1. Field of the Invention
Embodiments of the invention generally relate to removal of a deposited conductive layer along an edge of a substrate. More particularly, embodiments of the invention relate to an electrode configured to polish a substrate edge during electrochemical mechanical processing of a substrate face.
2. Description of the Related Art
In the fabrication of integrated circuits (IC) and other electronic devices, deposition of a conductive layer on a substrate, such as a copper layer used to fill features formed within a dielectric material, results in excess copper deposited on a face of the substrate and a peripheral edge of the substrate that wraps onto the face. The excess copper on the face can cause problems such as shorts in the circuit. Additionally, the excess copper extending onto the edge of the substrate can lead to delamination of the copper layer and other problems even if the edge portion is part of an unusable section of the substrate. Therefore, the excess copper must be removed from both the edge and the face of the substrate prior to subsequent processing of the substrate, which may include the addition and removal of additional layers of conducting, semiconducting, and dielectric materials in order to form multilevel interconnects of the integrated circuit.
Electrochemical Mechanical Processing (Ecmp) provides one technique used to remove the excess copper from the face of the substrate surface by electrochemical dissolution while concurrently polishing the substrate with reduced mechanical abrasion as compared to conventional Chemical Mechanical Polishing (CMP) processes. Electrochemical dissolution is performed by applying a bias between a cathode and the substrate surface to remove the copper from the substrate surface into a surrounding electrolyte. The bias may be applied to the substrate surface by a conductive contact disposed on or through a polishing material upon which the substrate is processed. The mechanical component of the Ecmp polishing process is provided by a relative motion between the substrate and the polishing material that enhances the removal of the copper from the substrate. Direct contact between the substrate and the polishing material removes a passivation layer protecting the copper, thereby enabling the polishing and planarization via Ecmp.
Conventional CMP effectively only removes the excess copper on the face of the substrate and not the edge of the substrate since the polishing material does not contact the edge of the substrate. Therefore, an edge bead removal (EBR) step is currently required between the deposition step and the conventional CMP process. The EBR may occur within the same system used for deposition and includes the additional time consuming process of spinning the substrate as a nozzle directs an etching solution onto the excess copper along the edge of the substrate. The nozzle for the EBR requires adjustments and tuning in order to attempt to selectively direct the etching solution at only the desired edge portion of the substrate. Thus, the additional EBR step in the IC manufacturing increases costs by slowing throughput, increasing the overall complexity of the system used for deposition, and requiring use of additional consumable material.
Therefore, there exists a need for an improved method and apparatus for removal of a deposited conductive layer along an edge of a substrate.
The invention generally relates to methods and apparatus for removal of a deposited conductive layer along an edge of a substrate using an electrode configured to electro polish a substrate edge. The electro polishing of the substrate edge may occur simultaneously during electrochemical mechanical processing (Ecmp) of a substrate face. In one embodiment, a power source applies a bias between the substrate and at least two electrodes. The electrodes form a first electrode zone proximate the substrate edge at a sufficient potential to electro polish the substrate edge, thereby removing the conductive layer from the substrate edge. A second electrode zone with a lower potential than the first electrode zone is aligned proximate the substrate face during processing to enable Ecmp of the substrate face.
So that the manner in which the above recited features of the invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The invention generally relates to the edge bead removal (EBR) from a substrate by an electro polishing process. The electro polishing process may occur simultaneously during electrochemical mechanical processing (Ecmp) of the substrate using one or more electrodes positioned proximate to the edge of the substrate and having a sufficient potential to selectively electro polish the edge. While an exemplary Ecmp station will be described herein for utilizing the electrode to electro polish the edge, it is contemplated that that the electrode may be utilized without a polishing pad in stations other than an Ecmp platen in order to electro polish the edge of the substrate. Further, any Ecmp platen and polishing pad may be utilized for polishing the substrate when the electrode is part of an Ecmp station. For example, other Ecmp stations may use different carrier heads and/or different platen assemblies than those described herein without departing from the scope of the invention.
