1. Field of the Invention
This invention is directed at a method for applying a molecular ink onto a substrate surface. In particular, this invention is directed at a method for applying self-assembled molecular monolayers onto a surface at high resolution.
2. Background Information
Lithographic methods have played a major role in the development of modern microelectronics and are expected to be of central importance in the developing fields of nanotechnology and molecular electronics. A current challenge in the lithographic field is to control the lateral placement of molecules on surfaces with a resolution, or line width, under 100 nm.
Two methods have been recently developed for direct writing and patterning of surfaces with molecular nanostructures and self-assembled monolayers (SAMs): dip-pen nanolithography (DPN), described, for example, in Piner, R. D., Zhu, J., Xu, F., Hong, S., and Mirkin, C. A., “‘Dip-Pen’ Nanolithography,” Science, Vol. 283 (1999), pp. 661-63; and micro-contact printing (μP), described, for example, in Xia, X., and Whitesides, G. M., “Soft lithography,” Angewandte Chemie International Edition in English, Vol. 37 (1998), pp. 550-74, and in U.S. Pat. No. 6,060,121. μCP utilizes a molded “stamp” to print “molecular inks” such as alkane thiols on gold, as described, for example, in Jeong, N. L., Nuzzo, R. G., Xia, Y., Mrksich, M., and Whitesides, G. M., “Patterned Self-Assembled Monolayers formed by Microcontact Printing: Direct Selective Metalization by Chemical Vapor Deposition on Planar Substrates,” Langmuir, Vol. 11 (1995), pp. 3024-26, and siloxanes on silicon or silica surfaces, as described, for example, in Xia, Y., Mrksich, M., Kim, E., and Whitesides, G. M., “Microcontact Printing of Octadecylsiloxane on the Surface of Silicon Dioxide and its Applications in Microfabrication,” Journal of the American Chemical Society, Vol. 117 (1995), pp. 9576-77. The term “stamp” as used herein refers to a structure having a surface with one or more features protruding from the surface, wherein each of the one or more protruding features has a stamp surface bounded by at least one edge, and each pair of adjacent protruding features defines an inner recess. The stamps can be prepared by using a silicon wafer having a desired pattern of grooves formed by photolithography as a mold. The resulting stamps have a structure which mirrors the topographic structure of the silicon wafer template. The term “molecular ink” as used herein refers to a substance that can be transferred from a stamp onto the surface of a substrate, such as glass, by contacting the stamp with the substrate surface. In the case of conventional μCP, the stamp surfaces are wetted with the molecular ink so that the ink is transferred from the stamp surface to the surface of the substrate. The substance may be a compound or a mixture of compounds. μCP may be used to make a wide variety of arrays of patterned SAMs on substrate surfaces. However, because the molecular ink is transferred from the stamp surfaces of the protruding features of the stamp, the line width which can be achieved with μCP is typically only about 500 nm or higher, although sub-500 nm line widths have been reported by Delamarche, E., et al., “Transport Mechanism of Alkanethiols during Microcontact Printing on Gold,” Journal of Physical Chemistry B, Vol. 102 (1998), pp. 3324-34. DPN employs an atomic force microscope (AFM) probe to deliver molecules from the probe surface to a substrate. It is believed that the delivery takes place via a meniscus of water between the probe and the substrate. DPN can achieve feature sizes on the order of 100 nm and is therefore superior to μCP in this respect. However, DPN has the disadvantage of requiring expensive and sophisticated apparatus, and of serial “writing” of a pattern to be transferred to the surface of the substrate. Consequently, the technique is practical only to the production of patterns over a small area, typically up to 100 μm in a given dimension.
There is therefore a need in the art for a method for nanolithography that provides line widths comparable to that achieved with DPN while maintaining the simplicity and broad applicability of μCP.
The foregoing need is substantially satisfied by the present invention which in one aspect is a method for applying a nanoscale resolution pattern of a molecular ink onto a surface of a substrate. The method comprises providing a stamp structure having a surface with at least one protruding feature extending from the stamp structure surface by a common distance. Each protruding feature has a stamp surface of a respective predefined shape at a protruding end thereof. Each protruding feature and its stamp surface are bounded by at least one edge, and each edge intersects the surface of the stamp structure to form a recess. A solution of the molecular ink and a solvent is applied to the surface of the stamp structure, including each stamp surface. The solution and the material of the surface of the stamp structure are such that the solution dewets from the surface of the stamp structure, including each stamp surface, so as to accumulate in each recess. The surface of the stamp structure, including each stamp surface, is then dried to evaporate the solvent and leave the molecular ink in each recess with substantially no molecular ink being left on each stamp surface. Each stamp surface is then brought into contact with the surface of the substrate to transfer the molecular ink from each recess to the surface of the substrate along each edge of each protruding feature.
