1) Field of the Invention
This invention relates to an easy-opening closure for hermetic sealing of an open end of a retortable container and an easy-opening container that is hermetically sealed by such a closure.
2) Description of Related Art
A variety of closures are known for the hermetic sealing of a container, such as conventional tin-plated steel cans that are widely used for containing food products. Retortable containers are those that can withstand a pasteurization or retort process comprising heat and pressure for preserving the food contents of the container. During retort, the container can be subjected to temperatures above 212° F. and up to 250° F. under pressures of 15 to 30 psi.
Easy-opening containers are those that can be opened without undue effort and without the use of a special tool such as a rotary can opener. In order for an easy-opening container to be retortable, the closure must be sufficiently strong to resist stresses that develop as a result of the retort heat and pressure but easily overcome during opening. One conventional easy-opening, retortable container includes a closure that is stronger in shear than tension. The closure is strong enough to withstand the shear force that develops during retort, while a relatively small tensile force is required to open the container. For example, U.S. Pat. No. 5,752,614, titled “Easy-Opening Closure for Hermetic Sealing a Retortable Container,” to Nelson describes an easy-opening closure. The closure includes a metal end ring that is adapted to be seamed to an open end of a retortable container and defines a central opening of the container. An edge of the end ring that defines the central opening is preferably rolled. A membrane patch covers the opening and is bonded to the end ring. The bond is unaffected during retort processing, but has a predetermined tensile force strength that is preferably less than 5 psi to allow peeling of the membrane patch from the end ring. Thus, the container can be retorted and subsequently easily opened. However, because the rolled edge is positioned within the container, the contents of the container can contact the edge. Contaminants trapped within the rolled edge, for example, debris or moisture trapped during manufacture of the end ring, can be introduced into the container and thereby contaminate the contents. Additionally, corrosion of the edge can result, for example during retort, also resulting in contamination of the contents of the container. In some embodiments, a membrane ring, which extends from the end ring to the membrane patch, acts as a barrier between the edge and the contents of the container. During retort, however, gas and/or moisture contained in the rolled edge can expand and stress the bonds that hold the membrane ring to the end ring and the membrane patch. A failure of either bond can result in contamination of the contents, which can be difficult to detect without opening the container.
Another container closure known in the art includes a metal end ring R with a folded edge E, as shown in
Thus, there exists a need for an easy-opening closure for hermetically sealing an open end of a retortable container and an easy-opening container that is hermetically sealed by such a closure. The closure should be strong enough to withstand the stresses induced during retort, but easily removed by a user. Additionally, the closure should reduce the likelihood of contamination to the contents of the container, for example, during assembly of the container, during retort, and after opening the container.
It is an object of the present invention to further improve the closure as described, for example, in the above Nelson patent, by providing a closure which resists the forces produced by internal pressures and temperatures during retort processing, yet which is easily operable by the consumer.
The present invention provides an easy-opening, retortable container for hermetic sealing and a closure for such a container. A metal end ring is folded into the container and a first membrane patch provides a barrier between an edge of the ring and the contents of the container. Advantageously, moisture, gas, and debris trapped by the end ring and/or the first membrane patch are minimized, and the risk of contamination of the contents of the container is reduced.
According to one embodiment, the container includes a base portion with a bottom and side that define an interior space and an open end that is closed by the closure. The closure includes the metal end ring, the first membrane patch, and a second membrane patch. The end ring has a deformable outside peripheral area adapted to be joined to the open end of the retortable container, for example, by a double seam. An intermediate area extends radially inward from the outside peripheral area and defines an opening to the interior of the container. A folded area is folded into the interior of the container and extends radially outward from the opening and substantially parallel to at least an adjacent portion of the intermediate area, for example, in abutting contact with the adjacent portion. The first membrane patch has an outside peripheral area attached to an under side of the intermediate area by a bond and an inside peripheral area extending inwardly into the opening, thus preventing contamination of contents of the container by the metal end. The second membrane patch covers the opening and has an outer peripheral area that overlaps and is attached to an upper side of the first membrane patch. The second membrane patch can also be bonded to the end ring. The bonds have predetermined shear and tensile force strengths sufficient to withstand shear and tensile forces created during retort processing of the container, while allowing easy opening of the container by peeling the second membrane patch. For example, each bond can have a shear force strength greater than 15 psi and a tensile force strength less than 5 psi. According to one aspect of the invention, each of the bonded surfaces is a polypropylene heat-sealable surface. Either of the first and second membrane patches can define one or more apertures therethrough.