The carrier head assembly 118 generally includes a drive system 102 coupled to a carrier head 122 for providing at least rotational motion to the carrier head 122. The carrier head 122 additionally may actuate toward the Ecmp platen 132 such that the substrate 120 retained in the carrier head 122 disposes against a processing surface 104 of the Ecmp platen 132 during processing. The carrier head 122 includes a housing 124 and a retaining ring 126 that define a center recess, which retains the substrate 120. The carrier head 122 may be a TITAN HEAD™ or TITAN PROFILER™ wafer carrier manufactured by Applied Materials, Inc., of Santa Clara, Calif.
The Ecmp platen 132 generally includes the platen assembly 142 having an upper platen 114 and a lower platen 148 rotationally disposed on a base 158. A bearing 154 between the platen assembly 142 and the base 158 facilitates rotation of the platen assembly 142 relative to the base 158. A motor 160 provides the rotational motion to the platen assembly 142. A top surface 116 of the upper platen 114 supports the polishing pad assembly 106 thereon. The lower platen 148 couples to the upper platen 114 by any conventional coupling, such as a plurality of fasteners (not shown). A plurality of locating pins 146 (one is shown in
A plenum 138 defined in the platen assembly 142 may be partially formed in at least one of the upper or lower platens 114, 148. In the embodiment depicted in
At least one contact assembly 134 is disposed on the platen assembly 142 along with the polishing pad assembly 106. The at least one contact assembly 134 extends at least to or beyond the upper surface of the polishing pad assembly 106 and is adapted to electrically couple the substrate 120 to a power source 166. Counter electrodes (described below) of the polishing pad assembly 106 couple to different terminals of the power source 166 so that an electrical potential may be established between the substrate 120 and the counter electrodes. In other words, the contact assembly 134 biases the substrate 120 by electrically coupling the substrate 120 to one terminal of the power source 166 during processing while the substrate 120 is held against the polishing pad assembly 106. The polishing pad assembly 106 couples to another terminal of the power source 166. The electrolyte, which is introduced from the electrolyte source 170 and is disposed into the Ecmp platen, completes an electrical circuit between the substrate 120 and the counter electrodes. The electrically conductive electrolyte assists in the removal of material from the surface and edge of the substrate 120.
The conductive layer 210 typically includes a corrosion resistant conductive material, such as metals, conductive alloys, metal coated fabrics, conductive polymers, conductive pads, and the like. Conductive metals include Sn, Ni, Cu, Au, and the like. Conductive metals also include a corrosion resistant metal such as Sn, Ni, or Au coated over an active metal such as Cu, Zn, Al, and the like. Conductive alloys include inorganic alloys and metal alloys such as bronze, brass, stainless steel, or palladium-tin alloys, among others. Magnetic attraction, static attraction, vacuum, adhesives, or the like holds the conductive layer 210 on the top surface 116 of the upper platen 114 of the platen assembly 142. Other layers, such as release films, liners, and other adhesive layers, may be disposed between the conductive layer 210 and the upper platen 114 to facilitate ease of handling, insertion, and removal of the polishing pad assembly 106 in the processing station 100.
The conductive layer 210 includes at least an inner counter electrode 209 and an outer counter electrode 211 that are separated from one another by a gap 213 or other dielectric spacer. A first terminal 202 facilitates coupling of the inner electrode 209 to the power source 166, and a second terminal 203 facilitates coupling of the outer electrode 211 to the power source 166. For example, stainless steel screws (not shown) respectively secure leads 204, 205 of the power source 166 with the terminals 202, 203. The power source 166 supplies a first voltage to the outer electrode 211 that is higher than a second voltage supplied to the inner electrode 209. Thus, the conductive layer 210 comprises at least two independent electrode zones defined by the electrodes 209, 211 and isolated from each other. The conductive layer 210 should also be fabricated of a material compatible with electrolyte chemistries to minimize cross-talk between zones of the electrodes 209, 211. For example, metals stable in the electrolyte chemistries are able to minimize zone cross-talk.
The outer electrode 211 substantially circumscribes an outer perimeter of the polishing pad assembly 106 such that the zone of the outer electrode 211 extends at least to an edge 220 of the substrate 120 as the substrate 120 and the platen assembly 142 move relative to each other. The zone of the inner electrode 209 extends across an area corresponding to a face 221 of the substrate 120 as the substrate 120 and the platen assembly 142 move relative to each other. Proximity of the outer electrode 211 with respect to the edge 220 and the inner electrode 209 with respect to the face 221 ensures that the zones of the electrodes 209, 211 extend to the appropriate portions of the substrate 120. During Ecmp, the zones of each of the electrodes 209, 211 substantially remain proximate the edge 220 and the face 221 of the substrate 120, respectively. The head may sweep such that sometimes the edge 220 is in proximity of the inner counter electrode 209.
