Editing of CCR5 receptor gene to protect against HIV infection

Information

  • Patent Grant
  • 10745677
  • Patent Number
    10,745,677
  • Date Filed
    Friday, December 22, 2017
    6 years ago
  • Date Issued
    Tuesday, August 18, 2020
    4 years ago
Abstract
Provided herein are systems, compositions, and methods of introducing protective and/or loss-of-function variants of CCR5 and CCR2. Variants may be introduced using a CRISPR/Cas9-based nucleobase editor or other guide nucleotide sequence-programmable DNA binding protein domain-based fusion protein described herein. Further provided herein are compositions and methods of preventing and treating conditions related to HIV infection and progression as well as to AIDS.
Description
BACKGROUND

C—C chemokine receptor type 5 (also commonly known as CCR5 or CD195) is a protein found on the surface of white blood cells. CCR5 acts as a receptor for chemokines and has demonstrated involvement in several different disease states including, but not limited to, human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS). Many strains of HIV, the virus that causes AIDS, initially use CCR5 to enter and infect host cells. A mutation known as CCR5-Δ32 in the CCR5 gene has been shown to protect those individuals that carry it against these strains of HIV. Loss-of-function CCR5 mutants have generated significant interest in the biotech and pharmaceutical industries in light of the widespread and devastating effects of HIV/AIDS (“HIV/AIDS Fact sheet Updated July 2016” from the World Health Organization). However, existing methods and technologies for creating CCR5 loss-of-function mutants in vivo have been ineffective due to the large number of cells that need to be modified. Other concerns involve off-target effects, genome instability, or oncogenic modifications that may be caused by genome-editing treatments.


SUMMARY

Provided herein are systems, compositions, kits, and methods for modifying a polynucleotide (e.g. DNA) encoding a CCR5 protein to produce a loss-of-function CCR5 variant. Also provided are systems, compositions, kits, and methods for modifying a polynucleotide encoding a CCR2 protein to produce loss-of-function CCR2 mutants. The methodology relies on CRISPR/Cas9-based base-editing technology. The precise targeting methods described herein are superior to previously proposed strategies that create random indels in the CCR5 or CCR2 genomic locus using engineered nucleases. The methods also have a more favorable safety profile, due to low probability of off-target effects. Thus, the base editing methods described herein have a low impact on genomic stability, including oncogene activation or tumor suppressor inactivation. The loss-of-function CCR5 and/or CCR2 variants generated have a protective function against HIV infection (including prevention of HIV infection), decrease one or more symptoms of HIV infection, halt or delay progression of HIV to AIDS, and/or decrease one or more sympotoms of AIDS.


Some aspects of the present disclosure provide a method of editing a polynucleotide encoding a C—C chemokine receptor type five (CCR5) protein, the method comprising contacting the CCR5-encoding polynucleotide with: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a target cytosine (C) base in the CCR5-encoding polynucleotide; wherein the contacting results in deamination of the target C base is by the fusion protein, resulting in a cytosine-guanine pair (C:G) to thymine-adenine pair (T:A) change in the CCR5-encoding polynucleotide. This may occur in any manner, and is not bound by any particular theory.


In one embodiment, the guide nucleotide sequence-programmable DNA binding protein domain is selected from the group consisting of: a nuclease inactive Cas9 (dCas9) domain, a nuclease inactive Cpf1 domain, a nuclease inactive Argonaute domain, and variants and combinations thereof. As a set of non limiting examples, any of the fusion proteins described herein that include a Cas9 domain, can use another guide nucleotide sequence-programmable DNA binding protein, such as CasX, CasY, Cpf1, C2c1, C2c2, C2c3, and Argonaute, in place of the Cas9 domain. Guide nucleotide sequence-programmable DNA binding protein include, without limitation, Cas9 (e.g., dCas9 and nCas9), CasX, CasY, Cpf1, C2c1, C2c2, C2C3, Argonaute, and any of suitable protein described herein.


In another embodiment, the guide nucleotide sequence-programmable DNA-binding protein domain comprises a nuclease inactive Cas9 (dCas9) domain. In some embodiments, the amino acid sequence of the dCas9 domain comprises mutations corresponding to D10A and/or H840A mutation(s) in SEQ ID NO: 1. In another embodiment, the amino acid sequence of the dCas9 domain comprises a mutation corresponding to a D10A mutation in SEQ ID NO: 1, and wherein the dCas9 domain comprises a histidine at the position corresponding to amino acid 840 of SEQ ID NO: 1.


In certain embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain comprises a nuclease inactive Cpf1 (dCpf1) domain. In some embodiments, the dCpf1domain is from a species of Acidaminococcus or Lachnospiraceae. In an embodiment, the guide nucleotide sequence-programmable DNA-binding protein domain comprises a nuclease inactive Argonaute (dAgo) domain. In a further embodiment, the dAgo domain is from Natronobacterium gregoryi.


As a set of non limiting examples, any of the fusion proteins described herein that include a Cas9 domain can use another guide nucleotide sequence-programmable DNA binding protein, such as CasX, CasY, Cpf1, C2c1, C2c2, C2c3, and Argonaute, in place of the Cas9 domain. These may be nuclease inactive variants of the proteins. Guide nucleotide sequence-programmable DNA binding protein include, without limitation, Cas9 (e.g., dCas9 and nCas9), saCas9 (e.g., saCas9d, saCas9n, saKKH Cas9), CasX, CasY, Cpf1, C2c1, C2c2, C2C3, Argonaute, and any of suitable protein described herein. In some embodiments, the fusion protein described herein comprises a Gam protein, a guide nucleotide sequence-programmable DNA binding protein, and a cytidine deaminase domain.


In some embodiments, the cytosine deaminase domain comprises an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In an embodiment, the cytosine deaminase is selected from the group consisting of APOBEC1, APOBEC2, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G deaminase, APOBEC3H deaminase, APOBEC4 deaminase, activation-induced deaminase (AID), and pmCDA1. In an embodiment, the cytosine deaminase comprises an amino acid sequence of any one of SEQ ID NOs: 270-292.


In some embodiments, the fusion protein of (a) further comprises a uracil glycosylase inhibitor (UGI) domain. In certain embodiments, the cytosine deaminase domain is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. In an embodiment, the UGI domain is fused to the C-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain.


In some embodiments, the cytosine deaminase and the guide nucleotide sequence-programmable DNA-binding protein domain are fused via an optional linker. In another embodiment, the UGI domain is fused to the dCas9 domain via an optional linker.


In certain embodiments, the fusion protein comprises the structure NH2-[cytosine deaminase domain]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA-binding protein domain]-[optional linker sequence]-[UGI domain]-COOH.


In some embodiments, the linker comprises (GGGS)n (SEQ ID NO: 303), (GGGGS)n (SEQ ID NO: 304), (G)n, (EAAAK), (SEQ ID NO: 305), (GGS)n, SGSETPGTSESATPES (SEQ ID NO: 306), or (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30, and wherein X is any amino acid. In an embodiment, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 306). In another embodiment, the linker is (GGS)n, and wherein n is 1, 3, or 7.


In certain embodiments, the fusion protein comprises the amino acid sequence of any one of SEQ ID NO: 293-302.


In an embodiment, the polynucleotide encoding the CCR5 protein comprises a coding strand and a complementary strand. In some embodiments, the polynucleotide encoding the CCR5 protein comprises a coding region and a non-coding region. In an embodiment, the C to T change occurs in the coding sequence of the CCR5-encoding polynucleotide. In some embodiments, the C to T change leads to a mutation in the CCR5 protein.


In some embodiments, the mutation in the CCR5 protein is a loss-of-function mutation. In certain embodiments, the mutation is selected from the mutations listed in Tables 1-10. In one embodiment, the guide nucleotide sequence is selected from the guide nucleotide sequences listed in Tables 3-5 and 8-10. In certain embodiments, the loss-of-function mutation introduces a premature stop codon in the CCR5 coding sequence that leads to a truncated or non-functional CCR5 protein. In certain embodiments, the premature stop codon is TAG (Amber), TGA (Opal), or TAA (Ochre).


In some embodiments, the premature stop codon is generated from a CAG to TAG change via the deamination of the first C on the coding strand. In certain embodiments, the premature stop codon is generated from a CGA to TGA change via the deamination of the first C on the coding strand. In an embodiment, the premature stop codon is generated from a CAA to TAA change via the deamination of the first C on the coding strand. In certain embodiments, the premature stop codon is generated from a TGG to TAG change via the deamination of the second C on the complementary strand. In an embodiment, the premature stop codon is generated from a TGG to TGA change via the deamination of the third C on the complementary strand. In an embodiment, the premature stop codon is generated from a TGG to TAA change via the deamination of the second C and third C on the complementary strand. In another embodiment, the premature stop codon is generated from a CGG to TAG or CGA to TAA change via the deamination of C on the coding strand and the deamination of C on the complementary strand.


In some embodiments, the guide nucleotide sequence is selected from the guide nucleotide sequences (SEQ ID NO: 381-657) listed in Table 3, Table 4, Table 5, Table 8, or Table 9. In certain embodiments, tandem premature stop codons are introduced. In one embodiment, the mutation is selected from the group consisting of: Q186X/Q188X, Q277X/Q288X, Q328X/Q329X, Q329X/R334X, or R341X/Q346X. In certain embodiments, the guide nucleotide sequence is selected from the group consisting of: SEQ ID NOs: 381-657. In some embodiments, two guide nucleotides are selected from SEQ ID NOs: 381-657. In some embodiments, three or more guide nucleotides are selected from SEQ ID NOs: 381-657.


In some embodiments, the loss-of-function mutation destabilizes CCR5 protein folding. In certain embodiments, the loss-of-function mutation is selected from the mutations listed in Tables 1-9. In specific embodiments, the guide nucleotide sequence is selected from the guide nucleotide sequences listed in Tables 3-5 and 8-9 (SEQ ID NO: 381-657).


In some embodiments, the C to T change modifies a splicing site in the non-coding region of the CCR5-encoding polynucleotide. In one embodiment, the C to T change modifies at an intron-exon junction. In another embodiment, the C to T change modifies a splicing donor site. In another embodiment, the C to T change modifies a splicing acceptor site. In certain embodiments, the C to T changes occurs at a C base-paired with the G base in a start codon (AUG). In some embodiments, the C to T change prevents CCR5 mRNA maturation or abrogates CCR5 expression.


In some embodiments, the C to T change is selected from the C to T changes listed in Table 2, 8, or 9. In certain embodiments, the guide nucleotide sequence is selected from the guide nucleotide sequences (SEQ ID NOs: 577-657) listed in Tables 8 and 9.


In some embodiments, the C to T change results in a codon change in the CCR5-encoding polynucleotide listed in Table 7. In certain embodiments, a PAM sequence is located 3′ of the C being changed. In certain embodiments, a PAM sequence is located 5′ of the C being changed. In specific embodiments, the PAM sequence is selected from the group consisting of: NGG, NGAN, NGNG, NGAG, NGCG, NNGRRT, NGRRN, NNNRRT, NNNGATT, NNAGAA, NAAAC, NNT, NNNT, and YNT, wherein Y is pyrimidine, R is purine, and N is any nucleobase.


In some embodiments, no PAM sequence is located 3′ of the C being changed. In some embodiments, no PAM sequence is located 5′ of the C being changed. In certain embodiments, no PAM sequence is located 5′ or 3′ of the C being changed. In some embodiments, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mutations are introduced into the CCR5-encoding polynucleotide. In certain embodiments, the guide nucleotide sequence is RNA (guide RNA or gRNA). In some embodiments, the guide nucleotide sequence is ssDNA (guide DNA or gDNA).


In some aspects, the disclosure provides a method of editing a polynucleotide encoding a C—C chemokine receptor type 2 (CCR2) protein, the method comprising contacting the CCR2-encoding polynucleotide with: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a target cytosine (C) base in the CCR2-encoding polynucleotide, wherein the contacting results in the deamination of the target C base by the fusion protein, resulting in a cytosine-guanine (C:G) to thymine-adenine pair (T:A) change in the CCR2-encoding polynucleotide. In some embodiments, the fusion protein of (i) comprises a Gam protein.


In some embodiments, the C to T change is in the coding sequence of the CCR2-encoding polynucleotide. In some embodiments, the C to T change leads to leads to a mutation in the CCR2 protein.


In some embodiments, the mutation in the CCR2 protein is a loss-of-function mutation. In certain embodiments, the mutation is selected from the mutations listed in Table 1.


In certain embodiments, the method is carried out in vitro. In some embodiments, the method is carried out in a cultured cell. In some embodiments, the method is carried out in vivo. In other embodiments, the method is carried out ex vivo.


In certain embodiments, the method is carried out in a mammal. In some embodiments, the mammal is a rodent. In some embodiments, the mammal is a primate. In some embodiments, the mammal is human.


In some aspects, the disclosure provides a method of editing a polynucleotide encoding a C—C chemokine receptor type five (CCR2) protein, the method comprising contacting the CCR2-encoding polynucleotide with: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a target cytosine (C) base in the CCR2-encoding polynucleotide; wherein the target C base is deaminated by the fusion protein, resulting in a cytosine-guanine pair (C:G) to thymine-adenine pair (T:A) change in the CCR2-encoding polynucleotide. In some embodiments, the fusion protein of (i) comprises a Gam protein.


In some embodiments, the guide nucleotide sequence-programmable DNA binding protein domain is selected from the group consisting of: a nuclease inactive Cas9 (dCas9) domain, a nuclease inactive Cpf1 domain, a nuclease inactive Argonaute domain, and variants and combinations thereof. In certain embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain comprises a nuclease inactive Cas9 (dCas9) domain.


In some embodiments, the amino acid sequence of the dCas9 domain comprises mutations corresponding to D10A and/or H840A mutation(s) in SEQ ID NO: 1. In specific embodiments, the amino acid sequence of the dCas9 domain comprises a mutation corresponding to a D10A mutation in SEQ ID NO: 1, and wherein the dCas9 domain comprises a histidine at the position corresponding to amino acid 840 of SEQ ID NO: 1. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain comprises a nuclease inactive Cpf1 (dCpf1) domain. In a specific embodiment, the dCpf1domain is from a species of Acidaminococcus or Lachnospiraceae. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain comprises a nuclease inactive Argonaute (dAgo) domain. In an embodiment, the dAgo domain is from Natronobacterium gregoryi.


As a set of non limiting examples, any of the fusion proteins described herein that include a Cas9 domain can use another guide nucleotide sequence-programmable DNA binding protein, such as CasX, CasY, Cpf1, C2c1, C2c2, C2c3, and Argonaute, in place of the Cas9 domain. These may be nuclease inactive variants of the proteins. Guide nucleotide sequence-programmable DNA binding protein include, without limitation, Cas9 (e.g., dCas9 and nCas9), saCas9 (e.g., saCas9d, saCas9n, and saKKH Cas9), CasX, CasY, Cpf1, C2c1, C2c2, C2C3, Argonaute, and any of suitable protein described herein. In some embodiments, the fusion protein described herein comprises a Gam protein, a guide nucleotide sequence-programmable DNA binding protein, and a cytidine deaminase domain.


In some embodiments, the cytosine deaminase domain comprises an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In specific embodiments, the cytosine deaminase is selected from the group consisting of APOBEC1, APOBEC2, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G deaminase, APOBEC3H deaminase, APOBEC4 deaminase, activation-induced deaminase (AID), and pmCDA1. In an embodiment, the cytosine deaminase comprises an amino acid sequence of any one of SEQ ID NOs: 270-292.


In some embodiments, the fusion protein of (a) further comprises a uracil glycosylase inhibitor (UGI) domain. In certain embodiments, the cytosine deaminase domain is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. In specific embodiments, the UGI domain is fused to the C-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. In some embodiments, the cytosine deaminase and the guide nucleotide sequence-programmable DNA-binding protein domain are fused via an optional linker. In an embodiment, the UGI domain is fused to the dCas9 domain via an optional linker.


In certain embodiments, the fusion protein comprises the structure NH2-[cytosine deaminase domain]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA-binding protein domain]-[optional linker sequence]-[UGI domain]-COOH.


In some embodiments, the linker comprises (GGGS)n (SEQ ID NO: 303), (GGGGS)n (SEQ ID NO: 304), (G)n (EAAAK)n (SEQ ID NO: 305), (GGS), SGSETPGTSESATPES (SEQ ID NO: 306), or (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30, and wherein X is any amino acid. In an embodiment, linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 306). In some embodiments, the linker is (GGS), and wherein n is 1, 3, or 7.


In some aspects, the instant disclosure provides a composition comprising: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a polynucleotide encoding a C—C chemokine receptor type five (CCR5) protein. In some embodiments, the fusion protein of (i) comprises a Gam protein.


In some aspects, the instant disclosure provides a composition comprising: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a polynucleotide encoding a C—C chemokine receptor type two (CCR2) protein. In some embodiments, the fusion protein of (i) comprises a Gam protein.


In some aspects, the instant disclosure provides a composition comprising: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a polynucleotide encoding a C—C chemokine receptor type five (CCR5) protein; and (iii) a guide nucleotide sequence targeting the fusion protein of (i) to a polynucleotide encoding a C—C chemokine receptor type 2 (CCR2) protein. In some embodiments, the fusion protein of (i) comprises a Gam protein.


In some embodiments, the guide nucleotide sequence of (ii) is selected from SEQ ID NOs: 381-657.


In certain embodiments, the composition further comprises a pharmaceutically acceptable carrier.


In some embodiments, the instant disclosure provides a method of reducing the binding of gp120 and CCR5 in a subject, the method comprising administering to a subject in need thereof a therapeutically effective amount of a composition of the instant disclosure.


In some embodiments, the instant disclosure provides a method of reducing virus binding to CCR5 in a subject, the method comprising administering to a subject in need thereof a therapeutically effective amount of the composition of the instant disclosure.


In some embodiments, the instant disclosure provides a method of reducing viral infection in a subject, the method comprising administering to a subject in need thereof a therapeutically effective amount of a composition of the instant disclosure.


In some embodiments, the instant disclosure provides a method of reducing functional CCR5 receptors on a cell in a subject, the method comprising administering to a subject in need thereof a therapeutically effective amount of the composition of the instant disclosure.


In some embodiments, the cell is selected from the group consisting of: macrophage, dendritic cell, memory T cell, endothelial cell, epithelial cell, vascular smooth muscle cell, fibroblast, microglia, neuron, and astrocyte.


In some embodiments, the instant disclosure provides a treating a condition, the method comprising administering to a subject in need thereof a therapeutically effective amount of a composition provided by the instant disclosure, wherein the condition is human immunodeficiency virus (HIV) infection, acquired immune deficiency syndrome (AIDS), an immunologic disease, or a combination thereof.


In one embodiment, the condition is human immunodeficiency virus (HIV) infection.


In some embodiments, the instant disclosure provides a method of preventing a condition, the method comprising administering to a subject in need thereof a therapeutically effective amount of a composition provided in the instant disclosure, wherein the condition is human immunodeficiency virus (HIV) infection, acquired immune deficiency syndrome (AIDS), an immunologic disease, or a combination thereof.


In certain embodiments, the condition is human immunodeficiency virus (HIV) infection.


In some embodiments, the instant disclosure provides a kit comprising a composition provided in the instant disclosure.


The summary above is meant to illustrate, in a non-limiting manner, some of the embodiments, advantages, features, and uses of the technology disclosed herein. Other embodiments, advantages, features, and uses of the technology disclosed herein will be apparent from the Detailed Description, the Drawings, the Examples, and the Claims. The details of certain embodiments of the disclosure are set forth in the Detailed Description of Certain Embodiments, as described below. Other features, objects, and advantages of the presented compositions and methods will be apparent from the Definitions, Examples, Figures, and Claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.



FIG. 1 depicts a CCR5 protein structure which shows HIV-protective variants (C20S, C101X, G106R, C178R, Δ32, R223Q, C269F, and FS299) that can be replicated or imitated using genome/base-editing with APOBEC1-Cas9 tools (Tables 1-10). Arrows indicate disulfide bridges that can be disrupted by mutation of cysteine residues using base-editing reactions (TGT→TAT or TGC→TAC, Table 3). Grey shading with a double ring around the residue indicates small/hydrophobic residues in a transmembrane domain (TM) that can be targeted for base-editing reactions to engineer CCR5 variants with a destabilizing polar residue that prevents membrane integration of folding (similar to the mutation G106R, Tables 1 and 4) using the guide-RNAs described in Tables 3 and 4. Other structurally important proline and cysteine residues are also shown in grey shading with a double ring around the residue (Table 4). Residues demarcated with grey shading and a single ring not specifically labeled with a mutation (i.e., not G106R or R223Q) are glutamine, tryptophan, and arginine residues, which can be changed into stop codons to prevent the translation of full-length functional protein (Table 5), mimicking the effect of the CCR5-Δ32 and FS299 alleles. The sequence corresponds to SEQ ID NO: 310.



FIGS. 2A to 2C are graphic representations of sequence alignments and structure. FIG. 2A shows a strategy for preventing CCR5 protein production by altering splicing sites: donor site, branch-point, or acceptor sites (Table 2). FIG. 2B shows consensus sequences of the human Lariat-structure branch-point and acceptor sites, suggesting that the guanosine of the acceptor site is an excellent target for Cas9-mediated base-editing of C→T on the complementary strand (Table 2). FIG. 2C shows the genomic sequence of the CCR5 gene showing the junction of intron 2 (lowercase) and exon 2 (capitalized), the cognate start-codon (boldface), potential branch-points (italics), and the cognate donor site (underlined). The sequence corresponds to SEQ ID NO: 311.



FIG. 3 is a graphic representation of protein and open-reading frame sequences of the CCR5 receptor. HIV-protective variants (C20S, C101X, G106R, C178R, Δ32, R223Q, C269F, and FS299) that can be replicated or imitated using genome/base-editing with APOBEC1-Cas9 tools (Tables 1-10) are underlined. Grey shading indicates small/hydrophobic residues in a transmembrane domain (TM) that can be targeted for base-editing reactions to engineer CCR5 variants with a destabilizing polar residue that prevents membrane integration of folding (similar to the mutation G106R, Tables 1 and 4) using the guide-RNAs described in Tables 3 and 4. Other structurally important proline and cysteine residues are also shown in grey shading with a double ring around the residue (Table 4). Residues demarcated with grey shading and a single ring not specifically labeled with a mutation (i.e., not G106R or R223Q) are glutamine, tryptophan, and arginine residues, which can be changed into stop codons to prevent the translation of full-length functional protein (Table 5), mimicking the effect of the CCR5-Δ32 and FS299 alleles. The nucleotide sequence corresponds to SEQ ID NO: 312 and the amino acid sequence corresponds to SEQ ID NO: 313.



FIG. 4 is a graphic representation of a numbering scheme used herein. The numbering scheme is based on the predicted location of the target C within the single stranded stretch of DNA (R-loop) displaced by a programmable guide RNA sequence occurring when a DNA-binding domain (e.g. Cas9, nCas9, dCas9) binds a genomic site. The sequence corresponds to SEQ ID NO: 314.



FIG. 5 is a graphic representation of C to T editing of CCR5 target DNA (SEQ ID NO: 738) in HEK293 cells using KKH-SaBE3 and guide-RNA Q186X-e. The editing was calculated from total reads (MiSeq). Panel A demonstrates that significant editing was observed at position C7 and C13 of SEQ ID NO: 739 (complementary nucleotide sequence is SEQ ID NO: 741), both of which generate premature stop codons in tandem (Q186X and Q188X, see inset graphic of panel A and amino acid sequence of SEQ ID NO: 740). The PAM sequence (SEQ ID NO: 736) is shown as underlined and the last nucleotide of the protospacer (SEQ ID NO: 735) is separated with a line. Raw data used for base-calling and calculating base-editing for KKH-BE3 and Q186X-e treated HEK293 cells is shown in panel B. The indel percentage was 1.97%. Panel C shows raw data collected for untreated control cells.





DEFINITIONS

As used herein and in the claims, the singular forms “a,” “an,” and “the” include the singular and the plural reference unless the context clearly indicates otherwise. Thus, for example, a reference to “an agent” includes a single agent and a plurality of such agents.


As used herein, the term “C—C Chemokine Receptor 2” (also referred to as “C—C Chemokine Receptor type 2,” “CCR2,” “CCR-2,” “cluster of differentiation 192,” and “CD192”) is a chemokine receptor encoded by the CCR2 gene. The CCR2 gene encodes two isoforms of the CCR2 protein, which is expressed on peripheral blood monocytes, activated T cells, B cells, and immature dendritic cells. Known ligands for CCR2 include the monocyte chemotactic proteins (MCPs) MCP-1, -2 and -3, which belong to the family of C—C chemokines.


As used herein, “C—C Chemokine Receptor 5” (also referred to as “C—C Chemokine Receptor type 5,” “CCR5,” “CCR-5,” “cluster of differentiation-195,” and “CD195,” is a member of the beta chemokine receptor family. This protein is expressed by macrophages, dendritic cells, and memory T cells of the immune system; endothelila cells, epithelial cells, vascular smooth muscle cells, and fibroblasts; and microglia, neurons, and astrocytes in the central nervous system. See, e.g., Barmania and Pepper, Applied & Translational Genomics 2 (2013) 3-16, which is incorporated herein by reference.


The term “effective amount,” as used herein, refers to an amount of a biologically active agent that is sufficient to elicit a desired biological response. For example, in some embodiments, an effective amount of a nuclease may refer to the amount of the nuclease that is sufficient to induce cleavage of a target site specifically bound and cleaved by the nuclease. In some embodiments, an effective amount of a fusion protein provided herein, e.g., of a fusion protein comprising a nuclease-inactive Cas9 domain and a nucleic acid-editing domain (e.g., a deaminase domain) may refer to the amount of the fusion protein that is sufficient to induce editing of a target site specifically bound and edited by the fusion protein. As will be appreciated by the skilled artisan, the effective amount of an agent, e.g., a fusion protein, a deaminase, a hybrid protein, a protein dimer, a complex of a protein (or protein dimer) and a polynucleotide, or a polynucleotide, may vary depending on various factors, such as, for example, on the desired biological response, e.g., on the specific allele, genome, or target site to be edited, on the cell or tissue being targeted, and/or on the agent being used.


The term “Gam protein,” as used herein, refers generally to proteins capable of binding to one or more ends of a double strand break of a double stranded nucleic acid (e.g., double stranded DNA). In some embodiments, the Gam protein prevents or inhibits degradation of one or more strands of a nucleic acid at the site of the double strand break. In some embodiments, a Gam protein is a naturally-occurring Gam protein from bacteriophage Mu, or a non-naturally occurring variant thereof.


The term “loss-of-function mutation” or “inactivating mutation” refers to a mutation that results in the gene product having less or no function (being partially or wholly inactivated). When the allele has a complete loss of function (null allele), it is often called an amorphic mutation in the Muller's morphs schema. Phenotypes associated with such mutations are most often recessive. Exceptions are when the organism is haploid, or when the reduced dosage of a normal gene product is not enough for a normal phenotype (this is called haploinsufficiency).


The term “gain-of-function mutation” or “activating mutation” refers to a mutation that changes the gene product such that its effect gets stronger (enhanced activation) or even is superseded by a different and abnormal function. A gain of function mutation may also be referred to as a neomorphic mutation. When the new allele is created, a heterozygote containing the newly created allele as well as the original will express the new allele, genetically defining the mutations as dominant phenotypes.


The terms “treatment,” “treat,” and “treating” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed and/or after a disease has been diagnosed. Treatment may also be continued after symptoms have resolved, for example, to prevent or delay their recurrence. In one embodiment, the methods and compositions disclosed herein may be used to delay the onset of AIDS in an individual infected with HIV. The terms “prevention,” “prevent,” and “preventing” refer to a clinical intervention aimed to inhibit the onset of a disease or disorder, or one or more symptoms thereof, as described herein. In one embodiment, treatment may be administered in the absence of symptoms, e.g., to prevent or delay onset of a symptom or inhibit onset or progression of a disease. In one embodiment, the methods and compositions disclosed herein may be used to prevent infection of a subject with HIV. In one example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors) in order to prevent the onset of the disease or symptoms of the disease.


The term “genome” refers to the genetic material of a cell or organism. It typically includes DNA (or RNA in the case of RNA viruses). The genome includes both the genes, the coding regions, the noncoding DNA, and the genomes of the mitochondria and chloroplasts. A genome does not typically include genetic material that is artificially introduced into a cell or organism, e.g., a plasmid that is transformed into a bacteria is not a part of the bacterial genome.


A “programmable DNA-binding protein” refers to DNA binding proteins that can be programmed to target any desired nucleotide sequence within a genome. To program the DNA-binding protein to bind a desired nucleotide sequence, the DNA binding protein may be modified to change its binding specificity, e.g., zinc finger nuclease (ZFN) or transcription activator-like effector proteins (TALE). ZFNs are artificial restriction enzymes generated by fusing a zinc finger DNA-binding domain to a DNA-cleavage domain. Zinc finger domains can be engineered to target specific desired DNA sequences and this enables zinc-fingers to bind unique sequences within complex genomes. Transcription activator-like effector nucleases (TALEN) are engineered restriction enzymes that can be engineered to cut specific sequences of DNA. They are made by fusing a TAL effector DNA-binding domain to a nuclease domain (e.g., Fok1). Transcription activator-like effectors (TALEs) can be engineered to bind practically any desired DNA sequence. Methods for programming ZFNs and TALEs are familiar to one skilled in the art. For example, such methods are described in Maeder, et al., Mol. Cell 31 (2): 294-301, 2008; Carroll et al., Genetics Society of America, 188 (4): 773-782, 2011; Miller et al., Nature Biotechnology 25 (7): 778-785, 2007; Christian et al., Genetics 186 (2): 757-61, 2008; Li et al., Nucleic Acids Res 39 (1): 359-372, 2010; and Moscou et al., Science 326 (5959): 1501, 2009, the entire contents of each of which are incorporated herein by reference.


A “guide nucleotide sequence-programmable DNA-binding protein” refers to a protein, a polypeptide, or a domain that is able to bind DNA, and the binding to its target DNA sequence is mediated by a guide nucleotide sequence. Thus, it is appreciated that the guide nucleotide sequence-programmable DNA-binding protein binds to a guide nucleotide sequence. The “guide nucleotide” may be an RNA or DNA molecule (e.g., a single-stranded DNA or ssDNA molecule) that is complementary to the target sequence and can guide the DNA binding protein to the target sequence. As such, a guide nucleotide sequence-programmable DNA-binding protein may be a RNA-programmable DNA-binding protein (e.g., a Cas9 protein), or an ssDNA-programmable DNA-binding protein (e.g., an Argonaute protein). “Programmable” means the DNA-binding protein may be programmed to bind any DNA sequence that the guide nucleotide targets. Exemplary guide nucleotide sequence-programmable DNA-binding proteins include, but are not limited to, Cas9 (e.g., dCas9 and nCas9), saCas9 (e.g., saCasd, saCasn, and saKKH Cas9), CasX, CasY, Cpf1, C2c1, C2c2, C2c3, Argonaute, and any other suitable protein described herein. In some embodiments, the fusion protein described herein comprises a Gam protein, a guide nucleotide sequence-programmable DNA binding protein, and a cytidine deaminase domain.


In some embodiments, the guide nucleotide sequence exists as a single nucleotide molecule and comprises comprise two domains: (1) a domain that shares homology to a target nucleic acid (e.g., and directs binding of a guide nucleotide sequence-programmable DNA-binding protein to the target); and (2) a domain that binds a guide nucleotide sequence-programmable DNA-binding protein. In some embodiments, domain (2) corresponds to a sequence known as a tracrRNA, and comprises a stem-loop structure. For example, in some embodiments, domain (2) is identical or homologous to a tracrRNA as provided in Jinek et al., Science 337:816-821(2012), which is incorporated herein by reference. Other examples of gRNAs (e.g., those including domain (2)) can be found in U.S. Patent Application Publication US20160208288 and U.S. Patent Application Publication US20160200779, each of which is herein incorporated by reference.


Because the guide nucleotide sequence hybridizes to a target DNA sequence, the guide nucleotide sequence-programmable DNA-binding proteins are able to specifically bind, in principle, to any sequence complementary to the guide nucleotide sequence. Methods of using guide nucleotide sequence-programmable DNA-binding protein, such as Cas9, for site-specific cleavage (e.g., to modify a genome) are known in the art (see e.g., Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013); Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013); Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology 31, 227-229 (2013); Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013); Dicarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic acids research (2013); Jiang, W. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology 31, 233-239 (2013); the entire contents of each of which are incorporated herein by reference).


As used herein, the term “Cas9” or “Cas9 nuclease” refers to an RNA-guided nuclease comprising a Cas9 protein, fragment, or variant thereof. A Cas9 nuclease is also referred to sometimes as a casn1 nuclease or a CRISPR (clustered regularly interspaced short palindromic repeat)-associated nuclease. CRISPR is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements, and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (rnc) and a Cas9 protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently, Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer. The target strand not complementary to crRNA is first cut endonucleolytically, then trimmed 3′-5′ exonucleolytically. In nature, DNA-binding and cleavage typically requires protein and both RNAs. However, single guide RNAs (“sgRNA”, or simply “gNRA”) can be engineered so as to incorporate aspects of both the crRNA and tracrRNA into a single RNA species. See, e.g., Jinek et al., Science 337:816-821(2012), which is incorporated herein by reference.


Cas9 nuclease sequences and structures are known to those of skill in the art (see, e.g., Ferretti et al., Proc. Natl. Acad. Sci. 98:4658-4663(2001); Deltcheva E. et al., Nature 471:602-607(2011); and Jinek et al., Science 337:816-821(2012), the entire contents of each of which are incorporated herein by reference). Cas9 orthologs have been described in various species, including, but not limited to, S. pyogenes and S. thermophilus. Additional suitable Cas9 nucleases and sequences will be apparent to those of skill in the art based on this disclosure, and such Cas9 nucleases and sequences include Cas9 sequences from the organisms and loci disclosed in Chylinski et al., (2013) RNA Biology 10:5, 726-737; which is incorporated herein by reference. In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_002737.2, SEQ ID NO: 4 (nucleotide); and Uniprot Reference Sequence: Q99ZW2, SEQ ID NO: 1 (amino acid).










Streptococcuspyogenes Cas9 (wild type) nucleotide



sequence 


(SEQ ID NO: 4)


ATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGG





ATGGGCGGTGATCACTGATGAATATAAGGTTCCGTCTAAAAAGTTCAAGG





TTCTGGGAAATACAGACCGCCACAGTATCAAAAAAAATCTTATAGGGGCT





CTTTTATTTGACAGTGGAGAGACAGCGGAAGCGACTCGTCTCAAACGGAC





AGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTTGTTATCTACAGG





AGATTTTTTCAAATGAGATGGCGAAAGTAGATGATAGTTTCTTTCATCGA





CTTGAAGAGTCTTTTTTGGTGGAAGAAGACAAGAAGCATGAACGTCATCC





TATTTTTGGAAATATAGTAGATGAAGTTGCTTATCATGAGAAATATCCAA





CTATCTATCATCTGCGAAAAAAATTGGTAGATTCTACTGATAAAGCGGAT





TTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTCGTGGTCA





TTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGATGTGGACAAAC





TATTTATCCAGTTGGTACAAACCTACAATCAATTATTTGAAGAAAACCCT





ATTAACGCAAGTGGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAG





TAAATCAAGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGA





AAAATGGCTTATTTGGGAATCTCATTGCTTTGTCATTGGGTTTGACCCCT





AATTTTAAATCAAATTTTGATTTGGCAGAAGATGCTAAATTACAGCTTTC





AAAAGATACTTACGATGATGATTTAGATAATTTATTGGCGCAAATTGGAG





ATCAATATGCTGATTTGTTTTTGGCAGCTAAGAATTTATCAGATGCTATT





TTACTTTCAGATATCCTAAGAGTAAATACTGAAATAACTAAGGCTCCCCT





ATCAGCTTCAATGATTAAACGCTACGATGAACATCATCAAGACTTGACTC





TTTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATAAAGAAATC





TTTTTTGATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGGAGC





TAGCCAAGAAGAATTTTATAAATTTATCAAACCAATTTTAGAAAAAATGG





ATGGTACTGAGGAATTATTGGTGAAACTAAATCGTGAAGATTTGCTGCGC





AAGCAACGGACCTTTGACAACGGCTCTATTCCCCATCAAATTCACTTGGG





TGAGCTGCATGCTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTAA





AAGACAATCGTGAGAAGATTGAAAAAATCTTGACTTTTCGAATTCCTTAT





TATGTTGGTCCATTGGCGCGTGGCAATAGTCGTTTTGCATGGATGACTCG





GAAGTCTGAAGAAACAATTACCCCATGGAATTTTGAAGAAGTTGTCGATA





AAGGTGCTTCAGCTCAATCATTTATTGAACGCATGACAAACTTTGATAAA





AATCTTCCAAATGAAAAAGTACTACCAAAACATAGTTTGCTTTATGAGTA





TTTTACGGTTTATAACGAATTGACAAAGGTCAAATATGTTACTGAAGGAA





TGCGAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTGAT





TTACTCTTCAAAACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGA





TTATTTCAAAAAAATAGAATGTTTTGATAGTGTTGAAATTTCAGGAGTTG





AAGATAGATTTAATGCTTCATTAGGTACCTACCATGATTTGCTAAAAATT





ATTAAAGATAAAGATTTTTTGGATAATGAAGAAAATGAAGATATCTTAGA





GGATATTGTTTTAACATTGACCTTATTTGAAGATAGGGAGATGATTGAGG





AAAGACTTAAAACATATGCTCACCTCTTTGATGATAAGGTGATGAAACAG





CTTAAACGTCGCCGTTATACTGGTTGGGGACGTTTGTCTCGAAAATTGAT





TAATGGTATTAGGGATAAGCAATCTGGCAAAACAATATTAGATTTTTTGA





AATCAGATGGTTTTGCCAATCGCAATTTTATGCAGCTGATCCATGATGAT





AGTTTGACATTTAAAGAAGACATTCAAAAAGCACAAGTGTCTGGACAAGG





CGATAGTTTACATGAACATATTGCAAATTTAGCTGGTAGCCCTGCTATTA





AAAAAGGTATTTTACAGACTGTAAAAGTTGTTGATGAATTGGTCAAAGTA





ATGGGGCGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAA





TCAGACAACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAA





TCGAAGAAGGTATCAAAGAATTAGGAAGTCAGATTCTTAAAGAGCATCCT





GTTGAAAATACTCAATTGCAAAATGAAAAGCTCTATCTCTATTATCTCCA





AAATGGAAGAGACATGTATGTGGACCAAGAATTAGATATTAATCGTTTAA





GTGATTATGATGTCGATCACATTGTTCCACAAAGTTTCCTTAAAGACGAT





TCAATAGACAATAAGGTCTTAACGCGTTCTGATAAAAATCGTGGTAAATC





GGATAACGTTCCAAGTGAAGAAGTAGTCAAAAAGATGAAAAACTATTGGA





GACAACTTCTAAACGCCAAGTTAATCACTCAACGTAAGTTTGATAATTTA





ACGAAAGCTGAACGTGGAGGTTTGAGTGAACTTGATAAAGCTGGTTTTAT





CAAACGCCAATTGGTTGAAACTCGCCAAATCACTAAGCATGTGGCACAAA





TTTTGGATAGTCGCATGAATACTAAATACGATGAAAATGATAAACTTATT





CGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACTTCCG





AAAAGATTTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCATG





CCCATGATGCGTATCTAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAA





TATCCAAAACTTGAATCGGAGTTTGTCTATGGTGATTATAAAGTTTATGA





TGTTCGTAAAATGATTGCTAAGTCTGAGCAAGAAATAGGCAAAGCAACCG





CAAAATATTTCTTTTACTCTAATATCATGAACTTCTTCAAAACAGAAATT





ACACTTGCAAATGGAGAGATTCGCAAACGCCCTCTAATCGAAACTAATGG





GGAAACTGGAGAAATTGTCTGGGATAAAGGGCGAGATTTTGCCACAGTGC





GCAAAGTATTGTCCATGCCCCAAGTCAATATTGTCAAGAAAACAGAAGTA





CAGACAGGCGGATTCTCCAAGGAGTCAATTTTACCAAAAAGAAATTCGGA





CAAGCTTATTGCTCGTAAAAAAGACTGGGATCCAAAAAAATATGGTGGTT





TTGATAGTCCAACGGTAGCTTATTCAGTCCTAGTGGTTGCTAAGGTGGAA





AAAGGGAAATCGAAGAAGTTAAAATCCGTTAAAGAGTTACTAGGGATCAC





AATTATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTTTTAGAAG





CTAAAGGATATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAA





TATAGTCTTTTTGAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGC





CGGAGAATTACAAAAAGGAAATGAGCTGGCTCTGCCAAGCAAATATGTGA





ATTTTTTATATTTAGCTAGTCATTATGAAAAGTTGAAGGGTAGTCCAGAA





GATAACGAACAAAAACAATTGTTTGTGGAGCAGCATAAGCATTATTTAGA





TGAGATTATTGAGCAAATCAGTGAATTTTCTAAGCGTGTTATTTTAGCAG





ATGCCAATTTAGATAAAGTTCTTAGTGCATATAACAAACATAGAGACAAA





CCAATACGTGAACAAGCAGAAAATATTATTCATTTATTTACGTTGACGAA





TCTTGGAGCTCCCGCTGCTTTTAAATATTTTGATACAACAATTGATCGTA





AACGATATACGTCTACAAAAGAAGTTTTAGATGCCACTCTTATCCATCAA





TCCATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAGGAGG





TGACTGA 






Streptococcuspyogenes Cas9 (wild type) protein



sequence


(SEQ ID NO: 1)


MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA






LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFF






HRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLV





DSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFG





NLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYA





DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLL





KALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMD





GTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL





KDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVV





DKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT





EGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEI





SGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDR





EMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKT





ILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANL






AGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQK







NSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVD







QELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSLE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVET







RQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFY







KVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMI







AKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGE







IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLI






ARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIM





ERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAG





ELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLD





EIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLT





NLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQL





GGD 


(single underline: HNH domain; double 


underline: RuvC domain)






In some embodiments, wild type Cas9 corresponds to Cas9 from Staphylococcus aureus (NCBI Reference Sequence: WP_001573634.1, SEQ ID NO: 5 (amino acid).










