Earplug and pumping systems

Information

  • Patent Grant
  • 11857396
  • Patent Number
    11,857,396
  • Date Filed
    Saturday, June 11, 2022
    a year ago
  • Date Issued
    Tuesday, January 2, 2024
    4 months ago
Abstract
An earpiece, earphone, earbud or earplug includes an inflatable element operatively attached to a distal end by an inflation channel, and an anti-distal end of the inflation channel that provides a pressuring force via fluid transfer of a fluid to maintain an expansion of the inflatable element. The inflatable element can be pressurized to a gauge pressure range between 0.05 bar and 3.0 bar. In some embodiments, the inflatable element is pressurized to a gauge pressure range from 0.3 bar to 0.25 bar and maintains such gauge pressure range for at least 12 hours. In some embodiments, the inflatable element uses a material of a predetermined permeability for a given density of fluid and a given thickness of the inflatable element such that an inflation pressure drops from 1.2 atmospheres to 1 atmospheres in 8 hours after the inflatable element is pressurized to 1.2 atmospheres. Other embodiments are disclosed.
Description
FIELD

The embodiments relate in general to devices and methods of earphone, earpiece, earbud, fit and sealing technology, and particularly though not exclusively, is related to earplug and pumping systems for earplugs.


BACKGROUND

Earplugs are currently rated with an EPA governed Noise Reduction Rating (NRR). The Noise Reduction Rating (NRR) is the measurement, in decibels, of how well a hearing protector reduces noise as specified by human subject testing as regulated by the Environmental Protection Agency. The higher the NRR number the greater the noise reduction.


Earplug fit affects the effective noise reduction ratio of an earplug. For example one study illustrated that a good fit of the earplug has an NRR of 33 dB, while the same earplug fitted poorly provided an NRR of 0 dB.


In the industrial noise environment the use of hearing protection is paramount. The correct fit of the hearing protection often determines its usefulness. Thus the fit of an earplug is important. Current earplugs have various levels of ease of fit. Professional training can increase the effectiveness of earplug fit, however many users do not have access to professional training. Thus a system that improves the chance of improved fitting will be beneficial to protecting hearing in many users.


Several systems have been developed in the past. For example: Wasserman (U.S. Pat. No. 2,876,767) illustrates (FIG. 7, U.S. Pat. No. 2,876,767) a system requiring an external pump to inflate an inflatable bladder as does Pierre (FIG. 5, U.S. Pat. No. 4,896,679); Rose (U.S. Pat. No. 4,089,332, FIGS. 1-2) illustrates an earplug 10 with a first end 14, that when deformed into a second stable position results in the extension of a second end, the system lacking a method for maintaining a pressurizing force, thus lending itself to possible de-inflation; Krause (U.S. Pat. No. 5,483,027) illustrates a bi-directionally inserted earplug with a two-way valve to maintain a chamber in an expanded condition, while Michael et al. (U.S. Pat. No. 2,824,558) illustrates an earplug with a one-way valve.


Unlike related art, a simplified system (for ease of adoption) designed for use in a particular and adjustable pressure range to provide the necessary sound isolation would be useful.


SUMMARY

At least one exemplary embodiment is related to an earplug comprising: at least a partially flexible distal end; an inflatable element; and a flexible anti-distal end, where the anti-distal end has at least one portion that is deformable, where the inflatable element is operatively attached to the distal end by an inflation channel, where when the at least one portion is deformed the inflatable element expands to an adjustable pressure, where at least one portion of the anti-distal end provides a pressurizing force to maintain the expansion of the inflatable element.


At least one exemplary embodiment provides the pressurizing force using an elastic membrane.


At least one exemplary embodiment provides the pressurizing force using a plate secured by screwing in the plate to a given position.


At least one exemplary embodiment provides the pressurizing force using a resilient member.