In operation, the first voltage applied to the inner electrode results in the typical Ecmp process of the face 221 of the substrate 120 due to a combination of electrochemical dissolution and abrasion from direct contact of a copper layer 222 with the processing surface 214. The contact between the copper layer 222 and the processing surface 214 removes a passivation layer from the copper layer 222 and enables polishing and planarization of the face 221. As shown in
In a particularly advantageous aspect of the invention, the high voltage difference between the outer electrode 211 and the substrate 120 removes the copper layer 222 along the edge 220 of the substrate 120 during Ecmp without requiring the separate EBR step. The power source 166 supplies the second voltage to the outer electrode 211 such that the voltage difference between the outer electrode 211 and the substrate 120 is sufficient to remove the copper layer 222 under the action of the bias without requiring any abrasion from the processing surface 214. While the passivation layer protects the copper layer 222 from the voltage difference between the substrate 120 and the inner electrode 209 at the first voltage, the passivation layer does not protect the copper layer 222 from the high voltage difference between the substrate 120 and the outer electrode 211 at the second voltage. Thus, the second voltage supplied to the outer electrode 211 enables removal or polishing of the copper layer 222 around the edge 220 of the substrate 120 via an electro polishing process. Control of the copper layer 222 removal from the edge 220 of the substrate 120 simply requires adjusting the voltage supplied to the outer electrode 211.
The outer electrode 211 selectively removes the copper layer 222 from the edge 220 of the substrate 120 and possibly a small perimeter of the face 221 adjacent the edge 220 since the outer electrode 211 only faces or is proximate the edge 220. Therefore, the outer electrode 211 only electro polishes the edge 220 while the remainder of the substrate 120 facing or proximate the inner electrode 209 is polished via the Ecmp technique. The amount of the copper layer 222 removed around the perimeter of the face 221 depends on the level of the second voltage of the outer electrode 211 and the proximity of the outer electrode 211 to the perimeter of the face 221. The electro polishing of the edge 220 may occur simultaneously with Ecmp of the face 221 such that removal of the copper layer 222 from the edge 220 does not affect throughput during processing of the substrate 120.
The voltage supplied to the inner electrode 209 depends on the working range of the Ecmp system and chemistry used therewith in order to obtain the required Ecmp performance such as rate, polishing profile, planarization, defects and surface roughness. To permit the Ecmp polishing of the face 221 of the substrate 120, the power source 166 preferably supplies a positive bias of approximately zero volts (V) (usually grounded) to the substrate 120 and supplies the first voltage to the inner electrode 209 at preferably from zero V to approximately −5 V, most preferably approximately −2 V or −3 V. The power source 166 supplies the second voltage to the outer electrode 211 at a sufficient voltage to electro polish the copper layer 222. Therefore, the power source 166 preferably supplies the second voltage to the outer electrode 211 at preferably −4 V to −20 V, most preferably approximately −10 V.
While a minimum of two separate electrode zones are required to provide the separate electro polishing and Ecmp of the substrate as described herein, additional electrodes providing additional zones may be utilized to tailor Ecmp performance to obtain good uniformity across the face 221 of the substrate 120. Preferably, the number of zones varies from 3 to 5 with the outermost zone dedicated to electro polishing the copper layer 222 from the edge 220 such as provided by the outer electrode 211.