Staphylococcusaureus Cas9 (wild type) protein



sequence 


(SEQ ID NO: 5)


MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSK





RGARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKL





SEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYV





AELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDT





YIDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYA





YNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIA





KEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQ





IAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAI





NLILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVV





KRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQ





TNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNP





FNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKIS





YETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTR





YATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKH





HAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEY





KEIFITPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTL





IVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDE





KNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNS





RNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEA





KKLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDIT





YREYLENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQII





KKG






In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_017053.1, SEQ ID NO: 679 (nucleotide); SEQ ID NO: 680 (amino acid)).









(SEQ ID NO: 679)


ATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGG





ATGGGCGGTGATCACTGATGATTATAAGGTTCCGTCTAAAAAGTTCAAGG





TTCTGGGAAATACAGACCGCCACAGTATCAAAAAAAATCTTATAGGGGCT





CTTTTATTTGGCAGTGGAGAGACAGCGGAAGCGACTCGTCTCAAACGGAC





AGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTTGTTATCTACAGG





AGATTTTTTCAAATGAGATGGCGAAAGTAGATGATAGTTTCTTTCATCGA





CTTGAAGAGTCTTTTTTGGTGGAAGAAGACAAGAAGCATGAACGTCATCC





TATTTTTGGAAATATAGTAGATGAAGTTGCTTATCATGAGAAATATCCAA





CTATCTATCATCTGCGAAAAAAATTGGCAGATTCTACTGATAAAGCGGAT





TTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTCGTGGTCA





TTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGATGTGGACAAAC





TATTTATCCAGTTGGTACAAATCTACAATCAATTATTTGAAGAAAACCCT





ATTAACGCAAGTAGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAG





TAAATCAAGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGA





GAAATGGCTTGTTTGGGAATCTCATTGCTTTGTCATTGGGATTGACCCCT





AATTTTAAATCAAATTTTGATTTGGCAGAAGATGCTAAATTACAGCTTTC





AAAAGATACTTACGATGATGATTTAGATAATTTATTGGCGCAAATTGGAG





ATCAATATGCTGATTTGTTTTTGGCAGCTAAGAATTTATCAGATGCTATT





TTACTTTCAGATATCCTAAGAGTAAATAGTGAAATAACTAAGGCTCCCCT





ATCAGCTTCAATGATTAACGCTACGATGAACATCATCAAGACTTGACTCT





TTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATAAAGAAATCT





TTTTTGATCAATCAAAAAACGGATATGCAGGTATATTGATGGGGGAGCTA





GCCAAGAAGAATTTTATAAATTTATCAAACCAATTTTAGAAAAAATGGAT





GGTACTGAGGAATTATTGGTGAAACTAAATCGTGAAGATTTGCTGCGCAA





GCAACGGACCTTTGACAACGGCTCTATTCCCCATCAAATTCACTTGGGTG





AGCTGCATGCTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTAAAA





GACAATCGTGAGAAGATTGAAAAAATCTTGACTTTTCGAATTCCTTATTA





TGTTGGTCCATTGGCCGTGGCAATAGTCGTTTTGCATGGATGACTCGGAA





GTCTGAAGAAACAATTACCCCATGGAATTTTGAAGAAGTTGTCGATAAAG





GTGCTTCAGCTCAATCATTTATTGAACGCATGACAAACTTTGATAAAAAT





CTTCCAAATGAAAAAGTACTACCAAAACATAGTTTGCTTTATGAGTATTT





TACGGTTTATAACGAATTGACAAAGGTCAAATATGTTACTGAGGGAATGC





GAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTGATTTC





TCTTCAAAACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGATTAT





TTCAAAAAAATAGAATGTTTTGATAGTGTTGAAATTTCAGGAGTTGAAGA





TAGATTTAATGCTTCATTAGGCGCCTACCATGATTTGCTAAAAATTATTA





AAGATAAAGATTTTTTGGATAATGAAGAAAATGAAGATATCTTAGAGGAT





ATTGTTTTAACATTGACCTTATTTGAAGATAGGGGGATGATTGAGGAAAG





ACTTAAAACATATGCTCACCTCTTTGATGATAAGGTGATGAAACAGCTTA





AACGTCGCCGTTATACTGGTTGGGGACGTTTGTCTCGAAAATTGATTAAT





GGTATTAGGGATAAGCAATCTGGCAAAACAATATTAGATTTTTTGAAATC





AGATGGTTTTGCCAATCGCAATTTTATGCAGCTGATCCATGATGATAGTT





TGACATTTAAAGAAGATATTCAAAAAGCACAGGTGTCTGGACAAGGCCAT





AGTTTACATGAACAGATTGCTAACTTAGCTGGCAGTCCTGCTATTAAAAA





AGGTATTTTACAGACTGTAAAAATTGTTGATGAACTGGTCAAAGTAATGG





GGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCAGACA





ACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGAAGA





AGGTATCAAAGAATTAGGAAGTCAGATTCTTAAAGAGCATCCTGTTGAAA





ATACTCAATTGCAAAATGAAAAGCTCTATCTCTATTATCTACAAAATGGA





AGAGACATGTATGTGGACCAAGAATTAGATATTAATCGTTTAAGTGATTA





TGATGTCGATCACATTGTTCCACAAAGTTTCATTAAAGACGATTCAATAG





ACAATAAGGTACTAACGCGTTCTGATAAAAATCGTGGTAAATCGGATAAC





GTTCCAAGTGAAGAAGTAGTCAAAAAGATGAAAAACTATTGGAGACAACT





TCTAAACGCCAAGTTAATCACTCAACGTAAGTTTGATAATTTAACGAAAG





CTGAACGTGGAGGTTTGAGTGAACTTGATAAAGCTGGTTTTATCAAACGC





CAATTGGTTGAAACTCGCCAAATCACTAAGCATGTGGCACAAATTTTGGA





TAGTCGCATGAATACTAAATACGATGAAAATGATAAACTTATTCGAGAGG





TTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACTTCCGAAAAGAT





TTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCATGCCCATGA





TGCGTATCTAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATATCCAA





AACTTGAATCGGAGTTTGTCTATGGTGATTATAAAGTTTATGATGTTCGT





AAAATGATTGCTAAGTCTGAGCAAGAAATAGGCAAAGCAACCGCAAAATA





TTTCTTTTACTCTAATATCATGAACTTCTTCAAAACAGAAATTACACTTG





CAAATGGAGAGATTCGCAAACGCCCTCTAATCGAAACTAATGGGGAAACT





GGAGAAATTGTCTGGGATAAAGGGCGAGATTTTGCCACAGTGCGCAAAGT





ATTGTCCATGCCCCAAGTCAATATTGTCAAGAAAACAGAAGTACAGACAG





GCGGATTCTCCAAGGAGTCAATTTTACCAAAAAGAAATTCGGACAAGCTT





ATTGCTCGTAAAAAAGACTGGGATCCAAAAAAATATGGTGGTTTTGATAG





TCCAACGGTAGCTTATTCAGTCCTAGTGGTTGCTAAGGTGGAAAAAGGGA





AATCGAAGAAGTTAAAATCCGTTAAAGAGTTACTAGGGATCACAATTATG





GAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTTTTAGAAGCTAAAGG





ATATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAATATAGTC





TTTTTGAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAA





TTACAAAAAGGAAATGAGCTGGCTCTGCCAAGCAAATATGTGAATTTTTT





ATATTTAGCTAGTCATTATGAAAAGTTGAAGGGTAGTCCAGAAATAACGA





ACAAAAACAATTGTTTGTGGAGCAGCATAAGCATTATTTAGATGAGATTA





TTGAGCAAATCAGTGAATTTTCTAAGCGTGTTATTTTAGCAGATGCCAAT





TTAGATAAAGTTCTTAGTGCATATAACAAACATAGAGACAAACCAATACG





TGAACAAGCAGAAAATATTATTCATTTATTTACGTTGACGAATCTTGGAG





CTCCCGCTGCTTTTAAATATTTTGATACAACAATTGATCGTAAACGATAT





ACGTCTACAAAAGAAGTTTTAGATGCCACTCTTATCCATCAATCCATCAC





TGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAGGAGGTGACTGA 





(SEQ ID NO: 680)


MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGA






LLFGSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFH






RLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLADSTDK





ADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQIYNQLFE





ENPINASRVDAKAILSARLSKSRRLENLIAQLPGEKRNGLFGNLIALSL





GLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKN





LSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLP





EKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKL





NREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEK





ILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSF





IERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL





SGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNA





SLGAYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDRGMIEERLKT





YAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDG





FANRNFMQLIHDDSLTFKEDIQKAQVSGQGHSLHEQIANLAGSPAIKKG






ILQTVKIVDELVKVMGHKPENIVIEMARENQTTQKGQKNSRERMKRIE







EGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLS







DYDVDHIVPQSFIKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYW







RQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVA







QILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNY







HHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIG







KATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRD







FATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDP






KKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKN





PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL





ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE





FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAF





KYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD


(single underline: HNH domain; double underline:


RuvC domain) 






In some embodiments, wild type Cas9 corresponds to, or comprises, Streptococcus pyogenes Cas9 (SEQ ID NO: 681 (nucleotide) and/or SEQ ID NO: 682 (amino acid)):









(SEQ ID NO: 681)


ATGGATAAAAAGTATTCTATTGGTTTAGACATCGGCACTAATTCCGTTGG





ATGGGCTGTCATAACCGATGAATACAAAGTACCTTCAAAGAAATTTAAGG





TGTTGGGGAACACAGACCGTCATTCGATTAAAAAGAATCTTATCGGTGCC





CTCCTATTCGATAGTGGCGAAACGGCAGAGGCGACTCGCCTGAAACGAAC





CGCTCGGAGAAGGTATACACGTCGCAAGAACCGAATATGTTACTTACAAG





AAATTTTTAGCAATGAGATGGCCAAAGTTGACGATTCTTTCTTTCACCGT





TTGGAAGAGTCCTTCCTTGTCGAAGAGGACAAGAAACATGAACGGCACCC





CATCTTTGGAAACATAGTAGATGAGGTGGCATATCATGAAAAGTACCCAA





CGATTTATCACCTCAGAAAAAAGCTAGTTGACTCAACTGATAAAGCGGAC





CTGAGGTTAATCTACTTGGCTCTTGCCCATATGATAAAGTTCCGTGGGCA





CTTTCTCATTGAGGGTGATCTAAATCCGGACAACTCGGATGTCGACAAAC





TGTTCATCCAGTTAGTACAAACCTATAATCAGTTGTTTGAAGAGAACCCT





ATAAATGCAAGTGGCGTGGATGCGAAGGCTATTCTTAGCGCCCGCCTCTC





TAAATCCCGACGGCTAGAAAACCTGATCGCACAATTACCCGGAGAGAAGA





AAAATGGGTTGTTCGGTAACCTTATAGCGCTCTCACTAGGCCTGACACCA





AATTTTAAGTCGAACTTCGACTTAGCTGAAGATGCCAAATTGCAGCTTAG





TAAGGACACGTACGATGACGATCTCGACAATCTACTGGCACAAATTGGAG





ATCAGTATGCGGACTTATTTTTGGCTGCCAAAAACCTTAGCGATGCAATC





CTCCTATCTGACATACTGAGAGTTAATACTGAGATTACCAAGGCGCCGTT





ATCCGCTTCAATGATCAAAAGGTACGATGAACATCACCAAGACTTGACAC





TTCTCAAGGCCCTAGTCCGTCAGCAACTGCCTGAGAAATATAAGGAAATA





TTCTTTGATCAGTCGAAAAACGGGTACGCAGGTTATATTGACGGCGGAGC





GAGTCAAGAGGAATTCTACAAGTTTATCAAACCCATATTAGAGAAGATGG





ATGGGACGGAAGAGTTGCTTGTAAAACTCAATCGCGAAGATCTACTGCGA





AAGCAGCGGACTTTCGACAACGGTAGCATTCCACATCAAATCCACTTAGG





CGAATTGCATGCTATACTTAGAAGGCAGGAGGATTTTTATCCGTTCCTCA





AAGACAATCGTGAAAAGATTGAGAAAATCCTAACCTTTCGCATACCTTAC





TATGTGGGACCCCTGGCCCGAGGGAACTCTCGGTTCGCATGGATGACAAG





AAAGTCCGAAGAAACGATTACTCCATGGAATTTTGAGGAAGTTGTCGATA





AAGGTGCGTCAGCTCAATCGTTCATCGAGAGGATGACCAACTTTGACAAG





AATTTACCGAACGAAAAAGTATTGCCTAAGCACAGTTTACTTTACGAGTA





TTTCACAGTGTACAATGAACTCACGAAAGTTAAGTATGTCACTGAGGGCA





TGCGTAAACCCGCCTTTCTAAGCGGAGAACAGAAGAAAGCAATAGTAGAT





CTGTTATTCAAGACCAACCGCAAAGTGACAGTTAAGCAATTGAAAGAGGA





CTACTTTAAGAAAATTGAATGCTTCGATTCTGTCGAGATCTCCGGGGTAG





AAGATCGATTTAATGCGTCACTTGGTACGTATCATGACCTCCTAAAGATA





ATTAAAGATAAGGACTTCCTGGATAACGAAGAGAATGAAGATATCTTAGA





AGATATAGTGTTGACTCTTACCCTCTTTGAAGATCGGGAAATGATTGAGG





AAAGACTAAAAACATACGCTCACCTGTTCGACGATAAGGTTATGAAACAG





TTAAAGAGGCGTCGCTATACGGGCTGGGGACGATTGTCGCGGAAACTTAT





CAACGGGATAAGAGACAAGCAAAGTGGTAAAACTATTCTCGATTTTCTAA





AGAGCGACGGCTTCGCCAATAGGAACTTTATGCAGCTGATCCATGATGAC





TCTTTAACCTTCAAAGAGGATATACAAAAGGCACAGGTTTCCGGACAAGG





GGACTCATTGCACGAACATATTGCGAATCTTGCTGGTTCGCCAGCCATCA





AAAAGGGCATACTCCAGACAGTCAAAGTAGTGGATGAGCTAGTTAAGGTC





ATGGGACGTCACAAACCGGAAAACATTGTAATCGAGATGGCACGCGAAAA





TCAAACGACTCAGAAGGGGCAAAAAAACAGTCGAGAGCGGATGAAGAGAA





TAGAAGAGGGTATTAAAGAACTGGGCAGCCAGATCTTAAAGGAGCATCCT





GTGGAAAATACCCAATTGCAGAACGAGAAACTTTACCTCTATTACCTACA





AAATGGAAGGGACATGTATGTTGATCAGGAACTGGACATAAACCGTTTAT





CTGATTACGACGTCGATCACATTGTACCCCAATCCTTTTTGAAGGACGAT





TCAATCGACAATAAAGTGCTTACACGCTCGGATAAGAACCGAGGGAAAAG





TGACAATGTTCCAAGCGAGGAAGTCGTAAAGAAAATGAAGAACTATTGGC





GGCAGCTCCTAAATGCGAAACTGATAACGCAAAGAAAGTTCGATAACTTA





ACTAAAGCTGAGAGGGGTGGCTTGTCTGAACTTGACAAGGCCGGATTTAT





TAAACGTCAGCTCGTGGAAACCCGCCAAATCACAAAGCATGTTGCACAGA





TACTAGATTCCCGAATGAATACGAAATACGACGAGAACGATAAGCTGATT





CGGGAAGTCAAAGTAATCACTTTAAAGTCAAAATTGGTGTCGGACTTCAG





AAAGGATTTTCAATTCTATAAAGTTAGGGAGATAAATAACTACCACCATG





CGCACGACGCTTATCTTAATGCCGTCGTAGGGACCGCACTCATTAAGAAA





TACCCGAAGCTAGAAAGTGAGTTTGTGTATGGTGATTACAAAGTTTATGA





CGTCCGTAAGATGATCGCGAAAAGCGAACAGGAGATAGGCAAGGCTACAG





CCAAATACTTCTTTTATTCTAACATTATGAATTTCTTTAAGACGGAAATC





ACTCTGGCAAACGGAGAGATACGCAAACGACCTTTAATTGAAACCAATGG





GGAGACAGGTGAAATCGTATGGGATAAGGGCCGGGACTTCGCGACGGTGA





GAAAAGTTTTGTCCATGCCCCAAGTCAACATAGTAAAGAAAACTGAGGTG





CAGACCGGAGGGTTTTCAAAGGAATCGATTCTTCCAAAAAGGAATAGTGA





TAAGCTCATCGCTCGTAAAAAGGACTGGGACCCGAAAAAGTACGGTGGCT





TCGATAGCCCTACAGTTGCCTATTCTGTCCTAGTAGTGGCAAAAGTTGAG





AAGGGAAAATCCAAGAAACTGAAGTCAGTCAAAGAATTATTGGGGATAAC





GATTATGGAGCGCTCGTCTTTTGAAAAGAACCCCATCGACTTCCTTGAGG





CGAAAGGTTACAAGGAAGTAAAAAAGGATCTCATAATTAAACTACCAAAG





TATAGTCTGTTTGAGTTAGAAAATGGCCGAAAACGGATGTTGGCTAGCGC





CGGAGAGCTTCAAAAGGGGAACGAACTCGCACTACCGTCTAAATACGTGA





ATTTCCTGTATTTAGCGTCCCATTACGAGAAGTTGAAAGGTTCACCTGAA





GATAACGAACAGAAGCAACTTTTTGTTGAGCAGCACAAACATTATCTCGA





CGAAATCATAGAGCAAATTTCGGAATTCAGTAAGAGAGTCATCCTAGCTG





ATGCCAATCTGGACAAAGTATTAAGCGCATACAACAAGCACAGGGATAAA





CCCATACGTGAGCAGGCGGAAAATATTATCCATTTGTTTACTCTTACCAA





CCTCGGCGCTCCAGCCGCATTCAAGTATTTTGACACAACGATAGATCGCA





AACGATACACTTCTACCAAGGAGGTGCTAGACGCGACACTGATTCACCAA





TCCATCACGGGATTATATGAAACTCGGATAGATTTGTCACAGCTTGGGGG





TGACGGATCCCCCAAGAAGAAGAGGAAAGTCTCGAGCGACTACAAAGACC





ATGACGGTGATTATAAAGATCATGACATCGATTACAAGGATGACGATGAC





AAGGCTGCAGGA





(SEQ ID NO: 682)


MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA






LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR






LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV






MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP







VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD







SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL







TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI







REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK







YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV







QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVE






KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD 


(single underline: HNH domain;


double underline: RuvC domain)






In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisl (NCBI Ref: NC_018721.1); Streptococcus thermophilus (NCBI Ref: YP_820832.1), Listeria innocua (NCBI Ref: NP_472073.1), Campylobacter jejuni (NCBI Ref: YP_002344900.1) or Neisseria. meningitidis (NCBI Ref: YP_002342100.1) or to a Cas9 from any of the organisms listed in Example 1 (SEQ ID NOs: 1-260, 270-292 or 315-323).


In some embodiments, proteins comprising fragments of Cas9 are provided. For example, in some embodiments, a protein comprises one of two Cas9 domains: (1) the gRNA binding domain of Cas9; or (2) the DNA cleavage domain of Cas9. In some embodiments, proteins comprising Cas9 or fragments thereof are referred to as “Cas9 variants.” A Cas9 variant shares homology to Cas9, or a fragment thereof. For example, a Cas9 variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to wild type Cas9. In some embodiments, the Cas9 variant may have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more amino acid changes compared to wild type Cas9. In some embodiments, the Cas9 variant comprises a fragment of Cas9 (e.g., a gRNA binding domain or a DNA-cleavage domain), such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of wild type Cas9. In some embodiments, the fragment is at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identical, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid length of a corresponding wild type Cas9.


In some embodiments, the fragment is at least 100 amino acids in length. In some embodiments, the fragment is at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 450, at least 500, at least 550, at least 600, at least 650, at least 700, at least 750, at least 800, at least 850, at least 900, at least 950, at least 1000, at least 1050, at least 1100, at least 1150, at least 1200, at least 1250, or at least 1300 amino acids in length.


To be used as in the fusion protein of the present disclosure as the guide nucleotide sequence-programmable DNA binding protein domain, a Cas9 protein typically needs to be nuclease inactive. A nuclease-inactive Cas9 protein may interchangeably be referred to as a “dCas9” protein (for nuclease-“dead” Cas9). Methods for generating a Cas9 protein (or a fragment thereof) having an inactive DNA cleavage domain are known (See, e.g., Jinek et al., Science. 337:816-821(2012); Qi et al., (2013) Cell. 28; 152(5):1173-83, which is incorporated herein by reference). For example, the DNA cleavage domain of Cas9 is known to include two subdomains, the HNH nuclease subdomain and the RuvC1 subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvC1 subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas9. For example, the mutations D10A and H840A completely inactivate the nuclease activity of S. pyogenes Cas9 (Jinek et al., Science. 337:816-821(2012); Qi et al., Cell. 28; 152(5):1173-83 (2013)).










S. pyogenes dCas9 (D10A and H840A)



(SEQ ID NO: 2)


MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA






LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR






LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV






MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP







VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDD







SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL







TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI







REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK







YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV







QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVE






KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ





SITGLYETRI 


(single underline: HNH domain; double


underline: RuvC domain).






The dCas9 of the present disclosure encompasses completely inactive Cas9 or partially inactive Cas9. For example, the dCas9 may have one of the two nuclease domain inactivated, while the other nuclease domain remains active. Such a partially active Cas9 may also be referred to as a Cas9 nickase, due to its ability to cleave one strand of the targeted DNA sequence. The Cas9 nickase suitable for use in accordance with the present disclosure has an active HNH domain and an inactive RuvC domain and is able to cleave only the strand of the target DNA that is bound by the sgRNA (which is the opposite strand of the strand that is being edited via deamination). The Cas9 nickase of the present disclosure may comprise mutations that inactivate the RuvC domain, e.g., a D10A mutation. It is to be understood that any mutation that inactivates the RuvC domain may be included in a Cas9 nickase, e.g., insertion, deletion, or single or multiple amino acid substitution in the RuvC domain. In a Cas9 nickase described herein, while the RuvC domain is inactivated, the HNH domain remains active. Thus, while the Cas9 nickase may comprise mutations other than those that inactivate the RuvC domain (e.g., D10A), those mutations do not affect the activity of the HNH domain. In a non-limiting Cas9 nickase example, the histidine at position 840 remains unchanged. The sequence of exemplary Cas9 nickases suitable for the present disclosure is provided below.










S. pyogenes Cas9 Nickase (D10A)



(SEQ ID NO: 3)


MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA






LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR






LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV






MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP







VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD







SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL







TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI







REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK







YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV







QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVE






KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD 


(single underline: HNH domain;


double underline: RuvC domain)






S. aureus Cas9 Nickase (D10A)



(SEQ ID NO: 6)


MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSK





RGARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKL





SEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYV





AELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDT





YIDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYA





YNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIA





KEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQ





IAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAI





NLILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVV





KRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQ





TNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNP





FNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKIS





YETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTR





YATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKH





HAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEY





KEIFITPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTL





IVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDE





KNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNS





RNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEA





KKLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDIT





YREYLENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQII





KKG






The targeting range of base editors was further expanded by applying recently engineered Cas9 variants that expand or alter PAM specificities. Joung and coworkers recently reported three SpCas9 mutants that accept NGA (VQR-Cas9), NGAG (EQR-Cas9), or NGCG (VRER-Cas9) PAM sequences (see: Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485; 2015, which is herein incorporated by reference in its entirety). In addition, Joung and coworkers engineered a SaCas9 variant containing three mutations (SaKKH-Cas9) that relax its PAM requirement to NNNRRT (see: Kleinstiver, B. P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293-1298; 2015, which is herein incorporated by reference in its entirety).









VRER-Cas9 (D1135V/G1218R/R1335E/T1337R) S.



pyogenes Cas9



(SEQ ID NO: 7)


MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA






LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR






LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV






MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP







VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD







SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL







TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI







REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK







YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV







QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVE






KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASARELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKEYRSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD 


(single underline: HNH domain;


double underline: RuvC domain)





VRER-nCas9 (D10A/D1135V/G1218R/R1335E/T1337R) S.



pyogenes Cas9 Nickase



(SEQ ID NO: 8)


MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA






LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR






LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV






MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP







VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD







SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL







TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI







REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK







YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV







QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVE






KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASARELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKEYRSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD 


(single underline: HNH domain;


double underline: RuvC domain)





VQR-Cas9 (D1135V/R1335Q/T1337R) S. pyogenes Cas9


(SEQ ID NO: 9)


MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA






LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR






LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV






MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP







VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD







SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL







TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI







REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK







YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV







QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVE






KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD 


(single underline: HNH domain;


double underline: RuvC domain)





VQR-nCas9 (D10A/D1135V/R1335Q/T1337R) S. pyogenes


Cas9 Nickase


(SEQ ID NO: 315)


MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA






LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR






LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV






MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP







VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD







SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL







TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI







REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK







YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV







QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVE






KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD 


(single underline: HNH domain;


double underline: RuvC domain)





EQR-Cas9 (D1135E/R1335Q/T1337R) S. pyogenes Cas9


(SEQ ID NO: 316)


MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA






LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR






LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV






MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP







VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD







SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL







TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI







REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK







YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV







QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFESPTVAYSVLVVAKVE






KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD 


(single underline: HNH domain;


double underline: RuvC domain)





EQR-nCas9 (D10A/D1135E/R1335Q/T1337R) S. pyogenes


Cas9 Nickase


(SEQ ID NO: 317)


MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA






LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR






LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV






MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP







VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD







SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL







TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI







REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK







YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV







QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFESPTVAYSVLVVAKVE






KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD 


(single underline: HNH domain;


double underline: RuvC domain)






Further variants of Cas9 from S. aureus and S. thermophilius may also be used in the contemplated methods and compositions described herein.









KKH variant (E782K/N968K/R1015H) S. aureus Cas9


(SEQ ID NO: 318)


MKRNYILGLDIGITSGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKR





GARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLS





EEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVA





ELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTY





IDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAY





NADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAK





EILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQI





AKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAIN





LILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVK





RSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQT





NERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPF





NYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKISY





ETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRY





ATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHH





AEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYK





EIFITPHQIKHIKDFKDYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLI





VNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEK





NPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSR





NKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAK





KLKKISNQAEFIASFYKNDLIKINGELYRVIGVNNDLLNRIEVNMIDITY





REYLENMNDKRPPHIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIK





KG





KKH variant (D10A/E782K/N968K/R1015H) S. aureus


Cas9 Nickase


(SEQ ID NO: 319)


MKRNYILGLAIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSK





RGARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKL





SEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYV





AELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDT





YIDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYA





YNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIA





KEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQ





IAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAI





NLILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVV





KRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQ





TNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNP





FNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKIS





YETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTR





YATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKH





HAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEY





KEIFITPHQIKHIKDFKDYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTL





IVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDE





KNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNS





RNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEA





KKLKKISNQAEFIASFYKNDLIKINGELYRVIGVNNDLLNRIEVNMIDIT





YREYLENMNDKRPPHIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQII





KKG






Streptococcus thermophilus CRISPR1 Cas9 (St1Cas9)



(SEQ ID NO: 320)


MSDLVLGLDIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLVRRTNR





QGRRLTRRKKHRRVRLNRLFEESGLITDFTKISINLNPYQLRVKGLTDEL





SNEELFIALKNMVKHRGISYLDDASDDGNSSIGDYAQIVKENSKQLETKT





PGQIQLERYQTYGQLRGDFTVEKDGKKHRLINVFPTSAYRSEALRILQTQ





QEFNPQITDEFINRYLEILTGKRKYYHGPGNEKSRTDYGRYRTSGETLDN





IFGILIGKCTFYPDEFRAAKASYTAQEFNLLNDLNNLTVPTETKKLSKEQ





KNQIINYVKNEKAMGPAKLFKYIAKLLSCDVADIKGYRIDKSGKAEIHTF





EAYRKMKTLETLDIEQMDRETLDKLAYVLTLNTEREGIQEALEHEFADGS





FSQKQVDELVQFRKANSSIFGKGWHNFSVKLMMELIPELYETSEEQMTIL





TRLGKQKTTSSSNKTKYIDEKLLTEEIYNPVVAKSVRQAIKIVNAAIKEY





GDFDNIVIEMARETNEDDEKKAIQKIQKANKDEKDAAMLKAANQYNGKAE





LPHSVFHGHKQLATKIRLWHQQGERCLYTGKTISIHDLINNSNQFEVDHI





LPLSITFDDSLANKVLVYATANQEKGQRTPYQALDSMDDAWSFRELKAFV





RESKTLSNKKKEYLLTEEDISKFDVRKKFIERNLVDTRYASRVVLNALQE





HFRAHKIDTKVSVVRGQFTSQLRRHWGIEKTRDTYHHHAVDALIIAASSQ





LNLWKKQKNTLVSYSEDQLLDIETGELISDDEYKESVFKAPYQHFVDTLK





SKEFEDSILFSYQVDSKFNRKISDATIYATRQAKVGKDKADETYVLGKIK





DIYTQDGYDAFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPNKQINE





KGKEVPCNPFLKYKEEHGYIRKYSKKGNGPEIKSLKYYDSKLGNHIDITP





KDSNNKVVLQSVSPWRADVYFNKTTGKYEILGLKYADLQFEKGTGTYKIS





QEKYNDIKKKEGVDSDSEFKFTLYKNDLLLVKDTETKEQQLFRFLSRTMP





KQKHYVELKPYDKQKFEGGEALIKVLGNVANSGQCKKGLGKSNISIYKVR





TDVLGNQHIIKNEGDKPKLDF






Streptococcus thermophilus CRISPR1 Cas9 (St1Cas9)



Nickase (D9A)


(SEQ ID NO: 321)


MSDLVLGLAIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLVRRTNR





QGRRLTRRKKHRRVRLNRLFEESGLITDFTKISINLNPYQLRVKGLTDEL





SNEELFIALKNMVKHRGISYLDDASDDGNSSIGDYAQIVKENSKQLETKT





PGQIQLERYQTYGQLRGDFTVEKDGKKHRLINVFPTSAYRSEALRILQTQ





QEFNPQITDEFINRYLEILTGKRKYYHGPGNEKSRTDYGRYRTSGETLDN





IFGILIGKCTFYPDEFRAAKASYTAQEFNLLNDLNNLTVPTETKKLSKEQ





KNQIINYVKNEKAMGPAKLFKYIAKLLSCDVADIKGYRIDKSGKAEIHTF





EAYRKMKTLETLDIEQMDRETLDKLAYVLTLNTEREGIQEALEHEFADGS





FSQKQVDELVQFRKANSSIFGKGWHNFSVKLMMELIPELYETSEEQMTIL





TRLGKQKTTSSSNKTKYIDEKLLTEEIYNPVVAKSVRQAIKIVNAAIKEY





GDFDNIVIEMARETNEDDEKKAIQKIQKANKDEKDAAMLKAANQYNGKAE





LPHSVFHGHKQLATKIRLWHQQGERCLYTGKTISIHDLINNSNQFEVDHI





LPLSITFDDSLANKVLVYATANQEKGQRTPYQALDSMDDAWSFRELKAFV





RESKTLSNKKKEYLLTEEDISKFDVRKKFIERNLVDTRYASRVVLNALQE





HFRAHKIDTKVSVVRGQFTSQLRRHWGIEKTRDTYHHHAVDALIIAASSQ





LNLWKKQKNTLVSYSEDQLLDIETGELISDDEYKESVFKAPYQHFVDTLK





SKEFEDSILFSYQVDSKFNRKISDATIYATRQAKVGKDKADETYVLGKIK





DIYTQDGYDAFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPNKQINE





KGKEVPCNPFLKYKEEHGYIRKYSKKGNGPEIKSLKYYDSKLGNHIDITP





KDSNNKVVLQSVSPWRADVYFNKTTGKYEILGLKYADLQFEKGTGTYKIS





QEKYNDIKKKEGVDSDSEFKFTLYKNDLLLVKDTETKEQQLFRFLSRTMP





KQKHYVELKPYDKQKFEGGEALIKVLGNVANSGQCKKGLGKSNISIYKVR





TDVLGNQHIIKNEGDKPKLDF






Streptococcus thermophilus CRISPR3Cas9 (St3Cas9)



(SEQ ID NO: 322)


MTKPYSIGLDIGTNSVGWAVITDNYKVPSKKMKVLGNTSKKYIKKNLLGV





LLFDSGITAEGRRLKRTARRRYTRRRNRILYLQEIFSTEMATLDDAFFQR





LDDSFLVPDDKRDSKYPIFGNLVEEKVYHDEFPTIYHLRKYLADSTKKAD





LRLVYLALAHMIKYRGHFLIEGEFNSKNNDIQKNFQDFLDTYNAIFESDL





SLENSKQLEEIVKDKISKLEKKDRILKLFPGEKNSGIFSEFLKLIVGNQA





DFRKCFNLDEKASLHFSKESYDEDLETLLGYIGDDYSDVFLKAKKLYDAI





LLSGFLTVTDNETEAPLSSAMIKRYNEHKEDLALLKEYIRNISLKTYNEV





FKDDTKNGYAGYIDGKTNQEDFYVYLKNLLAEFEGADYFLEKIDREDFLR





KQRTFDNGSIPYQIHLQEMRAILDKQAKFYPFLAKNKERIEKILTFRIPY





YVGPLARGNSDFAWSIRKRNEKITPWNFEDVIDKESSAEAFINRMTSFDL





YLPEEKVLPKHSLLYETFNVYNELTKVRFIAESMRDYQFLDSKQKKDIVR





LYFKDKRKVTDKDIIEYLHAIYGYDGIELKGIEKQFNSSLSTYHDLLNII





NDKEFLDDSSNEAIIEEIIHTLTIFEDREMIKQRLSKFENIFDKSVLKKL





SRRHYTGWGKLSAKLINGIRDEKSGNTILDYLIDDGISNRNFMQLIHDDA





LSFKKKIQKAQIIGDEDKGNIKEVVKSLPGSPAIKKGILQSIKIVDELVK





VMGGRKPESIVVEMARENQYTNQGKSNSQQRLKRLEKSLKELGSKILKEN





IPAKLSKIDNNALQNDRLYLYYLQNGKDMYTGDDLDIDRLSNYDIDHIIP





QAFLKDNSIDNKVLVSSASNRGKSDDFPSLEVVKKRKTFWYQLLKSKLIS





QRKFDNLTKAERGGLLPEDKAGFIQRQLVETRQITKHVARLLDEKFNNKK





DENNRAVRTVKIITLKSTLVSQFRKDFELYKVREINDFHHAHDAYLNAVI





ASALLKKYPKLEPEFVYGDYPKYNSFRERKSATEKVYFYSNIMNIFKKSI





SLADGRVIERPLIEVNEETGESVWNKESDLATVRRVLSYPQVNVVKKVEE





QNHGLDRGKPKGLFNANLSSKPKPNSNENLVGAKEYLDPKKYGGYAGISN





SFAVLVKGTIEKGAKKKITNVLEFQGISILDRINYRKDKLNFLLEKGYKD





IELIIELPKYSLFELSDGSRRMLASILSTNNKRGEIHKGNQIFLSQKFVK





LLYHAKRISNTINENHRKYVENHKKEFEELFYYILEFNENYVGAKKNGKL





LNSAFQSWQNHSIDELCSSFIGPTGSERKGLFELTSRGSAADFEFLGVKI





PRYRDYTPSSLLKDATLIHQSVTGLYETRIDLAKLGEG






Streptococcus thermophilus CRISPR3Cas9 (St3Cas9)



Nickase (D10A)


(SEQ ID NO: 323)


MTKPYSIGLAIGTNSVGWAVITDNYKVPSKKMKVLGNTSKKYIKKNLLGV





LLFDSGITAEGRRLKRTARRRYTRRRNRILYLQEIFSTEMATLDDAFFQR





LDDSFLVPDDKRDSKYPIFGNLVEEKVYHDEFPTIYHLRKYLADSTKKAD





LRLVYLALAHMIKYRGHFLIEGEFNSKNNDIQKNFQDFLDTYNAIFESDL





SLENSKQLEEIVKDKISKLEKKDRILKLFPGEKNSGIFSEFLKLIVGNQA





DFRKCFNLDEKASLHFSKESYDEDLETLLGYIGDDYSDVFLKAKKLYDAI





LLSGFLTVTDNETEAPLSSAMIKRYNEHKEDLALLKEYIRNISLKTYNEV





FKDDTKNGYAGYIDGKTNQEDFYVYLKNLLAEFEGADYFLEKIDREDFLR





KQRTFDNGS1PYQIHLQEMRAILDKQAKFYPFLAKNKERIEKILTFRIPY





YVGPLARGNSDFAWSIRKRNEKITPWNFEDVIDKESSAEAFINRMTSFDL





YLPEEKVLPKHSLLYETFNVYNELTKVRFIAESMRDYQFLDSKQKKDIVR





LYFKDKRKVTDKDIIEYLHAIYGYDGIELKGIEKQFNSSLSTYHDLLNII





NDKEFLDDSSNEAIIEEIIHTLTIFEDREMIKQRLSKFENIFDKSVLKKL





SRRHYTGWGKLSAKLINGIRDEKSGNTILDYLIDDGISNRNFMQLIHDDA





LSFKKKIQKAQIIGDEDKGNIKEVVKSLPGSPAIKKGILQSIKIVDELVK





VMGGRKPESIVVEMARENQYTNQGKSNSQQRLKRLEKSLKELGSKILKEN





IPAKLSKIDNNALQNDRLYLYYLQNGKDMYTGDDLDIDRLSNYDIDHIIP





QAFLKDNSIDNKVLVSSASNRGKSDDFPSLEVVKKRKTFWYQLLKSKLIS





QRKFDNLTKAERGGLLPEDKAGFIQRQLVETRQITKHVARLLDEKFNNKK





DENNRAVRTVKIITLKSTLVSQFRKDFELYKVREINDFHHAHDAYLNAVI





ASALLKKYPKLEPEFVYGDYPKYNSFRERKSATEKVYFYSNIMNIFKKSI





SLADGRVIERPLIEVNEETGESVWNKESDLATVRRVLSYPQVNVVKKVEE





QNHGLDRGKPKGLFNANLSSKPKPNSNENLVGAKEYLDPKKYGGYAGISN





SFAVLVKGTIEKGAKKKITNVLEFQGISILDRINYRKDKLNFLLEKGYKD





IELIIELPKYSLFELSDGSRRMLASILSTNNKRGEIHKGNQIFLSQKFVK





LLYHAKRISNTINENHRKYVENHKKEFEELFYYILEFNENYVGAKKNGKL





LNSAFQSWQNHSIDELCSSFIGPTGSERKGLFELTSRGSAADFEFLGVKI





PRYRDYTPSSLLKDATLIHQSVTGLYETRIDLAKLGEG






It is appreciated that when the term “dCas9” or “nuclease-inactive Cas9” is used herein, it refers to Cas9 variants that are inactive in both HNH and RuvC domains as well as Cas9 nickases. For example, the dCas9 used in the present disclosure may include the amino acid sequence set forth in SEQ ID NO: 2 or SEQ ID NO: 3. In some embodiments, the dCas9 may comprise other mutations that inactivate RuvC or HNH domain. Additional suitable mutations that inactivate Cas9 will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D839A and/or N863A (See, e.g., Prashant et al., Nature Biotechnology. 2013; 31(9): 833-838, the entire contents of which are incorporated herein by reference), or K603R (See, e.g., Chavez et al., Nature Methods 12, 326-328, 2015, the entire contents of which is incorporated herein by reference). The term Cas9, dCas9, or Cas9 variant also encompasses Cas9, dCas9, or Cas9 variants from any organism. Also appreciated is that dCas9, Cas9 nickase, or other appropriate Cas9 variants from any organisms may be used in accordance with the present disclosure. In one example, the Cas9 variants used herein are the D10A variants of Cas9 from S. pyogenes or S. aureus.


