Zane et al. | May 2012 | B2 |
8180623 | Lendermann et al. | May 2012 | B2 |
8180789 | Wasserman et al. | May 2012 | B1 |
8196121 | Peshansky et al. | Jun 2012 | B2 |
8209356 | Roesler | Jun 2012 | B1 |
8286189 | Kukreja et al. | Oct 2012 | B2 |
8321833 | Langworthy et al. | Nov 2012 | B2 |
8332435 | Ballard et al. | Dec 2012 | B2 |
8359305 | Burke et al. | Jan 2013 | B1 |
8375127 | Lita | Feb 2013 | B1 |
8380757 | Bailey et al. | Feb 2013 | B1 |
8418142 | Ao et al. | Apr 2013 | B2 |
8433701 | Sargeant et al. | Apr 2013 | B2 |
8458218 | Wildermuth | Jun 2013 | B2 |
8473897 | Box et al. | Jun 2013 | B2 |
8478713 | Cotner et al. | Jul 2013 | B2 |
8515942 | Marum et al. | Aug 2013 | B2 |
8543620 | Ching | Sep 2013 | B2 |
8553028 | Urbach | Oct 2013 | B1 |
8555263 | Allen et al. | Oct 2013 | B2 |
8560502 | Vora | Oct 2013 | B2 |
8595151 | Hao et al. | Nov 2013 | B2 |
8601016 | Briggs et al. | Dec 2013 | B2 |
8621424 | Kejariwal et al. | Dec 2013 | B2 |
8631034 | Peloski | Jan 2014 | B1 |
8635251 | Chan | Jan 2014 | B1 |
8650182 | Murthy | Feb 2014 | B2 |
8660869 | MacIntyre et al. | Feb 2014 | B2 |
8676863 | Connell et al. | Mar 2014 | B1 |
8683488 | Kukreja et al. | Mar 2014 | B2 |
8713518 | Pointer et al. | Apr 2014 | B2 |
8719252 | Miranker et al. | May 2014 | B2 |
8725707 | Chen et al. | May 2014 | B2 |
8726254 | Rohde et al. | May 2014 | B2 |
8745014 | Travis | Jun 2014 | B2 |
8745510 | D'Alo′ et al. | Jun 2014 | B2 |
8751823 | Myles et al. | Jun 2014 | B2 |
8768961 | Krishnamurthy | Jul 2014 | B2 |
8775412 | Day et al. | Jul 2014 | B2 |
8788254 | Peloski | Jul 2014 | B2 |
8793243 | Weyerhaeuser et al. | Jul 2014 | B2 |
8805875 | Bawcom et al. | Aug 2014 | B1 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806133 | Hay et al. | Aug 2014 | B2 |
8812625 | Chitilian et al. | Aug 2014 | B1 |
8838656 | Cheriton | Sep 2014 | B1 |
8855999 | Elliot | Oct 2014 | B1 |
8863156 | Lepanto et al. | Oct 2014 | B1 |
8874512 | Jin et al. | Oct 2014 | B2 |
8880569 | Draper et al. | Nov 2014 | B2 |
8880787 | Kimmel et al. | Nov 2014 | B1 |
8881121 | Ali | Nov 2014 | B2 |
8886631 | Abadi et al. | Nov 2014 | B2 |
8903717 | Elliot | Dec 2014 | B2 |
8903842 | Bloesch et al. | Dec 2014 | B2 |
8922579 | Mi et al. | Dec 2014 | B2 |
8924384 | Driesen et al. | Dec 2014 | B2 |
8930892 | Pointer et al. | Jan 2015 | B2 |
8954418 | Faerber et al. | Feb 2015 | B2 |
8959495 | Chafi et al. | Feb 2015 | B2 |
8996864 | Maigne et al. | Mar 2015 | B2 |
9031930 | Valentin | May 2015 | B2 |
9077611 | Cordray et al. | Jul 2015 | B2 |
9122765 | Chen | Sep 2015 | B1 |
9177079 | Ramachandran et al. | Nov 2015 | B1 |
9195712 | Freedman et al. | Nov 2015 | B2 |
9298768 | Varakin et al. | Mar 2016 | B2 |
9311357 | Ramesh et al. | Apr 2016 | B2 |
9372671 | Balan et al. | Jun 2016 | B2 |
9384184 | Cervantes et al. | Jul 2016 | B2 |
9477702 | Ramachandran et al. | Oct 2016 | B1 |
9612959 | Caudy et al. | Apr 2017 | B2 |
9613018 | Zeldis et al. | Apr 2017 | B2 |
9613109 | Wright et al. | Apr 2017 | B2 |
9619210 | Kent et al. | Apr 2017 | B2 |
9633060 | Caudy et al. | Apr 2017 | B2 |
9639570 | Wright et al. | May 2017 | B2 |
9672238 | Wright et al. | Jun 2017 | B2 |
9679006 | Wright et al. | Jun 2017 | B2 |
9690821 | Wright et al. | Jun 2017 | B2 |
9710511 | Wright et al. | Jul 2017 | B2 |
9760591 | Caudy et al. | Sep 2017 | B2 |
9805084 | Wright et al. | Oct 2017 | B2 |
9832068 | McSherry et al. | Nov 2017 | B2 |
9836494 | Caudy et al. | Dec 2017 | B2 |
9836495 | Wright | Dec 2017 | B2 |
9847917 | Varney et al. | Dec 2017 | B2 |
9852231 | Ravi | Dec 2017 | B1 |
9886469 | Kent et al. | Feb 2018 | B2 |
9898496 | Caudy et al. | Feb 2018 | B2 |
9934266 | Wright et al. | Apr 2018 | B2 |
10002153 | Teodorescu et al. | Jun 2018 | B2 |
10002154 | Kent et al. | Jun 2018 | B1 |
10002155 | Caudy et al. | Jun 2018 | B1 |
10003673 | Caudy et al. | Jun 2018 | B2 |
10019138 | Zeldis et al. | Jul 2018 | B2 |
10069943 | Teodorescu et al. | Sep 2018 | B2 |
10521449 | Schwartz et al. | Dec 2019 | B1 |
20020002576 | Wollrath et al. | Jan 2002 | A1 |
20020007331 | Lo et al. | Jan 2002 | A1 |
20020054587 | Baker et al. | May 2002 | A1 |
20020065981 | Jenne et al. | May 2002 | A1 |
20020129168 | Kanai et al. | Sep 2002 | A1 |