Another aspect of the present invention is an article of manufacture made using the foregoing method.
Still another aspect of the present invention is a method for applying a nanoscale resolution pattern of a molecular ink onto a surface of a substrate and depositing a monolayer of a substance on the pattern of the molecular ink on the surface of the substrate. The method comprises providing a stamp structure having a surface with at least one protruding feature, each protruding feature extending from the stamp structure surface by a common distance. Each protruding feature has a stamp surface of a respective predefined shape at a protruding end thereof. Each protruding feature and its stamp surface are bounded by at least one edge. Each edge intersecting the surface of the stamp structure to form a recess. A solution of the molecular ink and a solvent is applied to the surface of the stamp structure, including each stamp surface. The solution of the molecular ink and the material of the surface of the stamp structure are such that the solution dewets from the surface of the stamp structure, including each stamp surface, so as to accumulate in each recess. The surface of the stamp structure, including each protruding feature, are then dried to evaporate the solvent and leave the molecular ink in each recess with substantially no molecular ink on each stamp surface. Each stamp surface is then brought into contact with the surface of the substrate to transfer the molecular ink from each recess to the surface of the substrate along each edge of each protruding feature so as to apply the nanoscale resolution pattern of the molecular ink onto the surface of the substrate, wherein the molecular ink is covalently bound to the surface. A monolayer of the substance is then deposited from a solution containing the substance on the pattern of molecular ink on the surface of the substrate by using one of casting, spin-coating and dip-coating.
The method of the invention, which is referred herein as edge transfer lithography, or ETL, maintains the simplicity and broad applicability of μCP and at the same time substantially reduces the feature sizes which are possible with the μCP approach because molecular ink is transferred to the substrate surface along each edge of each protruding feature, rather than from each stamp surface. A resolution of up to 60 nm line width can be obtained with ETL. ETL is relatively simple to implement, in contrast to DPN and other nanometer patterning techniques such as E-beam lithography, AFM and STM (scanning tunneling microscopy) modification of surfaces, each of which requires expensive and sophisticated apparatus for their implementation. Accordingly, ETL provides a simple and widely applicable way of patterning the surface of a substrate with nanoscale features over relatively large areas. ETL may also be used to form high-order junctions through multiple applications of the ETL stamping process.
The “molecular ink” is preferably a substance containing a compound capable of forming SAMs on the substrate surface and which dewets from the stamp structure surface, including each stamp surface. The patterned SAMs render possible the guided assembly of molecular materials. Therefore, ETL may also be used to create complex patterned nanoscale 3-dimensional structures, with applications in molecular and nanoscale electronics, chemosensing, surface science, catalysis, and the biological sciences.
FIGS. 1D-E show idealized structures of a liquid crystal/SAM bilayer assembly formed in accordance with the present invention.
FIGS. 3A-E shows topographic line scans obtained from NC-AFM images.