A “deaminase” refers to an enzyme that catalyzes the removal of an amine group from a molecule, or deamination. In some embodiments, the deaminase is a cytidine deaminase, catalyzing the deamination of cytidine or deoxycytidine to uridine or deoxyuridine, respectively. In some embodiments, the deaminase is a cytosine deaminase, catalyzing the hydrolytic deamination of cytosine to uracil (e.g., in RNA) or thymine (e.g., in DNA). In some embodiments, the deaminase is a naturally-occurring deaminase from an organism, such as a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase is a variant of a naturally-occurring deaminase from an organism, and the variant does not occur in nature. For example, in some embodiments, the deaminase or deaminase domain is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring deaminase from an organism.


A “cytosine deaminase” refers to an enzyme that catalyzes the chemical reaction “cytosine+H2O ⇄uracil+NH3.” As it may be apparent from the reaction formula, such chemical reactions result in a C to U/T nucleobase change. In the context of a gene, such nucleotide change, or mutation, may in turn lead to an amino acid change in the protein, which may affect the protein's function, e.g., loss-of-function or gain-of-function.


One exemplary suitable class of cytosine deaminases is the apolipoprotein B mRNA-editing complex (APOBEC) family of cytosine deaminases encompassing eleven proteins that serve to initiate mutagenesis in a controlled and beneficial manner. The apolipoprotein B editing complex 3 (APOBEC3) enzyme provides protection to human cells against a certain HIV-1 strain via the deamination of cytosines in reverse-transcribed viral ssDNA. These cytosine deaminases all require a Zn2+-coordinating motif (His-X-Glu-X23-26-Pro-Cys-X2-4-Cys; SEQ ID NO: 324) and bound water molecule for catalytic activity. The glutamic acid residue acts to activate the water molecule to a zinc hydroxide for nucleophilic attack in the deamination reaction. Each family member preferentially deaminates at its own particular “hotspot,” for example, WRC (W is A or T, R is A or G) for hAID, TTC for hAPOBEC3F. A recent crystal structure of the catalytic domain of APOBEC3G revealed a secondary structure comprising a five-stranded β-sheet core flanked by six α-helices, which is believed to be conserved across the entire family. The active center loops have been shown to be responsible for both ssDNA binding and in determining “hotspot” identity. Overexpression of these enzymes has been linked to genomic instability and cancer, thus highlighting the importance of sequence-specific targeting. Another suitable cytosine deaminase is the activation-induced cytidine deaminase (AID), which is responsible for the maturation of antibodies by converting cytosines in ssDNA to uracils in a transcription-dependent, strand-biased fashion.


The term “base editors” or “nucleobase editors,” as used herein, broadly refer to any of the fusion proteins described herein. In some embodiments, the nucleobase editors are capable of precisely deaminating a target base to convert it to a different base, e.g., the base editor may target C bases in a nucleic acid sequence and convert the C to a T. In some embodiments, the base editor comprises a Cas9 (e.g., dCas9 and nCas9), CasX, CasY, Cpf1, C2c1, C2c2, C2c3, or Argonaute protein fused to a cytidine deaminase. For example, in certain embodiments, the base editor may be a cytosine deaminase-dCas9 fusion protein. In some embodiments, the base editor may be a deaminase-dCas9-UGI fusion protein. In some embodiments, the base editor may be a APOBEC1-dCas9-UGI fusion protein. In some embodiments, the base editor may be APOBEC1-Cas9 nickase-UGI fusion protein. In some embodiments, the base editor may be APOBEC1-dCpf1-UGI fusion protein. In some embodiments, the base editor may be APOBEC1-dNgAgo-UGI fusion protein. In some embodiments, the base editor may be APOBEC1-SpCas9 nickase-UGI fusion protein. In some embodiments, the base editor may be APOBEC1-SaCas9 nickase-UGI fusion protein. In some embodiments, the base editor comprises a CasX protein fused to a cytidine deaminase. In some embodiments, the base editor comprises a CasY protein fused to a cytidine deaminase. In some embodiments, the base editor comprises a Cpf1 protein fused to a cytidine deaminase. In some embodiments, the base editor comprises a C2c1 protein fused to a cytidine deaminase. In some embodiments, the base editor comprises a C2c2 protein fused to a cytidine deaminase. In some embodiments, the base editor comprises a C2c3 protein fused to a cytidine deaminase. In some embodiments, the base editor comprises an Argonaute protein fused to a cytidine deaminase. In some embodiments, the fusion protein described herein comprises a Gam protein, a guide nucleotide sequence-programmable DNA binding protein, and a cytidine deaminase domain. In some embodiments, the base editor comprises a Gam protein, fused to a CasX protein, which is fused to a cytidine deaminase. In some embodiments, the base editor comprises a Gam protein, fused to a CasY protein, which is fused to a cytidine deaminase. In some embodiments, the base editor comprises a Gam protein, fused to a Cpf1 protein, which is fused to a cytidine deaminase. In some embodiments, the base editor comprises a Gam protein, fused to a C2c1 protein, which is fused to a cytidine deaminase. In some embodiments, the base editor comprises a Gam protein, fused to a C2c2 protein, which is fused to a cytidine deaminase. In some embodiments, the base editor comprises a Gam protein, fused to a C2c3 protein, which is fused to a cytidine deaminase. In some embodiments, the base editor comprises a Gam protein, fused to an Argonaute protein, which is fused to a cytidine deaminase. Non-limiting exemplary sequences of the nucleobase editors useful in the present disclosure are provided in Example 1, SEQ ID NOs: 1-260, 270-292, or 315-323. Such nucleobase editors and methods of using them for genome editing have been described in the art, e.g., in U.S. Pat. No. 9,068,179, US Patent Application Publications US20150166980, US20150166981, US20150166982, US20150166984, and US20150165054, and U.S. Provisional Applications, 62/245,828, 62/279,346, 62/311,763, 62/322,178, 62/357,352, 62/370,700, and 62/398,490 and in Komor et al., Nature, “Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage,” 533, 420-424 (2016), each of which is incorporated herein by reference.


The term “uracil glycosylase inhibitor” or “UGI,” as used herein, refers to a protein that is capable of inhibiting a uracil-DNA glycosylase base-excision repair enzyme.


The term “Cas9 nickase,” as used herein, refers to a Cas9 protein that is capable of cleaving only one strand of a duplexed nucleic acid molecule (e.g., a duplexed DNA molecule). In some embodiments, a Cas9 nickase comprises a D10A mutation and has a histidine at position H840 of a wild type sequence, or a corresponding mutation in any of the Cas9 proteins provided herein. For example, a Cas9 nickase may comprise the amino acid sequence as set forth in SEQ ID NO: 683. Such a Cas9 nickase has an active HNH nuclease domain and is able to cleave the non-targeted strand of DNA, i.e., the strand bound by the gRNA. Further, such a Cas9 nickase has an inactive RuvC nuclease domain and is not able to cleave the targeted strand of the DNA, i.e., the strand where base editing is desired.









Exemplary Cas9 nickase (Cloning vector pPlatTET-


gRNA2; Accession No. BAV54124).


(SEQ ID NO: 683)


MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA





LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV





MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP





VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD





SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL





TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI





REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK





YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI





TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV





QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVE





KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD






The term “target site” or “target sequence” refers to a sequence within a nucleic acid molecule (e.g., a DNA molecule) that is deaminated by the fusion protein (e.g., a dCas9-deaminase fusion protein or a Gam-nCas9-deaminase fusion protein) provided herein. In some embodiments, the target sequence is a polynucleotide (e.g., a DNA), wherein the polynucleotide comprises a coding strand and a complementary strand. The meaning of a “coding strand” and “complementary strand,” as used herein, is the same as the common meaning of the terms in the art. In some embodiments, the target sequence is a sequence in the genome of a mammal. In some embodiments, the target sequence is a sequence in the genome of a human. In some embodiments, the target sequence is a sequence in the genome of a non-human animal. The term “target codon” refers to the amino acid codon that is edited by the base editor and converted to a different codon via deamination. The term “target base” refers to the nucleotide base that is edited by the base editor and converted to a different base via deamination. In some embodiments, the target codon in the coding strand is edited (e.g., deaminated). In some embodiments, the target codon in the complementary strand is edited (e.g., deaminated).


The term “linker,” as used herein, refers to a chemical group or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a nuclease-inactive Cas9 domain and a nucleic acid editing domain (e.g., a deaminase domain). In some embodiments, a linker joins a gRNA binding domain of an RNA-programmable nuclease, including a Cas9 nuclease domain, and a catalytic domain of a nucleic-acid editing domain (e.g., a deaminase domain). In some embodiments, a linker joins a Cas9 domain (e.g., a Cas9 nickase) and a Gam protein. In some embodiments, a linker joins a gRNA binding domain of an RNA-programmable nuclease (e.g., dCas9) and a UGI domain. In some embodiments, a linker joins a catalytic domain of a nucleic-acid editing domain (e.g., a deaminase domain) and a UGI domain. In some embodiments, a linker joins a catalytic domain of a nucleic-acid editing domain (e.g., a deaminase domain) and a Gam protein. In some embodiments, a linker joins a UGI domain and a Gam protein. Typically, the linker is positioned between, or flanked by, two groups, molecules, domains, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer (e.g. a non-natural polymer, non-peptidic polymer), or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated. Linkers may be of any form known in the art. For example, the linker may be a linker from a website such as www[dot]ibi[dot]vu[dot]nl/programs/linkerdbwww/or from www[dot] ibi[dot]vu[dot]nl/programs/linkerdbwww/src/database.txt. The linkers may also be unstructured, structured, helical, or extended.


The term “mutation,” as used herein, refers to a substitution of a residue within a sequence, e.g., a nucleic acid or amino acid sequence, with another residue, or a deletion or insertion of one or more residues within a sequence. Mutations are typically described herein by identifying the original residue followed by the position of the residue within the sequence and by the identity of the newly substituted residue. Various methods for making the amino acid substitutions (mutations) provided herein are well known in the art, and are provided by, for example, Green and Sambrook, Molecular Cloning. A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)).


The terms “nucleic acid,” “polynucleotide,” and “nucleic acid molecule,” as used herein, refer to a compound comprising a nucleobase and an acidic moiety, e.g., a nucleoside, a nucleotide, or a polymer of nucleotides. Typically, polymeric nucleic acids, e.g., nucleic acid molecules comprising three or more nucleotides are linear molecules, in which adjacent nucleotides are linked to each other via a phosphodiester linkage. In some embodiments, “nucleic acid” refers to individual nucleic acid residues (e.g. nucleotides and/or nucleosides). In some embodiments, “nucleic acid” refers to an oligonucleotide chain comprising three or more individual nucleotide residues. As used herein, the terms “oligonucleotide” and “polynucleotide” can be used interchangeably to refer to a polymer of nucleotides (e.g., a string of at least three nucleotides). In some embodiments, “nucleic acid” encompasses RNA as well as single and/or double-stranded DNA. Nucleic acids may be naturally occurring, for example, in the context of a genome, a transcript, an mRNA, tRNA, rRNA, siRNA, snRNA, a plasmid, cosmid, chromosome, chromatid, or other naturally occurring nucleic acid molecule. On the other hand, a nucleic acid molecule may be a non-naturally occurring molecule, e.g., a recombinant DNA or RNA, an artificial chromosome, an engineered genome, or fragment thereof, or a synthetic DNA, RNA, DNA/RNA hybrid, or including non-naturally occurring nucleotides or nucleosides. Furthermore, the terms “nucleic acid,” “DNA,” “RNA,” and/or similar terms include nucleic acid analogs, e.g., analogs having other than a phosphodiester backbone. Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, etc. Where appropriate, e.g., in the case of chemically synthesized molecules, nucleic acids can comprise nucleoside analogs such as analogs having chemically modified bases or sugars, and backbone modifications. A nucleic acid sequence is presented in the 5′ to 3′ direction unless otherwise indicated. In some embodiments, a nucleic acid is or comprises natural nucleosides (e.g. adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine); nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, 0(6)-methylguanine, and 2-thiocytidine); chemically modified bases; biologically modified bases (e.g., methylated bases); intercalated bases; modified sugars (e.g., 2′-fluororibose, ribose, 2′-deoxyribose, arabinose, and hexose); and/or modified phosphate groups (e.g., phosphorothioates and 5′-N-phosphoramidite linkages).


The terms “protein,” “peptide,” and “polypeptide” are used interchangeably herein, and refer to a polymer of amino acid residues linked together by peptide (amide) bonds. The terms refer to a protein, peptide, or polypeptide of any size, structure, or function. Typically, a protein, peptide, or polypeptide will be at least three amino acids long. A protein, peptide, or polypeptide may refer to an individual protein or a collection of proteins. One or more of the amino acids in a protein, peptide, or polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a hydroxyl group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc. A protein, peptide, or polypeptide may also be a single molecule or may be a multi-molecular complex. A protein, peptide, or polypeptide may be just a fragment of a naturally occurring protein or peptide. A protein, peptide, or polypeptide may be naturally occurring, recombinant, or synthetic, or any combination thereof. The term “fusion protein” as used herein refers to a hybrid polypeptide which comprises protein domains from at least two different proteins. One protein may be located at the amino-terminal (N-terminal) portion of the fusion protein or at the carboxy-terminal (C-terminal) protein thus forming an “amino-terminal fusion protein” or a “carboxy-terminal fusion protein,” respectively. A protein may comprise different domains, for example, a nucleic acid binding domain (e.g., the gRNA binding domain of Cas9 that directs the binding of the protein to a target site) and a nucleic acid cleavage domain or a catalytic domain of a nucleic-acid editing protein. In some embodiments, a protein is in a complex with, or is in association with, a nucleic acid, e.g., RNA. Any of the proteins provided herein may be produced by any method known in the art. For example, the proteins provided herein may be produced via recombinant protein expression and purification, which is especially well suited for fusion proteins comprising a peptide linker. Methods for recombinant protein expression and purification are well known, and include those described by Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)), which is incorporated herein by reference.


The term “subject,” as used herein, refers to an individual organism, for example, an individual mammal. In certain embodiments of the aspects described herein, the subject is a mammal, e.g., a primate, e.g., a human. In some embodiments, the subject is a non-human mammal. In some embodiments, the subject is a non-human primate. Non-human primates include, but are not limited to, chimpanzees, cynomologous monkeys, spider monkeys, and macaques, e.g., Rhesus. In some embodiments, the subject is any rodent, e.g., mice, rats, woodchucks, ferrets, rabbits and hamsters. In other embodiments, the subject is a domestic or game animal which includes, but is not limited to: cows, horses, pigs, deer, bison, buffalo, feline species, e.g., domestic cat, canine species, e.g., dog, fox, wolf, avian species, e.g., chicken, emu, ostrich, and fish, e.g., trout, catfish and salmon. In some embodiments, the subject is a sheep, a goat, a cattle, a cat, or a dog. In some embodiments, the subject is a research animal. In some embodiments, the subject is genetically engineered, e.g., a genetically engineered non-human subject. The subject may be of either sex and at any stage of development. For example, a subject may be male or female, and can be a fully developed subject (e.g., an adult) or a subject undergoing the developmental process (e.g., a child, infant or fetus). The term “patient” or “subject” includes any subset of the foregoing, e.g., all of the above, but excluding one or more groups or species such as humans, primates or rodents. The terms, “patient” and “subject” are used interchangeably herein.


The term “recombinant” as used herein in the context of proteins or nucleic acids refers to proteins or nucleic acids that do not occur in nature, but are the product of human engineering. For example, in some embodiments, a recombinant protein or nucleic acid molecule comprises an amino acid or nucleotide sequence that comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations as compared to any naturally occurring sequence. The fusion proteins (e.g., base editors) described herein are made recombinantly. Recombinant technology is familiar to those skilled in the art.


An “intron” refers to any nucleotide sequence within a gene that is removed by RNA splicing during maturation of the final RNA product. The term intron refers to both the DNA sequence within a gene and the corresponding sequence in RNA transcripts. Sequences that are joined together in the final mature RNA after RNA splicing are exons. Introns are found in the genes of most organisms and many viruses, and can be located in a wide range of genes, including those that generate proteins, ribosomal RNA (rRNA), and transfer RNA (tRNA). When proteins are generated from intron-containing genes, RNA splicing takes place as part of the RNA processing pathway that follows transcription and precedes translation.


An “exon” refers to any part of a gene that will become a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term exon refers to both the DNA sequence within a gene and to the corresponding sequence in RNA transcripts. In RNA splicing, introns are removed and exons are covalently joined to one another as part of generating the mature messenger RNA.


“Splicing” refers to the processing of a newly synthesized messenger RNA transcript (also referred to as a primary mRNA transcript). After splicing, introns are removed and exons are joined together (ligated) for form mature mRNA molecule containing a complete open reading frame that is decoded and translated into a protein. For nuclear-encoded genes, splicing takes place within the nucleus either co-transcriptionally or immediately after transcription. The molecular mechanism of RNA splicing has been extensively described, e.g., in Pagani et al., Nature Reviews Genetics 5, 389-396, 2004; Clancy et al., Nature Education 1 (1): 31, 2011; Cheng et al., Molecular Genetics and Genomics 286 (5-6): 395-410, 2014; Taggart et al., Nature Structural & Molecular Biology 19 (7): 719-2, 2012, the contents of each of which are incorporated herein by reference. One skilled in the art is familiar with the mechanism of RNA splicing.


“Alternative splicing” refers to a regulated process during gene expression that results in a single gene coding for multiple proteins. In this process, particular exons of a gene may be included within or excluded from the final, processed messenger RNA (mRNA) produced from that gene. Consequently, the proteins translated from alternatively spliced mRNAs will contain differences in their amino acid sequence and, often, in their biological functions. Notably, alternative splicing allows the human genome to direct the synthesis of many more proteins than would be expected from its 20,000 protein-coding genes. Alternative splicing is sometimes also termed differential splicing. Alternative splicing occurs as a normal phenomenon in eukaryotes, where it greatly increases the biodiversity of proteins that can be encoded by the genome; in humans, ˜95% of multi-exonic genes are alternatively spliced. There are numerous modes of alternative splicing observed, of which the most common is exon skipping. In this mode, a particular exon may be included in mRNAs under some conditions or in particular tissues, and omitted from the mRNA in others. Abnormal variations in splicing are also implicated in disease; a large proportion of human genetic disorders result from splicing variants. Abnormal splicing variants are also thought to contribute to the development of cancer, and splicing factor genes are frequently mutated in different types of cancer. The regulation of alternative splicing is also described in the art, e.g., in Douglas et al., Annual Review of Biochemistry 72 (1): 291-336, 2003; Pan et al., Nature Genetics 40 (12): 1413-1415, 2008; Martin et al., Nature Reviews 6 (5): 386-398, 2005; Skotheim et al., The International Journal of Biochemistry & Cell Biology 39 (7-8): 1432-49, 2007, each of which is incorporated herein by reference.


A “coding frame” or “open reading frame” refers to a stretch of codons that encodes a polypeptide. Since DNA is interpreted in groups of three nucleotides (codons), a DNA strand has three distinct reading frames. The double helix of a DNA molecule has two anti-parallel strands so, with the two strands having three reading frames each, there are six possible frame translations. A functional protein may be produced when translation proceeds in the correct coding frame. An insertion or a deletion of one or two bases in the open reading frame causes a shift in the coding frame that is also referred to as a “frameshift mutation.” A frameshift mutation typical results in premature translation termination and/or truncated or non-functional protein.


These and other exemplary substituents are described in more detail in the Detailed Description, Examples, and Claims. The methods and compositions disclosed herein are not intended to be limited in any manner by the above exemplary listing of substituents.


DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

Disclosed herein are novel genome/base-editing systems, methods, and compositions for generating engineered and naturally-occurring protective variants of the C—C Chemokine Receptor 5 (CCR5) protein to protect against human immunodeficiency virus (HIV) infection and acquired immune deficiency syndrome (AIDS). C—C Chemokine Receptor 5 (CCR5), also known as cluster of differentiation-195 (CD195), is a member of the beta chemokine receptor family. This protein is expressed by macrophages, dendritic cells, and memory T cells in the immune system; endothelial cells, epithelial cells, vascular smooth muscle cells, and fibroblasts; and microglia, neurons, and astrocytes in the central nervous system. See, e.g., Barmania and Pepper, Applied & Translational Genomics 2 (2013) 3-16, each of which is incorporated herein by reference. Macrophage-tropic (M-tropic) strains of HIV (e.g., M-tropic strains of HIV-1) can bind CCR5 in order to enter host cells.


Certain alleles of CCR5 have been associated with resistance to HIV infection. As one example, CCR5-Δ32 (also known as CCR5-D32, CCR5Δ32, or CCR5 delta 32) is a 32-base-pair deletion that introduces a premature stop codon into the CCR5 receptor locus, resulting in a non-functional receptor. CCR5-Δ32 has a heterozygote allele frequency of 10% and a homozygote frequency of 1% in Europe. Individuals who are homozygous for CCR5-Δ32 do not express functional CCR5 receptors on their cell surfaces and are resistant to HIV-1 infection (see, for example, Liu et al., (August 1996). “Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection”. Cell. 86 (3): 367-77). Individuals heterozygous for CCR5-Δ32 have a greater than 50% reduction in functional CCR5 receptors on their cell surfaces which interferes with transport of CCR5 to the cell surface. This level of reduction is due to the dimerization of mutant and wild-type receptors (see, for example, Benkirane et al., (December 1997). “Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32”. The Journal of Biological Chemistry. 272 (49): 30603-6). These heterozygous individuals are resistant to HIV-1 infection and, if infected, exhibit reduced viral loads and a two to three year delay in the development of AIDS (relative to individuals with two wild type CCR5 genes; see, for example, Dean M et al., (September 1996). “Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study”. Science. 273 (5283): 1856-62; Liu et al., (August 1996). “Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection”. Cell. 86 (3): 367-77; Michael N L et al., (October 1997). “The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression”. Nature Medicine. 3 (10): 1160-2). Further, individuals who are homozygous for CCR5-Δ32 also display an improved response to anti-retroviral treatment (see, for example, Laurichesse et al., (May 2007). “Improved virological response to highly active antiretroviral therapy in HIV-1-infected patients carrying the CCR5 Delta32 deletion.” HIV Medicine. 8 (4): 213-9).


The mRNA sequence for human CCR5, which encodes a 352 amino acid protein, can be found under GenBank Accession No. NM_000579.3 (transcript variant A) or GenBank Accession No. NM_001100168.1 (transcript variant B). Mouse and rat CCR5 mRNA sequences have been deposited and can be found under GenBank Accession Nos.: NM_009917.5 and NM_053960.3, respectively. The wild-type CCR5 human, mouse, and rat protein sequences can be found under GenBank Accession Nos.: NP_001093638.1, NP_034047.2, and NP_446412.2, respectively.









Wild type CCR5 Gene (>gi|154091329|ref|NM_000579.


3| Homo sapiens C-C motif chemokine receptor 5


(gene/pseudogene)(CCR5), transcript variant A,


mRNA, SEQ ID NO: 325)


CTTCAGATAGATTATATCTGGAGTGAAGAATCCTGCCACCTATGTATCTG





GCATAGTATTCTGTGTAGTGGGATGAGCAGAGAACAAAAACAAAATAATC





CAGTGAGAAAAGCCCGTAAATAAACCTTCAGACCAGAGATCTATTCTCTA





GCTTATTTTAAGCTCAACTTAAAAAGAAGAACTGTTCTCTGATTCTTTTC





GCCTTCAATACACTTAATGATTTAACTCCACCCTCCTTCAAAAGAAACAG





CATTTCCTACTTTTATACTGTCTATATGATTGATTTGCACAGCTCATCTG





GCCAGAAGAGCTGAGACATCCGTTCCCCTACAAGAAACTCTCCCCGGGTG





GAACAAGATGGATTATCAAGTGTCAAGTCCAATCTATGACATCAATTATT





ATACATCGGAGCCCTGCCAAAAAATCAATGTGAAGCAAATCGCAGCCCGC





CTCCTGCCTCCGCTCTACTCACTGGTGTTCATCTTTGGTTTTGTGGGCAA





CATGCTGGTCATCCTCATCCTGATAAACTGCAAAAGGCTGAAGAGCATGA





CTGACATCTACCTGCTCAACCTGGCCATCTCTGACCTGTTTTTCCTTCTT





ACTGTCCCCTTCTGGGCTCACTATGCTGCCGCCCAGTGGGACTTTGGAAA





TACAATGTGTCAACTCTTGACAGGGCTCTATTTTATAGGCTTCTTCTCTG





GAATCTTCTTCATCATCCTCCTGACAATCGATAGGTACCTGGCTGTCGTC





CATGCTGTGTTTGCTTTAAAAGCCAGGACGGTCACCTTTGGGGTGGTGAC





AAGTGTGATCACTTGGGTGGTGGCTGTGTTTGCGTCTCTCCCAGGAATCA





TCTTTACCAGATCTCAAAAAGAAGGTCTTCATTACACCTGCAGCTCTCAT





TTTCCATACAGTCAGTATCAATTCTGGAAGAATTTCCAGACATTAAAGAT





AGTCATCTTGGGGCTGGTCCTGCCGCTGCTTGTCATGGTCATCTGCTACT





CGGGAATCCTAAAAACTCTGCTTCGGTGTCGAAATGAGAAGAAGAGGCAC





AGGGCTGTGAGGCTTATCTTCACCATCATGATTGTTTATTTTCTCTTCTG





GGCTCCCTACAACATTGTCCTTCTCCTGAACACCTTCCAGGAATTCTTTG





GCCTGAATAATTGCAGTAGCTCTAACAGGTTGGACCAAGCTATGCAGGTG





ACAGAGACTCTTGGGATGACGCACTGCTGCATCAACCCCATCATCTATGC





CTTTGTCGGGGAGAAGTTCAGAAACTACCTCTTAGTCTTCTTCCAAAAGC





ACATTGCCAAACGCTTCTGCAAATGCTGTTCTATTTTCCAGCAAGAGGCT





CCCGAGCGAGCAAGCTCAGTTTACACCCGATCCACTGGGGAGCAGGAAAT





ATCTGTGGGCTTGTGACACGGACTCAAGTGGGCTGGTGACCCAGTCAGAG





TTGTGCACATGGCTTAGTTTTCATACACAGCCTGGGCTGGGGGTGGGGTG





GGAGAGGTCTTTTTTAAAAGGAAGTTACTGTTATAGAGGGTCTAAGATTC





ATCCATTTATTTGGCATCTGTTTAAAGTAGATTAGATCTTTTAAGCCCAT





CAATTATAGAAAGCCAAATCAAAATATGTTGATGAAAAATAGCAACCTTT





TTATCTCCCCTTCACATGCATCAAGTTATTGACAAACTCTCCCTTCACTC





CGAAAGTTCCTTATGTATATTTAAAAGAAAGCCTCAGAGAATTGCTGATT





CTTGAGTTTAGTGATCTGAACAGAAATACCAAAATTATTTCAGAAATGTA





CAACTTTTTACCTAGTACAAGGCAACATATAGGTTGTAAATGTGTTTAAA





ACAGGTCTTTGTCTTGCTATGGGGAGAAAAGACATGAATATGATTAGTAA





AGAAATGACACTTTTCATGTGTGATTTCCCCTCCAAGGTATGGTTAATAA





GTTTCACTGACTTAGAACCAGGCGAGAGACTTGTGGCCTGGGAGAGCTGG





GGAAGCTTCTTAAATGAGAAGGAATTTGAGTTGGATCATCTATTGCTGGC





AAAGACAGAAGCCTCACTGCAAGCACTGCATGGGCAAGCTTGGCTGTAGA





AGGAGACAGAGCTGGTTGGGAAGACATGGGGAGGAAGGACAAGGCTAGAT





CATGAAGAACCTTGACGGCATTGCTCCGTCTAAGTCATGAGCTGAGCAGG





GAGATCCTGGTTGGTGTTGCAGAAGGTTTACTCTGTGGCCAAAGGAGGGT





CAGGAAGGATGAGCATTTAGGGCAAGGAGACCACCAACAGCCCTCAGGTC





AGGGTGAGGATGGCCTCTGCTAAGCTCAAGGCGTGAGGATGGGAAGGAGG





GAGGTATTCGTAAGGATGGGAAGGAGGGAGGTATTCGTGCAGCATATGAG





GATGCAGAGTCAGCAGAACTGGGGTGGATTTGGGTTGGAAGTGAGGGTCA





GAGAGGAGTCAGAGAGAATCCCTAGTCTTCAAGCAGATTGGAGAAACCCT





TGAAAAGACATCAAGCACAGAAGGAGGAGGAGGAGGTTTAGGTCAAGAAG





AAGATGGATTGGTGTAAAAGGATGGGTCTGGTTTGCAGAGCTTGAACACA





GTCTCACCCAGACTCCAGGCTGTCTTTCACTGAATGCTTCTGACTTCATA





GATTTCCTTCCCATCCCAGCTGAAATACTGAGGGGTCTCCAGGAGGAGAC





TAGATTTATGAATACACGAGGTATGAGGTCTAGGAACATACTTCAGCTCA





CACATGAGATCTAGGTGAGGATTGATTACCTAGTAGTCATTTCATGGGTT





GTTGGGAGGATTCTATGAGGCAACCACAGGCAGCATTTAGCACATACTAC





ACATTCAATAAGCATCAAACTCTTAGTTACTCATTCAGGGATAGCACTGA





GCAAAGCATTGAGCAAAGGGGTCCCATAGAGGTGAGGGAAGCCTGAAAAA





CTAAGATGCTGCCTGCCCAGTGCACACAAGTGTAGGTATCATTTTCTGCA





TTTAACCGTCAATAGGCAAAGGGGGGAAGGGACATATTCATTTGGAAATA





AGCTGCCTTGAGCCTTAAAACCCACAAAAGTACAATTTACCAGCCTCCGT





ATTTCAGACTGAATGGGGGTGGGGGGGGCGCCTTAGGTACTTATTCCAGA





TGCCTTCTCCAGACAAACCAGAAGCAACAGAAAAAATCGTCTCTCCCTCC





CTTTGAAATGAATATACCCCTTAGTGTTTGGGTATATTCATTTCAAAGGG





AGAGAGAGAGGTTTTTTTCTGTTCTGTCTCATATGATTGTGCACATACTT





GAGACTGTTTTGAATTTGGGGGATGGCTAAAACCATCATAGTACAGGTAA





GGTGAGGGAATAGTAAGTGGTGAGAACTACTCAGGGAATGAAGGTGTCAG





AATAATAAGAGGTGCTACTGACTTTCTCAGCCTCTGAATATGAACGGTGA





GCATTGTGGCTGTCAGCAGGAAGCAACGAAGGGAAATGTCTTTCCTTTTG





CTCTTAAGTTGTGGAGAGTGCAACAGTAGCATAGGACCCTACCCTCTGGG





CCAAGTCAAAGACATTCTGACATCTTAGTATTTGCATATTCTTATGTATG





TGAAAGTTACAAATTGCTTGAAAGAAAATATGCATCTAATAAAAAACACC





TTCTAAAATAAAAAAAAAAAAAAAAAAAAAAAAAAA





Wild type CCR5 Gene, transcript variant B (>gi|


154091327|ref|NM_001100168.1| Homo sapiens C-C


motif chemokine receptor 5 (gene/pseudogene)


(CCR5), transcript variant B, mRNA, SEQ ID NO:


326)