20020156722 | Greenwood | Oct 2002 | A1 |
20030004952 | Nixon | Jan 2003 | A1 |
20030004964 | Cameron | Jan 2003 | A1 |
20030061216 | Moses | Mar 2003 | A1 |
20030074400 | Brooks et al. | Apr 2003 | A1 |
20030110416 | Morrison et al. | Jun 2003 | A1 |
20030115212 | Hornibrook et al. | Jun 2003 | A1 |
20030167261 | Grust et al. | Sep 2003 | A1 |
20030177139 | Cameron | Sep 2003 | A1 |
20030182261 | Patterson | Sep 2003 | A1 |
20030187744 | Goodridge, Jr. | Oct 2003 | A1 |
20030208484 | Chang et al. | Nov 2003 | A1 |
20030208505 | Mullins et al. | Nov 2003 | A1 |
20030233632 | Aigen et al. | Dec 2003 | A1 |
20040002961 | Dettinger et al. | Jan 2004 | A1 |
20040015566 | Anderson et al. | Jan 2004 | A1 |
20040076155 | Yajnik et al. | Apr 2004 | A1 |
20040090472 | Risch | May 2004 | A1 |
20040111492 | Nakahara et al. | Jun 2004 | A1 |
20040148630 | Choi | Jul 2004 | A1 |
20040186813 | Tedesco et al. | Sep 2004 | A1 |
20040216150 | Scheifler et al. | Oct 2004 | A1 |
20040220923 | Nica | Nov 2004 | A1 |
20040254876 | Coval et al. | Dec 2004 | A1 |
20040267824 | Pizzo et al. | Dec 2004 | A1 |
20050015490 | Saare et al. | Jan 2005 | A1 |
20050060693 | Robison et al. | Mar 2005 | A1 |
20050097447 | Serra et al. | May 2005 | A1 |
20050102284 | Srinivasan et al. | May 2005 | A1 |
20050102636 | McKeon et al. | May 2005 | A1 |
20050131893 | Glan | Jun 2005 | A1 |
20050132384 | Morrison et al. | Jun 2005 | A1 |
20050138624 | Morrison et al. | Jun 2005 | A1 |
20050144189 | Edwards et al. | Jun 2005 | A1 |
20050165866 | Bohannon et al. | Jul 2005 | A1 |
20050198001 | Cunningham et al. | Sep 2005 | A1 |
20050228828 | Chandrasekar et al. | Oct 2005 | A1 |
20060059253 | Goodman et al. | Mar 2006 | A1 |
20060074901 | Pirahesh et al. | Apr 2006 | A1 |
20060085490 | Baron et al. | Apr 2006 | A1 |
20060100989 | Chinchwadkar et al. | May 2006 | A1 |
20060101019 | Nelson et al. | May 2006 | A1 |
20060116983 | Dettinger et al. | Jun 2006 | A1 |
20060116999 | Dettinger et al. | Jun 2006 | A1 |
20060123024 | Sathyanarayan et al. | Jun 2006 | A1 |
20060131383 | Battagin et al. | Jun 2006 | A1 |
20060136361 | Peri et al. | Jun 2006 | A1 |
20060173693 | Arazi et al. | Aug 2006 | A1 |
20060195460 | Nori et al. | Aug 2006 | A1 |
20060212847 | Tarditi et al. | Sep 2006 | A1 |
20060218123 | Chowdhuri et al. | Sep 2006 | A1 |
20060218200 | Factor et al. | Sep 2006 | A1 |
20060230016 | Cunningham et al. | Oct 2006 | A1 |
20060235786 | DiSalvo | Oct 2006 | A1 |
20060253311 | Yin et al. | Nov 2006 | A1 |
20060271510 | Harward et al. | Nov 2006 | A1 |
20060277162 | Smith | Dec 2006 | A1 |
20060277319 | Elien et al. | Dec 2006 | A1 |
20070011211 | Reeves et al. | Jan 2007 | A1 |
20070027884 | Heger et al. | Feb 2007 | A1 |
20070033518 | Kenna et al. | Feb 2007 | A1 |
20070073765 | Chen | Mar 2007 | A1 |
20070101252 | Chamberlain et al. | May 2007 | A1 |
20070113014 | Manolov | May 2007 | A1 |
20070116287 | Rasizade et al. | May 2007 | A1 |
20070118619 | Schwesig et al. | May 2007 | A1 |
20070169003 | Branda et al. | Jul 2007 | A1 |
20070198479 | Cai et al. | Aug 2007 | A1 |
20070256060 | Ryu et al. | Nov 2007 | A1 |
20070258508 | Werb et al. | Nov 2007 | A1 |
20070271280 | Chandasekaran | Nov 2007 | A1 |
20070294217 | Chen et al. | Dec 2007 | A1 |
20070299822 | Jopp et al. | Dec 2007 | A1 |
20080022136 | Mattsson et al. | Jan 2008 | A1 |
20080033907 | Woehler et al. | Feb 2008 | A1 |
20080034084 | Pandya | Feb 2008 | A1 |
20080046804 | Rui et al. | Feb 2008 | A1 |
20080072150 | Chan et al. | Mar 2008 | A1 |
20080097748 | Haley et al. | Apr 2008 | A1 |
20080120283 | Liu et al. | May 2008 | A1 |
20080155565 | Poduri | Jun 2008 | A1 |
20080168135 | Redlich et al. | Jul 2008 | A1 |
20080172639 | Keysar et al. | Jul 2008 | A1 |
20080235238 | Jalobeanu et al. | Sep 2008 | A1 |
20080263179 | Buttner et al. | Oct 2008 | A1 |
20080276241 | Bajpai et al. | Nov 2008 | A1 |
20080319951 | Ueno et al. | Dec 2008 | A1 |
20090019029 | Tommaney et al. | Jan 2009 | A1 |
20090022095 | Spaur et al. | Jan 2009 | A1 |
20090024615 | Pedro et al. | Jan 2009 | A1 |
20090037391 | Agrawal et al. | Feb 2009 | A1 |
20090037500 | Kirshenbaum | Feb 2009 | A1 |
20090055370 | Dagum et al. | Feb 2009 | A1 |