While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. Provisional Application Ser. No. 60/579,098, filed Jun. 11, 2004, and is a continuation-in-part of U.S. patent application Ser. No. 10/727,724, filed Dec. 3, 2003 now U.S. Pat No. 7,077,721, which is a continuation-in-part of U.S. patent application Ser. No. 10/642,128, filed Aug. 15, 2003 now U.S. Pat. No. 6,962,524 (hereinafter the '128 application). The '128 application is a continuation-in-part of U.S. patent application Ser. No. 10/608,513, filed Jun. 26, 2003 (hereinafter the '513 application), which is a continuation-in-part of U.S. patent application Ser. No. 10/140,010, filed May 7, 2002 now U.S. Pat. No. 6,979,248. The '513 application is also a continuation-in-part of co-pending U.S. patent application Ser. No. 10/211,626, filed Aug. 2, 2002, which is a continuation-in-part of U.S. patent application Ser. No. 10/033,732, filed Dec. 27, 2001 now U.S. Pat. No. 7,066,800, which is a continuation-in-part of U.S. patent application Ser. No. 09/505,899, filed Feb. 17, 2000, now U.S. Pat. No. 6,537,144. The '513 application is additionally a continuation-in-part of U.S. patent application Ser. No. 10/210,972, filed Aug. 2, 2002, which is also a continuation-in-part of U.S. patent application Ser. No. 09/505,899, filed Feb. 17, 2000, now U.S. Pat. No. 6,537,144. The '513 application is further a continuation-in-part of U.S. patent application Ser. No. 10/151,538, filed May 16, 2002 now abandoned. The '128 application is also a continuation-in-part of U.S. patent application Ser. No. 10/244,697, filed Sep. 16, 2002 now U.S. Pat. No. 6,991,526, which is a continuation-in-part of U.S. application Ser. No. 10/244,688, filed Sep. 16, 2002, now U.S. Pat. No. 6,848,970, and of U.S. patent application Ser. No. 10/391,324, filed Mar. 18, 2003. All of the above referenced applications are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1601642 | Parker | Sep 1926 | A |
1927162 | Fiedler et al. | Sep 1933 | A |
2112691 | Crowder | Mar 1938 | A |
2240265 | Nachtman | Apr 1941 | A |
2392687 | Nachtman | Jan 1946 | A |
2431065 | Miller | Nov 1947 | A |
2451341 | Jernstedt | Oct 1948 | A |
2453481 | Wilson | Nov 1948 | A |
2454935 | Miller | Nov 1948 | A |
2456185 | Grube | Dec 1948 | A |
2457510 | van Omum | Dec 1948 | A |
2458676 | Brenner et al. | Jan 1949 | A |
2461556 | Lorig | Feb 1949 | A |
2473290 | Millard | Jun 1949 | A |
2477808 | Jones | Aug 1949 | A |
2479323 | Davis | Aug 1949 | A |
2480022 | Hogaboom | Aug 1949 | A |
2490055 | Hoff | Dec 1949 | A |
2495695 | Camin et al. | Jan 1950 | A |
2500205 | Schaefer | Mar 1950 | A |
2500206 | Schaefer et al. | Mar 1950 | A |
2503863 | Bart | Apr 1950 | A |
2506794 | Kennedy et al. | May 1950 | A |
2509304 | Klein | May 1950 | A |
2512328 | Hays | Jun 1950 | A |
2517907 | Mikulas | Aug 1950 | A |
2519945 | Twele et al. | Aug 1950 | A |
2530677 | Berkenkotter et al. | Nov 1950 | A |
2535966 | Teplitz | Dec 1950 | A |