CTTCAGATAGATTATATCTGGAGTGAAGAATCCTGCCACCTATGTATCTG





GCATAGTCTCATCTGGCCAGAAGAGCTGAGACATCCGTTCCCCTACAAGA





AACTCTCCCCGGGTGGAACAAGATGGATTATCAAGTGTCAAGTCCAATCT





ATGACATCAATTATTATACATCGGAGCCCTGCCAAAAAATCAATGTGAAG





CAAATCGCAGCCCGCCTCCTGCCTCCGCTCTACTCACTGGTGTTCATCTT





TGGTTTTGTGGGCAACATGCTGGTCATCCTCATCCTGATAAACTGCAAAA





GGCTGAAGAGCATGACTGACATCTACCTGCTCAACCTGGCCATCTCTGAC





CTGTTTTTCCTTCTTACTGTCCCCTTCTGGGCTCACTATGCTGCCGCCCA





GTGGGACTTTGGAAATACAATGTGTCAACTCTTGACAGGGCTCTATTTTA





TAGGCTTCTTCTCTGGAATCTTCTTCATCATCCTCCTGACAATCGATAGG





TACCTGGCTGTCGTCCATGCTGTGTTTGCTTTAAAAGCCAGGACGGTCAC





CTTTGGGGTGGTGACAAGTGTGATCACTTGGGTGGTGGCTGTGTTTGCGT





CTCTCCCAGGAATCATCTTTACCAGATCTCAAAAAGAAGGTCTTCATTAC





ACCTGCAGCTCTCATTTTCCATACAGTCAGTATCAATTCTGGAAGAATTT





CCAGACATTAAAGATAGTCATCTTGGGGCTGGTCCTGCCGCTGCTTGTCA





TGGTCATCTGCTACTCGGGAATCCTAAAAACTCTGCTTCGGTGTCGAAAT





GAGAAGAAGAGGCACAGGGCTGTGAGGCTTATCTTCACCATCATGATTGT





TTATTTTCTCTTCTGGGCTCCCTACAACATTGTCCTTCTCCTGAACACCT





TCCAGGAATTCTTTGGCCTGAATAATTGCAGTAGCTCTAACAGGTTGGAC





CAAGCTATGCAGGTGACAGAGACTCTTGGGATGACGCACTGCTGCATCAA





CCCCATCATCTATGCCTTTGTCGGGGAGAAGTTCAGAAACTACCTCTTAG





TCTTCTTCCAAAAGCACATTGCCAAACGCTTCTGCAAATGCTGTTCTATT





TTCCAGCAAGAGGCTCCCGAGCGAGCAAGCTCAGTTTACACCCGATCCAC





TGGGGAGCAGGAAATATCTGTGGGCTTGTGACACGGACTCAAGTGGGCTG





GTGACCCAGTCAGAGTTGTGCACATGGCTTAGTTTTCATACACAGCCTGG





GCTGGGGGTGGGGTGGGAGAGGTCTTTTTTAAAAGGAAGTTACTGTTATA





GAGGGTCTAAGATTCATCCATTTATTTGGCATCTGTTTAAAGTAGATTAG





ATCTTTTAAGCCCATCAATTATAGAAAGCCAAATCAAAATATGTTGATGA





AAAATAGCAACCTTTTTATCTCCCCTTCACATGCATCAAGTTATTGACAA





ACTCTCCCTTCACTCCGAAAGTTCCTTATGTATATTTAAAAGAAAGCCTC





AGAGAATTGCTGATTCTTGAGTTTAGTGATCTGAACAGAAATACCAAAAT





TATTTCAGAAATGTACAACTTTTTACCTAGTACAAGGCAACATATAGGTT





GTAAATGTGTTTAAAACAGGTCTTTGTCTTGCTATGGGGAGAAAAGACAT





GAATATGATTAGTAAAGAAATGACACTTTTCATGTGTGATTTCCCCTCCA





AGGTATGGTTAATAAGTTTCACTGACTTAGAACCAGGCGAGAGACTTGTG





GCCTGGGAGAGCTGGGGAAGCTTCTTAAATGAGAAGGAATTTGAGTTGGA





TCATCTATTGCTGGCAAAGACAGAAGCCTCACTGCAAGCACTGCATGGGC





AAGCTTGGCTGTAGAAGGAGACAGAGCTGGTTGGGAAGACATGGGGAGGA





AGGACAAGGCTAGATCATGAAGAACCTTGACGGCATTGCTCCGTCTAAGT





CATGAGCTGAGCAGGGAGATCCTGGTTGGTGTTGCAGAAGGTTTACTCTG





TGGCCAAAGGAGGGTCAGGAAGGATGAGCATTTAGGGCAAGGAGACCACC





AACAGCCCTCAGGTCAGGGTGAGGATGGCCTCTGCTAAGCTCAAGGCGTG





AGGATGGGAAGGAGGGAGGTATTCGTAAGGATGGGAAGGAGGGAGGTATT





CGTGCAGCATATGAGGATGCAGAGTCAGCAGAACTGGGGTGGATTTGGGT





TGGAAGTGAGGGTCAGAGAGGAGTCAGAGAGAATCCCTAGTCTTCAAGCA





GATTGGAGAAACCCTTGAAAAGACATCAAGCACAGAAGGAGGAGGAGGAG





GTTTAGGTCAAGAAGAAGATGGATTGGTGTAAAAGGATGGGTCTGGTTTG





CAGAGCTTGAACACAGTCTCACCCAGACTCCAGGCTGTCTTTCACTGAAT





GCTTCTGACTTCATAGATTTCCTTCCCATCCCAGCTGAAATACTGAGGGG





TCTCCAGGAGGAGACTAGATTTATGAATACACGAGGTATGAGGTCTAGGA





ACATACTTCAGCTCACACATGAGATCTAGGTGAGGATTGATTACCTAGTA





GTCATTTCATGGGTTGTTGGGAGGATTCTATGAGGCAACCACAGGCAGCA





TTTAGCACATACTACACATTCAATAAGCATCAAACTCTTAGTTACTCATT





CAGGGATAGCACTGAGCAAAGCATTGAGCAAAGGGGTCCCATAGAGGTGA





GGGAAGCCTGAAAAACTAAGATGCTGCCTGCCCAGTGCACACAAGTGTAG





GTATCATTTTCTGCATTTAACCGTCAATAGGCAAAGGGGGGAAGGGACAT





ATTCATTTGGAAATAAGCTGCCTTGAGCCTTAAAACCCACAAAAGTACAA





TTTACCAGCCTCCGTATTTCAGACTGAATGGGGGTGGGGGGGGCGCCTTA





GGTACTTATTCCAGATGCCTTCTCCAGACAAACCAGAAGCAACAGAAAAA





ATCGTCTCTCCCTCCCTTTGAAATGAATATACCCCTTAGTGTTTGGGTAT





ATTCATTTCAAAGGGAGAGAGAGAGGTTTTTTTCTGTTCTGTCTCATATG





ATTGTGCACATACTTGAGACTGTTTTGAATTTGGGGGATGGCTAAAACCA





TCATAGTACAGGTAAGGTGAGGGAATAGTAAGTGGTGAGAACTACTCAGG





GAATGAAGGTGTCAGAATAATAAGAGGTGCTACTGACTTTCTCAGCCTCT





GAATATGAACGGTGAGCATTGTGGCTGTCAGCAGGAAGCAACGAAGGGAA





ATGTCTTTCCTTTTGCTCTTAAGTTGTGGAGAGTGCAACAGTAGCATAGG





ACCCTACCCTCTGGGCCAAGTCAAAGACATTCTGACATCTTAGTATTTGC





ATATTCTTATGTATGTGAAAGTTACAAATTGCTTGAAAGAAAATATGCAT





CTAATAAAAAACACCTTCTAAAATAAAAAAAAAAAAAAAAAAAAAAAAAA





A





Human CCR5 Amino Acid Sequence (>gi|154091328|ref|


NP_001093638.1|C-C chemokine receptor type 5


[Homo sapiens], SEQ ID NO: 327)


MDYQVSSPIYDINYYTSEPCQKINVKQIAARLLPPLYSLVFIFGFVGNML





VILILINCKRLKSMTDIYLLNLAISDLFFLLTVPFWAHYAAAQWDFGNTM





CQLLTGLYFIGFFSGIFFIILLTIDRYLAVVHAVFALKARTVTFGVVTSV





ITWVVAVFASLPGIIFTRSQKEGLHYTCSSHFPYSQYQFWKNFQTLKIVI





LGLVLPLLVMVICYSGILKTLLRCRNEKKRHRAVRLIFTIMIVYFLFWAP





YNIVLLLNTFQEFFGLNNCSSSNRLDQAMQVTETLGMTHCCINPIIYAFV





GEKFRNYLLVFFQKHIAKRFCKCCSIFQQEAPERASSVYTRSTGEQEISV





GL





Mouse CCR5 Amino Acid Sequence (>gi|31542356|ref|


NP_034047.2|C-C chemokine receptor type 5 [Mus



musculus], SEQ ID NO: 328)



MDFQGSVPTYSYDIDYGMSAPCQKINVKQIAAQLLPPLYSLVFIFGFVGN





MMVFLILISCKKLKSVTDIYLLNLAISDLLFLLTLPFWAHYAANEWVFGN





IMCKVFTGLYHIGYFGGIFFIILLTIDRYLAIVHAVFALKVRTVNFGVIT





SVVTWAVAVFASLPEIIFTRSQKEGFHYTCSPHFPHTQYHFWKSFQTLKM





VILSLILPLLVMVICYSGILHTLFRCRNEKKRHRAVRLIFAIMIVYFLFW





TPYNIVLLLTTFQEFFGLNNCSSSNRLDQAMQATETLGMTHCCLNPVIYA





FVGEKFRSYLSVFFRKHMVKRFCKRCSIFQQDNPDRASSVYTRSTGEHEV





STGL





Rat CCR5 Amino Acid Sequence (>gi|51592090|ref|


NP_446412.2|C-C chemokine receptor type 5 [Rattus



norvegicus], SEQ ID NO: 329)



MDFQGSIPTYIYDIDYSMSAPCQKFNVKQIAAQLLPPLYSLVFIFGFVGN





MMVFLILISCKKLKSMTDIYLFNLAISDLLFLLTLPFWAHYAANEWVFGN





IMCKLFTGIYHIGYFGGIFFIILLTIDRYLAIVHAVFAIKARTVNFGVIT





SVVTWVVAVFVSLPEIIFMRSQKEGSHYTCSPHFPRIQYRFWKHFQTLKM





VILSLILPLLVMVICYSGILNTLFRCRNEKKRHRAVRLIFAIMIVYFLFW





TPYNIVLLLTTFQEYFGLNNCSSSNRLDQAMQVTETLGMTHCCLNPVIYA





FVGEKFRNYLSVFFRKHIVKRFCKHCSIFQQVNPDRVSSVYTRSTGEQEV





STGL







Strategies for Generating CCR5 Mutants


Some aspects of the present disclosure provide systems, compositions, and methods of editing polynucleotides encoding the CCR5 protein to introduce mutations into the CCR5 gene. The gene editing methods described herein, rely on nucleobase editors as described in U.S. Pat. No. 9,068,179, US Patent Application Publications US20150166980, US20150166981, US20150166982, US20150166984, and US20150165054, and U.S. Provisional Applications 62/245,828, 62/279,346, 62/311,763, 62/322,178, 62/357,352, 62/370,700, and 62/398,490, and in Komor et al., Nature, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, 533, 420-424 (2016), each of which are incorporated herein by reference.


The nucleobase editors are highly efficient at precisely editing a target base in the CCR5 gene, and a DNA double stand break is not necessary for the gene editing, thus reducing genome instability and preventing possible oncogenic modifications that may be caused by other genome editing methods. The nucleobase editors described herein may be programmed to target and modify a single base. In some embodiments, the target base is a cytosine (C) base and may be converted to a thymine (T) base via deamination by the nucleobase editor.


To edit the polynucleotide encoding the CCR5 protein, the polynucleotide is contacted with a nucleobase editors described herein. In some embodiments, the CCR5-encoding polynucleotide is contacted with a nucleobase editor and a guide nucleotide sequence, wherein the guide nucleotide sequence targets the nucleobase editor to the target base (e.g., a C base) in the CCR5-encoding polynucleotide.


In some embodiments, the CCR5-encoding polynucleotide is the CCR5 gene locus in the genomic DNA of a cell. In some embodiments, the cell is a cultured cell. In some embodiments, the cell is in vivo. In some embodiments, the cell is in vitro. In some embodiments, the cell is ex vivo. In some embodiments, the cell is from a mammal. In some embodiments, the mammal is a human. In some embodiments, the mammal is a rodent. In some embodiments, the rodent is a mouse. In some embodiments, the rodent is a rat.


As would be understood be those skilled in the art, the CCR5-encoding polynucleotide may be a DNA molecule comprising a coding strand and a complementary strand, e.g., the CCR5 gene locus in a genome. As such, the CCR5-encoding polynucleotide may also include coding regions (e.g., exons) and non-coding regions (e.g., introns or splicing sites). In some embodiments, the target base (e.g., a C base) is located in a coding region (e.g., an exon) of the CCR5-encoding polynucleotide (e.g., the CCR5 gene locus). As such, the conversion of a base in the coding region may result in an amino acid change in the CCR5 protein sequence, i.e., a mutation. In some embodiments, the mutation is a loss of function mutation. In some embodiments, the CCR5 loss-of-function mutation is identical (or similar) to a naturally occurring CCR5 loss-of-function mutation, e.g., D2V (D2N), C20S (C20Y), C101X (C101Y), G106R, C178R (C178Y), R223Q, C269F (C269Y). In some embodiments, the loss-of-function mutation is engineered (i.e., not naturally occurring), e.g., Q4X, P19S, P19L, Q21X, P34S, P34L, P35S, P35L, G44R, G44D, G44S, G47R, G47D, G47S, W86X, Q93X, W94X, Q102X, G111R, G111D, G115R, G115D, G115E, G145R, G145E, S149N, G163R, G163E, S149N, P162S, P162L, G163R, G163D, G163E, P183S, P183L, Q186X, Q188X, W190X, G202R, G202E, P206S, P206L, G216S, G216D, W248X, Q261X, Q277X, Q280X, E283R, E283K, C290T, C290Y, C291Y, C291T, P293S, P293L, Q328X, Q329X, P332S, P332L, R334X, A335V, R341X. This engineered mutation may be an engineered truncation.


In some embodiments, the target base is located in a non-coding region of the CCR5 gene, e.g., in an intron or a splicing site. In some embodiments, a target base is located in a splicing site and the editing of such target base causes alternative splicing of the CCR5 mRNA. In some embodiments, the alternative splicing leads to loss-of-function CCR5 mutants. In some embodiments, the alternative splicing leads to the introduction of a premature stop codon in a CCR5 mRNA, resulting in truncated and unstable CCR5 proteins. In some embodiments, CCR5 mutants that are defective in terms of folding are produced.


CCR5 variants that are particularly useful in creating using the present disclosure are variants that may increase resistance to infection by human immunodeficiency virus (HIV), prevent infection by HIV, delay the onset of AIDS, and/or slow the progression of AIDS. In some embodiments, the CCR5 variants are loss-of-function variants produced using the methods of the present disclosure express efficiently in a cell. As described herein, a loss-of function CCR5 variant may have reduced activity or levels (e.g., the CCR5 variant may not be folded correctly, may not be transported to the membrane, may demonstrate reduced binding to a ligand including RANTES, MIP-1β, or MIP-1α, may demonstrate reduced transduction of signals through the G-proteins, or may have a reduced interaction with HIV) compared to a wild type CCR5 protein. For example, the activity or levels of a loss-of-function CCR5 variant may be reduced by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 99%, or more. In some embodiments, the loss-of-function CCR5 variant has no more than 50%, no more than 40%, no more than 30%, no more than 20%, no more than 10%, no more than 5%, no more than 1%, or less activity (e.g., the CCR5 variant may not be folded correctly, may not be transported to the membrane, may demonstrate reduced binding to a ligand including RANTES, MIP-1β, or MIP-1α, may demonstrate reduced transduction of signals through the G-proteins, or may have a reduced interaction with HIV) compared to a wild type CCR5 protein. In other embodiments, the loss-of-function CCR5 variant inhibits the spread of HIV infection from cell to cell either in vitro or in vivo by more than 90%, more than 80%, more than 70%, more than 60%, more than 50%, more than 40%, more than 30%, more than 20%, or more than 10% compared to a wild type CCR5 protein. Non-limiting, exemplary assays for determining CCR5 activity may be demonstrated by any known methodology, such as the assay for chemokine binding as disclosed by Van Riper et al., J. Exp. Med., 177, 851-856 (1993), which may be readily adapted for measurement of CCR5 binding, which is incorporated herein by reference. Non-limiting, exemplary assays for determining inhibition of the spread of HIV infection between cells may be demonstrated by methods known in the art, such as the HIV quantitation assay disclosed by Nunberg, et al., J. Virology, 65 (9), 4887-4892 (1991).


To change the CCR5 gene, the nucleobase editor interacts with the CCR5 gene (a polynucleotide molecule), wherein the nucleobase editor binds to its target sequence and edits the desired nucleobase. For example, the nucleobase editor may be expressed in a cell where CCR5 gene editing is desired (e.g., macrophages, dendritic cells, and memory T cells of the immune system; endothelial cells, epithelial cells, vascular smooth muscle cells, and fibroblasts; and microglia, neurons, and astrocytes in the central nervous system), to thereby allowing interaction of the CCR5 gene with the nucleobase editor. In some embodiments, the binding of the nucleobase editor to its target sequence in the CCR5 is mediated by a guide nucleotide sequence, e.g., a polynucleotide comprising a nucleotide sequence that is complementary to one of the strands of the target sequence in the CCR5 gene. Thus, by designing the guide nucleotide sequence, the nucleobase editor may be programmed to edit any specific target base in the CCR5 gene. In some embodiments, the guide nucleotide sequence is co-expressed with the nucleobase editor in a cell where editing is desired.


Codon Change


Using the nucleobase editors described herein, several amino acid codons may be converted to a different codon via deamination of a target base within the codon. For example, in some embodiments, a cytosine (C) base is converted to a thymine (T) base via deamination by a nucleobase editor comprising a cytosine deaminase domain (e.g., APOBEC1 or AID). As it is familiar to one skilled in the art, conversion of a base in an amino acid codon may lead to a change of the encoded amino acid in the protein product. Cytosine deaminases are capable of converting a cytosine (C) base to a deoxyuridine (dU) base via deamination, which is replicated as a thymine (T). Thus, it is envisioned that, for amino acid codons containing a C base, the C base may be converted to T in the CCR5 gene. For example, leucine codon (CTC) may be changed to a TTC (phenylalanine) codon via the deamination of the first C on the coding strand. For amino acid codons that contains a guanine (G) base, a C base is present on the complementary strand; and the G base may be converted to an adenosine (A) via the deamination of the C on the complementary strand. For example, a ATG (Met/M) codon may be converted to a ATA (Ile/I) codon via the deamination of the third C on the complementary strand. In some embodiments, two C to T changes are required to convert a codon to a different codon. Non-limiting examples of possible mutations that may be made in a CCR5-encoding polynucleotide by the nucleobase editors of the present disclosure in order to produce novel CCR5 variants are summarized in Table 7.


In some embodiments, to bind to its target sequence and edit the desired base, the nucleobase editor depends on its guide nucleotide sequence (e.g., a guide RNA). In some embodiments, the guide nucleotide sequence is a gRNA sequence. An gRNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to fusion proteins disclosed herein. In some embodiments, the guide RNA comprises a structure 5′-[guide sequence]-guuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3′ (SEQ ID NO: 330), wherein the guide sequence comprises a sequence that is complementary to the target sequence. In some embodiments, the guide RNA comprises a structure 5′-[guide sequence]-guuuuaguacucuggaaacagaaucuacuaaaacaaggcaaaaugccguguuuaucucgucaacuuguuggcgagauuuuuu-3′ (SEQ ID NO: 331), wherein the guide sequence comprises a sequence that is complementary to the target sequence. The guide sequence is typically 20 nucleotides long. For example, the guide sequence may be 15-25 nucleotides long. In certain embodiments, the guide sequence may be 15-20 or 20-25 nucleotides long. In some embodiments, the guide sequence is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides long. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 nucleotides upstream or downstream of the target nucleotide to be edited. In certain embodiments, the tracerRNA sequence may be guuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu (SEQ ID NO: 330) or guuuuaguacucuggaaacagaaucuacuaaaacaaggcaaaaugccguguuuaucucgucaacuuguuggcgagauuuuuu (SEQ ID NO: 331) or may have greater than or equal to 80% homology (e.g., greater than or equal to 80%, greater than or equal to 81%, greater than or equal to 82%, greater than or equal to 83%, greater than or equal to 84%, greater than or equal to 85%, greater than or equal to 86%, greater than or equal to 87%, greater than or equal to 88%, greater than or equal to 89%, greater than or equal to 90%, greater than or equal to 91%, greater than or equal to 92%, greater than or equal to 93%, greater than or equal to 94%, greater than or equal to 95%, greater than or equal to 96%, greater than or equal to 97%, greater than or equal to 98%, or greater than or equal to 99% homology) with one of these sequences.


Guide sequences that may be used to target the nucleobase editor to its target sequence to induce specific mutations are provided in Tables 3-5 and 8-10. The mutations and guide sequences presented herein are for illustration purpose only and are not meant to be limiting.


In some embodiments, cellular CCR5 activity may be reduced by reducing the level of properly folded, active CCR5 protein displayed on the surface of cells. Introducing destabilizing mutations into the wild type CCR5 protein may cause misfolding or deactivation of the protein, lack of maturation or glycosylation, or enhanced recycling by the vesicular system. A CCR5 variant comprising one or more destabilizing mutations described herein may have reduced levels or activity compared to the wild type CCR5 protein (e.g., the CCR5 variant may not be folded correctly, may not be transported to the membrane, may demonstrate reduced binding to a ligand including RANTES, MIP-1β, or MIP-1α, may demonstrate reduced transduction of signals through the G-proteins, or may have a reduced interaction with HIV). For example, the levels or activity of a CCR5 variant comprising one or more destabilizing mutations described herein may be reduced by at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 99%, or more.


The present disclosure further provides mutations that cause misfolding of CCR5 protein or structural destabilization of the CCR5 protein. Non-limiting, exemplary destabilizing CCR5 mutations that may be made using the methods described herein are shown in Table 1.


In some embodiments, CCR5 variants comprising more than one mutation described herein are contemplated. For example, a CCR5 variant may be produced using the methods described herein that include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mutations selected from Tables 1-10. To make multiple mutations in the CCR5 gene, a plurality of guide nucleotide sequences may be used, each guide nucleotide sequence targeting one specific base. The nucleobase editor is capable of editing the base dictated by the guide nucleotide sequence. For example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more guide nucleotide sequences may be used in a gene editing process. In some embodiments, the guide nucleotide sequences are RNAs (e.g., gRNA). In some embodiments, the guide nucleotide sequences are single stranded DNA molecules.


Premature Stop Codons


Some aspects of the present disclosure provide strategies of editing CCR5 gene to reduce the amount of full-length, functional CCR5 protein being produced. In some embodiments, stop codons may be introduced into the coding sequence of CCR5 gene upstream of the normal stop codon (referred to as a “premature stop codon”). Premature stop codons cause premature translation termination, in turn resulting in truncated and non-functional proteins and induces rapid degradation of the mRNA via the non-sense mediated mRNA decay pathway. See, e.g., Baker et al., Current Opinion in Cell Biology 16 (3): 293-299, 2004; Chang et al., Annual Review of Biochemistry 76: 51-74, 2007; and Behm-Ansmant et al., Genes & Development 20 (4): 391-398, 2006, each of which is incorporated herein by reference.


The nucleobase editors described herein may be used to convert certain amino acid codons to a stop codon (e.g., TAA, TAG, or TGA). For example, nucleobase editors including a cytosine deaminase domain are capable of converting a cytosine (C) base to a thymine (T) base via deamination. Thus, it is envisioned that, for amino acid codons containing a C base, the C base may be converted to T. For example, a CAG (Gln/Q) codon may be changed to a TAG (amber) codon via the deamination of the first C on the coding strand. For sense codons that contain a guanine (G) base, a C base is present on the complementary strand; and the G base may be converted to an adenosine (A) via the deamination of the C on the complementary strand. For example, a TGG (Trp/W) codon may be converted to a TAG (amber) codon via the deamination of the second C on the complementary strand. In some embodiments, two C to T changes are required to convert a codon to a nonsense codon. For example, a CGG (R) codon is converted to a TAG (amber) codon via the deamination of the first C on the coding strand and the deamination of the second C on the complementary strand. Non-limiting examples of the codon changes contemplated herein are provided in Tables 5, 6, and 10.


Accordingly, the present disclosure provides non-limiting examples of amino acid codons that may be converted to premature stop codons in the CCR5 gene. In some embodiments, the introduction of stop codons may be efficacious in generating truncations when the target residue is located in a flexible loop. In some embodiments, two codons adjacent to each other may both be converted to stop codons by the action of the cytidine deaminase, resulting in two stop codons adjacent to each other (also referred to as “tandem stop codons”). “Adjacent” means there are no more than 5 amino acids between the two stop codons. For example, the two stop codons may be immediately adjacent to each other (0 amino acids in between) or have 1, 2, 3, 4, or 5 amino acids in between. The introduction of tandem stop codons may be especially efficacious in generating truncation and non-functional CCR5 variants. As a non-limiting example, the tandem stop codons may be: Q186X/Q188X, Q277X/Q288X, Q328X/Q329X, Q329X/R334X, or R341X/Q346X.


Target Base in Non-Coding Region of CCR5 Gene Splicing Variants


Some aspects of the present disclosure provide strategies of reducing cellular CCR5 activity via preventing CCR5 mRNA maturation and production. In some embodiments, such strategies involve alterations of splicing sites in the CCR5 gene. Altered splicing site may lead to altered splicing and maturation of the CCR5 mRNA. For example, in some embodiments, an altered splicing site may lead to the skipping of an exon, in turn leading to a truncated protein product or an altered reading frame. In some embodiments, an altered splicing site may lead to translation of an intron sequence and premature translation termination when an inframe stop codon is encountered by the translating ribosome in the intron. In some embodiments, a start codon is edited and protein translation initiates at the next ATG codon, which may not be in the correct coding frame.


The splicing site typically comprises an intron donor site, a Lariat branch point, and an intron acceptor site. The mechanisms of splicing are familiar to those skilled in the art. As illustrated in Table 2, the intron donor site may have a consensus sequence of GGGTRAGT, and the C bases paired with the G bases in the intron donor site consensus sequence may be targeted by a nucleobase editor described herein, thereby altering the intron donor site. The Lariat branch point also has consensus sequences, e.g., TTGTA. The C base paired with the G base in the Lariat branch point consensus sequence may be targeted by a nucleobase editor described herein, leading to the skipping of the following exon. The intron acceptor site has a consensus sequence of YACAGG, wherein Y is a pyrimidine. The C base of the consensus sequence of the intron acceptor site, and the C base paired with the G bases in the consensus sequence of the intron acceptor site may be targeted by a nucleobase editor described herein, thereby altering the intron acceptor site, in turn leading to the skipping of an exon. General strategies of altering intron-exon junctions and the start site to produce a non-functional CCR5 protein, mimicking the HIV protective effect of the CCR5-Δ32 allele are described in Table 2.


In some embodiments, a splicing site in the CCR5-coding sequence (e.g., the CCR5 gene in the genome) is altered by a programmable nuclease. The use of a programmable nuclease (e.g., TALE, ZFN, WT Cas9, or dCas9-FokI fusion protein) in generating indels in a target sequence has been described in the art, e.g., in Maeder, et al., Mol. Cell 31 (2): 294-301, 2008; Carroll et al., Genetics Society of America, 188 (4): 773-782, 2011; Miller et al., Nature Biotechnology 25 (7): 778-785, 2007; Christian et al., Genetics 186 (2): 757-61, 2008; Li et al., Nucleic Acids Res 39 (1): 359-372, 2010; and Moscou et al., Science 326 (5959): 1501, 2009, Guilinger et al., Nature Biotechnology 2014, 32 (6), 577-82, PCT Application Publication WO 2015/089427, US Patent Application Publication US 2016-0153003, and US 2015-0291965, the each of which is incorporated herein by reference.


An “indel” refers to bases inserted or deleted in the DNA of an organism, e.g., the genomic DNA of an organism. An indel may be generated via a non-homologous end joining (NHEJ) pathway following a double-strand DNA break, e.g., by cleavage of a nuclease. During NHEJ, break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair, and is thus prone to generating indels. An indel that occurs in the coding sequence of a gene, will lead to frameshift mutations if the indel is an insertion or a deletion of one or two bases. An indel that occurs in the noncoding sequence of a gene, e.g., the splicing site, may cause skipping of exons or translation of intron sequences, in turn leading to frameshifting mutations and/or premature translation termination. Thus, provided in Tables 1 and 8 are non-limiting examples of splicing sites that may be targeted via programmable nucleases, e.g., WT Cas9 or dCas9-FokI fusion protein, and the guide sequences that may be used for each target site.


CCR2 Variants


Certain mutations in the C—C chemokine receptor type 2 (CCR2) have also been shown to protect against HIV infection. Thus, some aspects of the present disclosure provide the generation of loss-of-function variants of CCR2 (e.g., A335V and V64I) using the nucleobase editors and strategies described herein. Non-limiting examples of such variants and the guide sequence that may be used to make them are provided in Table 1.









Wild type CCR2 Gene (>gi|183979979|ref|NM_


001123041.2| Homo sapiens C-C motif chemokine


receptor 2 (CCR2), transcript variant A, mRNA, SEQ


ID NO: 332)


TTTATTCTCTGGAACATGAAACATTCTGTTGTGCTCATATCATGCAAATT





ATCACTAGTAGGAGAGCAGAGAGTGGAAATGTTCCAGGTATAAAGACCCA





CAAGATAAAGAAGCTCAGAGTCGTTAGAAACAGGAGCAGATGTACAGGGT





TTGCCTGACTCACACTCAAGGTTGCATAAGCAAGATTTCAAAATTAATCC





TATTCTGGAGACCTCAACCCAATGTACAATGTTCCTGACTGGAAAAGAAG





AACTATATTTTTCTGATTTTTTTTTTCAAATCTTTACCATTAGTTGCCCT





GTATCTCCGCCTTCACTTTCTGCAGGAAACTTTATTTCCTACTTCTGCAT





GCCAAGTTTCTACCTCTAGATCTGTTTGGTTCAGTTGCTGAGAAGCCTGA





CATACCAGGACTGCCTGAGACAAGCCACAAGCTGAACAGAGAAAGTGGAT





TGAACAAGGACGCATTTCCCCAGTACATCCACAACATGCTGTCCACATCT





CGTTCTCGGTTTATCAGAAATACCAACGAGAGCGGTGAAGAAGTCACCAC





CTTTTTTGATTATGATTACGGTGCTCCCTGTCATAAATTTGACGTGAAGC





AAATTGGGGCCCAACTCCTGCCTCCGCTCTACTCGCTGGTGTTCATCTTT





GGTTTTGTGGGCAACATGCTGGTCGTCCTCATCTTAATAAACTGCAAAAA





GCTGAAGTGCTTGACTGACATTTACCTGCTCAACCTGGCCATCTCTGATC





TGCTTTTTCTTATTACTCTCCCATTGTGGGCTCACTCTGCTGCAAATGAG





TGGGTCTTTGGGAATGCAATGTGCAAATTATTCACAGGGCTGTATCACAT





CGGTTATTTTGGCGGAATCTTCTTCATCATCCTCCTGACAATCGATAGAT





ACCTGGCTATTGTCCATGCTGTGTTTGCTTTAAAAGCCAGGACGGTCACC





TTTGGGGTGGTGACAAGTGTGATCACCTGGTTGGTGGCTGTGTTTGCTTC





TGTCCCAGGAATCATCTTTACTAAATGCCAGAAAGAAGATTCTGTTTATG





TCTGTGGCCCTTATTTTCCACGAGGATGGAATAATTTCCACACAATAATG





AGGAACATTTTGGGGCTGGTCCTGCCGCTGCTCATCATGGTCATCTGCTA





CTCGGGAATCCTGAAAACCCTGCTTCGGTGTCGAAACGAGAAGAAGAGGC





ATAGGGCAGTGAGAGTCATCTTCACCATCATGATTGTTTACTTTCTCTTC





TGGACTCCCTATAATATTGTCATTCTCCTGAACACCTTCCAGGAATTCTT





CGGCCTGAGTAACTGTGAAAGCACCAGTCAACTGGACCAAGCCACGCAGG





TGACAGAGACTCTTGGGATGACTCACTGCTGCATCAATCCCATCATCTAT





GCCTTCGTTGGGGAGAAGTTCAGAAGCCTTTTTCACATAGCTCTTGGCTG





TAGGATTGCCCCACTCCAAAAACCAGTGTGTGGAGGTCCAGGAGTGAGAC





CAGGAAAGAATGTGAAAGTGACTACACAAGGACTCCTCGATGGTCGTGGA





AAAGGAAAGTCAATTGGCAGAGCCCCTGAAGCCAGTCTTCAGGACAAAGA





AGGAGCCTAGAGACAGAAATGACAGATCTCTGCTTTGGAAATCACACGTC





TGGCTTCACAGATGTGTGATTCACAGTGTGAATCTTGGTGTCTACGTTAC





CAGGCAGGAAGGCTGAGAGGAGAGAGACTCCAGCTGGGTTGGAAAACAGT





ATTTTCCAAACTACCTTCCAGTTCCTCATTTTTGAATACAGGCATAGAGT





TCAGACTTTTTTTAAATAGTAAAAATAAAATTAAAGCTGAAAACTGCAAC





TTGTAAATGTGGTAAAGAGTTAGTTTGAGTTACTATCATGTCAAACGTGA





AAATGCTGTATTAGTCACAGAGATAATTCTAGCTTTGAGCTTAAGAATTT





TGAGCAGGTGGTATGTTTGGGAGACTGCTGAGTCAACCCAATAGTTGTTG





ATTGGCAGGAGTTGGAAGTGTGTGATCTGTGGGCACATTAGCCTATGTGC





ATGCAGCATCTAAGTAATGATGTCGTTTGAATCACAGTATACGCTCCATC





GCTGTCATCTCAGCTGGATCTCCATTCTCTCAGGCTTGCTGCCAAAAGCC





TTTTGTGTTTTGTTTTGTATCATTATGAAGTCATGCGTTTAATCACATTC





GAGTGTTTCAGTGCTTCGCAGATGTCCTTGATGCTCATATTGTTCCCTAT





TTTGCCAGTGGGAACTCCTAAATCAAGTTGGCTTCTAATCAAAGCTTTTA





AACCCTATTGGTAAAGAATGGAAGGTGGAGAAGCTCCCTGAAGTAAGCAA





AGACTTTCCTCTTAGTCGAGCCAAGTTAAGAATGTTCTTATGTTGCCCAG





TGTGTTTCTGATCTGATGCAAGCAAGAAACACTGGGCTTCTAGAACCAGG





CAACTTGGGAACTAGACTCCCAAGCTGGACTATGGCTCTACTTTCAGGCC





ACATGGCTAAAGAAGGTTTCAGAAAGAAGTGGGGACAGAGCAGAACTTTC





ACCTTCATATATTTGTATGATCCTAATGAATGCATAAAATGTTAAGTTGA





TGGTGATGAAATGTAAATACTGTTTTTAACAACTATGATTTGGAAAATAA





ATCAATGCTATAACTATGTTGAAAAAAAAAAAAAAAAAA





Wild type CCR2 Gene, transcript variant B (>gi|


183979981|ref|NM_001123396.1| Homo sapiens C-C


motif chemokine receptor 2 (CCR2), transcript


variant B, mRNA, SEQ ID NO: 333)


TTTATTCTCTGGAACATGAAACATTCTGTTGTGCTCATATCATGCAAATT





ATCACTAGTAGGAGAGCAGAGAGTGGAAATGTTCCAGGTATAAAGACCCA





CAAGATAAAGAAGCTCAGAGTCGTTAGAAACAGGAGCAGATGTACAGGGT





TTGCCTGACTCACACTCAAGGTTGCATAAGCAAGATTTCAAAATTAATCC





TATTCTGGAGACCTCAACCCAATGTACAATGTTCCTGACTGGAAAAGAAG





AACTATATTTTTCTGATTTTTTTTTTCAAATCTTTACCATTAGTTGCCCT





GTATCTCCGCCTTCACTTTCTGCAGGAAACTTTATTTCCTACTTCTGCAT





GCCAAGTTTCTACCTCTAGATCTGTTTGGTTCAGTTGCTGAGAAGCCTGA





CATACCAGGACTGCCTGAGACAAGCCACAAGCTGAACAGAGAAAGTGGAT





TGAACAAGGACGCATTTCCCCAGTACATCCACAACATGCTGTCCACATCT





CGTTCTCGGTTTATCAGAAATACCAACGAGAGCGGTGAAGAAGTCACCAC





CTTTTTTGATTATGATTACGGTGCTCCCTGTCATAAATTTGACGTGAAGC





AAATTGGGGCCCAACTCCTGCCTCCGCTCTACTCGCTGGTGTTCATCTTT





GGTTTTGTGGGCAACATGCTGGTCGTCCTCATCTTAATAAACTGCAAAAA





GCTGAAGTGCTTGACTGACATTTACCTGCTCAACCTGGCCATCTCTGATC





TGCTTTTTCTTATTACTCTCCCATTGTGGGCTCACTCTGCTGCAAATGAG





TGGGTCTTTGGGAATGCAATGTGCAAATTATTCACAGGGCTGTATCACAT





CGGTTATTTTGGCGGAATCTTCTTCATCATCCTCCTGACAATCGATAGAT





ACCTGGCTATTGTCCATGCTGTGTTTGCTTTAAAAGCCAGGACGGTCACC





TTTGGGGTGGTGACAAGTGTGATCACCTGGTTGGTGGCTGTGTTTGCTTC





TGTCCCAGGAATCATCTTTACTAAATGCCAGAAAGAAGATTCTGTTTATG





TCTGTGGCCCTTATTTTCCACGAGGATGGAATAATTTCCACACAATAATG





AGGAACATTTTGGGGCTGGTCCTGCCGCTGCTCATCATGGTCATCTGCTA





CTCGGGAATCCTGAAAACCCTGCTTCGGTGTCGAAACGAGAAGAAGAGGC





ATAGGGCAGTGAGAGTCATCTTCACCATCATGATTGTTTACTTTCTCTTC





TGGACTCCCTATAATATTGTCATTCTCCTGAACACCTTCCAGGAATTCTT





CGGCCTGAGTAACTGTGAAAGCACCAGTCAACTGGACCAAGCCACGCAGG





TGACAGAGACTCTTGGGATGACTCACTGCTGCATCAATCCCATCATCTAT





GCCTTCGTTGGGGAGAAGTTCAGAAGGTATCTCTCGGTGTTCTTCCGAAA





GCACATCACCAAGCGCTTCTGCAAACAATGTCCAGTTTTCTACAGGGAGA





CAGTGGATGGAGTGACTTCAACAAACACGCCTTCCACTGGGGAGCAGGAA





GTCTCGGCTGGTTTATAAAACGAGGAGCAGTTTGATTGTTGTTTATAAAG





GGAGATAACAATCTGTATATAACAACAAACTTCAAGGGTTTGTTGAACAA





TAGAAACCTGTAAAGCAGGTGCCCAGGAACCTCAGGGCTGTGTGTACTAA





TACAGACTATGTCACCCAATGCATATCCAACATGTGCTCAGGGAATAATC





CAGAAAAACTGTGGGTAGAGACTTTGACTCTCCAGAAAGCTCATCTCAGC





TCCTGAAAAATGCCTCATTACCTTGTGCTAATCCTCTTTTTCTAGTCTTC





ATAATTTCTTCACTCAATCTCTGATTCTGTCAATGTCTTGAAATCAAGGG





CCAGCTGGAGGTGAAGAAGAGAATGTGACAGGCACAGATGAATGGGAGTG





AGGGATAGTGGGGTCAGGGCTGAGAGGAGAAGGAGGGAGACATGAGCATG





GCTGAGCCTGGACAAAGACAAAGGTGAGCAAAGGGCTCACGCATTCAGCC





AGGAGATGATACTGGTCCTTAGCCCCATCTGCCACGTGTATTTAACCTTG





AAGGGTTCACCAGGTCAGGGAGAGTTTGGGAACTGCAATAACCTGGGAGT





TTTGGTGGAGTCCGATGATTCTCTTTTGCATAAGTGCATGACATATTTTT





GCTTTATTACAGTTTATCTATGGCACCCATGCACCTTACATTTGAAATCT





ATGAAATATCATGCTCCATTGTTCAGATGCTTCTTAGGCCACATCCCCCT





GTCTAAAAATTCAGAAAATTTTTGTTTATAAAAGA





Human CCR2 isoform A, Amino Acid Sequence (>gi|


183979980|ref|NP_001116513.2|C-C chemokine


receptor type 2 isoform A [Homo sapiens], SEQ


ID NO: 334)


MLSTSRSRFIRNTNESGEEVTTFFDYDYGAPCHKFDVKQIGAQLLPPLYS





LVFIFGFVGNMLVVLILINCKKLKCLTDIYLLNLAISDLLFLITLPLWAH





SAANEWVFGNAMCKLFTGLYHIGYFGGIFFIILLTIDRYLAIVHAVFALK





ARTVTFGVVTSVITWLVAVFASVPGIIFTKCQKEDSVYVCGPYFPRGWNN





FHTIMRNILGLVLPLLIMVICYSGILKTLLRCRNEKKRHRAVRVIFTIMI





VYFLFWTPYNIVILLNTFQEFFGLSNCESTSQLDQATQVTETLGMTHCCI





NPIIYAFVGEKFRSLFHIALGCRIAPLQKPVCGGPGVRPGKNVKVTTQGL





LDGRGKGKSIGRAPEASLQDKEGA





Human CCR2 isoform B, Amino Acid Sequence (>gi|


183979982|ref|NP_001116868.1|C-C chemokine


receptor type 2 isoform B [Homo sapiens], SEQ ID


NO: 335)


MLSTSRSRFIRNTNESGEEVTTFFDYDYGAPCHKFDVKQIGAQLLPPLYS





LVFIFGFVGNMLVVLILINCKKLKCLTDIYLLNLAISDLLFLITLPLWAH





SAANEWVFGNAMCKLFTGLYHIGYFGGIFFIILLTIDRYLAIVHAVFALK





ARTVTFGVVTSVITWLVAVFASVPGIIFTKCQKEDSVYVCGPYFPRGWNN





FHTIMRNILGLVLPLLIMVICYSGILKTLLRCRNEKKRHRAVRVIFTIMI





VYFLFWTPYNIVILLNTFQEFFGLSNCESTSQLDQATQVTETLGMTHCCI





NPIIYAFVGEKFRRYLSVFFRKHITKRFCKQCPVFYRETVDGVTSTNTPS





TGEQEVSAGL





Mouse CCR2 Amino Acid Sequence (>gi|6753466|ref|


NP_034045.1|C-C chemokine receptor type 2 [Mus



musculus], SEQ ID NO: 336)



MEDNNMLPQFIHGILSTSHSLFTRSIQELDEGATTPYDYDDGEPCHKTSV





KQIGAWILPPLYSLVFIFGFVGNMLVIIILIGCKKLKSMTDIYLLNLAIS





DLLFLLTLPFWAHYAANEWVFGNIMCKVFTGLYHIGYFGGIFFIILLTID





RYLAIVHAVFALKARTVTFGVITSVVTWVVAVFASLPGIIFTKSKQDDHH





YTCGPYFTQLWKNFQTIMRNILSLILPLLVMVICYSGILHTLFRCRNEKK





RHRAVRLIFAIMIVYFLFWTPYNIVLFLTTFQESLGMSNCVIDKHLDQAM





QVTETLGMTHCCINPVIYAFVGEKFRRYLSIFFRKHIAKRLCKQCPVFYR





ETADRVSSTFTPSTGEQEVSVGL





Rat CCR2 Amino Acid Sequence (>gi|11177914|ref|


NP_068638.1|C-C chemokine receptor type 2 [Rattus



norvegicus], SEQ ID NO: 337)



MEDSNMLPQFIHGILSTSHSLFPRSIQELDEGATTPYDYDDGEPCHKTSV





KQIGAWILPPLYSLVFIFGFVGNMLVIIILISCKKLKSMTDIYLFNLAIS





DLLFLLTLPFWAHYAANEWVFGNIMCKLFTGLYHIGYFGGIFFIILLTID





RYLAIVHAVFALKARTVTFGVITSVVTWVVAVFASLPGIIFTKSEQEDDQ





HTCGPYFPTIWKNFQTIMRNILSLILPLLVMVICYSGILHTLFRCRNEKK





RHRAVRLIFAIMIVYFLFWTPYNIVLFLTTFQEFLGMSNCVVDMHLDQAM





QVTETLGMTHCCVNPIIYAFVGEKFRRYLSIFFRKHIAKNLCKQCPVFYR





ETADRVSSTFTPSTGEQEVSVGL






In some embodiments, simultaneous introduction of loss-of-function mutations into more than one protein factor affecting HIV infection are provided. For example, in some embodiments, a loss-of-function mutation may be simultaneously introduced into CCR5 and CCR2. In some embodiments to simultaneously introduce loss-of-function mutations into more than one protein, multiple guide nucleotide sequences are used. In some embodiments a guide nucleotide matching both gene sequences is used to simultaneously introduce loss-of-function mutations into more than one protein. In some embodiments a guide nucleotide partially matching one or both of the gene sequences is used to simultaneously introduce loss-of-function mutations into more than one protein, wherein one to four mismatches are allowed between the guide RNA and a target sequence.