20090083215 | Burger | Mar 2009 | A1 |
20090089312 | Chi et al. | Apr 2009 | A1 |
20090157723 | Peuter et al. | Jun 2009 | A1 |
20090248902 | Blue | Oct 2009 | A1 |
20090254516 | Meiyyappan et al. | Oct 2009 | A1 |
20090271472 | Scheifler et al. | Oct 2009 | A1 |
20090300770 | Rowney | Dec 2009 | A1 |
20090319058 | Rovaglio et al. | Dec 2009 | A1 |
20090319484 | Golbandi et al. | Dec 2009 | A1 |
20090327242 | Brown et al. | Dec 2009 | A1 |
20100023952 | Sandoval et al. | Jan 2010 | A1 |
20100036801 | Pirvali et al. | Feb 2010 | A1 |
20100042587 | Johnson et al. | Feb 2010 | A1 |
20100047760 | Best et al. | Feb 2010 | A1 |
20100049715 | Jacobsen et al. | Feb 2010 | A1 |
20100057835 | Little | Mar 2010 | A1 |
20100070721 | Pugh et al. | Mar 2010 | A1 |
20100114890 | Hagar et al. | May 2010 | A1 |
20100161555 | Nica et al. | Jun 2010 | A1 |
20100186082 | Ladki et al. | Jul 2010 | A1 |
20100199161 | Aureglia et al. | Aug 2010 | A1 |
20100205017 | Sichelman et al. | Aug 2010 | A1 |
20100205351 | Wiener et al. | Aug 2010 | A1 |
20100281005 | Carlin et al. | Nov 2010 | A1 |
20100281071 | Ben-Zvi et al. | Nov 2010 | A1 |
20100293334 | Xun et al. | Nov 2010 | A1 |
20110126110 | Vilke et al. | May 2011 | A1 |
20110126154 | Boehler et al. | May 2011 | A1 |
20110153603 | Adiba et al. | Jun 2011 | A1 |
20110161378 | Williamson | Jun 2011 | A1 |
20110167020 | Yang et al. | Jul 2011 | A1 |
20110178984 | Talius et al. | Jul 2011 | A1 |
20110194563 | Shen et al. | Aug 2011 | A1 |
20110219020 | Oks et al. | Sep 2011 | A1 |
20110231389 | Surna et al. | Sep 2011 | A1 |
20110314019 | Peris | Dec 2011 | A1 |
20120005238 | Jebara | Jan 2012 | A1 |
20120110030 | Pomponio | May 2012 | A1 |
20120144234 | Clark et al. | Jun 2012 | A1 |
20120159303 | Friedrich et al. | Jun 2012 | A1 |
20120191446 | Binsztok et al. | Jul 2012 | A1 |
20120191582 | Rance et al. | Jul 2012 | A1 |
20120192096 | Bowman et al. | Jul 2012 | A1 |
20120197868 | Fauser et al. | Aug 2012 | A1 |
20120209886 | Henderson | Aug 2012 | A1 |
20120215741 | Poole et al. | Aug 2012 | A1 |
20120221528 | Renkes | Aug 2012 | A1 |
20120246052 | Taylor et al. | Sep 2012 | A1 |
20120246094 | Hsu et al. | Sep 2012 | A1 |
20120254143 | Varma et al. | Oct 2012 | A1 |
20120259759 | Crist et al. | Oct 2012 | A1 |
20120296846 | Teeter | Nov 2012 | A1 |
20130041946 | Joel et al. | Feb 2013 | A1 |
20130080514 | Gupta et al. | Mar 2013 | A1 |
20130086107 | Genochio et al. | Apr 2013 | A1 |
20130166551 | Wong et al. | Jun 2013 | A1 |
20130166556 | Baeumges et al. | Jun 2013 | A1 |
20130173667 | Soderberg et al. | Jul 2013 | A1 |
20130179460 | Cervantes et al. | Jul 2013 | A1 |
20130185619 | Ludwig | Jul 2013 | A1 |
20130191370 | Chen et al. | Jul 2013 | A1 |
20130198232 | Shamgunov et al. | Aug 2013 | A1 |
20130226959 | Dittrich et al. | Aug 2013 | A1 |
20130246560 | Feng et al. | Sep 2013 | A1 |
20130263123 | Zhou et al. | Oct 2013 | A1 |
20130290243 | Hazel et al. | Oct 2013 | A1 |
20130304725 | Nee et al. | Nov 2013 | A1 |
20130304744 | McSherry et al. | Nov 2013 | A1 |
20130311352 | Kayanuma et al. | Nov 2013 | A1 |
20130311488 | Erdogan et al. | Nov 2013 | A1 |
20130318129 | Vingralek et al. | Nov 2013 | A1 |
20130346365 | Kan et al. | Dec 2013 | A1 |
20140019494 | Tang | Jan 2014 | A1 |
20140026121 | Jackson et al. | Jan 2014 | A1 |
20140040203 | Lu et al. | Feb 2014 | A1 |
20140046638 | Peloski | Feb 2014 | A1 |
20140059646 | Hannel et al. | Feb 2014 | A1 |
20140082470 | Trebas | Mar 2014 | A1 |
20140082724 | Pearson et al. | Mar 2014 | A1 |
20140095365 | Potekhina et al. | Apr 2014 | A1 |
20140136521 | Pappas | May 2014 | A1 |
20140143123 | Banke et al. | May 2014 | A1 |
20140149947 | Blyumen | May 2014 | A1 |
20140149997 | Kukreja et al. | May 2014 | A1 |
20140156618 | Castellano | Jun 2014 | A1 |
20140156632 | Yu et al. | Jun 2014 | A1 |
20140173023 | Varney et al. | Jun 2014 | A1 |
20140181036 | Dhamankar et al. | Jun 2014 | A1 |
20140181081 | Veldhuizen | Jun 2014 | A1 |
20140188924 | Ma et al. | Jul 2014 | A1 |
20140195558 | Murthy et al. | Jul 2014 | A1 |
20140201194 | Reddy et al. | Jul 2014 | A1 |
20140215446 | Araya et al. | Jul 2014 | A1 |
20140222768 | Rambo et al. | Aug 2014 | A1 |
20140229506 | Lee | Aug 2014 | A1 |