Further areas of applicability of embodiments of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating exemplary embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 illustrates a generic illustration of an inflatable element;



FIGS. 2A and 2B illustrate a generic variable volume inflatable element attached to a reservoir and a stent;



FIGS. 3A and 3B illustrate a generic constant volume inflatable element attached to a reservoir and a stent;



FIGS. 4a and 4b illustrate an earplug including an inflatable element attached to a reservoir and a stent, where an elastic membrane provides a pressurizing force in accordance with at least one exemplary embodiment;



FIGS. 5a and 5b illustrate an earplug including an inflatable element attached to a reservoir and a stent, using a pinchable resilient member to provide a pressurizing force in accordance with at least one exemplary embodiment; and



FIGS. 6A and 6B illustrate an earplug including an inflatable element attached to a reservoir and a stent, using a screwable plate to provide an adjustable pressurizing force in accordance with at least one exemplary embodiment.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

The following description of exemplary embodiment(s) is merely illustrative in nature and is in no way intended to limit the invention, its application, or uses.


Processes, methods, materials and devices known by one of ordinary skill in the relevant arts may not be discussed in detail but are intended to be part of the enabling discussion where appropriate. For example material used for flexible members of various durometer, elastic membrane material, balloon material, may not be specified but are known by one of ordinary skill by earpiece, hearing aid, earplug, and medical angioplasty manufacturers.


Additionally, the size of structures used in exemplary embodiments are not limited by any discussion herein (e.g., the sizes of structures can be macro (millimeter, centimeter, meter, size), micro (micro meter), nanometer size and smaller), and can be used in various orifices besides ear canals although ear canals will be discussed.


The materials used for earplug construction will not be discussed in detail, however any materials, as known by one of ordinary skill in the art of earplug manufacturing and medical balloon manufacturing, can be used to fabricate earplugs in accordance with exemplary embodiments of the present invention. For example Lucite, ultraviolet resin, polyethylene, soft acrylic, soft ultra-violet silicone, polyvinyl chloride, medical polymers, foam, can all be used for various portions of the earplug construction.


At least one exemplary embodiment is directed to an earplug comprising: at least a partially flexible distal end; an inflatable element; and a flexible anti-distal end, where the anti-distal end has at least one portion that is deformable, where the inflatable element is operatively attached to the distal end by an inflation channel, where when the at least one portion is deformed the inflatable element expands to an adjustable pressure, where at least one portion of the anti-distal end provides a pressurizing force to maintain the expansion of the inflatable element.


The distal end can include a flexible and inflexible portion. The flexible portion can be an elastic membrane for example an elastic membrane that can be stretched to several initial lengths then returned to its original size. Many materials can be used (e.g., silicon) that provide a restoring force when deformed (e.g., stretched). Typically such materials have a lower Durometer (e.g., less than 50 Shore).


The inflexible portion can be made of less stretchable material, for example when stretched to less than 100% the material returns to its shape, for example typically such materials have a higher Durometer (e.g., greater than 50 Shore).


The flexible portion can also be a compressible or expandable bladder operatively attached to the inflexible portion.


The deformable portion of the anti-distal end can be any deformable portion of the anti-distal end for example it can be a bladder, or a deformable dome of the anti-distal end, where deformation moves fluid from one section into the inflatable element.


The inflatable element can be any element that can be inflated for example a self contained bladder or balloon, or a sheath around a stent that can expand away from the stent.


The inflatable element can be operatively attached to the distal end by an inflation channel. The inflation channel can be a tube carrying fluid from the anti-distal end to the inflation element, or can be a channel for example within a stent.


The inflatable element can be pressurized via fluid transfer into the inflatable element. For example deformation of a portion of the anti-distal end moves fluid from a chamber (e.g. a bladder) through an inflation channel into the inflation element. A pressure can be chosen (e.g., by deforming a portion of the anti-distal end by a given amount) for the gauge pressure inside the inflation element. Note that the fluid can be water, air, or any type of fluid and gas that provides the requisite time of pressurization. For example if the inflation element is to be pressurized from 0.30 bar gauge pressure to 0.25 bar gauge pressure for 12 hours, then the material requirement for the inflation element and other pneumatic systems can be determined (e.g., the inflation channel can also be designed to reduce permeability within the given limits). Thus in the non-limiting example above a material can be chosen to provide the necessary permeability for the given fluid used (e.g., Teflon for air for 12 hours or more for an inflation element that maintains gauge pressure from 0.30 bar gauge pressure to 0.25 bar gauge pressure).