Further provided herein are the generation of novel and uncharacterized mutations in any of the protein factors involved in HIV infection. For example, libraries of guide nucleotide sequences may be designed for all possible PAM sequences in the genomic site of these protein factors, and used to generate mutations in these proteins. The function of the protein variants may be evaluated. If a loss-of-function variant is identified, the specific gRNA used for making the mutation may be identified via sequencing of the edited genomic site, e.g., via DNA deep sequencing.


Nucleobase Editors


The methods of generating loss-of-function CCR5 variants described herein are enabled by the use of the nucleobase editors. As described herein, a nucleobase editor is a fusion protein comprising: (i) a programmable DNA binding protein domain; and (ii) a deaminase domain. It is to be understood that any programmable DNA binding domain may be used in the base editors.


In some embodiments, the programmable DNA binding protein domain comprises the DNA binding domain of a zinc finger nuclease (ZFN) or a transcription activator-like effector domain (TALE). In some embodiments, the programmable DNA binding protein domain may be programmed by a guide nucleotide sequence and is thus referred as a “guide nucleotide sequence-programmable DNA binding-protein domain.” In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a nuclease inactive Cas9, or dCas9. A dCas9, as used herein, encompasses a Cas9 that is completely inactive in its nuclease activity, or partially inactive in its nuclease activity (e.g., a Cas9 nickase). Thus, in some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a Cas9 nickase. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a nuclease inactive Cpf1. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a nuclease inactive Argonaute.


In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a dCas9 domain. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a Cas9 nickase. In some embodiments, the dCas9 domain comprises an amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 3. In some embodiments, the dCas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 domains provided herein (e.g., SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682), and comprises mutations corresponding to D10X (X is any amino acid except for D) and/or H840X (X is any amino acid except for H) in SEQ ID NO: 1. In some embodiments, the dCas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 domains provided herein (e.g., SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682), and comprises mutations corresponding to D10A and/or H840A in SEQ ID NO: 1. In some embodiments, the Cas9 nickase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 domains provided herein (e.g., SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682), and comprises mutations corresponding to D10X (X is any amino acid except for D) in SEQ ID NO: 1 and a histidine at a position correspond to position 840 in SEQ ID NO: 1. In some embodiments, the Cas9 nickase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 domains provided herein (e.g., SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682), and comprises mutations corresponding to D10A in SEQ ID NO: 1 and a histidine at a position correspond to position 840 in SEQ ID NO: 1. In some embodiments, variants or homologues of dCas9 or Cas9 nickase (e.g., variants of SEQ ID NO: 2 or SEQ ID NO: 3, respectively) are provided which are at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to SEQ ID NO: 2 or SEQ ID NO: 3, respectively, and comprises mutations corresponding to D10A and/or H840A in SEQ ID NO: 1. In some embodiments, variants of Cas9 (e.g., variants of SEQ ID NO: 2) are provided having amino acid sequences which are shorter, or longer than SEQ ID NO: 2, by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids, or more, provided that the dCas9 variants comprise mutations corresponding to D10A and/or H840A in SEQ ID NO: 1. In some embodiments, variants of Cas9 nickase (e.g., variants of SEQ ID NO: 3) are provided having amino acid sequences which are shorter, or longer than SEQ ID NO: 3, by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids, or more, provided that the dCas9 variants comprise mutations corresponding to D10A and comprises a histidine at a position corresponding to position 840 in SEQ ID NO: 1.


Additional suitable nuclease-inactive dCas9 domains will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D10A/H840A, D10A/D839A/H840A, D10A/D839A/H840A/N863A mutant domains in SEQ ID NO: 1 (See, e.g., Prashant et al., Nature Biotechnology. 2013; 31(9): 833-838, which is incorporated herein by reference), or K603R (See, e.g., Chavez et al., Nature Methods 12, 326-328, 2015, which is incorporated herein by reference).


In some embodiments, the nucleobase editors described herein comprise a Cas9 domain with decreased electrostatic interactions between the Cas9 domain and a sugar-phosphate backbone of a DNA, as compared to a wild-type Cas9 domain. In some embodiments, a Cas9 domain comprises one or more mutations that decreases the association between the Cas9 domain and a sugar-phosphate backbone of a DNA. In some embodiments, the nucleobase editors described herein comprises a dCas9 (e.g., with D10A and H840A mutations in SEQ ID NO: 1) or a Cas9 nickase (e.g., with D10A mutation in SEQ ID NO: 1), wherein the dCas9 or the Cas9 nickase further comprises one or more of a N497X, a R661X, a Q695X, and/or a Q926X mutation of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, the nucleobase editors described herein comprises a dCas9 (e.g., with D10A and H840A mutations in SEQ ID NO: 1) or a Cas9 nickase (e.g., with D10A mutation in SEQ ID NO: 1), wherein the dCas9 or the Cas9 nickase further comprises one or more of a N497A, a R661A, a Q695A, and/or a Q926A mutation of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the Cas9 domain (e.g., of any of the nucleobase editors provided herein) comprises the amino acid sequence as set forth in SEQ ID NO: 338. In some embodiments, the nucleobase editor comprises the amino acid sequence as set forth in SEQ ID NO: 339.









Cas9 variant with decreased electrostatic inter-


actions between the Cas9 and DNA backbone


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL





EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL





RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPI





NASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPN





FKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAIL





LSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF





FDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRK





QRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYY





VGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTAFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKII





KDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQL





KRRRYTGWGALSRKLINGIRDKQSGKTILDFLKSDGFANRNFMALIHDDS





LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVM





GRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPV





ENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDS





IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT





KAERGGLSELDKAGFIKRQLVETRAITKHVAQILDSRMNTKYDENDKLIR





EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY 





PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT





LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKY





SLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPED





NEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKP





IREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQS





ITGLYETRIDLSQLGGD 


(SEQ ID NO: 338, mutations


relative to SEQ ID NO: 1 are bolded and underlined)





High fidelity nucleobase editor (HF-BE3) 


(SEQ ID NO: 339)


MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSI





WRHTSQNTNKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAI





TEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTEQESG





YCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQ





PQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPGTSESATPESDKKYS





IGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSG





ETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL





VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYL





ALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGV





DAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF





DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDIL





RVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSK





NGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFD





NGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLA





RGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTAFDKNLPNEK





VLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTN





RKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDF





LDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRY





TGWGALSRKLINGIRDKQSGKTILDFLKSDGFANRNFMALIHDDSLTFKE





DIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKP





ENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL





QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKV





LTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG





GLSELDKAGFIKRQLVETRAITKHVAQILDSRMNTKYDENDKLIREVKVI





TLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLES





EFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGE





IRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFS





KESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK





LKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFEL





ENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQ





LFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQA





ENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLY





ETRIDLSQLGGD






The Cas9 protein recognizes a short motif (PAM motif) within the target DNA sequence, which is required for the Cas9-DNA interaction but that is not determined by complementarity to the guide RNA nucleotide sequence. A “PAM motif” or “protospacer adjacent motif,” as used herein, refers to a DNA sequence adjacent to the 5′- or 3′-immediately following the DNA sequence that is complementary to the guide RNA oligonucleotide sequence. Cas9 will not successfully bind to, cleave, or nick the target DNA sequence if it is not followed by an appropriate PAM sequence. Without wishing to be bound by any particular theory, specific amino acid residues in the Cas9 enzyme are responsible for interacting with the bases of the PAM and determine the PAM specificity. Therefore, changes in these residues or nearby residues leads to a different or relaxed PAM specificity. Changing or relaxing the PAM specificity may shift the places where Cas9 can bind on the CCR5 gene sequence, and it may modify the target window available to the fused cytidine deaminase, as it will be apparent to those of skill in the art based on the instant disclosure.


Wild-type Streptococcus pyogenes Cas9 recognizes a canonical PAM sequence (5′-NGG-3′). Other Cas9 nucleases (e.g., Cas9 from Streptococcus thermophiles, Staphylococcus aureus, Neisseria meningitidis, or Treponema denticolaor) and Cas9 variants thereof have been described in the art to have different, or more relaxed PAM requirements. For example, in Kleinstiver et al., Nature 523, 481-485, 2015; Klenstiver et al., Nature 529, 490-495, 2016; Ran et al., Nature, April 9; 520(7546): 186-191, 2015; Kleinstiver et al., Nat Biotechnol, 33(12):1293-1298, 2015; Hou et al., Proc Natl Acad Sci US A, 110(39):15644-9, 2014; Prykhozhij et al., PLoS One, 10(3): e0119372, 2015; Zetsche et al., Cell 163, 759-771, 2015; Gao et al., Nature Biotechnology, doi:10.1038/nbt.3547, 2016; Want et al., Nature 461, 754-761, 2009; Chavez et al., doi: dx.doi dot org/10.1101/058974; Fagerlund et al., Genome Biol. 2015; 16: 25, 2015; Zetsche et al., Cell, 163, 759-771, 2015; and Swarts et al., Nat Struct Mol Biol, 21(9):743-53, 2014, each of which is incorporated herein by reference.


Thus, the guide nucleotide sequence-programmable DNA-binding protein of the present disclosure may recognize a variety of PAM sequences including, without limitation PAM sequences that are on the 3′ or the 5′ end of the DNA sequence determined by the guide RNA. For example, the sequence may be: NGG, NGAN, NGNG, NGAG, NGCG, NNGRRT, NGRRN, NNNRRT, NNNGATT, NNAGAAW, NAAAC, TTN, TTTN, and YTN, wherein Y is a pyrimidine, R is a purine, and N is any nucleobase.


One example of an RNA-programmable DNA-binding protein that has different PAM specificity is Clustered Regularly Interspaced Short Palindromic Repeats from Prevotella and Francisella 1 (Cpf1). Similar to Cas9, Cpf1 is also a class 2 CRISPR effector. It has been shown that Cpf1 mediates robust DNA interference with features distinct from Cas9. Cpf1 is a single RNA-guided endonuclease lacking tracrRNA, and it may utilize a T-rich protospacer-adjacent motif (e.g., TTN, TTTN, or YTN), which is on the 5′-end of the DNA sequence determined by the guide RNA. Moreover, Cpf1 cleaves DNA via a staggered DNA double-stranded break. Out of 16 Cpf1-family proteins, two enzymes from Acidaminococcus and Lachnospiraceae are shown to have efficient genome-editing activity in human cells.


Also useful in the present compositions and methods are nuclease-inactive Cpf1 (dCpf1) variants that may be used as a guide nucleotide sequence-programmable DNA-binding protein domain. The Cpf1 protein has a RuvC-like endonuclease domain that is similar to the RuvC domain of Cas9 but does not have a HNH endonuclease domain, and the N-terminal of Cpf1 does not have the alfa-helical recognition lobe of Cas9. It was shown in Zetsche et al., Cell, 163, 759-771, 2015 (which is incorporated herein by reference) that, the RuvC-like domain of Cpf1 is responsible for cleaving both DNA strands and inactivation of the RuvC-like domain inactivates Cpf1 nuclease activity. For example, mutations corresponding to D917A, E1006A, or D1255A in Francisella novicida Cpf1 (SEQ ID NO: 340) inactivates Cpf1 nuclease activity. In some embodiments, the dCpf1 of the present disclosure may comprise mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, or D917A/E1006A/D1255A in SEQ ID NO: 340. In other embodiments, the Cpf1 nickase of the present disclosure may comprise mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, or D917A/E1006A/D1255A in SEQ ID NO: 340. A Cpf1 nickase useful for the embodiments of the instant disclosure may comprise other mutations and/or further mutations known in the field. It is to be understood that any mutations, e.g., substitution mutations, deletions, or insertions that fully or partially inactivates the RuvC domain of Cpf1 may be used in accordance with the present disclosure, and that these mutations of Cpf1 may result in, for example, a dCpf1 or Cpf1 nickase.


Thus, in some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a nuclease inactive Cpf1 (dCpf1). In some embodiments, the dCpf1 comprises an amino acid sequence of any one SEQ ID NOs: 340-347. In some embodiments, the dCpf1 comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to any one of SEQ ID NOs: 340-347, and comprises mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, or D917A/E1006A/D1255A in SEQ ID NO: 340. Cpf1 from other bacterial species may also be used in accordance with the present disclosure, as a dCpf1 or Cpf1 nickase.










Wild type Francisellanovicida Cpf1 (D917, E1006, and D1255 are bolded



and underlined) 


(SEQ ID NO: 340)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQF






FIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKN





LFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGF





HENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKDLAEELT





FDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTKRKGINEYI





NLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQI





APKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIP





MIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHIS





QSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLA





NGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGEGYKKIVYKLLPG





ANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSlDEFYREVENQGYKLTFENISESYIDSVVNQGKLYL





FQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHP





AKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLK





EKANDVHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDR





DSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQV





YQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFT





SKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGK





WTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDK





KFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGA





YHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN






Francisellanovicida Cpfl D917A (A917, E1006, and D1255 are bolded and



underlined) 


(SEQ ID NO: 341)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQF






FIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKN





LFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGF





HENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKDLAEELT





FDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTKRKGINEYI





NLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQI





APKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIP





MIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHIS





QSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLA





NGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGEGYKKIVYKLLPG





ANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSlDEFYREVENQGYKLTFENISESYIDSVVNQGKLYL





FQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHP





AKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLK





EKANDVHILSIARGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDR





DSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQV





YQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFT





SKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGK





WTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDK





KFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGA





YHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN






Francisellanovicida Cpf1 E1006A (D917, A1006, and D1255 are bolded 



and underlined) 


(SEQ ID NO: 342)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQF 






FIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKN





LFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGF





HENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKDLAEELT





FDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTKRKGINEYI





NLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQI





APKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIP





MIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHIS





QSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLA





NGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGEGYKKIVYKLLPG





ANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSlDEFYREVENQGYKLTFENISESYIDSVVNQGKLYL





FQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHP





AKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLK





EKANDVHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDR





DSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQV





YQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFT





SKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGK





WTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDK





KFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGA





YHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN






Francisellanovicida Cpf1 D1255A (D917, E1006, and A1255 are bolded 



and underlined) 


(SEQ ID NO: 343)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQF






FIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKN





LFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGF





HENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKDLAEELT





FDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTKRKGINEYI





NLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQI





APKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIP





MIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHIS





QSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLA





NGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGEGYKKIVYKLLPG





ANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSlDEFYREVENQGYKLTFENISESYIDSVVNQGKLYL





FQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHP





AKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLK





EKANDVHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDR





DSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQV





YQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFT





SKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGK





WTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDK





KFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDAAANGA





YHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN






Francisellanovicida Cpf1 D917A/E1006A (A917, A1006, and D1255 are 



bolded and underlined) 


(SEQ ID NO: 344)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQF






FIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKN





LFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGF





HENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKDLAEELT





FDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTKRKGINEYI





NLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQI





APKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIP





MIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHIS





QSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLA





NGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGEGYKKIVYKLLPG





ANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSlDEFYREVENQGYKLTFENISESYIDSVVNQGKLYL





FQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHP





AKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLK





EKANDVHILSIARGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDR





DSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQV





YQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFT





SKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGK





WTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDK





KFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGA





YHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN






Francisellanovicida Cpf1 D917A/D1255A (A917, E1006, and A1255 are 



bolded and underlined) 


(SEQ ID NO: 345)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQF






FIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKN





LFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGF





HENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKDLAEELT





FDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTKRKGINEYI





NLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQI





APKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIP





MIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHIS





QSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLA





NGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGEGYKKIVYKLLPG





ANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSlDEFYREVENQGYKLTFENISESYIDSVVNQGKLYL





FQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHP





AKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLK





EKANDVHILSIARGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDR





DSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQV





YQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFT





SKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGK





WTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDK





KFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDAAANGA





YHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN






Francisellanovicida Cpf1 E1006A/D1255A (D917, A1006, and A1255 are 



bolded and underlined) 


(SEQ ID NO: 346)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQF 






FIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKN





LFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGF





HENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKDLAEELT





FDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTKRKGINEYI





NLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQI





APKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIP





MIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHIS





QSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLA





NGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGEGYKKIVYKLLPG





ANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSlDEFYREVENQGYKLTFENISESYIDSVVNQGKLYL





FQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHP





AKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLK





EKANDVHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDR





DSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQV





YQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFT





SKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGK





WTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDK





KFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDAAANGA





YHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN






Francisellanovicida Cpf1 D917A/E1006A/D1255A (A917, A1006, and 



A1255 are bolded and underlined) 


(SEQ ID NO: 347)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQF






FIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKN





LFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGF





HENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKDLAEELT





FDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTKRKGINEYI





NLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT





VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQI





APKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAlP





MIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHIS





QSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLA





NGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGEGYKKIVYKLLPG





ANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK





QSISKHPEWKDFGFRFSDTQRYNSlDEFYREVENQGYKLTFENISESYIDSVVNQGKLYL





FQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHP





AKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLK





EKANDVHILSIARGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDR





DSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQV





YQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFT





SKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGK





WTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDK





KFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDAAANGA





YHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN






In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a Cpf1 protein from a Acidaminococcus species (AsCpf1). Cpf1 proteins form Acidaminococcus species have been described previously and would be apparent to the skilled artisan. Exemplary Acidaminococcus Cpf1 proteins (AsCpf1) include, without limitation, any of the AsCpf1 proteins provided herein.









Wild-type AsCpf1- Residue R912 is indicated in


bold underlining and residues 661-667 are in-


dicated in italics and underlining.


(SEQ ID NO: 684)


TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELK





PIIDRIYKTYADQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIEEQAT





YRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNGKVLKQLGTVTT





TEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKF





KENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYNQLLT





QTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHR





FIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEA





LFNELNSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKI





TKSAKEKVQRSLKHEDINLQEIISAAGKELSEAFKQKTSEILSHAHAALD





QPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEFSARL





TGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEK





NNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPD





AAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEK





EPKKFQTAYAKKTGDQKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRP





SSQYKDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDF





AKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAH





RLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSDEARALLPNVI





TKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHP





ETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKE





RVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFK





SKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFT





SFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEG





FDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQFDAK





GTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNIL





PKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFD





SRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLA





YIQELRN





AsCpfl(R912A)- Residue A912 is indicated in bold


underlining and residues 661-667 are indicated in


italics and underlining.


(SEQ ID NO: 686)


TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELK





PIIDRIYKTYADQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIEEQAT





YRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNGKVLKQLGTVTT





TEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKF





KENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYNQLLT





QTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHR





FIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEA





LFNELNSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKI





TKSAKEKVQRSLKHEDINLQEIISAAGKELSEAFKQKTSEILSHAHAALD





QPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEFSARL





TGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEK





NNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPD





AAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEK





EPKKFQTAYAKKTGDQKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRP





SSQYKDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDF





AKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAH





RLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSDEARALLPNVI





TKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHP





ETPIIGIDRGEANLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKE





RVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFK





SKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFT





SFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEG





FDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQFDAK





GTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNIL





PKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFD





SRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLA





YIQELRN






In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a Cpf1 protein from a Lachnospiraceae species (LbCpf1). Cpf1 proteins form Lachnospiraceae species have been described previously have been described previously and would be apparent to the skilled artisan. Exemplary Lachnospiraceae Cpf1 proteins (LbCpf1) include, without limitation, any of the LbCpf1 proteins provided herein.










Wild-type LbCpf1 - Residues R836 and R1138 is indicated in bold underlining.



(SEQ ID NO: 685)



MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRYYL






SFINDVLHSIKLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFKGNEGYKSLFK





KDIIETILPEFLDDKDEIALVNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCINENLTR





YISNMDIFEKVDAIFDKHEVQEIKEKILNSDYDVEDFFEGEFFNFVLTQEGIDVYNAIIGGF





VTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQVLSDRESLSFYGEGYTSDEEVLEVF





RNTLNKNSEIFSSIKKLEKLFKNFDEYSSAGIFVKNGPAISTISKDIFGEWNVIRDKWNAE





YDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADLSVVEKLKEIIIQKVDEI





YKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRDE





SFYGDFVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQFMGGWDKDKETDY





RATILRYGSKYYLAIMDKKYAKCLQKIDKDDVNGNYEKINYKLLPGPNKMLPKVFFSK





KWMAYYNPSEDIQKIYKNGTFKKGDMFNLNDCHKLIDFFKDSISRYPKWSNAYDFNFS





ETEKYKDIAGFYREVEEQGYKVSFESASKKEVDKLVEEGKLYMFQIYNKDFSDKSHGTP





NLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEELVVHPANSPIANKNPDNPKKT





TTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHDDNPYVIGIDRGERN





LLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHSLLDKKEKERFEARQNWTSIENIKE





LKAGYISQVVHKICELVEKYDAVIALEDLNSGFKNSRVKVEKQVYQKFEKMLIDKLNY





MVDKKSNPCATGGALKGYQITNKFESFKSMSTQNGFIFYIPAWLTSKIDPSTGFVNLLKT





KYTSIADSKKFISSFDRIMYVPEEDLFEFALDYKNFSRTDADYIKKWKLYSYGNRIRIFRN





PKKNNVFDWEEVCLTSAYKELFNKYGINYQQGDIRALLCEQSDKAFYSSFMALMSLML





QMRNSITGRTDVDFLISPVKNSDGIFYDSRNYEAQENAILPKNADANGAYNIARKVLWA





IGQFKKAEDEKLDKVKIAISNKEWLEYAQTSVKH





LbCpf1 (R836A)- Residue A836 is indicated in bold underlining.


(SEQ ID NO: 687)



MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRYYL






SFINDVLHSIKLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFKGNEGYKSLFK





KDIIETILPEFLDDKDEIALVNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCINENLTR





YISNMDIFEKVDAIFDKHEVQEIKEKILNSDYDVEDFFEGEFFNFVLTQEGIDVYNAIIGGF





VTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQVLSDRESLSFYGEGYTSDEEVLEVF





RNTLNKNSEIFSSIKKLEKLFKNFDEYSSAGIFVKNGPAISTISKDIFGEWNVIRDKWNAE





YDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADLSVVEKLKEIIIQKVDEI





YKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRDE





SFYGDFVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQFMGGWDKDKETDY





RATILRYGSKYYLAIMDKKYAKCLQKIDKDDVNGNYEKINYKLLPGPNKMLPKVFFSK





KWMAYYNPSEDIQKIYKNGTFKKGDMFNLNDCHKLIDFFKDSISRYPKWSNAYDFNFS





ETEKYKDIAGFYREVEEQGYKVSFESASKKEVDKLVEEGKLYMFQIYNKDFSDKSHGTP





NLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEELVVHPANSPIANKNPDNPKKT





TTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHDDNPYVIGIDRGEAN





LLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHSLLDKKEKERFEARQNWTSIENIKE





LKAGYISQVVHKICELVEKYDAVIALEDLNSGFKNSRVKVEKQVYQKFEKMLIDKLNY





MVDKKSNPCATGGALKGYQITNKFESFKSMSTQNGFIFYIPAWLTSKIDPSTGFVNLLKT





KYTSIADSKKFISSFDRIMYVPEEDLFEFALDYKNFSRTDADYIKKWKLYSYGNRIRIFRN





PKKNNVFDWEEVCLTSAYKELFNKYGINYQQGDIRALLCEQSDKAFYSSFMALMSLML





QMRNSITGRTDVDFLISPVKNSDGIFYDSRNYEAQENAILPKNADANGAYNIARKVLWA





IGQFKKAEDEKLDKVKIAISNKEWLEYAQTSVKH





LbCpfl (R1138A)- Residue A1138 is indicated in bold underlining.


(SEQ ID NO: 688)



MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRYYL






SFINDVLHSIKLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFKGNEGYKSLFK





KDIIETILPEFLDDKDEIALVNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCINENLTR





YISNMDIFEKVDAIFDKHEVQEIKEKILNSDYDVEDFFEGEFFNFVLTQEGIDVYNAIIGGF





VTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQVLSDRESLSFYGEGYTSDEEVLEVF





RNTLNKNSEIFSSIKKLEKLFKNFDEYSSAGIFVKNGPAISTISKDIFGEWNVIRDKWNAE





YDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADLSVVEKLKEIIIQKVDEI





YKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRDE





SFYGDFVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQFMGGWDKDKETDY





RATILRYGSKYYLAIMDKKYAKCLQKIDKDDVNGNYEKINYKLLPGPNKMLPKVFFSK





KWMAYYNPSEDIQKIYKNGTFKKGDMFNLNDCHKLIDFFKDSISRYPKWSNAYDFNFS





ETEKYKDIAGFYREVEEQGYKVSFESASKKEVDKLVEEGKLYMFQIYNKDFSDKSHGTP





NLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEELVVHPANSPIANKNPDNPKKT





TTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHDDNPYVIGIDRGERN





LLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHSLLDKKEKERFEARQNWTSIENIKE





LKAGYISQVVHKICELVEKYDAVIALEDLNSGFKNSRVKVEKQVYQKFEKMLIDKLNY





MVDKKSNPCATGGALKGYQITNKFESFKSMSTQNGFIFYIPAWLTSKIDPSTGFVNLLKT





KYTSIADSKKFISSFDRIMYVPEEDLFEFALDYKNFSRTDADYIKKWKLYSYGNRIRIFRN





PKKNNVFDWEEVCLTSAYKELFNKYGINYQQGDIRALLCEQSDKAFYSSFMALMSLML





QMANSITGRTDVDFLISPVKNSDGIFYDSRNYEAQENAILPKNADANGAYNIARKVLWA





IGQFKKAEDEKLDKVKIAISNKEWLEYAQTSVKH






In some embodiments, the Cpf1 protein is a crippled Cpf1 protein. As used herein a “crippled Cpf1” protein is a Cpf1 protein having diminished nuclease activity as compared to a wild-type Cpf1 protein. In some embodiments, the crippled Cpf1 protein preferentially cuts the target strand more efficiently than the non-target strand. For example, the Cpf1 protein preferentially cuts the strand of a duplexed nucleic acid molecule in which a nucleotide to be edited resides. In some embodiments, the crippled Cpf1 protein preferentially cuts the non-target strand more efficiently than the target strand. For example, the Cpf1 protein preferentially cuts the strand of a duplexed nucleic acid molecule in which a nucleotide to be edited does not reside. In some embodiments, the crippled Cpf1 protein preferentially cuts the target strand at least 5% more efficiently than it cuts the non-target strand. In some embodiments, the crippled Cpf1 protein preferentially cuts the target strand at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 100% more efficiently than it cuts the non-target strand.


In some embodiments, a crippled Cpf1 protein is a non-naturally occurring Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises one or more mutations relative to a wild-type Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 mutations relative to a wild-type Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises an R836A mutation as set forth in SEQ ID NO: 685, or in a corresponding amino acid in another Cpf1 protein. It should be appreciated that a Cpf1 comprising a homologous residue (e.g., a corresponding amino acid) to R836A of SEQ ID NO: 685 could also be mutated to achieve similar results. In some embodiments, the crippled Cpf1 protein comprises a R1138A mutation as set forth in SEQ ID NO: 685, or in a corresponding amino acid in another Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises an R912A mutation as set forth in SEQ ID NO: 684, or in a corresponding amino acid in another Cpf1 protein. Without wishing to be bound by any particular theory, residue R838 of SEQ ID NO: 685 (LbCpf1) and residue R912 of SEQ ID NO: 684 (AsCpf1) are examples of corresponding (e.g., homologous) residues. For example, a portion of the alignment between SEQ ID NO: 684 and 685 shows that R912 and R838 are corresponding residues.











AcCpf1
YQAANSPSKFNQRVHAYLKEHPETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQ--






LbCpf1
KCPKN-IFKINTEVRVLLKHDGNPVYIGIDRGERNLLYIVVVDGKGNIVEQYSLNEIINN



    *   *:* .*.. **.. :  :**********:**.*:*..*:*:** *** *






In some embodiments, any of the Cpf1 proteins provided herein comprises one or more amino acid deletions. In some embodiments, any of the Cpf1 proteins provided herein comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid deletions. Without wishing to be bound by any particular theory, there is a helical region in Cpf1, which includes residues 661-667 of AsCpf1 (SEQ ID NO: 684), that may obstruct the function of a deaminase (e.g., APOBEC) that is fused to the Cpf1. This region comprises the amino acid sequence KKTGDQK (SEQ ID NO: 737). Accordingly, aspects of the disclosure provide Cpf1 proteins comprising mutations (e.g., deletions) that disrupt this helical region in Cpf1. In some embodiments, the Cpf1 protein comprises one or more deletions of the following residues in SEQ ID NO: 684, or one or more corresponding deletions in another Cpf1 protein: K661, K662, T663, G664, D665, Q666, and K667. In some embodiments, the Cpf1 protein comprises a T663 and a D665 deletion in SEQ ID NO: 684, or corresponding deletions in another Cpf1 protein. In some embodiments, the Cpf1 protein comprises a K662, T663, D665, and Q666 deletion in SEQ ID NO: 684, or corresponding deletions in another Cpf1 protein. In some embodiments, the Cpf1 protein comprises a K661, K662, T663, D665, Q666 and K667 deletion in SEQ ID NO: 684, or corresponding deletions in another Cpf1 protein.










AsCpf1 (deleted T663 and D665)



(SEQ ID NO: 689)



TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYA






DQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDAIN





KRHAEIYKGLFKAELFNGKVLKQLGTVTTTEHENALLRSFDKFTTYFSGFYENRKNVFS





AEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPF





YNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHRFIPLFK





QILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEALFNELNSIDLTHIFISHKK





LETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINLQEIISAAGKEL





SEAFKQKTSEILSHAHAALDQPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDES





NEVDPEFSARLTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVN





KEKNNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMI





PKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEKEPKKFQTAYAKKGQKG





YREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYHISFQRIAEK





EIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELF





YRPKSRMKRMAHRLGEKMLNKKLKDQKTPlPDTLYQELYDYVNHRLSHDLSDEARAL





LPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHPETPIIGI





DRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKDL





KQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNCL





VLKDYPAEKVGGVLNPYQLTDQFTSFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVW





KTIKNHESRKHFLEGFDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNE





TQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNILPKLLEN





DDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPMDADA





NGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLAYIQELRN





AsCpf1 (deleted K662, T663, D665, and Q666)


(SEQ ID NO: 690)



TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYA






DQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDAIN





KRHAEIYKGLFKAELFNGKVLKQLGTVTTTEHENALLRSFDKFTTYFSGFYENRKNVFS





AEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPF





YNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHRFIPLFK





QILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEALFNELNSIDLTHIFISHKK





LETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINLQEIISAAGKEL





SEAFKQKTSEILSHAHAALDQPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDES





NEVDPEFSARLTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVN





KEKNNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMI





PKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEKEPKKFQTAYAKGKGYR





EALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYHISFQRIAEKEI





MDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFY





RPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSDEARALLP





NVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHPETPIIGIDR





GERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKDLKQ





GYLSQVIHEIVDLMIHYQAVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNCLVL





KDYPAEKVGGVLNPYQLTDQFTSFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKT





IKNHESRKHFLEGFDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQ





FDAKGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNILPKLLEND





DSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPMDADAN





GAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLAYIQELRN





AsCpf1 (deleted K661, K662, T663,D665, Q666, and K667)


(SEQ ID NO: 691)



TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYA






DQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDAIN





KRHAEIYKGLFKAELFNGKVLKQLGTVTTTEHENALLRSFDKFTTYFSGFYENRKNVFS





AEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPF





YNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHRFIPLFK





QILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEALFNELNSIDLTHIFISHKK





LETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINLQEIISAAGKEL





SEAFKQKTSEILSHAHAALDQPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDES





NEVDPEFSARLTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVN





KEKNNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMI





PKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEKEPKKFQTAYAGGYREA





LCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYHISFQRIAEKEIMD





AVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFYRPK





SRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSDEARALLPNVI





TKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHPETPIIGIDRGER





NLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKDLKQGYL





SQVIHEIVDLMIHYQAVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNCLVLKDY





PAEKVGGVLNPYQLTDQFTSFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKN





HESRKHFLEGFDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQFDA





KGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNILPKLLENDDSH





AIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPMDADANGAY





HIALKGQLLLNHLKESKDLKLQNGISNQDWLAYIQELRN






In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain of the present disclosure has no requirements for a PAM sequence. One example of such a guide nucleotide sequence-programmable DNA-binding protein may be an Argonaute protein from Natronobacterium gregoryi (NgAgo). NgAgo is a ssDNA-guided endonuclease. NgAgo binds 5′ phosphorylated ssDNA of ˜24 nucleotides (gDNA) to guide it to its target site and will make DNA double-strand breaks at the gDNA site. In contrast to Cas9, the NgAgo-gDNA system does not require a protospacer-adjacent motif (PAM). Using a nuclease inactive NgAgo (dNgAgo) can greatly expand the codons that may be targeted. The characterization and use of NgAgo have been described in Gao et al., Nat Biotechnol., 2016 July; 34(7):768-73. PubMed PMID: 27136078; Swarts et al., Nature. 507(7491) (2014):258-61; and Swarts et al., Nucleic Acids Res. 43(10) (2015):5120-9, each of which is incorporated herein by reference. The sequence of Natronobacterium gregoryi Argonaute is provided in SEQ ID NO: 348.









Wild type Natronobacterium gregoryi Argonaute


(SEQ ID NO: 348)


MTVIDLDSTTTADELTSGHTYDISVTLTGVYDNTDEQHPRMSLAFEQDNG





ERRYITLWKNTTPKDVFTYDYATGSTYIFTNIDYEVKDGYENLTATYQTT





VENATAQEVGTTDEDETFAGGEPLDHHLDDALNETPDDAETESDSGHVMT





SFASRDQLPEWTLHTYTLTATDGAKTDTEYARRTLAYTVRQELYTDHDAA





PVATDGLMLLTPEPLGETPLDLDCGVRVEADETRTLDYTTAKDRLLAREL





VEEGLKRSLWDDYLVRGIDEVLSKEPVLTCDEFDLHERYDLSVEVGHSGR





AYLHINFRHRFVPKLTLADIDDDNIYPGLRVKTTYRPRRGHIVWGLRDEC





ATDSLNTLGNQSVVAYHRNNQTPINTDLLDAIEAADRRVVETRRQGHGDD





AVSFPQELLAVEPNTHQIKQFASDGFHQQARSKTRLSASRCSEKAQAFAE





RLDPVRLNGSTVEFSSEFFTGNNEQQLRLLYENGESVLTFRDGARGAHPD





ETFSKGIVNPPESFEVAVVLPEQQADTCKAQWDTMADLLNQAGAPPTRSE





TVQYDAFSSPESISLNVAGAIDPSEVDAAFVVLPPDQEGFADLASPTETY





DELKKALANMGIYSQMAYFDRFRDAKIFYTRNVALGLLAAAGGVAFTTEH





AMPGDADMFIGIDVSRSYPEDGASGQINIAATATAVYKDGTILGHSSTRP





QLGEKLQSTDVRDIMKNAILGYQQVTGESPTHIVIHRDGFMNEDLDPATE





FLNEQGVEYDIVEIRKQPQTRLLAVSDVQYDTPVKSIAAINQNEPRATVA





TFGAPEYLATRDGGGLPRPIQIERVAGETDIETLTRQVYLLSQSHIQVHN





STARLPITTAYADQASTHATKGYLVQTGAFESNVGFL






In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein is a prokaryotic homolog of an Argonaute protein. Prokaryotic homologs of Argonaute proteins are known and have been described, for example, in Makarova K., et al., “Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements”, Biol. Direct. 2009 Aug. 25; 4:29. doi: 10.1186/1745-6150-4-29, which is incorporated herein by reference. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein is a Marinitoga piezophila Argunaute (MpAgo) protein. The CRISPR-associated Marinitoga piezophila Argonaute (MpAgo) protein cleaves single-stranded target sequences using 5′-phosphorylated guides. The 5′ guides are used by all known Argonautes. The crystal structure of an MpAgo-RNA complex shows a guide strand binding site comprising residues that block 5′ phosphate interactions. This data suggests the evolution of an Argonaute subclass with noncanonical specificity for a 5′-hydroxylated guide. See, e.g., Kaya et al., “A bacterial Argonaute with noncanonical guide RNA specificity”, Proc Natl Acad Sci USA. 2016 Apr. 12; 113(15):4057-62, the entire contents of which are hereby incorporated by reference). It should be appreciated that other Argonaute proteins may be used in any of the fusion proteins (e.g., base editors) described herein, for example, to guide a deaminase (e.g., cytidine deaminase) to a target nucleic acid (e.g., ssRNA).