20140229874 | Strauss | Aug 2014 | A1 |
20140244687 | Shmueli et al. | Aug 2014 | A1 |
20140279810 | Mann et al. | Sep 2014 | A1 |
20140280522 | Watte | Sep 2014 | A1 |
20140282227 | Nixon et al. | Sep 2014 | A1 |
20140282444 | Araya et al. | Sep 2014 | A1 |
20140282540 | Bonnet et al. | Sep 2014 | A1 |
20140289700 | Srinivasaraghavan et al. | Sep 2014 | A1 |
20140292765 | Maruyama et al. | Oct 2014 | A1 |
20140297611 | Abbour et al. | Oct 2014 | A1 |
20140317084 | Chaudhry et al. | Oct 2014 | A1 |
20140321280 | Evans | Oct 2014 | A1 |
20140324821 | Meiyyappan et al. | Oct 2014 | A1 |
20140330700 | Studnitzer et al. | Nov 2014 | A1 |
20140330807 | Weyerhaeuser et al. | Nov 2014 | A1 |
20140344186 | Nadler | Nov 2014 | A1 |
20140344391 | Varney et al. | Nov 2014 | A1 |
20140358892 | Nizami et al. | Dec 2014 | A1 |
20140359574 | Beckwith et al. | Dec 2014 | A1 |
20140369550 | Davis | Dec 2014 | A1 |
20140372482 | Martin et al. | Dec 2014 | A1 |
20140380051 | Edward et al. | Dec 2014 | A1 |
20150019516 | Wein et al. | Jan 2015 | A1 |
20150026155 | Martin | Jan 2015 | A1 |
20150032789 | Nguyen et al. | Jan 2015 | A1 |
20150067640 | Booker et al. | Mar 2015 | A1 |
20150074066 | Li et al. | Mar 2015 | A1 |
20150082218 | Affoneh et al. | Mar 2015 | A1 |
20150088894 | Czarlinska et al. | Mar 2015 | A1 |
20150095381 | Chen et al. | Apr 2015 | A1 |
20150120261 | Giannacopoulos et al. | Apr 2015 | A1 |
20150127599 | Schiebeler | May 2015 | A1 |
20150154262 | Yang et al. | Jun 2015 | A1 |
20150172117 | Dolinsky et al. | Jun 2015 | A1 |
20150188778 | Asayag et al. | Jul 2015 | A1 |
20150205588 | Bates et al. | Jul 2015 | A1 |
20150205589 | Dally | Jul 2015 | A1 |
20150254298 | Bourbonnais et al. | Sep 2015 | A1 |
20150304182 | Brodsky et al. | Oct 2015 | A1 |
20150317359 | Tran et al. | Nov 2015 | A1 |
20150356157 | Anderson et al. | Dec 2015 | A1 |
20160026383 | Lee et al. | Jan 2016 | A1 |
20160026442 | Chhaparia | Jan 2016 | A1 |
20160065670 | Kimmel et al. | Mar 2016 | A1 |
20160085772 | Vermeulen et al. | Mar 2016 | A1 |
20160092599 | Barsness et al. | Mar 2016 | A1 |
20160103897 | Nysewander et al. | Apr 2016 | A1 |
20160125018 | Tomoda et al. | May 2016 | A1 |
20160147748 | Florendo et al. | May 2016 | A1 |
20160171070 | Hrle et al. | Jun 2016 | A1 |
20160179754 | Borza et al. | Jun 2016 | A1 |
20160253294 | Allen et al. | Sep 2016 | A1 |
20160316038 | Jolfaei | Oct 2016 | A1 |
20160335281 | Teodorescu et al. | Nov 2016 | A1 |
20160335304 | Teodorescu et al. | Nov 2016 | A1 |
20160335317 | Teodorescu et al. | Nov 2016 | A1 |
20160335323 | Teodorescu et al. | Nov 2016 | A1 |
20160335330 | Teodorescu et al. | Nov 2016 | A1 |
20160335361 | Teodorescu et al. | Nov 2016 | A1 |
20170032016 | Zinner et al. | Feb 2017 | A1 |
20170161514 | Dettinger et al. | Jun 2017 | A1 |
20170177677 | Wright et al. | Jun 2017 | A1 |
20170185385 | Kent et al. | Jun 2017 | A1 |
20170192910 | Wright et al. | Jul 2017 | A1 |
20170206229 | Caudy et al. | Jul 2017 | A1 |
20170206256 | Tsirogiannis et al. | Jul 2017 | A1 |
20170235794 | Wright et al. | Aug 2017 | A1 |
20170235798 | Wright et al. | Aug 2017 | A1 |
20170249350 | Wright et al. | Aug 2017 | A1 |
20170270150 | Wright et al. | Sep 2017 | A1 |
20170316046 | Caudy et al. | Nov 2017 | A1 |
20170329740 | Crawford et al. | Nov 2017 | A1 |
20170357708 | Ramachandran et al. | Dec 2017 | A1 |
20170359415 | Venkatraman et al. | Dec 2017 | A1 |
20180004796 | Kent et al. | Jan 2018 | A1 |
20180011891 | Wright et al. | Jan 2018 | A1 |
20180052879 | Wright | Feb 2018 | A1 |
20180137175 | Teodorescu et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2309462 | Dec 2000 | CA |
1406463 | Apr 2004 | EP |
1198769 | Jun 2008 | EP |
2199961 | Jun 2010 | EP |
2423816 | Feb 2012 | EP |
2743839 | Jun 2014 | EP |
2397906 | Aug 2004 | GB |
2421798 | Jun 2011 | RU |
2000000879 | Jan 2000 | WO |
2001079964 | Oct 2001 | WO |
2011120161 | Oct 2011 | WO |
2012136627 | Oct 2012 | WO |
WO-2014026220 | Feb 2014 | WO |
2014143208 | Sep 2014 | WO |
2016183563 | Nov 2016 | WO |
Entry |
---|
Final Office Action dated Aug. 10, 2018, in U.S. Appl. No. 15/796,230. |
Final Office Action dated Aug. 2, 2018, in U.S. Appl. No. 15/154,996. |