In accordance with at least one exemplary embodiment a pressurizing force can be applied to the pneumatic system (e.g., bladder in the anti-distal end, the inflation channel and the inflation element). For example a screwed in plate can press against an anti-distal end bladder deforming it increasing the pressure in the pneumatic system, where the thread force maintains the pressurizing force. Additionally other systems can provide the pressurizing force, for example an elastic membrane can provide a restoring force. For example one can pre-pressurize a closed pneumatic system to the desired gauge pressure, then one end pulled (e.g., a plate attached to an elastic membrane pulled), pulling the fluid out of the inflation element, where when the pulling action is released the elastic membrane provides a restoring force that forces the fluid back into the inflation element.


A further exemplary embodiment can use a resilient member to provide a restoring force when deformed. For example a plastic clip can be pulled then released to return to its original shape. In at least one exemplary embodiment a resilient member in the form of an opened plastic clip presses against a bladder, so that when the plastic clip is pinched it closes around a stent and the bladder is free to fill, which if coupled to an inflation element will inflate the inflation element. The volume of the deformation can be calculated to provide the requisite inflation element pressure.


The inflatable element can be a sheath around a stent, where a hole in the stent allows fluid to flow into the sheath stretching the sheath until the orifice in which the sheath is placed is obstructed or occluded. The inflation element can also be a balloon attached to a stent that is inflated or deflated. The inflation element can be made of various elastic materials. Additionally the inflatable element can be a non-elastic material that is preformed to a size and shape when inflated. For example a variable volume balloon can be tight against the stent when deflated. When inflated it can expand until a predesigned shape is obtained, for example by varying the thickness of the balloon along the stent direction. For example a constant volume balloon can be preformed into a shape (e.g., a cone).


The inflatable element can be pressurized to a range of gauge pressures (pressure difference between inside the inflation element and outside the inflation element). For example the inflatable element can be pressurized to a gauge pressure range between 0.05 bar and 3.0 bar. The pressurized inflation element can provide sound isolation when the inflation element occludes an orifice (e.g., ear canal).



FIG. 1 illustrates a generic illustration of an inflatable element 100 including balloon 110. The permeability ε can be expressed in terms of radius 140 R, the internal pressure 150 P1, the outside pressure 130 P0, the temperature T, the volume V, the change of volume 160 ΔV, the change of mass Δm, the surface area A, the permeability ε, a thickness of a membrane 120 δ and time t, as:

ε=[ΔVδ]/[At(P1−P0)]  (1)


For example if air is used, which has a molecular weight of 4.817E-26 Kg/molecule, a density ρ of 1.29 kg/mA3, a temperature of 20 C or 293K, a radius of 7 mm, an internal pressure P1=1.2 atm, and outside pressure of P0=1.0 atm, a surface area of 6.15 cm{circumflex over ( )}2, a thickness of a balloon δ=0.002 inch or 0.005 cm, where the pressure drops from 1.2 atm to 1.0 atm in t=8 hours, a permeability value ε of

ε=1.24E−10 cm{circumflex over ( )}3/(s cm{circumflex over ( )}2 cmHg)  (2)


is obtained. Thus materials that have an equivalent permeability or less will satisfy the design criteria. For example butyl rubber, polystyrene, polyethylene high density, nylon 6, and Teflon and other like materials.



FIGS. 2A and 2B illustrate a generic variable volume inflatable element attached to a reservoir and a stent. FIG. 2A illustrates a non-inflated variable volume balloon having an uninflated volume 220 V1, having an uninflated internal pressure of 150 P1 and an outside pressure of 130 P0. The variable volume balloon can be attached to a reservoir having a pump volume 230 V2. The reservoir can be reduced starting at time t=t0 to a final volume 240 V3 (FIG. 2B) at time t=t1. The decrease of the reservoir volume moves fluid into the variable volume balloon 210, increasing the volume 270 V4, where the radius has increased to 250 R4 and the internal pressure increases to 260 P3. If one assumes an initial volume V1 about 0, V3 about 0, and P1=P0, then one can solve for the volume V4 and the pressure P3 as:

V2=(P3*V4)/P1  (3a)
P3=P1+[(2σ)/R4]  (3b)


Where a is the surface tension of the expanded inflation element. For example if one wishes to have V4=1000 mm{circumflex over ( )}3, P3=1.2 atm and P0=1.0 atm, then V2=1.2 cm {circumflex over ( )}3.