2536912 | Cobertt | Jan 1951 | A |
2539898 | Davis | Jan 1951 | A |
2540175 | Rosenqvist | Feb 1951 | A |
2544510 | Prahl | Mar 1951 | A |
2549678 | Flandt | Apr 1951 | A |
2544943 | Farmer | May 1951 | A |
2556017 | Vonada | Jun 1951 | A |
2560534 | Adler | Jul 1951 | A |
2560966 | Lee | Jul 1951 | A |
2569577 | Reading | Oct 1951 | A |
2569578 | Rieger | Oct 1951 | A |
2571709 | Gray | Oct 1951 | A |
2576074 | Nachtman | Nov 1951 | A |
2587630 | Konrad et al. | Mar 1952 | A |
2619454 | Zapponi | Nov 1952 | A |
2633452 | Hogaboom, Jr. et al. | Mar 1953 | A |
2646398 | Henderson | Jul 1953 | A |
2656283 | Fink et al. | Oct 1953 | A |
2657177 | Rendel | Oct 1953 | A |
2658264 | Toulmin | Oct 1953 | A |
2657457 | Toulmin | Nov 1953 | A |
2673838 | Vonada | Mar 1954 | A |
2674550 | Dunlevy et al. | Apr 1954 | A |
2675348 | Greenspan | Apr 1954 | A |
2680710 | Kenmore et al. | Jun 1954 | A |
2684939 | Geese | Jul 1954 | A |
2696859 | Gray et al. | Aug 1954 | A |
2689215 | Bart | Sep 1954 | A |
2695269 | de Witz et al. | Nov 1954 | A |
2698832 | Swanson | Jan 1955 | A |
2706173 | Wells et al. | Apr 1955 | A |
2706175 | Licharz | Apr 1955 | A |
2708445 | Manson et al. | May 1955 | A |
2710834 | Vrilakas | Jun 1955 | A |
2711993 | Lyon | Jun 1955 | A |
3162588 | Bell | Dec 1964 | A |
3334041 | Dyer et al. | Aug 1967 | A |
3433730 | Kennedy et al. | Mar 1969 | A |
3448023 | Bell | Jun 1969 | A |
3476677 | Corley et al. | Nov 1969 | A |
3607707 | Chenevier | Sep 1971 | A |
3873512 | Latanision | Mar 1975 | A |
3942959 | Markoo et al. | Mar 1976 | A |
3992178 | Markoo et al. | Nov 1976 | A |
4047902 | Wiand | Sep 1977 | A |
4082638 | Jumer | Apr 1978 | A |
4119515 | Costakis | Oct 1978 | A |
4125444 | Inoue | Nov 1978 | A |
4312716 | Maschler et al. | Jan 1982 | A |
4523411 | Freerks | Jun 1985 | A |
4704511 | Miyano | Nov 1987 | A |
4713149 | Hoshino | Dec 1987 | A |
4752371 | Kreisel et al. | Jun 1988 | A |
4772361 | Dorsett et al. | Sep 1988 | A |
4793895 | Kaanta et al. | Dec 1988 | A |
4839993 | Masuko et al. | Jun 1989 | A |
4934102 | Leach et al. | Jun 1990 | A |
4954141 | Takiyama et al. | Sep 1990 | A |
4956056 | Zubatova et al. | Sep 1990 | A |
5011510 | Hayakawa et al. | Apr 1991 | A |
5061294 | Harmer et al. | Oct 1991 | A |
5066370 | Andreshak et al. | Nov 1991 | A |
5096550 | Mayer et al. | Mar 1992 | A |
5108463 | Buchanan | Apr 1992 | A |
5136817 | Tabata et al. | Aug 1992 | A |
5137542 | Buchanan et al. | Aug 1992 | A |
5203884 | Buchanan et al. | Apr 1993 | A |
5217586 | Datta et al. | Jun 1993 | A |
5225034 | Yu et al. | Jul 1993 | A |
5257478 | Hyde et al. | Nov 1993 | A |
5328716 | Buchanan | Jul 1994 | A |
5478435 | Murphy et al. | Dec 1995 | A |
5534106 | Cote et al. | Jul 1996 | A |
5543032 | Datta et al. | Aug 1996 | A |
5560753 | Schnabel et al. | Oct 1996 | A |
5562529 | Kishii et al. | Oct 1996 | A |
5567300 | Datta et al. | Oct 1996 | A |
5575706 | Tsai et al. | Nov 1996 | A |
5578362 | Reinhardt et al. | Nov 1996 | A |