Final Office Action dated Aug. 28, 2018, in U.S. Appl. No. 15/813,119. |
Final Office Action dated Jun. 18, 2018, in U.S. Appl. No. 15/155,005. |
Final Office Action dated May 18, 2018, in U.S. Appl. No. 15/654,461. |
Non-final Office Action dated Apr. 23, 2018, in U.S. Appl. No. 15/813,127. |
Non-final Office Action dated Apr. 5, 2018, in U.S. Appl. No. 15/154,984. |
Non-final Office Action dated Aug. 10, 2018, in U.S. Appl. No. 16/004,578. |
Non-final Office Action dated Jun. 29, 2018, in U.S. Appl. No. 15/154,974. |
Non-final Office Action dated Jun. 8, 2018, in U.S. Appl. No. 15/452,574. |
Notice of Allowance dated Apr. 30, 2018, in U.S. Appl. No. 15/155,012. |
Notice of Allowance dated Jul. 11, 2018, in U.S. Appl. No. 15/154,995. |
Notice of Allowance dated May 4, 2018, in U.S. Appl. No. 15/897,547. |
Notice of Allowance dated Sep. 11, 2018, in U.S. Appl. No. 15/608,961. |
Ex Parte Quayle Action mailed Aug. 8, 2016, in U.S. Appl. No. 15/154,999. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032582 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032584 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032588 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032593 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032597 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032599 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032605 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032590 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032592 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 4, 2016, in International Appln. No. PCT/US2016/032581 filed May 14, 2016. |
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032586 filed May 14, 2016. |
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032587 filed May 14, 2016. |
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032589 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032596 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032598 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032601 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032602 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032607 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032591 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032594 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032600 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032595 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032606 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032603 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032604 filed May 14, 2016. |
Mallet, “Relational Database Support for Spatio-Temporal Data”, Technical Report TR 04-21, Sep. 2004, University of Alberta, Department of Computing Science. |
Non-final Office Action dated Aug. 12, 2016, in U.S. Appl. No. 15/155,001. |
Non-final Office Action dated Aug. 16, 2016, in U.S. Appl. No. 15/154,993. |
Non-final Office Action dated Aug. 19, 2016, in U.S. Appl. No. 15/154,991. |
Non-final Office Action dated Aug. 25, 2016, in U.S. Appl. No. 15/154,980. |
Non-final Office Action dated Aug. 26, 2016, in U.S. Appl. No. 15/154,995. |
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,983. |
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,985. |
Non-final Office Action dated Oct. 13, 2016, in U.S. Appl. No. 15/155,009. |
Non-final Office Action dated Oct. 27, 2016, in U.S. Appl. No. 15/155,006. |
Non-final Office Action dated Oct. 7, 2016, in U.S. Appl. No. 15/154,998. |
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/154,979. |
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,011. |
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,012. |
Non-final Office Action dated Sep. 14, 2016, in U.S. Appl. No. 15/154,984. |
Non-final Office Action dated Sep. 16, 2016, in U.S. Appl. No. 15/154,988. |
Non-final Office Action dated Sep. 22, 2016, in U.S. Appl. No. 15/154,987. |
Non-final Office Action dated Sep. 26, 2016, in U.S. Appl. No. 15/155,005. |
Non-final Office Action dated Sep. 29, 2016, in U.S. Appl. No. 15/154,990. |
Non-final Office Action dated Sep. 8, 2016, in U.S. Appl. No. 15/154,975. |
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/154,996. |