FIGS. 3A and 3B illustrate a generic constant volume inflatable element attached to a reservoir and a stent. In FIG. 3A, the constant volume inflatable element has an initial volume 305 V1, an internal pressure 365 P1 and an outside pressure 130 P0. At time t=t0, the reservoir has a pump volume 330 V2. The reservoir can be reduced to a final volume 340 V3 at time t=t1 (FIG. 3B). The decrease of the reservoir volume moves fluid into the variable volume balloon 310, increasing the volume 370 V4, where the radius has increased to 350 R4 and the internal pressure increases to 360 P3. Assuming that the initial volume 305 V1 is not 0, that 370 V4 is not 0, that 305 V1 is not equal to 370 V4, the reservoir volume 330 V2 can be calculated as:

V2=[(P3*V4)/P1]−V1  (4)


If one assumes that the balloon 310 (inflatable element) is a constant volume, thus V1 is about=V4, then the reservoir volume needed can be expressed as:

V2=[(P3*V4)/P1]−V4  (5)


For example if one designs V4=1000 mm{circumflex over ( )}2, an internal pressure 1.2 atm, an outside pressure of 1.0 atm, one can obtain V2=0.2 cm{circumflex over ( )}3.



FIGS. 4a and 4b illustrate an earplug 400 including an inflatable element 460 attached to a reservoir (e.g., a chamber enclosed by an elastic membrane 430 and a stop flange body 440) and a stent 450, where an elastic membrane 430 provides a pressurizing force in accordance with at least one exemplary embodiment. FIG. 4a illustrates the earplug 400 with an inflated B1 inflation element 460. FIG. 4b illustrates a deflated B2 inflation element 460. For example when a moveable plate 420 in a first position A1 is pulled to position A2, fluid from the inflated inflation element 460 flows into the reservoir via an inflation channel 445, where the elastic membrane 430 provides a restoring and in this example a pressurizing force. In the operation of the exemplary embodiment a thumb can be placed on knob 410 while a finger pulls moveable plate 420.



FIGS. 5a and 5b illustrate an earplug 500 including an inflatable element 560 attached to a reservoir 530 and a stent 550, using a pinchable resilient member 520 to provide a pressurizing force in accordance with at least one exemplary embodiment. The resilient member 520 can have a portion that provides a restoring force equivalent to a spring constant 542. When the resilient member 520 is pinched reservoir 530 expands moving fluid from the inflation element 560 to the reservoir 530. When the resilient member is unpinched the resilient member 520 presses the reservoir 530 against the stop flange 540 where the fluid moves through the inflation channel 545 into the inflation element 560. A stent 550 with an anti-distal end 510 forms a core that the other elements can be anchored to.



FIGS. 6A and 6B illustrate an earplug 600 including an inflatable element 660 attached to a reservoir 630 and a stent 650, using a screwable 605 plate 620 to provide an adjustable pressurizing force in accordance with at least one exemplary embodiment. When the knob 610 is moved from position D to position E, plate 620 presses the reservoir 630 against the stop flange 640 to move fluid through the inflation channel 645 into the inflation element 660. A user can use knob 610 to screw clockwise and anti-clockwise to adjust the deformation of reservoir 630 to move fluid in and out of inflation channel 645 to inflate the inflation element 660.


While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and function.