5624300 | Kishii et al. | Apr 1997 | A |
5633068 | Ryoke et al. | May 1997 | A |
5637031 | Chen | Jun 1997 | A |
5654078 | Ferronato | Aug 1997 | A |
5702811 | Ho et al. | Dec 1997 | A |
5738574 | Tolles et al. | Apr 1998 | A |
5804507 | Perlov et al. | Sep 1998 | A |
5807165 | Uzoh et al. | Sep 1998 | A |
5823854 | Chen | Oct 1998 | A |
5840190 | Scholander et al. | Nov 1998 | A |
5840629 | Carpio | Nov 1998 | A |
5846882 | Birang | Dec 1998 | A |
5871392 | Meikle et al. | Feb 1999 | A |
5882491 | Wardle | Mar 1999 | A |
5893796 | Birang et al. | Apr 1999 | A |
5911619 | Uzoh et al. | Jun 1999 | A |
5931719 | Nagahara | Aug 1999 | A |
5938801 | Robinson | Aug 1999 | A |
5948697 | Hata | Sep 1999 | A |
5985093 | Chen | Nov 1999 | A |
6001008 | Fujimori et al. | Dec 1999 | A |
6004880 | Liu et al. | Dec 1999 | A |
6010395 | Nakajima | Jan 2000 | A |
6017265 | Cook et al. | Jan 2000 | A |
6020264 | Lustig et al. | Feb 2000 | A |
6024630 | Shendon et al. | Feb 2000 | A |
6033293 | Crevasse et al. | Mar 2000 | A |
6056851 | Hsieh et al. | May 2000 | A |
6066030 | Uzoh | May 2000 | A |
6074284 | Tani et al. | Jun 2000 | A |
6077337 | Lee | Jun 2000 | A |
6090239 | Liu et al. | Jul 2000 | A |
6103096 | Datta et al. | Aug 2000 | A |
6116998 | Damgaard et al. | Sep 2000 | A |
6132292 | Kubo | Oct 2000 | A |
6153043 | Edelstein et al. | Nov 2000 | A |
6156124 | Tobin | Dec 2000 | A |
6159079 | Zuniga et al. | Dec 2000 | A |
6171467 | Weihs et al. | Jan 2001 | B1 |
6176992 | Talieh | Jan 2001 | B1 |
6176998 | Wardle et al. | Jan 2001 | B1 |
6183354 | Zuniga et al. | Feb 2001 | B1 |
6190494 | Dow | Feb 2001 | B1 |
6210257 | Carlson | Apr 2001 | B1 |
6234870 | Uzoh et al. | May 2001 | B1 |
6238271 | Cesna | May 2001 | B1 |
6238592 | Hardy et al. | May 2001 | B1 |
6244935 | Birang et al. | Jun 2001 | B1 |
6248222 | Wang | Jun 2001 | B1 |
6251235 | Talieh et al. | Jun 2001 | B1 |
6257953 | Gitis et al. | Jul 2001 | B1 |
6258223 | Cheung et al. | Jul 2001 | B1 |
6261168 | Jensen et al. | Jul 2001 | B1 |
6261959 | Travis et al. | Jul 2001 | B1 |
6273798 | Berman | Aug 2001 | B1 |
6296557 | Walker | Oct 2001 | B1 |
6297159 | Paton | Oct 2001 | B1 |
6319108 | Adefris et al. | Nov 2001 | B1 |
6319420 | Dow | Nov 2001 | B1 |
6322422 | Satou | Nov 2001 | B1 |
6328642 | Pant et al. | Dec 2001 | B1 |
6328872 | Talieh et al. | Dec 2001 | B1 |
6331135 | Sabde et al. | Dec 2001 | B1 |
6368184 | Beckage | Apr 2002 | B1 |
6368190 | Easter et al. | Apr 2002 | B1 |
6381169 | Bocian et al. | Apr 2002 | B1 |
6383066 | Chen et al. | May 2002 | B1 |
6386956 | Sato et al. | May 2002 | B1 |
6391166 | Wang | May 2002 | B1 |
6395152 | Wang | May 2002 | B1 |
6402591 | Thornton | Jun 2002 | B1 |
6406363 | Xu et al. | Jun 2002 | B1 |
6409904 | Uzoh et al. | Jun 2002 | B1 |
6413388 | Uzoh et al. | Jul 2002 | B1 |
6413403 | Lindquist et al. | Jul 2002 | B1 |
6428394 | Mooring et al. | Aug 2002 | B1 |
6431968 | Chen et al. | Aug 2002 | B1 |