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/155,010. |
Notice of Allowance dated Oct. 11, 2016, in U.S. Appl. No. 15/155,007. |
Notice of Allowance dated Oct. 21, 2016, in U.S. Appl. No. 15/154,999. |
Final Office Action dated Jan. 27, 2017, in U.S. Appl. No. 15/154,980. |
Final Office Action dated Jan. 31, 2017, in U.S. Appl. No. 15/154,996. |
Murray, Derek G. et al. “Naiad: a timely dataflow system.” SOSP '13 Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. p. 439-455. Nov. 2013. |
Notice of Allowance dated Dec. 22, 2016, in U.S. Appl. No. 15/155,011. |
Notice of Allowance dated Feb. 1, 2017, in U.S. Appl. No. 15/154,988. |
Notice of Allowance dated Jan. 30, 2017, in U.S. Appl. No. 15/154,987. |
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.16.1” Dated May 11, 2015. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.16.1/index.html. |
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.18.1” Dated May 3, 2016. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.18.1/index.html. |
“Change Data Capture”, Oracle Database Online Documentation 11g Release 1 (11.1), dated Apr. 5, 2016. Retreived from https://web.archive.org/web/20160405032625/http://docs.oracle.com/cd/B28359_01/server.111/b28313/cdc.htm. |
“Chapter 24. Query access plans”, Tuning Database Performance, DB2 Version 9.5 for Linux, UNIX, and Windows, pp. 301-462, dated Dec. 2010. Retreived from http://public.dhe.ibm.com/ps/products/db2/info/vr95/pdf/en_US/DB2PerfTuneTroubleshoot-db2d3e953.pdf. |
“Tracking Data Changes”, SQL Server 2008 R2, dated Sep. 22, 2015. Retreived from https://web.archive.org/web/20150922000614/https://technet.microsoft.com/en-us/library/bb933994(v=sql.105).aspx. |
Borror, Jefferey A. “Q for Mortals 2.0”, dated Nov. 1, 2011. Retreived from http://code.kx.com/wiki/JB:QforMortals2/contents. |
Gai, Lei et al. “An Efficient Summary Graph Driven Method for RDF Query Processing”, dated Oct. 27, 2015. Retreived from http://arxiv.org/pdf/1510.07749.pdf. |
Lou, Yuan. “A Multi-Agent Decision Support System for Stock Trading”, IEEE Network, Jan./Feb. 2002. Retreived from http://www.reading.ac.uk/AcaDepts/si/sisweb13/ais/papers/journal12-A%20multi-agent%20Framework.pdf. |
Palpanas, Themistoklis et al. “Incremental Maintenance for Non-Distributive Aggregate Functions”, Proceedings of the 28th VLDB Conference, 2002. Retreived from http://www.vldb.org/conf/2002/S22P04.pdf. |
Wu, Buwen et al. “Scalable SPARQL Querying using Path Partitioning”, 31st IEEE International Conference on Data Engineering (ICDE 2015), Seoul, Korea, Apr. 13-17, 2015. Retreived from http://imada.sdu.dk/˜zhou/papers/icde2015.pdf. |
“IBM Informix TimeSeries data management”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118072141/http://www-01.ibm.com/software/data/informix/timeseries/. |
“IBM—What is HBase?”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906022050/http://www-01.ibm.com/software/data/infosphere/hadoop/hbase/. |
“SAP HANA Administration Guide”, dated Mar. 29, 2016, pp. 290-294. Retrieved from https://web.archive.org/web/20160417053656/http://help.sap.com/hana/SAP_HANA_Administration_Guide_en.pdf. |
“Oracle Big Data Appliance—Perfect Balance Java API”, dated Sep. 20, 2015. Retrieved from https://web.archive.org/web/20131220040005/http://docs.oracle.com/cd/E41604_01/doc.22/e41667/toc.htm. |
“Oracle Big Data Appliance—X5-2”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906185409/http://www.oracle.com/technetwork/database/bigdata-appliance/overview/bigdataappliance-datasheet-1883358.pdf. |
“Sophia Database—Architecture”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118052919/http://sphia.org/architecture.html. |
“Google Protocol RPC Library Overview”, dated Apr. 27, 2016. Retrieved from https://cloud.google.com/appengine/docs/python/tools/protorpc/ (last accessed Jun. 16, 2016). |
“Maximize Data Value with Very Large Database Management by SAP® Sybase® IQ”, dated 2013. Retrieved from http://www.sap.com/bin/sapcom/en_us/downloadasset.2013-06-jun-11-11.maximize-data-value-with-very-large-database-management-by-sap-sybase-iq-pdf.html. |
“Microsoft Azure—Managing Access Control Lists (ACLs) for Endpoints by using PowerShell”, dated Nov. 12, 2014. Retrieved from https://web.archive.org/web/20150110170715/http://msdn.microsoft.com/en-us/library/azure/dn376543.aspx. |
