The present disclosure relates generally to a dynamometer and particularly to a dynamometer that may detect and indicate pressure or force applied by individual portions of the hand or foot such as fingers.
Handgrip dynamometers are instruments for measuring the maximum isometric contraction strength of the hand and forearm muscles. Handgrip dynamometers are used for testing handgrip strength of patients suffering from conditions that impair hand strength and for tracking improvements during rehabilitation. They are also used by athletes involved in strength training or participating in sports in which the hands are used for catching, throwing or lifting such as gymnasts, tennis players and rock climbers.
Prior art handgrip dynamometers, however, are limited in that they may only measure strength of the whole hand. Prior art handgrip dynamometers are also limited in that they measure only contraction strength. In many cases, whole hand or contraction strength measurements are not adequate.
The dynamometers disclosed herein may measure strength at a more granular level by measuring and providing feedback regarding pressure applied by individual portions of the hand or foot, not just the hand as a whole. For example, in one embodiment, a dynamometer may display a representation of pressure applied by individual fingers. In another embodiment, a dynamometer may display a representation of force applied by individual fingers during expansion or spreading of the hand. These embodiments represent improvements over the limitations of the prior art and may help patients and athletes by providing additional measures of conditioning or improvements.
As shown in
The controller 51 may reside within the cylinder 5 of the dynamometer 1 or external to the cylinder 5. The distributed sensor 3 senses compression or contraction force applied by the hand H or fingers F1-F4. The controller 51 is operatively coupled to the distributed sensor 3 and the prompting device 52 and controls the distributed sensor 3 and prompting device 52 when the dynamometer 1 is in use. The dynamometer 1 may, for example, include a connector or I/O port 54 (e.g., USB or micro USB) to connect the dynamometer 1 to an external controller 51 or prompting device 52 or the dynamometer 1 may include a wireless (e.g., Bluetooth) interface 56 to connect the dynamometer 1 to the external controller 51 or the prompting device 52.
The distributed sensor 3 is uniformly distributed on the dynamometer 1. The pad in which the distributed sensor 3 is embedded may have at least 91 cm2 surface area to accommodate a person's hand and the distributed sensor 3 may be configured to sense compression force applied throughout the surface area. The pad 3 may, for example, correspond to fabric produced by BeBop Sensors of Berkeley, Calif. The distributed sensor 3 senses the compression force throughout the surface area, including sensing if more pressure is applied to one area vs another as shown in the “weather map” on the right side of
The controller 51 (e.g., a microprocessor, a central processing unit of a computing device, or an integrated chip) is operatively connected to the distributed sensor 3 and the prompting device 52. The controller 51 receives the sensed compression force from the distributed sensor 3. The controller 51, in turn, calculates and produces a signal to be sent to the prompting device 52 for displaying the feedback. The controller 51 may also compare the sensed compression force to predefined values and provide feedback as to whether such sensed compression force is above or below the predefined values.
Although the dynamometer 1 of the present application is described above in the context of measuring force exerted by a hand H, the dynamometer 1 of the present application may just as well be used for measuring force exerted by a person's foot. The disclosure herein is fully applicable to such an embodiment in which force exerted by a person's foot is measured.
The prompting device 52, remote or local, may also include an audio device (e.g., a speaker) in which a louder sound indicates higher force while a lower sound indicates lower force, for example.
The prompting device 52 may also indicate the sensed exerted force as a single number (e.g., pounds, pounds per square inch, etc.) for the whole hand or for individual portions (e.g., fingers F1-F4) of the hand. For example, the controller 51 may aggregate the information received from the distributed sensor 3 to calculate an equivalent location of the sensed compression force throughout the surface area by locating a center of mass of the exerted force over the surface area of the pad 3. A center of mass is a defined term and may mean an arithmetic mean of all points weighted by a local density or specific weight. The controller 51 may determine the center of mass for the whole pad 3 or local centers of mass corresponding to the individual fingers F1-F4 and thumb T. With that information, the controller 51 may then output the measurement number (e.g., pounds, pounds per square inch, etc.) corresponding to the centers of mass.
In the example of
The controller 51 may provide the feedback information to the prompting device 52 and, instead or in addition, store the information in memory 58 or drive 59 for later use or provide the feedback information to a communications network (e.g., Internet) via I/O Ports 54 or wireless interfaces 56. This information may then be sent remotely and studied/analyzed by medical personnel such as doctors or therapists. By reading the results from a computer, the doctor or therapist may easily monitor a patient's performance and does not need to notate the results because the data may automatically be stored in the computer. Such a system will keep accurate records and save time.
As used herein, an “operable connection” or “operable coupling,” or a connection by which entities are “operably connected” or “operably coupled” is one in which the entities are connected in such a way that the entities may perform as intended. An operable connection may be a direct connection or an indirect connection in which an intermediate entity or entities cooperate or otherwise are part of the connection or are in between the operably connected entities. In the context of signals, an “operable connection,” or a connection by which entities are “operably connected,” is one in which signals, physical communications, or logical communications may be sent or received. Typically, an operable connection includes a physical interface, an electrical interface, or a data interface, but it is to be noted that an operable connection may include differing combinations of these or other types of connections sufficient to allow operable control. For example, two entities can be operably connected by being able to communicate signals to each other directly or through one or more intermediate entities like a processor, operating system, a logic, software, or other entity. Logical or physical communication channels can be used to create an operable connection.
While example systems, methods, and so on, have been illustrated by describing examples, and while the examples have been described in considerable detail, it is not the intention to restrict or in any way limit the scope of the appended claims to such detail. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the systems, methods, and so on, described herein. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention is not limited to the specific details, and illustrative examples shown or described. Thus, this application is intended to embrace alterations, modifications, and variations that fall within the scope of the appended claims. Furthermore, the preceding description is not meant to limit the scope of the invention. Rather, the scope of the invention is to be determined by the appended claims and their equivalents.
To the extent that the term “includes” or “including” is employed in the detailed description or the claims, it is intended to be inclusive in a manner similar to the term “comprising” as that term is interpreted when employed as a transitional word in a claim. Furthermore, to the extent that the term “or” is employed in the detailed description or claims (e.g., A or B) it is intended to mean “A or B or both”. When the applicants intend to indicate “only A or B but not both” then the term “only A or B but not both” will be employed. Thus, use of the term “or” herein is the inclusive, and not the exclusive use. See, Bryan A. Garner, A Dictionary of Modern Legal Usage 624 (3D. Ed. 1995).
Number | Date | Country | |
---|---|---|---|
62540995 | Aug 2017 | US |