6440295 | Wang | Aug 2002 | B1 |
6447668 | Wang | Sep 2002 | B1 |
6471847 | Talieh et al. | Oct 2002 | B2 |
6475332 | Boyd et al. | Nov 2002 | B1 |
6497800 | Talieh et al. | Dec 2002 | B1 |
6517426 | Lee | Feb 2003 | B2 |
6520843 | Halley | Feb 2003 | B1 |
6537140 | Miller et al. | Mar 2003 | B1 |
6537144 | Tsai et al. | Mar 2003 | B1 |
6551179 | Halley | Apr 2003 | B1 |
6561873 | Tsai et al. | May 2003 | B2 |
6561889 | Xu et al. | May 2003 | B1 |
6569004 | Pham | May 2003 | B1 |
6572463 | Xu et al. | Jun 2003 | B1 |
6585579 | Jensen et al. | Jul 2003 | B2 |
6630059 | Uzoh et al. | Oct 2003 | B1 |
6638863 | Wang et al. | Oct 2003 | B2 |
6641471 | Pinheiro et al. | Nov 2003 | B1 |
6656019 | Chen et al. | Dec 2003 | B1 |
6685543 | Lai et al. | Feb 2004 | B2 |
6685548 | Chen et al. | Feb 2004 | B2 |
6692338 | Kirchner | Feb 2004 | B1 |
6726823 | Wang et al. | Apr 2004 | B1 |
6739951 | Sun et al. | May 2004 | B2 |
6752700 | Duescher | Jun 2004 | B2 |
6769969 | Duescher | Aug 2004 | B1 |
6776693 | Duboust et al. | Aug 2004 | B2 |
6802955 | Emesh et al. | Oct 2004 | B2 |
6821899 | Lohokare et al. | Nov 2004 | B2 |
6848977 | Cook et al. | Feb 2005 | B1 |
6856761 | Doran | Feb 2005 | B2 |
6962524 | Butterfield et al. | Nov 2005 | B2 |
6969308 | Doi et al. | Nov 2005 | B2 |
7033464 | Emesh et al. | Apr 2006 | B2 |
20010005667 | Tolles et al. | Jun 2001 | A1 |
20010024878 | Nakamura | Sep 2001 | A1 |
20010027018 | Molnar | Oct 2001 | A1 |
20010035354 | Ashjaee et al. | Nov 2001 | A1 |
20010036746 | Sato et al. | Nov 2001 | A1 |
20010040100 | Wang | Nov 2001 | A1 |
20010042690 | Talieh | Nov 2001 | A1 |
20020008036 | Wang | Jan 2002 | A1 |
20020011417 | Talieh et al. | Jan 2002 | A1 |
20020020621 | Uzoh et al. | Feb 2002 | A1 |
20020025760 | Lee et al. | Feb 2002 | A1 |
20020025763 | Lee et al. | Feb 2002 | A1 |
20020070126 | Sato et al. | Jun 2002 | A1 |
20020077037 | Tietz | Jun 2002 | A1 |
20020088715 | Talieh et al. | Jul 2002 | A1 |
20020102853 | Li et al. | Aug 2002 | A1 |
20020108861 | Emesh et al. | Aug 2002 | A1 |
20020119286 | Chen et al. | Aug 2002 | A1 |
20020123300 | Jones et al. | Sep 2002 | A1 |
20020130049 | Chen et al. | Sep 2002 | A1 |
20020130634 | Ziemkowski et al. | Sep 2002 | A1 |
20020146963 | Teetzel | Oct 2002 | A1 |
20020148732 | Emesh et al. | Oct 2002 | A1 |
20020153097 | Basol et al. | Oct 2002 | A1 |
20030034131 | ParK et al. | Feb 2003 | A1 |
20030040188 | Hsu et al. | Feb 2003 | A1 |
20030114087 | Duboust et al. | Jun 2003 | A1 |
20030116444 | Basol | Jun 2003 | A1 |
20030116445 | Sun et al. | Jun 2003 | A1 |
20030116446 | Duboust et al. | Jun 2003 | A1 |
20030129927 | Lee et al. | Jul 2003 | A1 |
20030209448 | Hu et al. | Nov 2003 | A1 |
20030213703 | Wang et al. | Nov 2003 | A1 |
20030220053 | Manens et al. | Nov 2003 | A1 |
20040007478 | Basol et al. | Jan 2004 | A1 |
20040020788 | Mavliev et al. | Feb 2004 | A1 |
20040020789 | Hu | Feb 2004 | A1 |
20040023495 | Butterfield et al. | Feb 2004 | A1 |