Referring to
In an exemplary embodiment of the present invention, each recess 12 has a scale on the order of a micron. In an advantageous embodiment of the invention, the stamp structure surface 11 is formed with an elastomeric material. In an especially advantageous embodiment, the stamp structure surface 11 is made from a polymeric material. An especially advantageous polymeric material is polydimethoxysilane (PDMS). The PDMS stamps may be molded using a silicon wafer having a desired pattern of grooves formed by photolithography or other standard methods as the mold. After molding, the stamp is cleaned with chloroform to remove any low molecular weight polymer from the stamp. The protruding features 16 and their respective stamp surfaces 14 can be of any shape. For illustrative purposes, stamp surfaces 14 of each of the protruding features 16 are shown in
The solvent in which the molecular ink is dissolved is a polar solvent. In an advantageous embodiment, the polar solvent is a solvent that readily dewets from the PDMS surface and causes substantially no swelling of the PDMS surface. An alcohol such as ethanol is advantageous over a non-polar solvent such as hexane, hexadecane and toluene, which does not dewet readily from the PDMS surface and which swells the PDMS stamp structure surface 11. The stamp structure surface 11, including each stamp surface 14, is typically inked with a fresh solution of the molecular ink in a concentration ranging between 1% and 5% by volume in anhydrous ethanol or methanol, whereupon the solution of the molecular ink discontinuously dewets from the stamp structure surface 11, including the stamp surface 14 of each protruding feature 16, and leaves molecules of the solvent and of the molecular ink 15 accumulated in the recesses 12 of the stamp structure surface 11, as shown in
The molecular ink is a compound capable of forming self-assembled monolayers and of reacting with hydroxyl groups, which may be hydroxyl groups on a substrate surface 18, and with water, to form a covalent bond with the oxygen atom. In one advantageous embodiment, the compound is an alkylsilane substituted with a polar group. The polar group can be, for example, a leaving group, where the term “leaving group” as used herein refers to a functional group that can be displaced by a nucleophilic group. In one particularly advantageous embodiment, the alkylsilane is selected from the group consisting of monochloro alkylsilanes and monoalkoxy alkylsilanes. Among monoalkoxy alkylsilanes, monomethoxy alkylsilanes are especially advantageous. In another exemplary embodiment, the molecular ink compound is a metallic compound that is soluble in a liquid alcohol or a mixture of water and a liquid alcohol. One such advantageous metallic compound is titanium dioxide, TiO2, more particularly titanium dioxide nanoparticles ranging from about 3 to about 7 nm in diameter. These nanoparticles may be dissolved in ethanol or in ethanol:water mixtures in which the volume percentage of water in the solvent varies from about 0.02% to about 3% by volume. The concentration of titanium dioxide varies from about 3×10−3 to about 9×10−4 mg/ml. For the above values of water percentage and titanium dioxide concentration, patterns having narrow line widths of titanium dioxide ink transferred from the edges 19 of the protruding features of the stamp structure surface 11 are obtained. At higher levels of water percentage and titanium dioxide concentration, more titanium dioxide ink is left on the stamp surfaces 14 of the protruding features 16 of the stamp structure surface 11 so as to produce more “filled-in” patterns on the substrate surface 18.
In a further exemplary embodiment of the invention, the molecular ink is capable of forming on the substrate surface 18 a monolayer onto which may be deposited a monolayer of a substance that is not covalently bound to the molecular ink. Preferably, the molecular ink is covalently bound to the surface groups on the substrate surface 18, such as hydroxy groups. In an advantageous embodiment of the invention, the substance that is not covalently bound to the molecular ink may be a liquid crystal material. Perylene derivatives are especially suitable liquid crystal materials for this purpose. In another advantageous embodiment of the invention, the substance that is not covalently bound to the molecular ink may be a semiconductor. Cadmium-selenium (CdSe) nanoparticles represent an especially suitable semiconductor material for this purpose.
The substrate of the invention may be a conductor, such as a metal, a non-conductor, or a semiconductor. In an advantageous embodiment, the substrate is made of glass, a polymeric material, or an inorganic material such as a ceramic. In an especially advantageous embodiment, the substrate is a glass slide having a surface that is freshly cleaned with a strong oxidant, such as a concentrated solution of sulfuric acid and hydrogen peroxide in water. In another advantageous embodiment, the glass slide and the stamp surface or surfaces 14 are brought into contact immediately after the drying or blow-drying step described above. Referring to
The stamp structures 10 used in the invention have protruding feature sizes of about 1 to about 5 μm, where the term “feature size” as used herein denotes the width 11 of the stamp surface 14 of each protruding feature 16 in
Using ETL, patterns having nanoscale resolution are formed primarily by the transfer of molecular ink along the edges 19 of the protruding features 16 of the stamp structure surface 11 rather than from the stamp surfaces 14. As a result, the pattern that is formed on the substrate surface reflects the outline of the preexisting patterns of the stamp surfaces 14. For example, lateral force microscopy (LFM) images, shown in
Similar results are obtained if the ETL pattern is formed using TiO2 nanoparticles (˜5 nm in diameter) as the molecular ink.