Claims
  • 1. A device configured to be used in an ear, comprising: a plate;a flexible membrane;a stop flange;a flexible reservoir filled with a fluid, wherein the flexible reservoir is formed by the stop flange, the flexible membrane, and the plate;an inflation channel;an inflatable element operatively attached to the inflation channel;wherein the flexible reservoir is attached to the inflation channel, and wherein the flexible reservoir and the inflation channel and the inflation element form a closed system;wherein the flexible reservoir is configured to be compressed by the plate, wherein a pressing force exerted by the plate onto a portion of the reservoir maintains an expansion of the inflatable element; andwherein moving the plate away from the inflatable element moves fluid from the inflatable element to the flexible reservoir deflating the inflatable element, where the device is configured to be used in ambient environments with ambient pressures ranging from 0.1 atmospheres to 1.5 atmospheres.
  • 2. The device of claim 1, wherein the inflation channel is made of a material of a predetermined permeability and a material of the inflatable element is of a given permeability such that an inflation pressure drops from 1.2 atmospheres to 1 atmospheres in a 8 hour time period after the inflatable element is initially pressurized to 1.2 atmospheres.
  • 3. The device of claim 1, wherein the inflatable element is a balloon or bladder.
  • 4. The device of claim 1, wherein the inflatable element is made of a material having a durometer of 50 Shore or less.
  • 5. The device of claim 1, wherein the flexible reservoir is made of a material having a durometer of 50 Shore or less.
  • 6. The device of claim 1, wherein the inflatable element is made of a material having a durometer that is less than a durometer of the flexible reservoir.
  • 7. The device of claim 1, wherein the inflatable element is pressurized to a gauge pressure range from 0.05 bar to 0.25 bar for a given fluid used within the flexible reservoir.
  • 8. The device of claim 1, wherein the inflatable element is composed of a permeable material so that less than 0.1 bar gauge pressure is leaked in 12 hours.
  • 9. The device of claim 1, where the fluid in the reservoir is a liquid.
  • 10. The device of claim 1, wherein the inflatable element is a pre formed shaped balloon.
  • 11. The device of claim 1, wherein the inflatable element is a variable volume balloon.
  • 12. The device of claim 1, further comprising: a knob.
  • 13. The device of claim 12, wherein the knob is operatively connected to the plate.
  • 14. The device of claim 13, wherein a rotation of the knob moves the plate.
  • 15. The device of claim 14, wherein rotation of the knob clockwise moves the plate toward the inflatable element.
  • 16. The device of claim 14, wherein rotation of the knob counter clockwise moves the plate away the inflatable element.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/920,425, filed 3 Jul. 2020, which is a continuation of U.S. patent application Ser. No. 14/860,617, filed Sep. 21, 2015, which is a continuation of U.S. patent application Ser. No. 13/201,308, filed Jan. 19, 2012, which is a U.S. National Phase Application of PCT International Application No. PCT/US2010/024308, filed Feb. 16, 2010 which claims the benefit of U.S. provisional patent application No. 61/152,545, filed on Feb. 13, 2009, the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (103)
Number Name Date Kind
3876843 Moen Apr 1975 A
4020297 Brodie Apr 1977 A
4054749 Suzuki et al. Oct 1977 A
4088849 Usami et al. May 1978 A