In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein is a single effector of a microbial CRISPR-Cas system. Single effectors of microbial CRISPR-Cas systems include, without limitation, Cas9, Cpf1, C2c1, C2c2, and C2c3. Typically, microbial CRISPR-Cas systems are divided into Class 1 and Class 2 systems. Class 1 systems have multisubunit effector complexes, while Class 2 systems have a single protein effector. Cas9 and Cpf1 are Class 2 effectors. In addition to Cas9 and Cpf1, three distinct Class 2 CRISPR-Cas systems (C2c1, C2c2, and C2c3) have been described by Shmakov et al., “Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems”, Mol. Cell, 2015 Nov. 5; 60(3): 385-397, the entire contents of which are herein incorporated by reference. Effectors of two of the systems, C2c1 and C2c3, contain RuvC-like endonuclease domains related to Cpf1. A third system, C2c2 contains an effector with two predicted HEPN RNase domains. Production of mature CRISPR RNA is tracrRNA-independent, unlike production of CRISPR RNA by C2c. C2c1 depends on both CRISPR RNA and tracrRNA for DNA cleavage. Bacterial C2c2 has been shown to possess a unique RNase activity for CRISPR RNA maturation distinct from its RNA-activated single-stranded RNA degradation activity. These RNase functions are different from each other and from the CRISPR RNA-processing behavior of Cpf1. See, e.g., East-Seletsky, et al., “Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection”, Nature, 2016 Oct. 13; 538(7624):270-273, the entire contents of which are hereby incorporated by reference. In vitro biochemical analysis of C2c2 in Leptotrichia shahii has shown that C2c2 is guided by a single CRISPR RNA and can be programmed to cleave ssRNA targets carrying complementary protospacers. Catalytic residues in the two conserved HEPN domains mediate cleavage. Mutations in the catalytic residues generate catalytically inactive RNA-binding proteins. See e.g., Abudayyeh et al., “C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector,” Science, 2016 Aug. 5; 353(6299), the entire contents of which are hereby incorporated by reference.


The crystal structure of Alicyclobaccillus acidoterrastris C2c1 (AacC2c1) has been reported in complex with a chimeric single-molecule guide RNA (sgRNA). See, e.g., Liu et al., “C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism”, Mol. Cell, 2017 Jan. 19; 65(2):310-322, incorporated herein by reference. The crystal structure has also been reported for Alicyclobacillus acidoterrestris C2c1 bound to target DNAs as ternary complexes. See, e.g., Yang et al., “PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease”, Cell, 2016 Dec. 15; 167(7):1814-1828, the entire contents of which are hereby incorporated by reference. Catalytically competent conformations of AacC2c1, both with target and non-target DNA strands, have been captured independently positioned within a single RuvC catalytic pocket, with C2c1-mediated cleavage resulting in a staggered seven-nucleotide break of target DNA. Structural comparisons between C2c1 ternary complexes and previously identified Cas9 and Cpf1 counterparts demonstrate the diversity of mechanisms used by CRISPR-Cas9 systems.


In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein of any of the fusion proteins provided herein is a C2c1, a C2c2, or a C2c3 protein. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein is a C2c1 protein. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein is a C2c2 protein. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein is a C2c3 protein. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring C2c1, C2c2, or C2c3 protein. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein is a naturally-occurring C2c1, C2c2, or C2c3 protein. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 692-694. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein comprises an amino acid sequence of any one SEQ ID NOs: 692-694. It should be appreciated that C2c1, C2c2, or C2c3 from other bacterial species may also be used in accordance with the present disclosure.










C2c1 (uniprot.org/uniprot/TOD7A2#) 



sp|T0D7A2|C2C1_ALIAG CRISPR-associated endonuclease C2c1 OS = Alicyclobacillus



acidoterrestris (strain ATCC 49025/DSM 3922/CIP 106132/NCIMB 13137/GD3B) 



GN = c2c1 PE = 1 SV = 1


(SEQ ID NO: 692)



MAVKSIKVKLRLDDMPEIRAGLWKLHKEVNAGVRYYTEWLSLLRQENLYRRSPNGDG






EQECDKTAEECKAELLERLRARQVENGHRGPAGSDDELLQLARQLYELLVPQAIGAKG





DAQQIARKFLSPLADKDAVGGLGIAKAGNKPRWVRMREAGEPGWEEEKEKAETRKSA





DRTADVLRALADFGLKPLMRVYTDSEMSSVEWKPLRKGQAVRTWDRDMFQQAIERM





MSWESWNQRVGQEYAKLVEQKNRFEQKNFVGQEHLVHLVNQLQQDMKEASPGLESK





EQTAHYVTGRALRGSDKVFEKWGKLAPDAPFDLYDAEIKNVQRRNTRRFGSHDLFAKL





AEPEYQALWREDASFLTRYAVYNSILRKLNHAKMFATFTLPDATAHPIWTRFDKLGGN





LHQYTFLFNEFGERRHAIRFHKLLKVENGVAREVDDVTVPISMSEQLDNLLPRDPNEPIA





LYFRDYGAEQHFTGEFGGAKIQCRRDQLAHMHRRRGARDVYLNVSVRVQSQSEARGE





RRPPYAAVFRLVGDNHRAFVHFDKLSDYLAEHPDDGKLGSEGLLSGLRVMSVDLGLRT





SASISVFRVARKDELKPNSKGRVPFFFPIKGNDNLVAVHERSQLLKLPGETESKDLRAIRE





ERQRTLRQLRTQLAYLRLLVRCGSEDVGRRERSWAKLIEQPVDAANHMTPDWREAFEN





ELQKLKSLHGICSDKEWMDAVYESVRRVWRHMGKQVRDWRKDVRSGERPKIRGYAK





DVVGGNSIEQIEYLERQYKFLKSWSFFGKVSGQVIRAEKGSRFAITLREHIDHAKEDRLK





KLADRIIMEALGYVYALDERGKGKWVAKYPPCQLILLEELSEYQFNNDRPPSENNQLM





QWSHRGVFQELINQAQVHDLLVGTMYAAFSSRFDARTGAPGIRCRRVPARCTQEHNPE





PFPWWLNKFVVEHTLDACPLRADDLIPTGEGEIFVSPFSAEEGDFHQIHADLNAAQNLQ





QRLWSDFDISQIRLRCDWGEVDGELVLIPRLTGKRTADSYSNKVFYTNTGVTYYERERG





KKRRKVFAQEKLSEEEAELLVEADEAREKSVVLMRDPSGIINRGNWTRQKEFWSMVNQ





RIEGYLVKQIRSRVPLQDSACENTGDI





C2c2 (uniprot.org/uniprot/PODOC6) 


>sp|P0DOC6|C2C2_LEPSD CRISPR-associated endoribonuclease C2c2 OS = Leptotrichia shahii


(strain DSM 19757/CCUG 47503/CIP 107916/JCM 16776/LB37) GN = c2c2 PE = 1 SV = 1


(SEQ ID NO: 693)



MGNLFGHKRWYEVRDKKDFKIKRKVKVKRNYDGNKYILNINENNNKEKIDNNKFIRKY






INYKKNDNILKEFTRKFHAGNILFKLKGKEGIIRIENNDDFLETEEVVLYIEAYGKSEKLK





ALGITKKKIIDEAIRQGITKDDKKIEIKRQENEEEIEIDIRDEYTNKTLNDCSIILRIIENDELE





TKKSIYEIFKNINMSLYKIIEKIIENETEKVFENRYYEEHLREKLLKDDKIDVILTNFMEIRE





KIKSNLEILGFVKFYLNVGGDKKKSKNKKMLVEKILNINVDLTVEDIADFVIKELEFWNI





TKRIEKVKKVNNEFLEKRRNRTYIKSYVLLDKHEKFKIERENKKDKIVKFFVENIKNNSI





KEKIEKILAEFKIDELIKKLEKELKKGNCDTEIFGIFKKHYKVNFDSKKFSKKSDEEKELY





KIIYRYLKGRIEKILVNEQKVRLKKMEKIEIEKILNESILSEKILKRVKQYTLEHIMYLGKL





RHNDIDMTTVNTDDFSRLHAKEELDLELITFFASTNMELNKIFSRENINNDENIDFFGGDR





EKNYVLDKKILNSKIKIIRDLDFIDNKNNITNNFIRKFTKIGTNERNRILHAISKERDLQGT





QDDYNKVINIIQNLKISDEEVSKALNLDVVFKDKKNIITKINDIKISEENNNDIKYLPSFSK





VLPEILNLYRNNPKNEPFDTIETEKIVLNALIYVNKELYKKLILEDDLEENESKNIFLQELK





KTLGNIDEIDENIIENYYKNAQISASKGNNKAIKKYQKKVIECYIGYLRKNYEELFDFSDF





KMNIQEIKKQIKDINDNKTYERITVKTSDKTIVINDDFEYIISIFALLNSNAVINKIRNRFFA





TSVWLNTSEYQNIIDILDEIMQLNTLRNECITENWNLNLEEFIQKMKEIEKDFDDFKIQTK





KEIFNNYYEDIKNNILTEFKDDINGCDVLEKKLEKIVIFDDETKFEIDKKSNILQDEQRKLS





NINKKDLKKKVDQYIKDKDQEIKSKILCRIIFNSDFLKKYKKEIDNLIEDMESENENKFQE





IYYPKERKNELYIYKKNLFLNIGNPNFDKIYGLISNDIKMADAKFLFNIDGKNIRKNKISEI





DAILKNLNDKLNGYSKEYKEKYIKKLKENDDFFAKNIQNKNYKSFEKDYNRVSEYKKIR





DLVEFNYLNKIESYLIDINWKLAIQMARFERDMHYIVNGLRELGIIKLSGYNTGISRAYPK





RNGSDGFYTTTAYYKFFDEESYKKFEKICYGFGIDLSENSEINKPENESIRNYISHFYIVRN





PFADYSIAEQIDRVSNLLSYSTRYNNSTYASVFEVFKKDVNLDYDELKKKFKLIGNNDIL





ERLMKPKKVSVLELESYNSDYIKNLIIELLTKIENTNDTL





C2c3, translated from >CEPX01008730.1 marine metagenome genome assembly 


TARA_037_MES_0.1-0.22, contig TARA_037_MES 0.1-0.22 scaffold22115_1, whole 


genome shotgun sequence. 


(SEQ ID NO: 694)



MRSNYHGGRNARQWRKQISGLARRTKETVFTYKFPLETDAAEIDFDKAVQTYGIAEGV






GHGSLIGLVCAFHLSGFRLFSKAGEAMAFRNRSRYPTDAFAEKLSAIMGIQLPTLSPEGL





DLIFQSPPRSRDGIAPVWSENEVRNRLYTNWTGRGPANKPDEHLLEIAGEIAKQVFPKFG





GWDDLASDPDKALAAADKYFQSQGDFPSIASLPAAIMLSPANSTVDFEGDYIAIDPAAET





LLHQAVSRCAARLGRERPDLDQNKGPFVSSLQDALVSSQNNGLSWLFGVGFQHWKEKS





PKELIDEYKVPADQHGAVTQVKSFVDAIPLNPLFDTTHYGEFRASVAGKVRSWVANYW





KRLLDLKSLLATTEFTLPESISDPKAVSLFSGLLVDPQGLKKVADSLPARLVSAEEAIDRL





MGVGIPTAADIAQVERVADEIGAFIGQVQQFNNQVKQKLENLQDADDEEFLKGLKIELP





SGDKEPPAINTRISGGAPDAAAEISELEEKLQRLLDARSEHFQTISEWAEENAVTLDPIAAM





VELERLRLAERGATGDPEEYALRLLLQRIGRLANRVSPVSAGSIRELLKPVFMEEREFNL





FFHNRLGSLYRSPYSTSRHQPFSIDVGKAKAIDWIAGLDQISSDIEKALSGAGEALGDQLR





DWINTLAGFAISQRLRGLPDTVPNALAQVRCPDDVRIPPLLAMLLEEDDIARDVCLKAFN





LYVSAINGCLFGALREGFIVRTRFQRIGTDQIHYVPKDKAWEYPDRLNTAKGPINAAVSS





DWIEKDGAVIKPVETVRNLSSTGFAGAGVSEYLVQAPHDWYTPLDLRDVAHLVTGLPV





EKNITKLKRLTNRTAFRMVGASSFKTHLDSVLLSDKIKLGDFTIIIDQHYRQSVTYGGKV





KISYEPERLQVEAAVPVVDTRDRTVPEPDTLFDHIVAIDLGERSVGFAVFDIKSCLRTGEV





KPIHDNNGNPVVGTVAVPSIRRLMKAVRSHRRRRQPNQKVNQTYSTALQNYRENVIGD





VCNRIDTLMERYNAFPVLEFQIKNFQAGAKQLEIVYGS






In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein of any of the fusion proteins provided herein is a Cas9 from archaea (e.g. nanoarchaea), which constitute a domain and kingdom of single-celled prokaryotic microbes. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein is CasX or CasY, which have been described in, for example, Burstein et al., “New CRISPR-Cas systems from uncultivated microbes.” Cell Res. 2017 Feb. 21. doi: 10.1038/cr.2017.21, which is incorporated herein by reference. Using genome-resolved metagenomics, a number of CRISPR-Cas systems were identified, including the first reported Cas9 in the archaeal domain of life. This divergent Cas9 protein was found in nanoarchaea as part of an active CRISPR-Cas system. In bacteria, two previously unknown systems were discovered, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. In some embodiments, Cas9 refers to CasX, or a variant of CasX. In some embodiments, Cas9 refers to a CasY, or a variant of CasY. It should be appreciated that other RNA-guided DNA binding proteins may be used as a guide nucleotide sequence-programmable DNA-binding protein and are within the scope of this disclosure.


In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein of any of the fusion proteins provided herein is a CasX or CasY protein. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein is a CasX protein. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein is a CasY protein. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring CasX or CasY protein. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein is a naturally-occurring CasX or CasY protein. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 695-697. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein comprises an amino acid sequence of any one of SEQ ID NOs: 695-697. It should be appreciated that CasX and CasY from other bacterial species may also be used in accordance with the present disclosure.










CasX (uniprot.org/uniprot/F0NN87; uniprot.org/uniprot/F0NH53) 



>tr|F0NN87|F0NN87_SULIH CRISPR-associated Casx protein OS = Sulfolobus islandicus


(strain HVE10/4) GN = SiH_0402 PE = 4 SV = 1


(SEQ ID NO: 695)



MEVPLYNIFGDNYIIQVATEAENSTIYNNKVEIDDEELRNVLNLAYKIAKNNEDAAAERR






GKAKKKKGEEGETTTSNIILPLSGNDKNPWTETLKCYNFPTTVALSEVFKNFSQVKECEE





VSAPSFVKPEFYEFGRSPGMVERTRRVKLEVEPHYLIIAAAGWVLTRLGKAKVSEGDYV





GVNVFTPTRGILYSLIQNVNGIVPGIKPETAFGLWIARKVVSSVTNPNVSVVRIYTISDAV





GQNPTTINGGFSIDLTKLLEKRYLLSERLEAIARNALSISSNMRERYIVLANYIYEYLTGSK





RLEDLLYFANRDLIMNLNSDDGKVRDLKLISAYVNGELIRGEG





>tr|F0NH53|F0NH53_SULIR CRISPR associated protein, Casx OS = Sulfolobus islandicus


(strain REY15A) GN = SiRe_0771 PE = 4 SV = 1


(SEQ ID NO: 696)



MEVPLYNIFGDNYIIQVATEAENSTIYNNKVEIDDEELRNVLNLAYKIAKNNEDAAAERR






GKAKKKKGEEGETTTSNIILPLSGNDKNPWTETLKCYNFPTTVALSEVFKNFSQVKECEE





VSAPSFVKPEFYKFGRSPGMVERTRRVKLEVEPHYLIMAAAGWVLTRLGKAKVSEGDY





VGVNVFTPTRGILYSLIQNVNGIVPGIKPETAFGLWIARKVVSSVTNPNVSVVSIYTISDA





VGQNPTTINGGFSIDLTKLLEKRDLLSERLEAIARNALSISSNMRERYIVLANYIYEYLTGS





KRLEDLLYFANRDLIMNLNSDDGKVRDLKLISAYVNGELIRGEG





CasY (ncbi.nlm.nih.gov/protein/APG80656.1) 


>APG80656.1 CRISPR-associated protein CasY [uncultured Parcubacteria group bacterium]


(SEQ ID NO: 697)



MSKRHPRISGVKGYRLHAQRLEYTGKSGAMRTIKYPLYSSPSGGRTVPREIVSAINDDY






VGLYGLSNFDDLYNAEKRNEEKVYSVLDFWYDCVQYGAVFSYTAPGLLKNVAEVRGG





SYELTKTLKGSHLYDELQIDKVIKFLNKKEISRANGSLDKLKKDIIDCFKAEYRERHKDQ





CNKLADDIKNAKKDAGASLGERQKKLFRDFFGISEQSENDKPSFTNPLNLTCCLLPFDTV





NNNRNRGEVLFNKLKEYAQKLDKNEGSLEMWEYIGIGNSGTAFSNFLGEGFLGRLREN





KITELKKAMMDITDAWRGQEQEEELEKRLRILAALTIKLREPKFDNHWGGYRSDINGKL





SSWLQNYINQTVKIKEDLKGHKKDLKKAKEMINRFGESDTKEEAVVSSLLESIEKIVPDD





SADDEKPDIPAIAIYRRFLSDGRLTLNRFVQREDVQEALIKERLEAEKKKKPKKRKKKSD





AEDEKETIDFKELFPHLAKPLKLVPNFYGDSKRELYKKYKNAAIYTDALWKAVEKIYKS





AFSSSLKNSFFDTDFDKDFFIKRLQKIFSVYRRFNTDKWKPIVKNSFAPYCDIVSLAENEV





LYKPKQSRSRKSAAIDKNRVRLPSTENIAKAGIALARELSVAGFDWKDLLKKEEHEEYID





LIELHKTALALLLAVTETQLDISALDFVENGTVKDFMKTRDGNLVLEGRFLEMFSQSIVF





SELRGLAGLMSRKEFITRSAIQTMNGKQAELLYIPHEFQSAKITTPKEMSRAFLDLAPAEF





ATSLEPESLSEKSLLKLKQMRYYPHYFGYELTRTGQGIDGGVAENALRLEKSPVKKREIK





CKQYKTLGRGQNKIVLYVRSSYYQIQFLEWFLHRPKNVQTDVAVSGSFLIDEKKVKIR





WNYDALTVALEPVSGSERVFVSQPFTIFPEKSAEEEGQRYLGIDIGEYGIAYTALEITGDS





AKILDQNFISDPQLKTLREEVKGLKLDQRRGTFAMPSTKIARIRESLVHSLRNRIHHLALK





HKAKIVYELEVSRFEEGKQKIKKVYATLKKADVYSEIDADKNLQTTVWGKLAVASEISA





SYTSQFCGACKKLWRAEMQVDETITTQELIGTVRVIKGGTLIDAIKDFMRPPIFDENDTPF





PKYRDFCDKHHISKKMRGNSCLFICPFCRANADADIQASQTIALLRYVKEEKKVEDYFE





RFRKLKNIKVLGQMKKI







Cas9 Domains of Nucleobase Editors


Non-limiting, exemplary Cas9 domains are provided herein. The Cas9 domain may be a nuclease active Cas9 domain, a nuclease inactive Cas9 domain, or a Cas9 nickase. In some embodiments, the Cas9 domain is a nuclease active domain. For example, the Cas9 domain may be a Cas9 domain that cuts both strands of a duplexed nucleic acid (e.g., both strands of a duplexed DNA molecule). In some embodiments, the Cas9 domain comprises any one of the amino acid sequences as set forth herein. In some embodiments the Cas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the amino acid sequences set forth herein. In some embodiments, the Cas9 domain comprises an amino acid sequence that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more mutations compared to any one of the amino acid sequences set forth herein. In some embodiments, the Cas9 domain comprises an amino acid sequence that has at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1100, or at least 1200 identical contiguous amino acid residues as compared to any one of the amino acid sequences set forth herein.


In some embodiments, the Cas9 domain is a nuclease-inactive Cas9 domain (dCas9). For example, the dCas9 domain may bind to a duplexed nucleic acid molecule (e.g., via a gRNA molecule) without cleaving either strand of the duplexed nucleic acid molecule. In some embodiments, the nuclease-inactive dCas9 domain comprises a D10X mutation and a H840X mutation or a corresponding mutation in any of the amino acid sequences provided in any of the Cas9 proteins provided herein, wherein X is any amino acid change. In some embodiments, the nuclease-inactive dCas9 domain comprises a D10A mutation and a H840A mutation or a corresponding mutation in any of the amino acid sequences provided in any of the Cas9 proteins provided herein. As one example, a nuclease-inactive Cas9 domain comprises the amino acid sequence set forth in SEQ ID NO: 698 (Cloning vector pPlatTET-gRNA2, Accession No. BAV54124).









MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA





LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV





MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP





VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDD





SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL





TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI





REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK





YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI





TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV





QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVE





KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD


(SEQ ID NO: 698; see, e.g., Qi et al., Repurposing


CRISPR as an RNA-guided platform for sequence-


specific control of gene expression. Cell. 2013;


152(5): 1173-83, the entire contents of which are


incorporated herein by reference).






Additional suitable nuclease-inactive dCas9 domains will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D10A/H840A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant domains (See, e.g., Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31(9): 833-838, the entire contents of which are incorporated herein by reference). In some embodiments the dCas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the dCas9 domains provided herein. In some embodiments, the Cas9 domain comprises an amino acid sequences that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more mutations compared to any one of the amino acid sequences of Cas9 or a Cas9 variant set forth herein. In some embodiments, the Cas9 domain comprises an amino acid sequence that has at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1100, or at least 1200 identical contiguous amino acid residues as compared to any one of the amino acid sequences of Cas9 or a Cas9 variant set forth herein.


In some embodiments, the Cas9 domain is a Cas9 nickase. The Cas9 nickase may be a Cas9 protein that is capable of cleaving only one strand of a duplexed nucleic acid molecule (e.g., a duplexed DNA molecule). In some embodiments the Cas9 nickase cleaves the target strand of a duplexed nucleic acid molecule, meaning that the Cas9 nickase cleaves the strand that is base paired to (complementary to) a gRNA (e.g., an sgRNA) that is bound to the Cas9. In some embodiments, a Cas9 nickase comprises a D10A mutation and has a histidine at position 840. For example, a Cas9 nickase may comprise the amino acid sequence as set forth in SEQ ID NO: 683. In some embodiments the Cas9 nickase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 nickases provided herein. Additional suitable Cas9 nickases will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure.


Cas9 Domains with Reduced PAM Exclusivity


Some aspects of the disclosure provide Cas9 domains that have different PAM specificities. Typically, Cas9 proteins, such as Cas9 from S. pyogenes (spCas9), require a canonical NGG PAM sequence to bind a particular nucleic acid region. This may limit the ability to edit desired bases within a genome. In some embodiments, the base editing fusion proteins provided herein may need to be placed at a precise location, for example where a target base is placed within a four base region (e.g., a “deamination window”), which is approximately 15 bases upstream of the PAM. See Komor, A. C., et al., “Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage” Nature 533, 420-424 (2016), the entire contents of which are hereby incorporated by reference. Accordingly, in some embodiments, any of the fusion proteins provided herein may contain a Cas9 domain that is capable of binding a nucleotide sequence that does not contain a canonical (e.g., NGG) PAM sequence and has relaxed PAM requirements (PAMless Cas9). PAMless Cas9 exhibits an increased activity on a target sequence that does not include a canonical PAM (e.g., NGG) sequence at its 3′-end as compared to Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 1, e.g., increased activity by at least 5-fold, at least 10-fold, at least 50-fold, at least 100-fold, at least 500-fold, at least 1,000-fold, at least 5,000-fold, at least 10,000-fold, at least 50,000-fold, at least 100,000-fold, at least 500,000-fold, or at least 1,000,000-fold. Cas9 domains that bind to non-canonical PAM sequences have been described in the art and would be apparent to the skilled artisan. For example, Cas9 domains that bind non-canonical PAM sequences have been described in Kleinstiver, B. P., et al., “Engineered CRISPR-Cas9 nucleases with altered PAM specificities” Nature 523, 481-485 (2015); and Kleinstiver, B. P., et al., “Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition” Nature Biotechnology 33, 1293-1298 (2015); the entire contents of each are hereby incorporated by reference. See also US Provisional Applications, U.S. Ser. No. 62/245,828, filed Oct. 23, 2015; 62/279,346, filed Jan. 15, 2016; 62/311,763, filed Mar. 22, 2016; 62/322,178, filed Apr. 13, 2016; and 62/357,332, filed Jun. 30, 2016, each of which is incorporated herein by reference. In some embodiments, the dCas9 or Cas9 nickase useful in the present disclosure may further comprise mutations that relax the PAM requirements, e.g., mutations that correspond to A262T, K294R, S409I, E480K, E543D, M694I, or E1219V in SEQ ID NO: 1.


In some embodiments, the Cas9 domain is a Cas9 domain from Staphylococcus aureus (SaCas9). In some embodiments, the SaCas9 domain is a nuclease active SaCas9, a nuclease inactive SaCas9 (SaCas9d), or a SaCas9 nickase (SaCas9n). In some embodiments, the SaCas9 comprises the amino acid sequence SEQ ID NO: 699. In some embodiments, the SaCas9 comprises a N579X mutation of SEQ ID NO: 699, or a corresponding mutation in any of the amino acid sequences provided in any of the Cas9 proteins disclosed herein including, but not limited to, SEQ ID NOs: 1-260, 270-292, 315-323, 680, and 682, wherein X is any amino acid except for N. In some embodiments, the SaCas9 comprises a N579A mutation of SEQ ID NO: 699, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 1-260, 272-292, 315-323, 680, and 682. In some embodiments, the SaCas9 domain, the SaCas9d domain, or the SaCas9n domain can bind to a nucleic acid sequence having a non-canonical PAM. In some embodiments, the SaCas9 domain, the SaCas9d domain, or the SaCas9n domain can bind to a nucleic acid sequence having a NNGRRT PAM sequence. In some embodiments, the SaCas9 domain comprises one or more of a E781X, a N967X, and a R1014X mutation of SEQ ID NO: 699, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to in SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682, wherein X is any amino acid. In some embodiments, the SaCas9 domain comprises one or more of a E781K, a N967K, and a R1014H mutation of SEQ ID NO: 699, or one or more corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to in SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682. In some embodiments, the SaCas9 domain comprises a E781K, a N967K, or a R1014H mutation of SEQ ID NO: 699, or one or more corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to in SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682.


In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 699-701. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 699-701. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 699-701.










Exemplary SaCas9 sequence



(SEQ ID NO: 699)



KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRR






HRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHN





VNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKE





AKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHC





TYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTL





KQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIY





QSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNR





LKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKN





SKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPL





EDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKISYETF





KKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYATRGLMNLLRSYF





RVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFIFKEWKKLD





KAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNR





ELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQK





LKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDY





PNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLK





KISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPR





IIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG


Residue N579 of SEQ ID NO: 699, which is underlined and in bold,


may be mutated (e.g., to a A579) to yield a SaCas9 nickase.





Exemplary SaCas9d sequence


(SEQ ID NO: 702)



KRNYILGLAIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRR






HRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHN





VNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINTRFKTSDYVKE





AKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHC





TYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTL





KQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIY





QSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNR





LKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKN





SKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPL





EDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKISYETF





KKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYATRGLMNLLRSYF





RVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFIFKEWKKLD





KAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNR





ELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQK





LKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDY





PNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLK





KISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPR





IIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG


Residue D10 of SEQ ID NO: 702, which is underlined and in bold, may be


mutated (e.g., to a A10) to yield a nuclease inactive SaCas9d.





Exemplary SaCas9n sequence 


(SEQ ID NO: 700)



KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRR






HRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHN





VNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINTRFKTSDYVKE





AKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHC





TYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTL





KQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIY





QSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNR





LKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKN





SKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPL





EDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEEASKKGNRTPFQYLSSSDSKISYETF





KKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYATRGLMNLLRSYF





RVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFIFKEWKKLD





KAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNR





ELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQK





LKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDY





PNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLK





KISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPR





IIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG.


Residue A579 of SEQ ID NO: 700, which can be mutated from N579 of SEQ ID NO:


699 to yield a SaCas9 nickase, is underlined and in bold.





Exemplary SaKKH Cas9 


(SEQ ID NO: 701)



KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRR






HRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHN





VNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINTRFKTSDYVKE





AKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHC





TYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTL





KQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIY





QSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNR





LKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKN





SKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPL





EDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEEASKKGNRTPFQYLSSSDSKISYETF





KKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYATRGLMNLLRSYF





RVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFIFKEWKKLD





KAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNR





KLINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQK





LKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDY





PNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLK





KISNQAEFIASFYKNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPH





IIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG.


Residue A579 of SEQ ID NO: 701, which can be mutated from N579 of SEQ ID NO: 699 to


yield a SaCas9 nickase, is underlined and in bold. Residues K781, K967, and H1014 of SEQ ID


NO: 701, which can be mutated from E781, N967, and R1014 of SEQ ID NO: 699 to yield a


SaKKH Cas9 are underlined and in italics.






In some embodiments, the Cas9 domain is a Cas9 domain from Streptococcus pyogenes (SpCas9). In some embodiments, the SpCas9 domain is a nuclease active SpCas9, a nuclease inactive SpCas9 (SpCas9d), or a SpCas9 nickase (SpCas9n). In some embodiments, the SpCas9 comprises the amino acid sequence SEQ ID NO: 703. In some embodiments, the SpCas9 comprises a D9X mutation of SEQ ID NO: 703, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682, wherein X is any amino acid except for D. In some embodiments, the SpCas9 comprises a D9A mutation of SEQ ID NO: 703, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682. In some embodiments, the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid sequence having a non-canonical PAM. In some embodiments, the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid sequence having a NGG, a NGA, or a NGCG PAM sequence. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a R1334X, and a T1336X mutation of SEQ ID NO: 703, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134E, R1334Q, and T1336R mutation of SEQ ID NO: 703, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682. In some embodiments, the SpCas9 domain comprises a D1134E, a R1334Q, and a T1336R mutation of SEQ ID NO: 703, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a R1334X, and a T1336X mutation of SEQ ID NO: 703, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134V, a R1334Q, and a T1336R mutation of SEQ ID NO: 703, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682. In some embodiments, the SpCas9 domain comprises a D1134V, a R1334Q, and a T1336R mutation of SEQ ID NO: 703, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a G1217X, a R1334X, and a T1336X mutation of SEQ ID NO: 703, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134V, a G1217R, a R1334Q, and a T1336R mutation of SEQ ID NO: 703, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to, SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682. In some embodiments, the SpCas9 domain comprises a D1134V, a G1217R, a R1334Q, and a T1336R mutation of SEQ ID NO: 703, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682.


In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 4276-4280. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 703-707. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 703-707.









Exemplary SpCas9


(SEQ ID NO: 703)


DKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL





EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL





RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPI





NASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPN





FKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAIL





LSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF





FDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRK





QRTFDNGSIPHQIHLGELHALRRQEDFYPFLKDNREKIEKILTFRIPYYV





GPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNL





PNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLL





FKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIK





DKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLK





RRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSL





TFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMG





RHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVE





NTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSI





DNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTK





AERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIRE





VKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYP





KLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITL





ANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQT





GGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKG





KSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYS





LFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDN





EQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI





REQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSI





TGLYETRIDLSQLGGD





Exemplary SpCas9n


(SEQ ID NO: 704)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL





EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL





RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPI





NASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPN





FKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAIL





LSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF





FDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRK





QRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYY





VGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKII





KDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQL





KRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS





LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVM





GRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPV





ENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDS





IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT





KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR





EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY





PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT





LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKY





SLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPED





NEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKP





IREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQS





ITGLYETRIDLSQLGGD





Exemplary SpEQR Cas9


(SEQ ID NO: 705)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL





EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL





RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPI





NASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPN





FKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAIL





LSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF





FDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRK





QRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYY





VGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKII





KDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQL





KRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS





LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVM





GRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPV





ENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDS





IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT





KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR





EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY





PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT





LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFESPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKY





SLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPED





NEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKP





IREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQS





ITGLYETRIDLSQLGGD


Residues E1134, Q1334, and R1336 of SEQ ID NO: 705,


which can be mutated from D1134, R1334, and T1336


of SEQ ID NO: 703 to yield a SpEQR Cas9, are


underlined and in bold.





Exemplary SpVQR Cas9


(SEQ ID NO: 706)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL





EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL





RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPI





NASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPN





FKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAIL





LSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF





FDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRK





QRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYY





VGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKII





KDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQL





KRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS





LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVM





GRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPV





ENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDS





IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT





KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR





EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY





PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT





LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKY





SLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPED





NEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKP





IREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQS





ITGLYETRIDLSQLGGD


Residues V1134, Q1334, and R1336 of SEQ ID NO: 706,


which can be mutated from D1134, R1334, and T1336


of SEQ ID NO: 703 to yield a SpVQR Cas9, are


underlined and in bold.





Exemplary SpVRER Cas9


(SEQ ID NO: 707)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL





EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL





RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPI





NASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPN





FKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAIL





LSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF





FDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRK





QRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYY





VGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKII





KDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQL





KRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS





LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVM





GRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPV





ENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDS





IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT





KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR





EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY





PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT





LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKY





SLFELENGRKRMLASARELQKGNELALPSKYVNFLYLASHYEKLKGSPED





NEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKP





IREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKEYRSTKEVLDATLIHQS





ITGLYETRIDLSQLGGD


Residues V1134, R1217, Q1334, and R1336 of SEQ ID


NO: 707, which can be mutated from D1134, G1217,


R1334, and T1336 of SEQ ID NO: 703 to yield a


SpVRER Cas9, are underlined and in bold.







High Fidelity Base Editors


Some aspects of the disclosure provide Cas9 fusion proteins (e.g., any of the fusion proteins provided herein) comprising a Cas9 domain that has high fidelity. Additional aspects of the disclosure provide Cas9 fusion proteins (e.g., any of the fusion proteins provided herein) comprising a Cas9 domain with decreased electrostatic interactions between the Cas9 domain and a sugar-phosphate backbone of a DNA, as compared to a wild-type Cas9 domain. In some embodiments, a Cas9 domain (e.g., a wild type Cas9 domain) comprises one or more mutations that decreases the association between the Cas9 domain and a sugar-phosphate backbone of a DNA. In some embodiments, any of the Cas9 fusion proteins provided herein comprise one or more of a N497X, a R661X, a Q695X, and/or a Q926X mutation of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to the sequences seen in SEQ ID NOs: 1-260, 270-292, and 315-323, wherein X is any amino acid. In some embodiments, any of the Cas9 fusion proteins provided herein comprise one or more of a N497A, a R661A, a Q695A, and/or a Q926A mutation of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to the sequences seen in SEQ ID NOs: 1-260, 270-292, 315-323, 680, and 682. In some embodiments, the Cas9 domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the Cas9 amino acid sequences provided herein, including but not limited to the sequences seen in SEQ ID NOs: 1-260, 270-292, 315-323, 680, and 682. In some embodiments, the Cas9 domain (e.g., of any of the fusion proteins provided herein) comprises the amino acid sequence as set forth in SEQ ID NO: 708. In some embodiments, the fusion protein comprises the amino acid sequence as set forth in SEQ ID NO: 709. Cas9 domains with high fidelity are known in the art and would be apparent to the skilled artisan. For example, Cas9 domains with high fidelity have been described in Kleinstiver, B. P., et al. “High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.” Nature 529, 490-495 (2016); and Slaymaker, I. M., et al. “Rationally engineered Cas9 nucleases with improved specificity.” Science 351, 84-88 (2015); the entire contents of each are incorporated herein by reference.


It should be appreciated that the base editors provided herein, for example, base editor 2 (BE2) or base editor 3 (BE3), may be converted into high fidelity base editors by modifying the Cas9 domain as described herein to generate high fidelity base editors, for example, high fidelity base editor 2 (HF-BE2) or high fidelity base editor 3 (HF-BE3). In some embodiments, base editor 2 (BE2) comprises a deaminase domain, a dCas9 domain, and a UGI domain. In some embodiments, base editor 3 (BE3) comprises a deaminase domain, a nCas9 domain, and a UGI domain.









Cas9 domain where mutations relative to Cas9 of


SEQ ID NO: 1 are shown in bold and underlines


(SEQ ID NO: 708)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL





EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL





RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPI





NASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPN





FKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAIL





LSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF





FDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRK





QRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYY





VGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTAFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKII





KDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQL





KRRRYTGWGALSRKLINGIRDKQSGKTILDFLKSDGFANRNFMALIHDDS





LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVM





GRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPV





ENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDS





IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT





KAERGGLSELDKAGFIKRQLVETRAITKHVAQILDSRMNTKYDENDKLIR





EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY





PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT





LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKY





SLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPED





NEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKP





IREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQS





ITGLYETRIDLSQLGGD





HF-BE3


(SEQ ID NO: 709)


MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSI





WRHTSQNTNKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAI





TEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTEQESG





YCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQ





PQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPGTSESATPESDKKYS





IGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSG





ETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL





VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYL





ALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGV





DAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF





DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDIL





RVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSK





NGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFD





NGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLA





RGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTAFDKNLPNEK





VLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTN





RKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDF





LDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRY





TGWGALSRKLINGIRDKQSGKTILDFLKSDGFANRNFMALIHDDSLTFKE





DIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKP





ENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL





QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKV





LTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG





GLSELDKAGFIKRQLVETRAITKHVAQILDSRMNTKYDENDKLIREVKVI





TLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLES





EFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGE





IRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFS





KESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK





LKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFEL





ENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQ





LFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQA





ENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLY





ETRIDLSQLGGD







Fusion Proteins Comprising Gam


Some aspects of the disclosure provide fusion proteins comprising a Gam protein. Some aspects of the disclosure provide base editors that further comprise a Gam protein. Base editors are known in the art and have been described previously, for example, in U.S. Patent Application Publication Nos.: U.S. 2015-0166980, published Jun. 18, 2015; U.S. 2015-0166981, published Jun. 18, 2015; U.S. 2015-0166984, published Jun. 18, 2015; U.S. 2015-01669851, published Jun. 18, 2015; U.S. 2016-0304846, published Oct. 20, 2016; U.S. 2017-0121693-A1, published May 4, 2017; and PCT Application publication Nos.: WO 2015089406, published Jun. 18, 2015; and WO2017070632, published Apr. 27, 2017; the entire contents of each of which are hereby incorporated by reference. A skilled artisan would understand, based on the disclosure, how to make and use base editors that further comprise a Gam protein.