NC-AFM was also used to produce the images of clover-shaped DDCS SAMs shown in
Self-assembled monolayers can also be used for the guided assembly of molecular materials, as discussed, for example, in Huang, Z., Wang, P. C., MacDiarmid, A. G., Xia, Y., and Whitesides, G. M., “Selective Deposition of Conducting Polymers on Hydroxyl-Terminated Surfaces with Printed Monolayers of Alkylsiloxanes as Templates,” Langmuir, Vol. 13 (1997), 6480-85; Gupta, V. K., and Abbott, N. L., “Using Droplets of Nematic Liquid Crystals to Probe the Microscopic and Mesoscopic Structure of Organic Surfaces,” Langmuir, Vol. 15 (1999), 7213-23; Drawhorn, R. A., and Abbott, N. A., “Anchoring of Nematic Liquid Crystals on Self-Assembled Monolayers formed from Alkanethiols on Semitransparent Films of Gold,” Journal of Physical Chemistry, Vol. 99 (1995), 16511-15; Aizenberg, J., Black, A. J., and Whitesides, G. M., “Control of Crystal Nucleation by Self-Assembled Monolayers,” Nature, Vol. 398 (1999), 495-97; and Liu, J., et al., “Controlled Deposition of Individual Single-Walled Carbon Nanotubes on Chemically Functionalized Templates,” Chemical Physics Letters, Vol. 303 (1999), 125-29. We have found that deposition of monolayers of certain substances onto the patterned surfaces results in complex patterned layered systems where molecules of the substance selectively organize onto the nanoscale SAM regions. Preferred substances are nanoparticles of metallic compounds, such as CdSe capped with trioctylphosphine (TOPO), preferably about 3-6 nm in diameter, and liquid crystal materials, such as perylenes, and in particular N,N′-bis[3-[2-[2-(1-butoxy)ethoxy]ethoxy]propyl]perylene-3,4,9,10-tetracarboxyldiimide (PPEEB). The combined liquid crystal/SAM assemblies were imaged by NC-AFM.
Height analysis of assemblies of SAM and liquid crystals, of assemblies of SAMs and metallic substances or metal-containing compounds, and of metallic substances or metal-containing compounds patterned on a substrate surface shows a height increase only along the patterned lines. Topographic line scan plots for the liquid crystal/SAM assemblies of
ETL can be used to form a molecular ink pattern containing arrays of four-way or higher order junctions by multiple applications of one or more stamps.
The line widths obtained with ETL depend on humidity. Narrower lines were observed when ETL was performed under less humid conditions. Relative humidity likely affects the transport rate of alkylsilane to the surface, as in DPN. Water has also been shown to be essential for the reactivity of chloro- and methoxy-silanes with silica to from stable SAMs, as discussed, for example, in Angst, D. L., and Simmons, G. W., “Moisture Absorption Characteristics of Organosiloxane Self-Assembled Monolayers,” Langmuir, Vol. 7 (1991), 2236-42. The size of the water meniscus is also critically dependent on the humidity, as disclosed in Piner, R. D., and Mirkin, C. A., “Effect of Water on Lateral Force Microscopy in Air,” Langmuir, Vol. 13 (1997), 6864-68. The ink concentration, stamp substrate contact time, pressure applied to the stamp, SAM annealing procedure, nature of the silane reagent, and the substrate condition/topography all affect the line widths and SAM structure. Alkylsilanes have varying degrees of reactivity depending on the nature of the leaving group(s), while chain lengths are known to affect their diffusion rates.
An explanation of the mechanism for the method of the invention is as follows. Without wishing to be bound by this or any other mechanism or theory, as the stamp surface 14 is brought into contact with the surface of a substrate 18, as shown in
The invention is further illustrated by, though not limited to, the following Examples which are conducted under ambient conditions at a humidity of between 20% and 40%.
PDMS (Sylgard 184 Elastomer Kit, available from Dow Corning) stamps are molded on patterned silicon wafers using standard methods such as described in Xia, X., and Whitesides, G. M., “Soft lithography,” Angewandte Chemie International Edition in English, Vol. 37 (1998), pp. 550-74. The stamp is inked lightly with a 2% by volume solution of DOMS (90% pure used as purchased from Fluka) in anhydrous methanol or ethanol (both available from Aldrich) using a cotton swab. The residual solvent is removed by blow-drying with N2. The stamp is immediately brought in contact with a glass slide (available from Corning), freshly cleaned with piranha solution, which consists of 7:3 volume/volume 98% H2SO4 and 30% H2O2 No external pressure is applied to the stamp structure 10 or the substrate. The assembly is baked for ˜30 min at 70° C. after which the stamp is removed and the substrate is thoroughly rinsed with methanol.
The experiment is performed in the same way as in Example 1 but using DDCS (90% pure used as purchased from Fluka) instead of DOMS.
It should be understood that various changes and modifications to the preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of this invention, the scope being defined by the appended claims.
This application claims priority from U.S. Provisional Application Ser. No. 60/286,755, filed Apr. 25, 2001.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US02/13154 | 4/25/2002 | WO |
Number | Date | Country | |
---|---|---|---|
60286755 | Apr 2001 | US |