According to another embodiment of the invention, the first membrane patch defines a fail portion, such as a circumferentially-extending score, disposed between the bonds with the end ring and the second membrane patch such that the first membrane patch tears at the fail portion when the second membrane patch is pulled from the closure.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
Referring now to
The openable first end 16 can be closed by the closure 40 such that the base portion 12 and the closure 40 define an interior space 22 therein, which can be hermetically sealed. As shown in
The closure 40 also includes a first membrane patch 60, which can be bonded by a bond 62 to the end ring 50, for example, at the peripheral area 51, the intermediate area 52, and/or the folded area 56. For example, the first membrane patch 60 can extend radially outward from the opening 54, and the bond 62 can join the patch 60 to the intermediate area 52 and the folded area 56 so that the first membrane patch 60 provides a barrier between the interior space 22 of the container 10 and the edge 58 of the end ring 50. The first membrane patch 60 can be ring-shaped, as shown in
A second membrane patch 70 is disposed on the end ring 50 so that the patch 70 closes the opening 54, and preferably so that the patch 70 hermetically seals the opening 54. For example, the second membrane patch 70 can overlap a portion of the first membrane patch 60 as shown in
The second membrane patch 70 can also be of a sufficient size to cover the opening 54. An outer peripheral area 74 of the patch 70 can overlap the end ring 50, and a bond 76 can be provided for joining the patch 70 to the end ring 50, for example, an upper side of the intermediate area 52. Preferably, the volumes of enclosed spaces 64, 65 between the first membrane patch 60, the end ring 50, and the second membrane patch 70 are small so that expansion of gas and/or moisture contained by the spaces 64, 65 during retort does not break the bonds 62, 72, 76. For example, the folded area 56 can be folded against the intermediate area 52 to make contiguous abutting contact therewith, thus providing little or no space between the intermediate and folded areas 52, 56 and minimizing the volume of the spaces 64, 65. Minimizing the volumes of the spaces 64, 65 and the gap between the intermediate and folded areas 52, 56 in turn minimizes the moisture and/or gases trapped therein which would tend to expand and exert pressure on the bonds 62, 72, 76 during retort processing. The first and second membrane patches 60, 70 can comprise a variety of materials, including metal foils formed of tin or aluminum, polymers, or composite laminates. The second membrane patch 70 can also include a tab portion 78 or other member or feature for facilitating the user's grasp of the patch 70.
Preferably, the closure 40 provides a hermetic seal to the container 10 such that the container 10 can be used for storing food items and other items requiring a hermetic seal or a reduced or enhanced storage pressure. The bonds 62, 72, 76 can be sufficiently strong for resisting pressure developed in the container 10 during the retort process. Further, one or more of the bonds 62, 72, 76 can be strong enough to resist the pressure during the retort, but weak enough to allow the closure 10 to be easily opened by the user. For example, the bond 62 between the first membrane patch 60 and the end ring 50 can have a predetermined shear force strength of greater than 15 psi to resist pressure in the container 10 during retort. Similarly, the bonds 72, 76 between the first membrane patch 60, the second membrane patch 70, and the end ring 50 separately or in combination can have a predetermined shear force strength of greater than 15 psi. At least one of the bonds 62, 72, 76 preferably also has a sufficiently low tensile force strength to allow easy opening of the container 10. For example, the bond 76 between the second membrane patch 70 and the end ring 50 can have a tensile force strength of less than about 5 psi.
The bonds 62, 72, 76 can be formed by providing an adhesive or heat-sealable surfaces. In one preferred embodiment, the end ring 50 is formed of steel with a heat-sealable coating or laminate, for example, a polymer dispersion. The polymer is preferably one that can withstand the temperature and pressures associated with the retort process, such as polypropylene. The first membrane patch 60 can include one or more polypropylene heat-sealable surfaces, and the second membrane patch 70 can also comprise a polypropylene heat-sealable bottom surface. For example, the first membrane patch 60 can be formed of a multiple-layer material having an outside layer of polypropylene, and the second membrane patch 70 can include a polypropylene heat seal layer at least on the bottom thereof. The second membrane patch 70 can also include additional layers such as a foil backbone layer and one or more layers, such as a polyester laminate, on top of the foil layer for additional strength. The polypropylene heat seal layers can be cast polypropylene, blown polypropylene or can be in the form of a co-extrusion. With the use of a polypropylene bottom layer on the second membrane patch 70, polypropylene upper and lower layers on the first membrane patch 60, and polypropylene upper and lower layers on the end ring 50, each of the bonds 62, 72, 76 is a heat seal bond, which can be formed by heating and pressing together the heat-sealable surfaces. These heat seal bonds can vary between a fusion bond which gives the maximum strength in both shear and tensile, to a heat seal bond which provides sufficient strength in shear to resist the retort forces while being sufficiently weak in tension to allow peeling of the bond.
Further, the score 66 in the first membrane patch 60 can have a tensile force strength of less than about 5 psi. Thus, the closure 40 is strong enough to resist the pressure associated with the retort process, but allows the user to peel the second membrane patch 70 in a direction 80 from the container 10 without exerting an excessive force, thereby breaking or tearing the first membrane patch 60 at the score 66, as shown in
As shown in
As shown in
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
3195763 | Fried et al. | Jul 1965 | A |
3195764 | Fried et al. | Jul 1965 | A |
3303958 | Taylor | Feb 1967 | A |
3463348 | Pound et al. | Aug 1969 | A |
3701453 | Platt et al. | Oct 1972 | A |
3784048 | McKernan | Jan 1974 | A |
3942676 | Beckers et al. | Mar 1976 | A |
3990603 | Brochman | Nov 1976 | A |
4078694 | Gnyp et al. | Mar 1978 | A |
4253584 | Bloeck et al. | Mar 1981 | A |
4637543 | Kücherer | Jan 1987 | A |
4890759 | Scanga et al. | Jan 1990 | A |
4940158 | Farrell et al. | Jul 1990 | A |
5069355 | Matuszak | Dec 1991 | A |
5328045 | Yoshida | Jul 1994 | A |
5353943 | Hayward | Oct 1994 | A |
5395005 | Yoshida | Mar 1995 | A |
5752614 | Nelson et al. | May 1998 | A |
6601727 | Sauer et al. | Aug 2003 | B1 |
Number | Date | Country |
---|---|---|
0 306 982 | Mar 1989 | EP |
0 408 268 | Jan 1991 | EP |
2 244 254 | Nov 1991 | GB |
Number | Date | Country | |
---|---|---|---|
20040089664 A1 | May 2004 | US |