“IBM InfoSphere Biglnsights 3.0.0—Importing data from and exporting data to DB2 by using Sqoop”, dated Jan. 15, 2015. Retrieved from https://web.archive.org/web/20150115034058/http://www-01.ibm.com/support/knowledgecenter/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.import.doc/doc/data_warehouse_sgoop.html. |
“GNU Emacs Manual”, dated Apr. 15, 2016, pp. 43-47. Retrieved from https://web.archive.org/web/20160415175915/http://www.gnu.org/software/emacs/manual/html_mono/emacs.html. |
“Oracle® Big Data Appliance—Software User's Guide”, dated Feb. 2015. Retrieved from https://docs.oracle.com/cd/E55905_01/doc.40/e55814.pdf. |
“About Entering Commands in the Command Window”, dated Dec. 16, 2015. Retrieved from https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/AutoCAD-Core/files/GUID-BB0C3E79-66AF-4557-9140-D31B4CF3C9CF-htm.html (last accessed Jun. 16, 2016). |
“Use Formula AutoComplete”, dated 2010. Retrieved from https://support.office.com/en-us/article/Use-Formula-AutoComplete-c7c46fa6-3a94-4150-a2f7-34140c1ee4d9 (last accessed Jun. 16, 2016). |
Mariyappan, Balakrishnan. “10 Useful Linux Bash_Completion Complete Command Examples (Bash Command Line Completion on Steroids)”, dated Dec. 2, 2013. Retrieved from http://www.thegeekstuff.com/2013/12/bash-completion-complete/ (last accessed Jun. 16, 2016). |
Cheusheva, Svetlana. “How to change the row color based on a cell's value in Excel”, dated Oct. 29, 2013. Retrieved from https://www.ablebits.com/office-addins-blog/2013/10/29/excel-change-row-background-color/ (last accessed Jun. 16, 2016). |
Jellema, Lucas. “Implementing Cell Highlighting in JSF-based Rich Enterprise Apps (Part 1)”, dated Nov. 2008. Retrieved from http://www.oracle.com/technetwork/articles/adf/jellema-adfcellhighlighting-087850.html (last accessed Jun. 16, 2016). |
Adelfio et al. “Schema Extraction for Tabular Data on the Web”, Proceedings of the VLDB Endowment, vol. 6, No. 6. Apr. 2013. Retrieved from http://www.cs.umd.edu/˜hjs/pubs/spreadsheets-vldb13.pdf. |
“Definition of Multicast” by Lexico powered by Oxford at https://www.lexico.com/en/definition/multicast, 2019, p. 1. |
“What is a Key-Value Database?” at https://database.guide/what-is-a-key-value-database, Database Concepts, NOSQL, 2019 Database.guide, Jun. 21, 2016, pp. 1-7. |
Maria Azbel, How too hide and group columns in Excel AbleBits (2014), https://www.ablebits.com/office-addins-blog/2014/08/06/excel-hide-columns/ (last visited Jan. 18, 2019). |
Mark Dodge & Craig Stinson, Microsoft Excel 2010 inside out (2011). |
Svetlana Cheusheve, Excel formulas for conditional formatting based on another cell AbleBits (2014), https://www.ablebits.com/office-addins-blog/2014/06/10/excel-conditional-formatting-formulas/comment-page-6/ (last visited Jan. 14, 2019). |
Advisory Action dated Dec. 21, 2017, in U.S. Appl. No. 15/154,984. |
Breitbart, Update Propagation Protocols for Replicated Databases, SIGMOD '99 Philadelphia PA, 1999, pp. 97-108. |
Corrected Notice of Allowability dated Aug. 9, 2017, in U.S. Appl. No. 15/154,980. |
Corrected Notice of Allowability dated Jul. 31, 2017, in U.S. Appl. No. 15/154,999. |
Corrected Notice of Allowability dated Oct. 26, 2017, in U.S. Appl. No. 15/610,162. |
Final Office Action dated Dec. 29, 2017, in U.S. Appl. No. 15/154,974. |
Final Office Action dated Jul. 27, 2017, in U.S. Appl. No. 15/154,993. |
Kramer, The Combining DAG: A Technique for Parallel Data Flow Analysis, IEEE Transactions on Parallel and Distributed Systems, vol. 5, No. 8, Aug. 1994, pp. 805-813. |
Non-final Office Action dated Aug. 14, 2017, in U.S. Appl. No. 15/464,314. |
Non-final Office Action dated Dec. 13, 2017, in U.S. Appl. No. 15/608,963. |
Non-final Office Action dated Dec. 28, 2017, in U.S. Appl. No. 15/154,996. |
Non-final Office Action dated Dec. 28, 2017, in U.S. Appl. No. 15/796,230. |
Non-final Office Action dated Feb. 12, 2018, in U.S. Appl. No. 15/466,836. |
Non-final Office Action dated Feb. 15, 2018, in U.S. Appl. No. 15/813,112. |
Non-final Office Action dated Feb. 28, 2018, in U.S. Appl. No. 15/813,119. |
Non-final Office Action dated Jan. 4, 2018, in U.S. Appl. No. 15/583,777. |