4913165 Fishgoyt Apr 1990 A
4947440 Bateman et al. Aug 1990 A
5138722 Urella Aug 1992 A
5142587 Kobayashi Aug 1992 A
5208867 Stites, III May 1993 A
5267321 Langberg Nov 1993 A
5319163 Scott Jun 1994 A
5395331 O'Neill Mar 1995 A
5483027 Krause Jan 1996 A
5524056 Killion et al. Jun 1996 A
5712453 Bungardt Jan 1998 A
5764781 Ding Jun 1998 A
5903868 Yuen et al. May 1999 A
6021207 Puthuff et al. Feb 2000 A
6021325 Hall Feb 2000 A
6163338 Johnson et al. Dec 2000 A
6163508 Kim et al. Dec 2000 A
6226389 Lemelson et al. May 2001 B1
6298323 Kaemmerer Oct 2001 B1
6321070 Clark Nov 2001 B1
6339648 McIntosh Jan 2002 B1
6359993 Brimhall Mar 2002 B2
6400652 Goldberg et al. Jun 2002 B1
6415034 Hietanen Jul 2002 B1
6473512 Juneau Oct 2002 B1
6567524 Svean et al. May 2003 B1
RE38351 Iseberg et al. Dec 2003 E
6661901 Svean et al. Dec 2003 B1
6728385 Kvaloy et al. Apr 2004 B2
6748238 Lau Jun 2004 B1
6754359 Svean et al. Jun 2004 B1
6804638 Fiedler Oct 2004 B2
6804643 Kiss Oct 2004 B1
7014657 Merchant Mar 2006 B1
7072482 Van Doorn et al. Jul 2006 B2
7107109 Nathan et al. Sep 2006 B1
7209569 Boesen Apr 2007 B2
7430299 Armstrong et al. Sep 2008 B2
7433714 Howard et al. Oct 2008 B2
7450730 Bertg et al. Nov 2008 B2
7477756 Wickstrom et al. Jan 2009 B2
7562020 Le et al. Jul 2009 B2
7688983 Voix Mar 2010 B2
7756285 Sjursen et al. Jul 2010 B2
7778434 Juneau et al. Aug 2010 B2
7801318 Barthel Sep 2010 B2
7920557 Moote Apr 2011 B2
8014553 Radivojevic et al. Sep 2011 B2
8401200 Tiscareno Mar 2013 B2
8493204 Wong et al. Jul 2013 B2
8550206 Keady Oct 2013 B2
8750295 Liron Jun 2014 B2
8774433 Goldstein Jul 2014 B2
8774435 Ambrose Jul 2014 B2
9037458 Park et al. May 2015 B2
9084060 Liu Jul 2015 B2
9123343 Kurki-Suonio Sep 2015 B2
9135797 Couper et al. Sep 2015 B2
9293128 Goldstein Mar 2016 B2
20010046304 Rast Nov 2001 A1
20020106091 Furst et al. Aug 2002 A1
20020118798 Langhart et al. Aug 2002 A1
20030060799 Arenberg Mar 2003 A1
20030161097 Le et al. Aug 2003 A1
20030165246 Kvaloy et al. Sep 2003 A1
20040042103 Mayer Mar 2004 A1
20040109668 Stuckman Jun 2004 A1
20040125965 Alberth, Jr. et al. Jul 2004 A1
20040190737 Kuhnel et al. Sep 2004 A1
20040196992 Ryan Oct 2004 A1
20040203351 Shearer et al. Oct 2004 A1
20050078838 Simon Apr 2005 A1
20050123146 Voix et al. Jun 2005 A1
20050288057 Lai et al. Dec 2005 A1
20060067551 Cartwright et al. Mar 2006 A1
20060083395 Allen et al. Apr 2006 A1
20060092043 Lagassey May 2006 A1
20060195322 Broussard et al. Aug 2006 A1
20060204014 Isenberg et al. Sep 2006 A1
20070043563 Comerford et al. Feb 2007 A1
20070044922 Mischler Mar 2007 A1
20070086600 Boesen Apr 2007 A1
20070189544 Rosenberg Aug 2007 A1
20070291953 Ngia et al. Dec 2007 A1
20080037801 Alves et al. Feb 2008 A1
20080165988 Terlizzi et al. Jul 2008 A1
20080298626 Dean Dec 2008 A1
20090010456 Goldstein et al. Jan 2009 A1
20090024234 Archibald Jan 2009 A1
20100061564 Clemow et al. Mar 2010 A1
20100296668 Lee et al. Nov 2010 A1
20110096939 Ichimura Apr 2011 A1
20110264447 Visser et al. Oct 2011 A1
20110293103 Park et al. Dec 2011 A1
20130177179 Ambrose Jul 2013 A1
20140247948 Goldstein Sep 2014 A1
20140247952 Goldstein Sep 2014 A1
20160104452 Guan et al. Apr 2016 A1
20180176681 Asada Jun 2018 A1
Foreign Referenced Citations (3)
Number Date Country
1519625 Mar 2005 EP
2190391 Jun 2010 EP
2006037156 Apr 2006 WO
Related Publications (1)
Number Date Country
20230016247 A1 Jan 2023 US
Provisional Applications (1)
Number Date Country
61152545 Feb 2009 US
Continuations (3)
Number Date Country
Parent 16920425 Jul 2020 US
Child 17838160 US
Parent 14860617 Sep 2015 US
Child 16920425 US
Parent 13201308 US
Child 14860617 US