20040023610 | Hu et al. | Feb 2004 | A1 |
20040053512 | Manens et al. | Mar 2004 | A1 |
20040082288 | Tietz et al. | Apr 2004 | A1 |
20040082289 | Butterfield et al. | Apr 2004 | A1 |
20040121708 | Hu et al. | Jun 2004 | A1 |
20040134792 | Butterfield et al. | Jul 2004 | A1 |
20040163946 | Chang et al. | Aug 2004 | A1 |
20040173461 | Tsai et al. | Sep 2004 | A1 |
20040266327 | Chen et al. | Dec 2004 | A1 |
20050000801 | Wang et al. | Jan 2005 | A1 |
20050016960 | Nogami et al. | Jan 2005 | A1 |
20050092621 | Hu et al. | May 2005 | A1 |
20050133363 | Hu et al. | Jun 2005 | A1 |
20050173260 | Basol et al. | Aug 2005 | A1 |
20050178666 | Tsai et al. | Aug 2005 | A1 |
20050194681 | Hu et al. | Sep 2005 | A1 |
20060006073 | Basol et al. | Jan 2006 | A1 |
20060137819 | Manens et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
0 325 753 | Aug 1989 | EP |
0 455 455 | Nov 1991 | EP |
1361023 | Nov 2003 | EP |
58-171264 | Oct 1983 | JP |
61-079666 | Apr 1986 | JP |
61-265279 | Nov 1986 | JP |
63-028512 | Feb 1988 | JP |
05-277957 | Oct 1993 | JP |
06-047678 | Feb 1994 | JP |
10-006213 | Jan 1998 | JP |
11-042554 | Feb 1999 | JP |
11-329961 | Mar 1999 | JP |
11-239961 | Jul 1999 | JP |
2000-218513 | Aug 2000 | JP |
11-216663 | Dec 2000 | JP |
2001-77117 | Mar 2001 | JP |
2001-179611 | Jul 2001 | JP |
2001-244223 | Sep 2001 | JP |
3453352 | Oct 2003 | JP |
2003-037158 | May 2003 | KR |
1618538 | Jan 1991 | SU |
WO 9315879 | Aug 1993 | WO |
WO 9849723 | Nov 1998 | WO |
WO 9941434 | Aug 1999 | WO |
WO 9953119 | Oct 1999 | WO |
WO 9965072 | Dec 1999 | WO |
WO 0003426 | Jan 2000 | WO |
WO 0026443 | May 2000 | WO |
WO 0033356 | Jun 2000 | WO |
WO 0059682 | Oct 2000 | WO |
WO 0071297 | Nov 2000 | WO |
WO 0113416 | Feb 2001 | WO |
WO 0149452 | Jul 2001 | WO |
WO 0152307 | Jul 2001 | WO |
WO 0163018 | Aug 2001 | WO |
WO 0171066 | Sep 2001 | WO |
WO 0188229 | Nov 2001 | WO |
WO 0188954 | Nov 2001 | WO |
WO 0223616 | Mar 2002 | WO |
WO 0264314 | Aug 2002 | WO |
WO 0275804 | Sep 2002 | WO |
WO 03001581 | Jan 2003 | WO |
WO 03099519 | Dec 2003 | WO |
WO 2004073926 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050161341 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
60579098 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10727724 | Dec 2003 | US |
Child | 11087878 | US | |
Parent | 10642128 | Aug 2003 | US |
Child | 10727724 | US | |
Parent | 10608513 | Jun 2003 | US |
Child | 10642128 | US | |
Parent | 10391324 | Mar 2003 | US |
Child | 10608513 | US | |
Parent | 10244697 | Sep 2002 | US |
Child | 10391324 | US | |
Parent | 10244688 | Sep 2002 | US |
Child | 10244697 | US | |
Parent | 10211626 | Aug 2002 | US |
Child | 10244688 | US | |
Parent | 10210972 | Aug 2002 | US |
Child | 10211626 | US | |
Parent | 10151538 | May 2002 | US |
Child | 10210972 | US | |
Parent | 10140010 | May 2002 | US |
Child | 10151538 | US | |
Parent | 10033732 | Dec 2001 | US |
Child | 10140010 | US | |
Parent | 09505899 | Feb 2000 | US |
Child | 10033732 | US |