Non-final Office Action dated Jul. 27, 2017, in U.S. Appl. No. 15/154,995. |
Non-final Office Action dated Mar. 20, 2018, in U.S. Appl. No. 15/155,006. |
Non-final Office Action dated Nov. 15, 2017, in U.S. Appl. No. 15/654,461. |
Non-final Office Action dated Nov. 21, 2017, in U.S. Appl. No. 15/155,005. |
Non-final Office Action dated Nov. 30, 2017, in U.S. Appl. No. 15/155,012. |
Non-final Office Action dated Oct. 5, 2017, in U.S. Appl. No. 15/428,145. |
Notice of Allowance dated Feb. 12, 2018, in U.S. Appl. No. 15/813,142. |
Notice of Allowance dated Feb. 26, 2018, in U.S. Appl. No. 15/428,145. |
Notice of Allowance dated Jul. 28, 2017, in U.S. Appl. No. 15/155,009. |
Notice of Allowance dated Jun. 19, 2017, in U.S. Appl. No. 15/154,980. |
Notice of Allowance dated Jun. 20, 2017, in U.S. Appl. No. 15/154,975. |
Notice of Allowance dated Mar. 1, 2018, in U.S. Appl. No. 15/464,314. |
Notice of Allowance dated Nov. 17, 2017, in U.S. Appl. No. 15/154,993. |
Notice of Allowance dated Oct. 6, 2017, in U.S. Appl. No. 15/610,162. |
Sobell, Mark G. “A Practical Guide to Linux, Commands, Editors and Shell Programming.” Third Edition, dated Sep. 14, 2012. Retrieved from: http://techbus.safaribooksonline.com/book/operating-systems-and-server-administration/linux/9780133085129. |
Final Office Action dated Dec. 19, 2016, in U.S. Appl. No. 15/154,995. |
Non-final Office Action dated Nov. 17, 2016, in U.S. Appl. No. 15/154,999. |
Notice of Allowance dated Dec. 19, 2016, in U.S. Appl. No. 15/155,001. |
Notice of Allowance dated Dec. 7, 2016, in U.S. Appl. No. 15/154,985. |
Notice of Allowance dated Nov. 17, 2016, in U.S. Appl. No. 15/154,991. |
Notice of Allowance dated Nov. 21, 2016, in U.S. Appl. No. 15/154,983. |
Notice of Allowance dated Nov. 8, 2016, in U.S. Appl. No. 15/155,007. |
Advisory Action dated Apr. 20, 2017, in U.S. Appl. No. 15/154,980. |
Advisory Action dated Apr. 6, 2017, in U.S. Appl. No. 15/154,995. |
Advisory Action dated Apr. 2017, in U.S. Appl. No. 15/154,999. |
Advisory Action dated Mar. 31, 2017, in U.S. Appl. No. 15/154,996. |
Advisory Action dated May 3, 2017, in U.S. Appl. No. 15/154,993. |
Corrected Notice of Allowability dated Mar. 10, 2017, in U.S. Appl. No. 15/154,979. |
Final Office Action dated Apr. 10, 2017, in U.S. Appl. No. 15/155,006. |
Final Office Action dated Feb. 24, 2017, in U.S. Appl. No. 15/154,993. |
Final Office Action dated Mar. 1, 2017, in U.S. Appl. No. 15/154,975. |
Final Office Action dated Mar. 13, 2017, in U.S. Appl. No. 15/155,012. |
Final Office Action dated Mar. 31, 2017, in U.S. Appl. No. 15/155,005. |
Final Office Action dated May 15, 2017, in U.S. Appl. No. 15/155,010. |
Final Office Action dated May 4, 2017, in U.S. Appl. No. 15/155,009. |
Non-final Office Action dated Apr. 19, 2017, in U.S. Appl. No. 15/154,974. |
Non-final Office Action dated Mar. 2, 2017, in U.S. Appl. No. 15/154,984. |
Notice of Allowance dated Feb. 14, 2017, in U.S. Appl. No. 15/154,979. |
Notice of Allowance dated Feb. 28, 2017, in U.S. Appl. No. 15/154,990. |
Notice of Allowance dated Mar. 2, 2017, in U.S. Appl. No. 15/154,998. |
Notice of Allowance dated Mar. 31, 2017, in U.S. Appl. No. 15/154,998. |
Notice of Allowance dated May 10, 2017, in U.S. Appl. No. 15/154,988. |
PowerShell Team, Intellisense in Windows PowerShell ISE 3.0, dated Jun. 12, 2012, Windows PowerShell Blog, pp. 1-6 Retrieved: https://biogs.msdn.microsoft.com/powershell/2012/06/12/intellisense-in-windows-powershell-ise-3-0/. |
Smith, Ian. “Guide to Using SQL: Computed and Automatic Columns.” Rdb Jornal, dated Sep. 2008, retrieved Aug. 15, 2016, retrieved from the Internet <URL: http://www.oracle.com/technetwork/products/rdb/automatic-columns-132042.pdf>. |
Hartle, Thom, Conditional Formatting in Excel using CQG's RTD Bate Function (2011), http://news.cqg.com/blogs/exce/l2011/05/conditional-formatting-excel-using-cqgs-rtd-bate-function (last visited Apr. 3, 2019). |
Posey, Brien, “How to Combine PowerShell Cmdlets”, Jun. 14, 2013 Redmond the Independent Voice of the Microsoft Community (Year: 2013). |
Number | Date | Country | |
---|---|---|---|
20160335330 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
62161813 | May 2015 | US |