In some embodiments, the disclosure provides fusion proteins comprising a guide nucleotide sequence-programmable DNA-binding protein and a Gam protein. In some embodiments, the disclosure provides fusion proteins comprising a cytidine deaminase domain and a Gam protein. In some embodiments, the disclosure provides fusion proteins comprising a UGI domain and a Gam protein. In some embodiments, the disclosure provides fusion proteins comprising a guide nucleotide sequence-programmable DNA-binding protein, a cytidine deaminase domain and a Gam protein. In some embodiments, the disclosure provides fusion proteins comprising a guide nucleotide sequence-programmable DNA-binding protein, a cytidine deaminase domain a Gam protein and a UGI domain.


In some embodiments, the Gam protein is a protein that binds to double strand breaks in DNA and prevents or inhibits degradation of the DNA at the double strand breaks. In some embodiments, the Gam protein is encoded by the bacteriophage Mu, which binds to double stranded breaks in DNA. Without wishing to be bound by any particular theory, Mu transposes itself between bacterial genomes and uses Gam to protect double stranded breaks in the transposition process. Gam can be used to block homologous recombination with sister chromosomes to repair double strand breaks, sometimes leading to cell death. The survival of cells exposed to UV is similar for cells expression Gam and cells where the recB is mutated. This indicates that Gam blocks DNA repair (Cox, 2013). The Gam protein can thus promote Cas9-mediated killing (Cui et al., 2016). GamGFP is used to label double stranded breaks, although this can be difficult in eukaryotic cells as the Gam protein competes with similar eukaryotic protein Ku (Shee et al., 2013).


Gam is related to Ku70 and Ku80, two eukaryotic proteins involved in non-homologous DNA end-joining (Cui et al., 2016). Gam has sequence homology with both subunits of Ku (Ku70 and Ku80), and can have a similar structure to the core DNA-binding region of Ku. Orthologs to Mu Gam are present in the bacterial genomes of Haemophilus influenzae, Salmonella typhi, Neisseria meningitidis, and the enterohemorrhagic O157:H7 strain of E. coli (d'Adda di Fagagna et al., 2003). Gam proteins have been described previously, for example, in COX, Proteins pinpoint double strand breaks. eLife. 2013; 2: e01561; Cui et al., Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. 2016 May 19; 44(9):4243-51. doi: 10.1093/nar/gkw223. Epub 2016 Apr. 8; D'ADDA DI FAGAGNA et al., The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep. 2003 January; 4(1):47-52; and SHEE et al., Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. Elife. 2013 Oct. 29; 2:e01222. doi: 10.7554/eLife.01222; the contents of each of which are incorporated herein by reference.


In some embodiments, the Gam protein is a protein that binds double strand breaks in DNA and prevents or inhibits degradation of the DNA at the double strand breaks. In some embodiments, the Gam protein is a naturally occurring Gam protein from any organism (e.g., a bacterium), for example, any of the organisms provided herein. In some embodiments, the Gam protein is a variant of a naturally-occurring Gam protein from an organism. In some embodiments, the Gam protein does not occur in nature. In some embodiments, the Gam protein is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring Gam protein. In some embodiments, the Gam protein is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any of the Gam proteins provided herein (e.g., SEQ ID NO: 9). Exemplary Gam proteins are provided below. In some embodiments, the Gam protein comprises any of the Gam proteins provided herein (e.g., SEQ ID NO: 710-734). In some embodiments, the Gam protein is a truncated version of any of the Gam proteins provided herein. In some embodiments, the truncated Gam protein is missing 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6, 17, 18, 19, or 20 N-terminal amino acid residues relative to a full-length Gam protein. In some embodiments, the truncated Gam protein may be missing 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6, 17, 18, 19, or 20 C-terminal amino acid residues relative to a full-length Gam protein. In some embodiments, the Gam protein does not comprise an N-terminal methionine.


In some embodiments, the Gam protein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95, at least 98%, at least 99%, or at least 99.5% identical to any of the Gam proteins provided herein. In some embodiments, the Gam protein comprises an amino acid sequence that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more mutations compared to any one of the Gam Proteins provided herein (e.g., SEQ ID NOs: 710-734). In some embodiments, the Gam protein comprises an amino acid sequence that has at least 5, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 110, at least 120, at least 130, at least 140, at least 150, at least 160, or at least 170, identical contiguous amino acid residues as compared to any of the Gam proteins provided herein. In some embodiments, the Gam protein comprises the amino acid sequence of any of the Gam proteins provided herein. In some embodiments, the Gam protein consists of the any of the Gam proteins provided herein (e.g., SEQ ID NO: 710 or 711-734).










Gam form bacteriophage Mu



(SEQ ID NO: 710)



AKPAKRIKSAAAAYVPQNRDAVITDIKRIGDLQREASRLETEMNDAIAEITEKFAARIAPI






KTDIETLSKGVQGWCEANRDELTNGGKVKTANLVTGDVSWRVRPPSVSIRGMDAVME





TLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFEQEAGI





>WP_001107930.1 MULTISPECIES: host-nuclease inhibitor protein Gam [Enterobacteriaceae]


(SEQ ID NO: 711)



MAKPAKRIKSAAAAYVPQNRDAVITDIKRIGDLQREASRLETEMNDAIAEITEKFAARIA






PIKTDIETLSKGVQGWCEANRDELTNGGKVKTANLVTGDVSWRVRPPSVSIRGMDAVM





ETLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFEQEAGI





>CAA27978.1 unnamed protein product [Escherichia virus Mu]


(SEQ ID NO: 712)



MAKPAKRIKSAAAAYVPQNRDAVITDIKRIGDLQREASRLETEMNDAIAEITEKFAARIA






PIKTDIETLSKGVQGWCEANRDELTNGGKVKTANLVTGDVSWRVRPPSVSIRGMDAVM





ETLERLGLQRFVRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFEQEAGI





>WP_001107932.1 host-nuclease inhibitor protein Gam [Escherichia coli]


(SEQ ID NO: 713)



MAKPAKRIKSAAAAYVPQNRDAVITDIKRIGDLQREASRLETEMNDAIAEITEKFAARIA






PLKTDIETLSKGVQGWCEANRDELTNGGKVKTANLVTGDVSWRVRPPSVSIRGMDAV





METLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFEQEAGI





>WP_061335739.1 host-nuclease inhibitor protein Gam [Escherichia coli]


(SEQ ID NO: 714)



MAKPAKRIKSAAAAYVPQNRDAVITDIKRIGDLQREASRLETEMNDAIAEITEKFAARIA






PIKTDIETLSKGVQGWCEANRDELTNGGKVKTANLITGDVSWRVRPPSVSIRGMDAVM





ETLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFEQEAGI


>WP_001107937.1 MULTISPECIES: host-nuclease inhibitor protein Gam [Enterobacteriaceae]


>EJL11163.1 bacteriophage Mu Gam like family protein [Shigellasonnei str. Moseley]


>CSO81529.1 host-nuclease inhibitor protein [Shigellasonnei] >OCE38605.1 host-nuclease


inhibitor protein Gam [Shigellasonnei] >SJK50067.1 host-nuclease inhibitor protein [Shigella



sonnei] >SJK19110.1 host-nuclease inhibitor protein [Shigellasonnei] >SIY81859.1 host-



nuclease inhibitor protein [Shigellasonnei] >SJJ34359.1 host-nuclease inhibitor protein


[Shigellasonnei] >SJK07688.1 host-nuclease inhibitor protein [Shigellasonnei]


host-nuclease inhibitor protein [Shigellasonnei] >SIY86865.1 host-nuclease inhibitor protein


[Shigellasonnei] >SJJ67303.1 host-nuclease inhibitor protein [Shigellasonnei] >SJJ18596.1


host-nuclease inhibitor protein [Shigellasonnei] >SIX52979.1 host-nuclease inhibitor protein


[Shigellasonnei] >SJD05143.1 host-nuclease inhibitor protein [Shigellasonnei] >SJD37118.1


host-nuclease inhibitor protein [Shigellasonnei] >SJE51616.1 host-nuclease inhibitor protein


[Shigellasonnei]





(SEQ ID NO: 715)



MAKPAKRIRNAAAAYVPQSRDAVVCDIRRIGDLQREAARLETEMNDAIAEITEKYASQI






APLKTSIETLSKGVQGWCEANRDELTNGGKVKTANLVTGDVSWRQRPPSVSIRGVDAV





METLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFEQEAGI





>WP_089552732.1 host-nuclease inhibitor protein Gam [Escherichiacoli]


(SEQ ID NO: 716)



MAKPAKRIKNAAAAYVPQSRDAVVCDIRRIGDLQREAARLETEMNDAIAEITEKYASQI






APLKTSIETISKGVQGWCEANRDELTNGGKVKTANLVTGDVSWRQRPPSVSIRGVDAV





METLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFEQEAGI





>WP_042856719.1 host-nuclease inhibitor protein Gam [Escherichiacoli] >CDL02915.1


putative host-nuclease inhibitor protein [Escherichiacoli IS35]


(SEQ ID NO: 717)



MAKPAKRIKNAAAAYVPQSRDAVVCDIRRIGDLQREAARLETEMNDAIADITEKYASQI






APLKTSIETLSKGVQGWCEANRDELTNGGKVKTANLVTGDVSWRQRPPSVSIRGVDAV





METLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFEQEAGI





>WP_001129704.1 host-nuclease inhibitor protein Gam [Escherichiacoli] >EDU62392.1


bacteriophage Mu Gam like protein [Escherichiacoli 53638]


(SEQ ID NO: 718)



MAKSAKRIRNAAAAYVPQSRDAVVCDIRRIGNLQREAARLETEMNDAIAEITEKFAARI






APLKTDIETLSKGVQGWCEANRDELTNGGKVKTANLVTGDVSWRQRPPSVSIRGVDAV





METLERLGLQRFIRTKQEINREAILLEPKAVAGVAGITVKSGIEDFSIIPFEQDAGI


>WP 001107936.1 MULTISPECIES: host-nuclease inhibitor protein Gam [Enterobacteriaceae]


>EGI94970.1 host-nuclease inhibitor protein gam [Shigellaboydii 5216-82] >CSR34065.1 host-


nuclease inhibitor protein [Shigellasonnei] >CSQ65903.1 host-nuclease inhibitor protein


[Shigellasonnei] >CSQ94361.1 host-nuclease inhibitor protein [Shigellasonnei] >SJK23465.1


host-nuclease inhibitor protein [Shigellasonnei] >SJB59111.1 host-nuclease inhibitor protein


[Shigellasonnei] >SJI55768.1 host-nuclease inhibitor protein [Shigellasonnei] >SJI56601.1


host-nuclease inhibitor protein [Shigellasonnei] >SJJ20109.1 host-nuclease inhibitor protein


[Shigellasonnei] >SJJ54643.1 host-nuclease inhibitor protein [Shigellasonnei] >SJI29650.1


host-nuclease inhibitor protein [Shigellasonnei] >SIZ53226.1 host-nuclease inhibitor protein


[Shigellasonnei] >SJA65714.1 host-nuclease inhibitor protein [Shigellasonnei] >SJJ21793.1


host-nuclease inhibitor protein [Shigellasonnei] >SJD61405.1 host-nuclease inhibitor protein


[Shigellasonnei] >SJJ14326.1 host-nuclease inhibitor protein [Shigellasonnei] >SIZ57861.1


host-nuclease inhibitor protein [Shigellasonnei] >SJD58744.1 host-nuclease inhibitor protein


[Shigellasonnei] >SJD84738.1 host-nuclease inhibitor protein [Shigellasonnei] >SJJ51125.1


host-nuclease inhibitor protein [Shigellasonnei] >SJD01353.1 host-nuclease inhibitor protein


[Shigellasonnei] >SJE63176.1 host-nuclease inhibitor protein [Shigellasonnei]





(SEQ ID NO: 719)



MAKPAKRIRNAAAAYVPQSRDAVVCDIRRIGDLQREAARLETEMNDAIAEITEKYASQI






APLKTSIETLSKGVQGWCEANRDELTNGGKVKTANLVTGDVSWRQRPPSVSIRGVDAV





METLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFEQDAGI





>WP_050939550.1 host-nuclease inhibitor protein Gam [Escherichiacoli] >KNF77791.1 host-


nuclease inhibitor protein Gam [Escherichiacoli]


(SEQ ID NO: 720)



MAKPAKRIKNAAAAYVPQSRDAVVCDIRRIGDLQREAARLETEMNDAIAEITEKYASQI






APLKTSIETLSKGVQGWCEANRDELTNGGKVKTANLVTGDVSWRLRPPSVSIRGVDAV





METLERLGLQRFICTKQEINKEAILLEPKVVAGVAGITVKSGIEDFSIIPFEQEAGI





>WP_085334715.1 host-nuclease inhibitor protein Gam [Escherichiacoli] >OSC16757.1 host-


nuclease inhibitor protein Gam [Escherichiacoli]


(SEQ ID NO: 721)



MAKPVKRIRNAAAAYVPQSRDAVVCDIRRIGDLQREAARLETEMNDAIAEITEKYASQI






APLKTSIETLSKGIQGWCEANRDELTNGGKVKTANLVTGDVSWRQRPPSVSIRGVDAV





METLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFEQEAGI





>WP_065226797.1 host-nuclease inhibitor protein Gam [Escherichiacoli] >ANO88858.1 host-


nuclease inhibitor protein Gam [Escherichiacoli] >AN089006.1 host-nuclease inhibitor protein


Gam [Escherichiacoli]


(SEQ ID NO: 722)



MAKPAKRIRNAAAAYVPQSRDAVVCDIRWIGDLQREAVRLETEMNDAIAEITEKYASRI






APLKTRIETLSKGVQGWCEANRDELTNGGKVKTANLVTGDVSWRQRPPSVSIRGVDAV





METLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFEQEAGI





>WP_032239699.1 host-nuclease inhibitor protein Gam [Escherichiacoli] >KDU26235.1


bacteriophage Mu Gam like family protein [Escherichiacoli 3-373-03 S4 C2] >KDU49057.1


bacteriophage Mu Gam like family protein [Escherichiacoli 3-373-03 S4 C1] >KEL21581.1


bacteriophage Mu Gam like family protein [Escherichiacoli 3-373-03 S4 C3]


(SEQ ID NO: 723)



MAKSAKRIRNAAATYVPQSRDAVVCDIRRIGDLQREAARLETEMNDAIAEITEKYASQI






APLKTSIETLSKGIQGWCEANRDELTNGGKVKTANLVTGDVSWRQRPPSVSIRGVDAV





METLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFEQEAGI





>WP 080172138.1 host-nuclease inhibitor protein Gam [Salmonellaenterica]


(SEQ ID NO: 724)



MAKSAKRIKSAAATYVPQSRDAVVCDIRRIGDLQREAARLETEMNDAIAEITEKYASQIA






PLKTSIETLSKGVQGWCEANRDELTNGGKVKSANLVTGDVQWRQRPPSVSIRGVDAVM





ETLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIlPFEQEAGI





>WP 077134654.1 host-nuclease inhibitor protein Gam [Shigellasonnei] >SIZ51898.1 host-


nuclease inhibitor protein +Shigella sonnei+ >SJK07212.1 host-nuclease inhibitor protein


[Shigellasonnei]


(SEQ ID NO: 725)



MAKSAKRIRNAAAAYVPQSRDAVVCDIRRIGNLQREAARLETEMNDAIAEITEKYASQI






APLKTSIETLSKGVQGWCEANRDELTNGGKVKTANLVTGDVSWRQRPPSVSlRGVDAV





METLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFEQDAGI





>WP_000261565.1 host-nuclease inhibitor protein Gam [Shigellaflexneri] >EGK20651.1 host-


nuclease inhibitor protein gam [Shigellaflexneri K-272] >EGK34753.1 host-nuclease inhibitor


protein gam [Shigellaflexneri K-227]


(SEQ ID NO: 726) 



MVVSAIASTPHDAVVCDIRRIGDLQREAARLETEMNDAIAEITEKDASQIAPLKTSIETLS






KGVQGWCEANRDELTNGGKVKTANLVTGDVSWRQRPPSVSlRGVDAVMETLERLGLQ





RFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFEQEAGI





>ASG63807.1 host-nuclease inhibitor protein Gam [Kluyverageorgiana]


(SEQ ID NO: 727)



MVSKPKRIKAAAANYVSQSRDAVITDIRKIGDLQREATRLESAMNDEIAVITEKYAGLIK






PLKADVEMLSKGVQGWCEANRDDLTSNGKVKTANLVTGDIQWRIRPPSVSVRGPDAV





METLTRLGLSRFIRTKQEINKEAILNEPLAVAGVAGITVKSGIEDFSIIPFEQTADI





>WP 078000363.1 host-nuclease inhibitor protein Gam [Edwardsiella tarda]


(SEQ ID NO: 728)



MASKPKRIKSAAANYVSQSRDAVIIDIRKIGDLQREATRLESAMNDEIAVITEKYAGLIKP






LKADVEMLSKGVQGWCEANRDELTCNGKVKTANLVTGDIQWRIRPPSVSVRGPDSVM





ETLLRLGLSRFIRTKQEINKEAILNEPLAVAGVAGITVKTGVEDFSIIPFEQTADI





>WP_047389411.1 host-nuclease inhibitor protein Gam [Citrobacterfreundii] >KGY86764.1


host-nuclease inhibitor protein Gam [Citrobacterfreundii] >01Z37450.1 host-nuclease inhibitor


protein Gam [Citrobacterfreundii]


(SEQ ID NO: 729)



MVSKPKRIKAAAANYVSQSKEAVIADIRKIGDLQREATRLESAMNDEIAVITEKYAGLIK






PLKTDVEILSKGVQGWCEANRDELTSNGKVKTANLVTGDIQWRIRPPSVAVRGPDAVM





ETLLRLGLSRHRTKQEINKEAILNEPLAVAGVAGITVKSGVEDFSIIPFEQTADI





>WP_058215121.1 host-nuclease inhibitor protein Gam [Salmonellaenterica] >KSU39322.1


host-nuclease inhibitor protein Gam [Salmonellaenterica subsp. enterica] >OHJ24376.1 host-


nuclease inhibitor protein Gam [Salmonellaenterica] >ASG15950.1 host-nuclease inhibitor


protein Gam [Salmonellaenterica subsp. entericaserovarMacclesfield str. S-1643]


(SEQ ID NO: 730)



MASKPKRIKAAAALYVSQSREDVVRDIRMIGDFQREIVRLETEMNDQIAAVTLKYADKI






KPLQEQLKTLSEGVQNWCEANRSDLTNGGKVKTANLVTGDVQWRVRPPSVTVRGVDS





VMETLRRLGLSRFIRIKEEINKEAILNEPGAVAGVAGITVKSGVEDFSIIPFEQSATN





>WP_016533308.1 phage host-nuclease inhibitor protein Gam [Pasteurellamultocida]


>EPE65165.1 phage host-nuclease inhibitor protein Gam [Pasteurellamultocida P1933]


>ESQ71800.1 host-nuclease inhibitor protein Gam [Pasteurellamultocida subsp. multocida


P1062] >ODS44103.1 host-nuclease inhibitor protein Gam [Pasteurellamultocida]


>OPC87246.1 host-nuclease inhibitor protein Gam [Pasteurellamultocida subsp. multocida]


>OPC98402.1 host-nuclease inhibitor protein Gam [Pasteurellamultocida subsp. multocida]


(SEQ ID NO: 731)



MAKKATRIKTTAQVYVPQSREDVASDIKTIGDLNREITRLETEMNDKIAEITESYKGQFSP






IQERIKNLSTGVQFWAEANRDQITNGGKTKTANLITGEVSWRVRNPSVKITGVDSVLQN





LKIHGLTKFIRVKEEINKEAILNEKHEVAGIAGIKVVSGVEDFVITPFEQEI





>WP_005577487.1 host-nuclease inhibitor protein Gam [Aggregatibacter



actinomycetemcomitans] >EHK90561.1 phage host-nuclease inhibitor protein Gam



[Aggregatibacteractinomycetemcomitans RhAA1] >KNE77613.1 host-nuclease inhibitor


protein Gam [Aggregatibacteractinomycetemcomitans RhAA1]


(SEQ ID NO: 732) 



MAKSATRVKATAQIYVPQTREDAAGDIKTIGDLNREVARLEAEMNDKIAAITEDYKDKF






APLQERIKTLSNGVQYWSEANRDQITNGGKTKTANLVTGEVSWRVRNPSVKVTGVDSV





LQNLRIHGLERFIRTKEEINKEAILNEKSAVAGIAGIKVITGVEDFVITPFEQEAA





>WP_090412521.1 host-nuclease inhibitor protein Gam [Nitrosomonashalophila]


>SDX89267.1 Mu-like prophage host-nuclease inhibitor protein Gam [Nitrosomonas halophila]


(SEQ ID NO: 733)



MARNAARLKTKSIAYVPQSRDDAAADIRKIGDLQRQLTRTSTEMNDAIAAITQNFQPRM






DAIKEQINLLQAGVQGYCEAHRHALTDNGRVKTANLITGEVQWRQRPPSVSIRGQQVV





LETLRRLGLERFIRTKEEVNKEAILNEPDEVRGVAGLNVITGVEDFVITPFEQEQP





>WP 077926574.1 host-nuclease inhibitor protein Gam [Wohlfahrtiimonaslarvae]


(SEQ ID NO: 734)



MAKKRIKAAATVYVPQSKEEVQNDIREIGDISRKNERLETEMNDRIAEITNEYAPKFEVN






KVRLELLTKGVQSWCEANRDDLTNSGKVKSANLVTGKVEWRQRPPSISVKGMDAVIE





WLQDSKYQRFLRTKVEVNKEAMLNEPEDAKTIPGITIKSGIEDFAITPFEQEAGV







Deaminase Domains


In some embodiments, the nucleobase editor useful in the present disclosure comprises: (i) a guide nucleotide sequence-programmable DNA-binding protein domain; and (ii) a deaminase domain. In certain embodiments, the deaminase domain of the fusion protein is a cytosine deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase. In some embodiments, the deaminase is a rat APOBEC1. In some embodiments, the deaminase is a human APOBEC1. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3B deaminase. In some embodiments, the deaminase is an APOBEC3C deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some embodiments, the deaminase is a Lamprey CDA1 (pmCDA1). In some embodiments, the deaminase is a human APOBEC3G or a functional fragment thereof. In some embodiments, the deaminase is an APOBEC3G variant comprising mutations correspond to the D316R/D317R mutations in the human APOBEC3G. Exemplary, non-limiting cytosine deaminase sequences that may be used in accordance with the methods of the present disclosure are provided in Example 1 below.


In some embodiments, the cytosine deaminase is a wild type deaminase or a deaminase as set forth in SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682. In some embodiments, the cytosine deaminase domains of the fusion proteins provided herein include fragments of deaminases and proteins homologous to either a deaminase or a deaminase fragment. For example, in some embodiments, a deaminase domain may comprise a fragment of the amino acid sequence set forth in any of SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682. In some embodiments, a deaminase domain comprises an amino acid sequence homologous to the amino acid sequence set forth in any of SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682, or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in any of SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682. In some embodiments, proteins comprising a deaminase, a fragment of a deaminase, or a homolog of a deaminase are referred to as “deaminase variants.” A deaminase variant shares homology to a deaminase, or a fragment thereof. For example a deaminase variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to a wild type deaminase or a deaminase as set forth in any of SEQ ID NOs: 1-260, 270-292, or 315-323. In some embodiments, the deaminase variant comprises a fragment of the deaminase, such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of wild type deaminase or a deaminase as set forth in any of SEQ ID NOs: 1-260, 270-292, 315-323, 680, or 682. In some embodiments, the cytosine deaminase is at least at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to an APOBEC3G variant as set forth in SEQ ID NO: 291 or SEQ ID NO: 292, and comprises mutations corresponding to the D316E/D317R mutations in SEQ ID NO: 290.


In some embodiments, the cytosine deaminase domain is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. For example, the fusion protein may have an architecture of NH2-[cytosine deaminase]-[guide nucleotide sequence-programmable DNA-binding protein domain]-COOH. The “−” used in the general architecture above indicates the presence of an optional linker. The term “linker,” as used herein, refers to a chemical group or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a dCas9 domain and a cytosine deaminase domain. Typically, the linker is positioned between, or flanked by, two groups, molecules, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated. Linkers may be of any form known in the art. For example, the linker may be a linker from a website, such as www[dot]ibi[dot]vu[dot]nl/programs/linkerdbwww/or from www[dot]ibi[dot]vu[dot]nl/programs/linkerdbwww/src/database.txt. The linkers may also be unstructured, structured, helical, or extended.


In some embodiments, the cytosine deaminase domain and the Cas9 domain are fused to each other via a linker. Various linker lengths and flexibilities between the deaminase domain (e.g., APOBEC1) and the Cas9 domain can be employed (e.g., ranging from flexible linkers of the form (GGGS)n (SEQ ID NO: 303), (GGGGS)n (SEQ ID NO: 304), (GGS)n and (G)n to more rigid linkers of the form (EAAAK)n (SEQ ID NO: 305, SGSETPGTSESATPES (SEQ ID NO: 306) (see, e.g., Guilinger et al., Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents of which is incorporated herein by reference), (XP)n, or a combination of any of these, wherein X is any amino acid, and n is independently an integer between 1 and 30, in order to achieve the optimal length for deaminase activity for the specific application. In some embodiments, n is independently 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30, or, if more than one linker or more than one linker motif is present, any combination thereof. In some embodiments, the linker comprises a (GGS)n motif, wherein n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15. In some embodiments, the linker comprises a (GGS)n motif, wherein n is 1, 3, or 7. In some embodiments, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 306), also referred to as the XTEN linker. In some embodiments, the linker comprises an amino acid sequence chosen from the group including, but not limited to, AGVF (SEQ ID NO: 307), GFLG (SEQ ID NO: 308), FK, AL, ALAL (SEQ ID NO: 349), and ALALA (SEQ ID NO: 309). In some embodiments, suitable linker motifs and configurations include those described in Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10):1357-69, which is incorporated herein by reference. In some embodiments, the linker may comprise any of the following amino acid sequences: VPFLLEPDNINGKTC (SEQ ID NO: 350), GSAGSAAGSGEF (SEQ ID NO: 351), SIVAQLSRPDPA (SEQ ID NO: 352), MKIIEQLPSA (SEQ ID NO: 353), VRHKLKRVGS (SEQ ID NO: 354), GHGTGSTGSGSS (SEQ ID NO: 355), MSRPDPA (SEQ ID NO: 356), GSAGSAAGSGEF (SEQ ID NO: 357), SGSETPGTSESA (SEQ ID NO: 358), SGSETPGTSESATPEGGSGGS (SEQ ID NO: 359), and GGSM (SEQ ID NO: 360). Additional suitable linker sequences will be apparent to those of skill in the art based on the instant disclosure.


To successfully edit the desired target C base, the linker between Cas9 and APOBEC may be optimized, as described in Komor et al., Nature, 533, 420-424 (2016), which is incorporated herein by reference. The numbering scheme for base editing is based on the predicted location of the target C within the single stranded stretch of DNA (R-loop) displaced by a programmable guide RNA sequence occurring when a DNA-binding domain (e.g. Cas9, nCas9, dCas9) binds a genomic site (see FIG. 4). Conveniently, the sequence immediately surrounding the target C also matches the sequence of the guide RNA, which may be used as a reference as done in the Tables herein. The numbering scheme for base editing is based on a standard 20-mer programmable sequence, and defines position “21” as the first DNA base of the PAM sequence, resulting in position “1” assigned to the first DNA base matching the 5′-end of the 20-mer programmable guide RNA sequence. Therefore, for all Cas9 variants, position “21” is defined as the first base of the PAM sequence (e.g. NGG, NGAN, NGNG, NGAG, NGCG, NNGRRT, NGRRN, NNNRRT, NNNGATT, NNAGAA, NAAAC). When a longer programmable guide RNA sequence is used (e.g. 21-mer) the 5′-end bases are assigned a decreasing negative number starting at “−1”. For other DNA-binding domains that differ in the position of the PAM sequence, or that require no PAM sequence, the programmable guide RNA sequence is used as a reference for numbering. A 3-aa linker gives a 2-5 base editing window (e.g., positions 2, 3, 4, or 5 relative to the PAM sequence in positions 20-23). A 9-aa linker gives a 3-6 base editing window (e.g., positions 3, 4, 5, or 6 relative to the PAM sequence at position 21). A 16-aa linker (e.g., the SGSETPGTSESATPES (SEQ ID NO: 306) linker) gives a 4-7 base editing window (e.g., positions 4, 5, 6, or 7 relative to the PAM sequence at position 21). A 21-aa linker gives a 5-8 base editing window (e.g., positions 5, 6, 7, 8 relative to the PAM sequence at position 21). Each of these windows can be useful for editing different targeted C bases. For example, the targeted C bases may be at different distances from the adjacent PAM sequence, and by varying the linker length, the precise editing of the desired C base is ensured. One skilled in the art, based on the teachings of CRISPR/Cas9 technology, in particular the teachings of U.S. Provisional Applications, 62/245,828, 62/279,346, 62/311,763, 62/322,178, 62/357,352, 62/370,700, and 62/398,490, and in Komor et al., Nature, “Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage,” 533, 420-424 (2016), each of which is incorporated herein by reference, will be able to determine the editing window for his/her purpose, and properly design the linker of the cytosine deaminase-dCas9 protein for the precise targeting of the desired C base. To successfully edit the desired target C base, the sequence identity of the homolog of Cas9 attached to APOBEC may be optimized based on the teachings of CRISPR/Cas9 technology. As a non-limiting example, the teachings of any of the following documents may be used: U.S. Provisional Application Nos. 62/245,828, 62/279,346, 62/311,763, 62/322,178, 62/357,352, 62/370,700, and 62/398,490, and Komor et al., Nature, 533, 420-424 (2016), each of which is incorporated herein by reference in its entirety. APOBEC1-XTEN-SaCas9n-UGI gives a 1-12 base editing window (e.g., positions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 relative to the NNNRRT PAM sequence in positions 20-26). One skilled in the art, based on the teachings of CRISPR/Cas9 technology, will be able to determine the editing window for his/her purpose, and properly determine the required Cas9 homolog and linker attached to the cytosine deaminase for the precise targeting of the desired C base.


In some embodiments, the fusion protein useful in the present disclosure further comprises a uracil glycosylase inhibitor (UGI) domain. A “uracil glycosylase inhibitor” refers to a protein that inhibits the activity of uracil-DNA glycosylase. The C to T base change induced by deamination results in a U:G heteroduplex, which triggers a cellular DNA-repair response. Uracil DNA glycosylase (UDG) catalyzes removal of U from DNA in cells and initiates base excision repair, with reversion of the U:G pair to a C:G pair as the most common outcome. Thus, such cellular DNA-repair response may be responsible for the decrease in nucleobase editing efficiency in cells. Uracil DNA Glycosylase Inhibitor (UGI) is known in the art to potently blocks human UDG activity. As described in Komor et al., Nature (2016), fusing a UGI domain to the cytidine deaminase-dCas9 fusion protein reduced the activity of UDG and significantly enhanced editing efficiency.


Suitable UGI protein and nucleotide sequences are provided herein and additional suitable UGI sequences are known to those in the art, and include, for example, those published in Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J. Biol. Chem. 264:1163-1171(1989); Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J. Biol. Chem. 272:21408-21419(1997); Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nucleic Acids Res. 26:4880-4887(1998); and Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J. Mol. Biol. 287:331-346(1999), each of which is incorporated herein by reference. In some embodiments, the UGI comprises the following amino acid sequence:










Bacillus phage PBS2 (Bacteriophage PBS2)Uracil-



DNA glycosylase inhibitor


(SEQ ID NO: 361)


MTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDE





STDENVMLLTSDAPEYKPWALVIQDSNGENKIKML






In some embodiments, the UGI protein comprises a wild type UGI or a UGI as set forth in SEQ ID NO: 361. In some embodiments, the UGI proteins useful in the present disclosure include fragments of UGI and proteins homologous to a UGI or a UGI fragment. For example, in some embodiments, a UGI comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 361. In some embodiments, a UGI comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 361 or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 361. In some embodiments, proteins comprising UGI or fragments of UGI or homologs of either UGI or UGI fragments are referred to as “UGI variants.” A UGI variant shares homology with UGI, or a fragment thereof. For example, a UGI variant is at least about 70% identical, at least about 80% identical, at least about 85% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to a wild type UGI or a UGI as set forth in SEQ ID NO: 361. In some embodiments, the UGI variant comprises a fragment of UGI, such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of wild type UGI or a UGI as set forth in SEQ ID NO: 361.


It should be appreciated that additional proteins may be uracil glycosylase inhibitors. For example, other proteins that are capable of inhibiting (e.g., sterically blocking) a uracil-DNA glycosylase base-excision repair enzyme are within the scope of this disclosure. In some embodiments, a uracil glycosylase inhibitor is a protein that binds DNA. In some embodiments, a uracil glycosylase inhibitor is a protein that binds single-stranded DNA. For example, a uracil glycosylase inhibitor may be a Erwinia tasmaniensis single-stranded binding protein. In some embodiments, the single-stranded binding protein comprises the amino acid sequence (SEQ ID NO: 362). In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil. In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil in DNA. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein that does not excise uracil from the DNA. For example, a uracil glycosylase inhibitor is a UdgX. In some embodiments, the UdgX comprises the amino acid sequence (SEQ ID NO: 363). As another example, a uracil glycosylase inhibitor is a catalytically inactive UDG. In some embodiments, a catalytically inactive UDG comprises the amino acid sequence (SEQ ID NO: 364). It should be appreciated that other uracil glycosylase inhibitors would be apparent to the skilled artisan and are within the scope of this disclosure. In some embodiments, the fusion protein comprises a guide nucleotide sequence-programmable DNA-binding protein, a cytidine deaminase domain, a Gam protein, and a UGI domain. In some embodiments, any of the fusion proteins provided herein that comprise a guide nucleotide sequence-programmable DNA-binding protein (e.g., a Cas9 domain), a cytidine deaminase, and a Gam protein may be further fused to a UGI domain either directly or via a linker. This disclosure also contemplates a fusion protein comprising a Cas9 nickase-nucleic acid editing domain fused to a cytidine deaminase and a Gam protein, which is further fused to a UGI domain.










Erwiniatasmaniensis SSB (themostable single-



stranded DNA binding protein)


(SEQ ID NO: 362)


MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKQTGETKE





KTEWHRVVLFGKLAEVAGEYLRKGSQVYIEGALQTRKWTDQAGVEKYTTEV





VVNVGGTMQMLGGRSQGGGASAGGQNGGSNNGWGQPQQPQGGNQFSGGAQQ





QARPQQQPQQNNAPANNEPPlDFDDDIP





UdgX (binds to Uracil in DNA but does not excise)


(SEQ ID NO: 363)


MAGAQDFVPHTADLAELAAAAGECRGCGLYRDATQAVFGAGGRSARIMMIG





EQPGDKEDLAGLPFVGPAGRLLDRALEAADIDRDALYVTNAVKHFKFTRAA





GGKRRIHKTPSRTEVVACRPWLIAEMTSVEPDVVVLLGATAAKALLGNDFR





VTQHRGEVLHVDDVPGDPALVATVHPSSLLRGPKEERESAFAGLVDDLRVA





ADVRP





UDG (catalytically inactive human UDG, binds to


Uracil in DNA but does not excise)


(SEQ ID NO: 364)


MIGQKTLYSFFSPSPARKRHAPSPEPAVQGTGVAGVPEESGDAAAIPAKKA





PAGQEEPGTPPSSPLSAEQLDRIQRNKAAALLRLAARNVPVGFGESWKKHL





SGEFGKPYFIKLMGFVAEERKHYTVYPPPHQVFTWTQMCDIKDVKVVILGQ





EPYHGPNQAHGLCFSVQRPVPPPPSLENIYKELSTDIEDFVHPGHGDLSGW





AKQGVLLLNAVLTVRAHQANSHKERGWEQFTDAVVSWLNQNSNGLVFLLWG





SYAQKKGSAIDRKRHHVLQTAHPSPLSVYRGFFGCRHFSKTNELLQKSGKK





PIDWKEL






In some embodiments, the UGI domain is fused to the C-terminus of the dCas9 domain in the fusion protein. Thus, the fusion protein would have an architecture of NH2-[cytosine deaminase]-[guide nucleotide sequence-programmable DNA-binding protein domain]-[UGI]-COOH. In some embodiments, the UGI domain is fused to the N-terminus of the cytosine deaminase domain. As such, the fusion protein would have an architecture of NH2-[UGI]-[cytosine deaminase]-[guide nucleotide sequence-programmable DNA-binding protein domain]-COOH. In some embodiments, the UGI domain is fused between the guide nucleotide sequence-programmable DNA-binding protein domain and the cytosine deaminase domain. As such, the fusion protein would have an architecture of NH2-[cytosine deaminase]-[UGI]-[guide nucleotide sequence-programmable DNA-binding protein domain]-COOH. The linker sequences described herein may also be used for the fusion of the UGI domain to the cytosine deaminase-dCas9 fusion proteins.


In some embodiments, the fusion protein comprises the structure: [cytosine deaminase]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA binding protein]-[optional linker sequence]-[UGI]; [cytosine deaminase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA binding protein]; [UGI]-[optional linker sequence]-[cytosine deaminase]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA binding protein]; [UGI]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA binding protein]-[optional linker sequence]-[cytosine deaminase]; [guide nucleotide sequence-programmable DNA binding protein]-[optional linker sequence]-[cytosine deaminase]-[optional linker sequence]-[UGI]; or [guide nucleotide sequence-programmable DNA binding protein]-[optional linker sequence]-[UGI]-[optional linker sequence]-[cytosine deaminase].


In some embodiments, the fusion protein is of the structure: [cytosine deaminase]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence]-[UGI]; [cytosine deaminase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[Cas9 nickase]; [UGI]-[optional linker sequence]-[cytosine deaminase]-[optional linker sequence]-[Cas9 nickase]; [UGI]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence]-[cytosine deaminase]; [Cas9 nickase]-[optional linker sequence]-[cytosine deaminase]-[optional linker sequence]-[UGI]; or [Cas9 nickase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[cytosine deaminase].


In some embodiments, fusion proteins provided herein further comprise a nuclear localization sequence (NLS). In some embodiments, the NLS is fused to the N-terminus of the fusion protein. In some embodiments, the NLS is fused to the C-terminus of the fusion protein. In some embodiments, the NLS is fused to the N-terminus of the UGI protein. In some embodiments, the NLS is fused to the C-terminus of the UGI protein. In some embodiments, the NLS is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. In some embodiments, the NLS is fused to the C-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. In some embodiments, the NLS is fused to the N-terminus of the cytosine deaminase. In some embodiments, the NLS is fused to the C-terminus of the deaminase. In some embodiments, the NLS is fused to the fusion protein via one or more linkers. In some embodiments, the NLS is fused to the fusion protein without a linker. Non-limiting, exemplary NLS sequences may be PKKKRKV (SEQ ID NO: 365) or MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 366).


Some aspects of the present disclosure provide nucleobase editors described herein associated with a guide nucleotide sequence (e.g., a guide RNA or gRNA). gRNAs can exist as a complex of two or more RNAs, or as a single RNA molecule. gRNAs that exist as a single RNA molecule may be referred to as single-guide RNAs (sgRNAs), though “gRNA” is used interchangeably to refer to guide RNAs that exist as either single molecules or as a complex of two or more molecules. Typically, gRNAs that exist as a single RNA species comprise two domains: (1) a domain that shares homology to a target nucleic acid (e.g., and directs binding of the Cas9 complex to the target); and (2) a domain that binds the Cas9 protein. In some embodiments, domain (2) corresponds to a sequence known as a tracrRNA, and comprises a stem-loop structure. For example, in some embodiments, domain (2) is identical or homologous to a tracrRNA as provided in Jinek et al., Science 337:816-821(2012), which is incorporated herein by reference. Other examples of gRNAs (e.g., those including domain 2) can be found in U.S. Provisional Patent Application, U.S. Ser. No. 61/874,682, filed Sep. 6, 2013, entitled “Switchable Cas9 Nucleases And Uses Thereof,” and U.S. Provisional Patent Application, U.S. Ser. No. 61/874,746, filed Sep. 6, 2013, entitled “Delivery System For Functional Nucleases,” each are hereby incorporated by reference in their entirety. The gRNA comprises a nucleotide sequence that complements a target site, which mediates binding of the nuclease/RNA complex to said target site, providing the sequence specificity of the nuclease:RNA complex. These proteins are able to be targeted, in principle, to any sequence specified by the guide RNA. Methods of using RNA-programmable nucleases, such as Cas9, for site-specific cleavage (e.g., to modify a genome) are known in the art (see e.g., Cong, L. et al. Science 339, 819-823 (2013); Mali, P. et al. Science 339, 823-826 (2013); Hwang, W. Y. et al. Nature Biotechnology 31, 227-229 (2013); Jinek, M. et al. eLife 2, e00471 (2013); Dicarlo, J. E. et al. Nucleic acids research (2013); Jiang, W. et al. Nature Biotechnology 31, 233-239 (2013); the entire contents of each of which are incorporated herein by reference). In particular, examples of guide nucleotide sequences (e.g., sgRNAs) that may be used to target the fusion protein of the present disclosure to its target sequence to deaminate the targeted C bases are described in Komor et al., Nature, 533, 420-424 (2016), which is incorporated herein by reference.


The specific structure of the guide nucleotide sequences (e.g., sgRNAs) depends on its target sequence and the relative distance of a PAM sequence downstream of the target sequence. One skilled in the art will understand, that no unifying structure of guide nucleotide sequence is given, because the target sequences are different for each and every C targeted to be deaminated.


However, the present disclosure provides guidance in how to design the guide nucleotide sequence, e.g., an sgRNA, so that one skilled in the art may use such teachings to design these for a target sequence of interest. A gRNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to fusion proteins disclosed herein to target the CCR5 gene. In some embodiments, the guide RNA comprises a structure 5′-[guide sequence]-tracrRNA-3′. Non-limiting, exemplary tracrRNA sequences are shown in Table 10. The tracrRNA sequence may vary from the presented sequences.









TABLE 10







TracrRNA othologues and sequences











SEQ ID


Organism
tracrRNA sequence
NO:






C. jejuni

AAGAAAUUUAAAAAGGGACUAAAAUAAAGAGUUUGC
367



GGGACUCUGCGGGGUUACAAUCCCCUAAAACCGCUUU




U







F. novicida

AUCUAAAAUUAUAAAUGUACCAAAUAAUUAAUGCUCU
368



GUAAUCAUUUAAAAGUAUUUUGAACGGACCUCUGUUU




GACACGUCUGAAUAACUAAAA







S. thermophilus2

UGUAAGGGACGCCUUACACAGUUACUUAAAUCUUGCA
369



GAAGCUACAAAGAUAAGGCUUCAUGCCGAAAUCAACA




CCCUGUCAUUUUAUGGCAGGGUGUUUUCGUUAUUU







M. mobile

UGUAUUUCGAAAUACAGAUGUACAGUUAAGAAUACAU
370



AAGAAUGAUACAUCACUAAAAAAAGGCUUUAUGCCGU




AACUACUACUUAUUUUCAAAAUAAGUAGUUUUUUUU







L. innocua

AUUGUUAGUAUUCAAAAUAACAUAGCAAGUUAAAAUA
371



AGGCUUUGUCCGUUAUCAACUUUUAAUUAAGUAGCGC




UGUUUCGGCGCUUUUUUU







S. pyogenes

GUUGGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUA
372



AGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGA




GUCGGUGCUUUUUUU







S. mutans

GUUGGAAUCAUUCGAAACAACACAGCAAGUUAAAAUA
373



AGGCAGUGAUUUUUAAUCCAGUCCGUACACAACUUGA




AAAAGUGCGCACCGAUUCGGUGCUUUUUUAUUU







S. thermophilus

UUGUGGUUUGAAACCAUUCGAAACAACACAGCGAGUU
374



AAAAUAAGGCUUAGUCCGUACUCAACUUGAAAAGGUG




GCACCGAUUCGGUGUUUUUUUU







N. meningitidis

ACAUAUUGUCGCACUGCGAAAUGAGAACCGUUGCUAC
375



AAUAAGGCCGUCUGAAAAGAUGUGCCGCAACGCUCUG




CCCCUUAAAGCUUCUGCUUUAAGGGGCA







P. multocida

GCAUAUUGUUGCACUGCGAAAUGAGAGACGUUGCUAC
376



AAUAAGGCUUCUGAAAAGAAUGACCGUAACGCUCUGC




CCCUUGUGAUUCUUAAUUGCAAGGGGCAUCGUUUUU







S. pyogenes

GUUUAAGAGCUAUGCUGGAAAGCCACGGUGAAAAAGU
377



UCAACUAUUGCCUGAUCGGAAUAAAUUUGAACGAUAC




GACAGUCGGUGCUUUUUUU







S. pyogenes

GUUUAAGAGCUAGAAAUAGCAAGUUUAAAUAAGGCUA
378



GUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGU




GCUUUUUU







S. thermophilus

GUUUUUGUACUCUCAAGAUUCAAUAAUCUUGCAGAAG
379


CRISPR1
CUACAAAGAUAAGGCUUCAUGCCGAAAUCAACACCCU




GUCAUUUUAUGGCAGGGUGUUUU







S. thermophilus

GUUUUAGAGCUGUGUUGUUUGUUAAAACAACACAGCG
380


CRISPR3
AGUUAAAAUAAGGCUUAGUCCGUACUCAACUUGAAAA




GGUGGCACCGAUUCGGUGUUUUU









The guide sequence of the gRNA comprises a sequence that is complementary to the target sequence. The guide sequence is typically about 20 nucleotides long. For example, the guide sequence may be 15-25 nucleotides long. In some embodiments, the guide sequence is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides long. In some embodiments, the guide sequence is more than 25 nucleotides long. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 nucleotides upstream or downstream of the target nucleotide to be edited.


In some embodiments, the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the guide RNA is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides long. In some embodiments, the guide RNA comprises a sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides that is complementary to a target sequence.


Compositions


Aspects of the present disclosure relate to compositions that may be used for editing CCR5-encoding polynucleotides, CCR2-encoding polynucleotides, or both CCR5-encoding polynucleotides and CCR2-encoding polynucleotides. In some embodiments, the editing is carried out in vitro. In some embodiments, the editing is carried out in a cultured cell. In some embodiments, the editing is carried out in vivo. In some embodiments, the editing is carried out in a mammal. In some embodiments, the mammal is a human. In some embodiments, the mammal may be a rodent. In some embodiments, the editing is carried out ex vivo.


In some embodiments, the composition comprises: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a polynucleotide encoding a C—C chemokine receptor type 5 (CCR5) protein.


In some embodiments, the composition comprises: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a polynucleotide encoding a C—C chemokine receptor type 2 (CCR2) protein.


In some embodiments, the composition comprises: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a polynucleotide encoding a C—C chemokine receptor type 5 (CCR5) protein; (iii) a guide nucleotide sequence targeting the fusion protein of (i) to a polynucleotide encoding a C—C chemokine receptor type 2 (CCR2) protein.


The guide nucleotide sequence used in the compositions described herein for editing the CCR5-encoding polynucleotide is selected from SEQ ID NOs: 381-657. In some embodiments, the composition comprises a nucleic acid encoding a fusion protein described herein and a guide nucleotide sequence described herein. In some embodiments, the composition described herein further comprises a pharmaceutically acceptable carrier. In some embodiments, the nucleobase editor (i.e., the fusion protein) and the gRNA are provided in two different compositions.


As used here, the term “pharmaceutically-acceptable carrier” means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc magnesium, calcium or zinc stearate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the compound from one site (e.g., the delivery site) of the body to another site (e.g., organ, tissue or portion of the body). A pharmaceutically acceptable carrier is “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the tissue of the subject (e.g., physiologically compatible, sterile, having physiologic pH, etc.). Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, methylcellulose, ethyl cellulose, microcrystalline cellulose, and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) lubricating agents, such as magnesium stearate, sodium lauryl sulfate, and talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil, and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol, and polyethylene glycol (PEG); (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates and/or polyanhydrides; (22) bulking agents, such as polypeptides and amino acids (23) serum component, such as serum albumin, HDL and LDL; (22) C2-C12 alcohols, such as ethanol; and (23) other non-toxic compatible substances employed in pharmaceutical formulations. Wetting agents, coloring agents, release agents, coating agents, sweetening agents, flavoring agents, perfuming agents, preservatives, and antioxidants can also be present in the formulation. The terms such as “excipient,” “carrier,” “pharmaceutically acceptable carrier,” or the like are used interchangeably herein.


In some embodiments, the nucleobase editors and the guide nucleotides in a composition of the present disclosure are administered by injection, by means of a catheter, by means of a suppository, or by means of an implant, the implant being of a porous, non-porous, or gelatinous material, including a membrane, such as a sialastic membrane, or a fiber. In some embodiments, the nucleobase editors and the guide nucleotides in a composition of the present disclosure are administered by injection into the bloodstream.


In other embodiments, the nucleobase editors and the guide nucleotides are delivered in a controlled release system. In one embodiment, a pump may be used (see, e.g., Langer, 1990, Science 249:1527-1533; Sefton, 1989, CRC Crit. Ref. Biomed. Eng. 14:201; Buchwald et al., 1980, Surgery 88:507; Saudek et al., 1989, N. Engl. J. Med. 321:574, the entire contents of each of which are incorporated herein by reference). In another embodiment, polymeric materials can be used (See, e.g., Medical Applications of Controlled Release (Langer and Wise eds., CRC Press, Boca Raton, Fla., 1974); Controlled Drug Bioavailability, Drug Product Design and Performance (Smolen and Ball eds., Wiley, New York, 1984); Ranger and Peppas, 1983, Macromol. Sci. Rev. Macromol. Chem. 23:61; See also: Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989, J. Neurosurg. 71:105, each of which is incorporated herein by reference). Other controlled release systems are discussed, for example, in Langer, supra.


In typical embodiments, the pharmaceutical composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous or subcutaneous administration to a subject, e.g., a human. Typically, compositions for administration by injection are solutions in sterile isotonic aqueous buffer. Where necessary, the pharmaceutical can also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in a unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the pharmaceutical is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the pharmaceutical is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients can be mixed prior to administration.


A pharmaceutical composition for systemic administration may be a liquid, e.g., sterile saline, lactated Ringer's or Hank's solution. In addition, the pharmaceutical composition can be in solid forms and re-dissolved or suspended immediately prior to use. Lyophilized forms are also contemplated.


The pharmaceutical composition can be contained within a lipid particle or vesicle, such as a liposome or microcrystal, which is also suitable for parenteral administration. The particles can be of any suitable structure, such as unilamellar or plurilamellar, so long as compositions are contained therein. Compounds can be entrapped in ‘stabilized plasmid-lipid particles’ (SPLP) containing the fusogenic lipid dioleoylphosphatidylethanolamine (DOPE), low levels (5-10 mol %) of cationic lipid, and stabilized by a polyethyleneglycol (PEG) coating (Zhang Y. P. et al., Gene Ther. 1999, 6:1438-47, the entire contents of which is incorporated herein by reference). Positively charged lipids such as N-[1-(2,3-dioleoyloxi)propyl]-N,N,N-trimethyl-amoniummethylsulfate, or “DOTAP,” are particularly preferred for such particles and vesicles. The preparation of such lipid particles is well known. See, e.g., U.S. Pat. Nos. 4,880,635; 4,906,477; 4,911,928; 4,917,951; 4,920,016; and 4,921,757, each of which is incorporated herein by reference.


The pharmaceutical compositions of this disclosure may be administered or packaged as a unit dose, for example. The term “unit dose” when used in reference to a pharmaceutical composition of the present disclosure refers to physically discrete units suitable as unitary dosage for the subject, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent; i.e., carrier, or vehicle.


In some embodiments, the nucleobase editors or the guide nucleotides described herein may be conjugated to a therapeutic moiety, e.g., an anti-inflammatory agent. Techniques for conjugating such therapeutic moieties to polypeptides, including e.g., Fc domains, are well known; see, e.g., Amon et al., “Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy”, in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), 1985, pp. 243-56, Alan R. Liss, Inc.); Hellstrom et al., “Antibodies For Drug Delivery”, in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), 1987, pp. 623-53, Marcel Dekker, Inc.); Thorpe, “Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review”, in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), 1985, pp. 475-506); “Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy”, in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), 1985, pp. 303-16, Academic Press; and Thorpe et al. (1982) “The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates,” Immunol. Rev., 62:119-158; each of which is incorporated herein by reference.


Further, the compositions of the present disclosure may be assembled into kits. In some embodiments, the kit comprises nucleic acid vectors for the expression of the nucleobase editors described herein. In some embodiments, the kit further comprises appropriate guide nucleotide sequences (e.g., gRNAs) or nucleic acid vectors for the expression of such guide nucleotide sequences, to target the nucleobase editors to the desired target sequence.


The kit described herein may include one or more containers housing components for performing the methods described herein and optionally instructions of uses. Any of the kit described herein may further comprise components needed for performing the assay methods. Each component of the kits, where applicable, may be provided in liquid form (e.g., in solution), or in solid form, (e.g., a dry powder). In certain cases, some of the components may be reconstitutable or otherwise processable (e.g., to an active form), for example, by the addition of a suitable solvent or other species (for example, water or certain organic solvents), which may or may not be provided with the kit.


In some embodiments, the kits may optionally include instructions and/or promotion for use of the components provided. As used herein, “instructions” can define a component of instruction and/or promotion, and typically involve written instructions on or associated with packaging of the disclosure. Instructions also can include any oral or electronic instructions provided in any manner such that a user will clearly recognize that the instructions are to be associated with the kit, for example, audiovisual (e.g., videotape, DVD, etc.), Internet, and/or web-based communications, etc. The written instructions may be in a form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals or biological products, which can also reflect approval by the agency of manufacture, use or sale for animal administration. As used herein, “promoted” includes all methods of doing business including methods of education, hospital and other clinical instruction, scientific inquiry, drug discovery or development, academic research, pharmaceutical industry activity including pharmaceutical sales, and any advertising or other promotional activity including written, oral and electronic communication of any form, associated with the disclosure. Additionally, the kits may include other components depending on the specific application, as described herein.


The kits may contain any one or more of the components described herein in one or more containers. The components may be prepared sterilely, packaged in a syringe, and shipped refrigerated. Alternatively it may be housed in a vial or other container for storage. A second container may have other components prepared sterilely. Alternatively the kits may include the active agents premixed and shipped in a vial, tube, or other container.


The kits may have a variety of forms, such as a blister pouch, a shrink wrapped pouch, a vacuum sealable pouch, a sealable thermoformed tray, or a similar pouch or tray form, with the accessories loosely packed within the pouch, one or more tubes, containers, a box or a bag. The kits may be sterilized after the accessories are added, thereby allowing the individual accessories in the container to be otherwise unwrapped. The kits can be sterilized using any appropriate sterilization techniques, such as radiation sterilization, heat sterilization, or other sterilization methods known in the art. The kits may also include other components, depending on the specific application, for example, containers, cell media, salts, buffers, reagents, syringes, needles, a fabric such as gauze, for applying or removing a disinfecting agent, disposable gloves, a support for the agents prior to administration, etc.


Therapeutics


The compositions and kits described herein may be administered to a subject in need thereof, in a therapeutically effective amount, to prevent or treat conditions related to HIV infection and/or AIDS. The compositions and kits are effective in preventing or treating HIV infection in the subject or reducing the potential for HIV infection in the subject (including prevention of HIV infection in a subject).


“A therapeutically effective amount” as used herein refers to the amount of each therapeutic agent of the present disclosure required to confer therapeutic effect on the subject, either alone or in combination with one or more other therapeutic agents. Effective amounts vary, as recognized by those skilled in the art, depending on the particular condition being treated, the severity of the condition, the individual subject parameters including age, physical condition, size, gender and weight, the duration of the treatment, the nature of concurrent therapy (if any), the specific route of administration and like factors within the knowledge and expertise of the health practitioner. These factors are well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation. It is generally preferred that a maximum dose of the individual components or combinations thereof be used, that is, the highest safe dose according to sound medical judgment. It will be understood by those of ordinary skill in the art, however, that a subject may insist upon a lower dose or tolerable dose for medical reasons, psychological reasons or for virtually any other reasons. Empirical considerations, such as the half-life, generally will contribute to the determination of the dosage. For example, therapeutic agents that are compatible with the human immune system, such as polypeptides comprising regions from humanized antibodies or fully human antibodies, may be used to prolong the half-life of the polypeptide and to prevent the polypeptide being attacked by the host's immune system.


Frequency of administration may be determined and adjusted over the course of therapy, and is generally, but not necessarily, based on treatment and/or suppression and/or amelioration and/or delay of a disease. Alternatively, sustained continuous release formulations of a polypeptide or a polynucleotide (e.g., RNA or DNA) may be appropriate. Various formulations and devices for achieving sustained release are known in the art. In some embodiments, dosage is daily, every other day, every three days, every four days, every five days, or every six days. In some embodiments, dosing frequency is once every week, every 2 weeks, every 4 weeks, every 5 weeks, every 6 weeks, every 7 weeks, every 8 weeks, every 9 weeks, or every 10 weeks; or once every month, every 2 months, or every 3 months, or longer. The progress of this therapy is easily monitored by conventional techniques and assays.


The dosing regimen (including the polypeptide or the polynucleotide used) can vary over time. In some embodiments, for an adult subject of normal weight, doses ranging from about 0.01 to 1000 mg/kg may be administered. In some embodiments, the dose is between 1 to 200 mg. The particular dosage regimen, i.e., dose, timing and repetition, will depend on the particular subject and that subject's medical history, as well as the properties of the polypeptide or the polynucleotide (such as the half-life of the polypeptide or the polynucleotide, and other considerations well known in the art).


For the purpose of the present disclosure, the appropriate dosage of a therapeutic agent as described herein will depend on the specific agent (or compositions thereof) employed, the formulation and route of administration, the type and severity of the disease, whether the polypeptide or the polynucleotide is administered for preventive or therapeutic purposes, previous therapy, the subject's clinical history and response to the antagonist, and the discretion of the attending physician. Typically the clinician will administer a polypeptide or a polynucleotide until a dosage is reached that achieves the desired result.


Administration of one or more polypeptides or polynucleotides can be continuous or intermittent, depending, for example, upon the recipient's physiological condition, whether the purpose of the administration is therapeutic or prophylactic, and other factors known to skilled practitioners. The administration of a polypeptide or a polynucleotide may be essentially continuous over a preselected period of time or may be in a series of spaced dose, e.g., either before, during, or after developing a disease. As used herein, the term “treating” refers to the application or administration of a polypeptide or a polynucleotide or composition including the polypeptide or the polynucleotide to a subject in need thereof. As used herein, “treating” a disease includes preventing disease onset, e.g., preventing HIV infection and/or preventing the onset of AIDS.


“A subject in need thereof” refers to an individual who has a disease, a symptom of the disease, or a predisposition or susceptibility toward the disease, with the purpose to prevent, cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, one or more symptoms of the disease, or predisposition toward the disease. In some embodiments, the subject is at risk of becoming infected with HIV. In some embodiments, the subject is infected with HIV. In some embodiments, the subject has AIDS. In some embodiments, the subject is a mammal. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is human. Alleviating a disease includes delaying the development or progression of the disease (i.e., AIDS), or reducing disease severity. Alleviating the disease does not necessarily require curative results.


As used therein, “delaying” the development of a disease means to defer, hinder, slow, retard, stabilize, and/or postpone progression of the disease. This delay can be of varying lengths of time, depending on the history of the disease and/or individuals being treated. A method that “delays” or alleviates the development of a disease, or delays the onset of the disease, is a method that reduces probability of developing one or more symptoms of the disease in a given time frame and/or reduces extent of the symptoms in a given time frame, when compared to not using the method. Such comparisons are typically based on clinical studies, using a number of subjects sufficient to give a statistically significant result.


“Development” or “progression” of a disease means initial manifestations and/or ensuing progression of the disease. Development of the disease can be detectable and assessed using standard clinical techniques as well known in the art. However, development also refers to progression that may be undetectable. For purpose of this disclosure, development or progression refers to the biological course of the symptoms. “Development” includes occurrence, recurrence, and onset.


As used herein “onset” or “occurrence” of a disease includes initial onset and/or recurrence. Conventional methods, known to those of ordinary skill in the art of medicine, can be used to administer the isolated polypeptide or pharmaceutical composition to the subject, depending upon the type of disease to be treated or the site of the disease. This composition can also be administered via other conventional routes, e.g., administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally, or via an implanted reservoir.


The term “parenteral,” as used herein, includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional, and intracranial injection or infusion techniques. In addition, the compositions described herein can be administered to the subject via injectable depot routes of administration such as using 1-, 3-, or 6-month depot injectable or biodegradable materials and methods.


Host Cells and Organisms


Other aspects of the present disclosure provide host cells and organisms for the production and/or isolation of the nucleobase editors, e.g., for in vitro editing. Host cells are genetically engineered to express the nucleobase editors and components of the translation system described herein. In some embodiments, host cells comprise vectors encoding the nucleobase editors and components of the translation system (e.g., transformed, transduced, or transfected), which can be, for example, a cloning vector or an expression vector. The vector can be, for example, in the form of a plasmid, a bacterium, a virus, a naked polynucleotide, or a conjugated polynucleotide. The vectors are introduced into cells and/or microorganisms by standard methods including electroporation, infection by viral vectors, high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface (Klein et al., Nature 327, 70-73 (1987), which is incorporated herein by reference). In some embodiments, the host cell is a prokaryotic cell. In some embodiments, the host cell is a eukaryotic cell. In some embodiments, the host cell is a bacterial cell. In some embodiments, the host cell is a yeast cell. In some embodiments, the host cell is a mammalian cell. In some embodiments, the host cell is a human cell. In some embodiments, the host cell is a cultured cell. In some embodiments, the host cell is within a tissue or an organism.


The engineered host cells can be cultured in conventional nutrient media modified as appropriate for such activities as, for example, screening steps, activating promoters or selecting transformants. These cells can optionally be cultured into transgenic organisms.


Several well-known methods of introducing target nucleic acids into bacterial cells are available, any of which can be used in the present disclosure. These include: fusion of the recipient cells with bacterial protoplasts containing the DNA, electroporation, projectile bombardment, and infection with viral vectors (discussed further, below), etc. Bacterial cells can be used to amplify the number of plasmids containing DNA constructs of the present disclosure. The bacteria are grown to log phase and the plasmids within the bacteria can be isolated by a variety of methods known in the art (see, for instance, Sambrook). In addition, a plethora of kits are commercially available for the purification of plasmids from bacteria, (see, e.g., EasyPrep™, FlexiPrep™, both from Pharmacia Biotech; StrataClean™, from Stratagene; and, QIAprep™ from Qiagen). The isolated and purified plasmids are then further manipulated to produce other plasmids, used to transfect cells or incorporated into related vectors to infect organisms. Typical vectors contain transcription and translation terminators, transcription and translation initiation sequences, and promoters useful for regulation of the expression of the particular target nucleic acid. The vectors optionally comprise generic expression cassettes containing at least one independent terminator sequence, sequences permitting replication of the cassette in eukaryotes, or prokaryotes, or both, (e.g., shuttle vectors) and selection markers for both prokaryotic and eukaryotic systems. Vectors are suitable for replication and integration in prokaryotes, eukaryotes, or preferably both. See, Giliman & Smith, Gene 8:81 (1979); Roberts, et al., Nature, 328:731 (1987); and Schneider, B., et al., Protein Expr. Purifi 6435:10 (1995)), the entire contents of each of which are incorporated herein by reference.


Bacteriophages useful for cloning is provided, e.g., by the ATCC, e.g., The ATCC Catalogue of Bacteria and Bacteriophage (1992) Gherna et al. (eds) published by the ATCC. Additional basic procedures for sequencing, cloning and other aspects of molecular biology and underlying theoretical considerations are also found in Watson et al. (1992) Recombinant DNA Second Edition Scientific American Books, NY, the entire contents of which is incorporated herein by reference.


Other useful references, e.g., for cell isolation and culture (e.g., for subsequent nucleic acid isolation) include Freshney (1994) Culture of Animal Cells, a Manual of Basic Technique, third edition, Wiley-Liss, New York and the references cited therein; Payne et al. (1992) Plant Cell and Tissue Culture in Liquid Systems John Wiley & Sons, Inc. New York, N.Y.; Gamborg and Phillips (eds) (1995) Plant Cell. Tissue and Organ Culture; Fundamental Methods Springer Lab Manual, Springer-Verlag (Berlin Heidelberg N.Y.) and Atlas and Parks (eds) The Handbook of Microbiological Media (1993) CRC Press, Boca Raton, Fla., the entire contents of each of which are incorporated herein by reference. In addition, essentially any nucleic acid (and virtually any labeled nucleic acid, whether standard or non-standard) can be custom or standard ordered from any of a variety of commercial sources, such as The Midland Certified Reagent Company (mcrc@oligos.com), The Great American Gene Company (www.genco.com), ExpressGen Inc. (www.expressgen.com), Operon Technologies Inc. (Alameda, Calif.), and many others.


Without further elaboration, it is believed that one skilled in the art can, based on the above description, utilize the present disclosure to its fullest extent. The following specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. All publications cited herein are incorporated by reference for the purposes or subject matter referenced herein.


EXAMPLES

In order that the compositions and methods described herein may be more fully understood, the following examples are set forth. The synthetic examples described in this application are offered to illustrate the compounds and methods provided herein and are not to be construed in any way as limiting their scope.


Example 1: Guide Nucleotide Sequence-Programmable DNA-Binding Protein Domains, Deaminases, and Base Editors

Non-limiting examples of suitable guide nucleotide sequence-programmable DNA-binding protein domains are provided. The disclosure provides Cas9 variants, for example, Cas9 proteins from one or more organisms, which may comprise one or more mutations (e.g., to generate dCas9 or Cas9 nickase). In some embodiments, one or more of the amino acid residues, identified below by an asterisk, of a Cas9 protein may be mutated. In some embodiments, the D10 and/or H840 residues of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, are mutated. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to any amino acid residue, except for D. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to an A. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is an H. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to any amino acid residue, except for H. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to an A. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is a D.


A number of Cas9 sequences from various species were aligned to determine whether corresponding homologous amino acid residues of D10 and H840 of SEQ ID NO: 1 or SEQ ID NO: 11 can be identified in other Cas9 proteins, allowing the generation of Cas9 variants with corresponding mutations of the homologous amino acid residues. The alignment was carried out using the NCBI Constraint-based Multiple Alignment Tool (COBALT (accessible at st-va.ncbi.nlm.nih.gov/tools/cobalt), with the following parameters. Alignment parameters: Gap penalties −11, −1; End-Gap penalties −5, −1. CDD Parameters: Use RPS BLAST on; Blast E-value 0.003; Find Conserved columns and Recompute on. Query Clustering Parameters: Use query clusters on; Word Size 4; Max cluster distance 0.8; Alphabet Regular.


An exemplary alignment of four Cas9 sequences is provided below. The Cas9 sequences in the alignment are: Sequence 1 (S1): SEQ ID NO: 11|WP_0109222511 gi 499224711|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]; Sequence 2 (S2): SEQ ID NO: 12|WP_039695303|gi 746743737|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]; Sequence 3 (S3): SEQ ID NO: 13|WP_045635197|gi 782887988|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis]; Sequence 4 (S4): SEQ ID NO: 14|5AXW_A|gi 924443546|Staphylococcus aureus Cas9. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences. Amino acid residues 10 and 840 in S1 and the homologous amino acids in the aligned sequences are identified with an asterisk following the respective amino acid residue.

















S1
   1
--MDKK-YSIGLD*IGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLI--GALLFDSG--ETAEATRLKRTARRRYT
73





S2
   1
--MTKKNYSIGLD*IGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLL--GALLFDSG--ETAEATRLKRTARRRYT
74





S3
   1
--M-KKGYSIGLD*IGTNSVGFAVITDDYKVPSKKMKVLGNTDKRFIKKNLI--GALLFDEG--TTAEARRLKRTARRRYT
73





S4
   1
GSHMKRNYILGLD*IGITSVGYGII--DYET-----------------RDVIDAGVRLFKEANVENNEGRRSKRGARRLKR
61





S1
  74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRL
153





S2
  75
RRKNRLRYLQEIFANEIAKVDESFFQRLDESFLTDDDKTFDSHPIFGNKAEEDAYHQKFPTIYHLRKHLADSSEKADLRL
154





S3
  74
RRKNRLRYLQEIFSEEMSKVDSSFFHRLDDSFLIPEDKRESKYPIFATLTEEKEYHKQFPTIYHLRKQLADSKEKTDLRL
153





S4
  62
RRRHRIQRVKKLL--------------FDYNLLTD--------------------HSELSGINPYEARVKGLSQKLSEEE
107





S1
 154
IYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEK
233





S2
 155
VYLALAHMIKFRGHFLIEGELNAENTDVQKIFADFVGVYNRTFDDSHLSEITVDVASILTEKISKSRRLENLIKYYPTEK
234





S3
 154
IYLALAHMIKYRGHFLYEEAFDIKNNDIQKIFNEFISIYDNTFEGSSLSGQNAQVEAIFTDKISKSAKRERVLKLFPDEK
233





S4
 108
FSAALLHLAKRRG----------------------VHNVNEVEEDT----------------------------------
131





S1
 234
KNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT
313





S2
 235
KNTLFGNLIALALGLQPNFKTNFKLSEDAKLQFSKDTYEEDLEELLGKIGDDYADLFTSAKNLYDAILLSGILTVDDNST
314





S3
 234
STGLFSEFLKLIVGNQADFKKHFDLEDKAPLQFSKDTYDEDLENLLGQIGDDFTDLFVSAKKLYDAILLSGILTVTDPST
313





S4
 132
-----GNELS------------------TKEQISRN--------------------------------------------
144





S1
 314
KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKM--DGTEELLV
391





S2
 315
KAPLSASMIKRYVEHHEDLEKLKEFIKANKSELYHDIFKDKNKNGYAGYIENGVKQDEFYKYLKNILSKIKIDGSDYFLD
394





S3
 314
KAPLSASMIERYENHQNDLAALKQFIKNNLPEKYDEVFSDQSKDGYAGYIDGKTTQETFYKYIKNLLSKF--EGTDYFLD
391





S4
 145
----SKALEEKYVAELQ-------------------------------------------------LERLKKDG------
165





S1
 392
KLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEE
471





S2
 395
KIEREDFLRKQRTFDNGSIPHQIHLQEMHAILRRQGDYYPFLKEKQDRIEKILTFRIPYYVGPLVRKDSRFAWAEYRSDE
474





S3
 392
KIEREDFLRKQRTFDNGSIPHQIHLQEMNAILRRQGEYYPFLKDNKEKIEKILTFRIPYYVGPLARGNRDFAWLTRNSDE
471





S4
 166
--EVRGSINRFKTSD--------YVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGP--GEGSPFGW------K
227





S1
 472
TITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL
551





S2
 475
KITPWNFDKVIDKEKSAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVNEQGKE-SFFDSNMKQEIFDH
553





S3
 472
AIRPWNFEEIVDKASSAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIAEGLRDYQFLDSGQKKQIVNQ
551





S4
 228
DIKEW---------------YEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEK---LEYYEKFQIIEN
289





S1
 552
LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDR---FNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFED
628





S2
 554
VFKENRKVTKEKLLNYLNKEFPEYRIKDLIGLDKENKSFNASLGTYHDLKKIL-DKAFLDDKVNEEVIEDIIKTLTLFED
632





S3
 552
LFKENRKVTEKDIIHYLHN-VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDKEFMDDAKNEAILENIVHTLTIFED
627





S4
 290
VFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEF---TNLKVYHDIKDITARKEII---ENAELLDQIAKILTIYQS
363





S1
 629
REMIEERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKED
707





S2
 633
KDMIHERLQKYSDIFTANQLKKLER-RHYTGWGRLSYKLINGIRNKENNKTILDYLIDDGSANRNFMQLINDDTLPFKQI
711





S3
 628
REMIKQRLAQYDSLFDEKVIKALTR-RHYTGWGKLSAKLINGICDKQTGNTILDYLIDDGKINRNFMQLINDDGLSFKEI
706





S4
 364
SEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDE------LWHTNDNQIAIFNRLKLVP---------
428





S1
 708


embedded image


781





S2
 712


embedded image


784





S3
 707


embedded image


779





S4
 429


embedded image


505





S1
 782


KRIEEGIKELGSQIL-------KEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD----YDVDH*IVPQSFLKDD


850





S2
 785


KKLQNSLKELGSNILNEEKPSYIEDKVENSHLQNDQLFLYYIQNGKDMYTGDELDIDHLSD----YDIDH*IIPQAFIKDD


860





S3
 780


KRIEDSLKILASGL---DSNILKENPTDNNQLQNDRLFLYYLQNGKDMYTGEALDINQLSS----YDIDH*IIPQAFIKDD


852





S4
 506


ERIEEIIRTTGK---------------ENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDH*IIPRSVSFDN


570





S1
 851


embedded image


922





S2
 861


embedded image


932





S3
 853


embedded image


924





S4
 571


embedded image


650





S1
 923


embedded image


1002





S2
 933


embedded image


1012





S3
 925


embedded image


1004





S4
 651


embedded image


712





S1
1003


embedded image


1077





S2
1013


embedded image


1083





S3
1005


embedded image


1081





S4
 713


embedded image


764





S1
1078


embedded image


1149





S2
1084


embedded image


1158





S3
1082


embedded image


1156





S4
 765


embedded image


835





S1
1150
EKGKSKKLKSVKELLGITIMERSSFEKNPI-DFLEAKG-----YKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKG
1223





S2
1159
EKGKAKKLKTVKELVGISIMERSFFEENPV-EFLENKG-----YHNIREDKLIKLPKYSLFEFEGGRRRLLASASELQKG
1232





S3
1157
EKGKAKKLKTVKTLVGITIMEKAAFEENPI-TFLENKG-----YHNVRKENILCLPKYSLFELENGRRRLLASAKELQKG
1230





S4
 836
DPQTYQKLK--------LIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKV
907





S1
1224
NELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKH------
1297





S2
1233
NEMVLPGYLVELLYHAHRADNF-----NSTEYLNYVSEHKKEFEKVLSCVEDFANLYVDVEKNLSKIRAVADSM------
1301





S3
1231
NEIVLPVYLTTLLYHSKNVHKL-----DEPGHLEYIQKHRNEFKDLLNLVSEFSQKYVLADANLEKIKSLYADN------
1299





S4
 908
VKLSLKPYRFD-VYLDNGVYKFV-----TVKNLDVIK--KENYYEVNSKAYEEAKKLKKISNQAEFIASFYNNDLIKING
979





S1
1298
RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSIT--------GLYETRI----DLSQL
1365





S2
1302
DNFSIEEISNSFINLLTLTALGAPADFNFLGEKIPRKRYTSTKECLNATLIHQSIT--------GLYETRI----DLSKL
1369





S3
1300
EQADIEILANSFINLLTFTALGAPAAFKFFGKDIDRKRYTTVSEILNATLIHQSIT--------GLYETWI----DLSKL
1367





S4
 980
ELYRVIGVNNDLLNRIEVNMIDITYR-EYLENMNDKRPPRIIKTIASKT---QSIKKYSTDILGNLYEVKSKKHPQIIKK
1055





S1
1366
GGD
1368





S2
1370
GEE
1372





S3
1368
GED
1370





S4
1056
G--
1056









The alignment demonstrates that amino acid sequences and amino acid residues that are homologous to a reference Cas9 amino acid sequence or amino acid residue can be identified across Cas9 sequence variants, including, but not limited to Cas9 sequences from different species, by identifying the amino acid sequence or residue that aligns with the reference sequence or the reference residue using alignment programs and algorithms known in the art. This disclosure provides Cas9 variants in which one or more of the amino acid residues identified by an asterisk in SEQ ID NOs: 11-14 (e.g., S1, S2, S3, and S4, respectively) are mutated as described herein. The residues D10 and H840 in Cas9 of SEQ ID NO: 1 that correspond to the residues identified in SEQ ID NOs: 11-14 by an asterisk are referred to herein as “homologous” or “corresponding” residues. Such homologous residues can be identified by sequence alignment, e.g., as described above, and by identifying the sequence or residue that aligns with the reference sequence or residue. Similarly, mutations in Cas9 sequences that correspond to mutations identified in SEQ ID NO: 1 herein, e.g., mutations of residues 10, and 840 in SEQ ID NO: 1, are referred to herein as “homologous” or “corresponding” mutations. For example, the mutations corresponding to the D10A mutation in SEQ ID NO: 1 or S1 (SEQ ID NO: 11) for the four aligned sequences above are D11A for S2, D10A for S3, and D13A for S4; the corresponding mutations for H840A in SEQ ID NO: 1 or S1 (SEQ ID NO: 11) are H850A for S2, H842A for S3, and H560A for S4.


A total of 250 Cas9 sequences (SEQ ID NOs: 11-260) from different species are provided. Amino acid residues homologous to residues 10, and 840 of SEQ ID NO: 1 may be identified in the same manner as outlined above. All of these Cas9 sequences may be used in accordance with the present disclosure.
















WP_010922251.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 11


WP_039695303.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]
SEQ ID NO: 12


WP_045635197.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcusmitis]
SEQ ID NO: 13


5AXW_A
Cas9, Chain A, Crystal Structure [Staphylococcus Aureus]
SEQ ID NO: 14


WP_009880683.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 15


WP_010922251.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 16


WP_011054416.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 17


WP_011284745.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 18


WP_011285506.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 19


WP_011527619.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 20


WP_012560673.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 21


WP_014407541.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 22


WP_020905136.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 23


WP_023080005.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 24


WP_023610282.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 25


WP_030125963.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 26


WP_030126706.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 27


WP_031488318.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 28


WP_032460140.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 29


WP_032461047.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 30


WP_032462016.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 31


WP_032462936.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 32


WP_032464890.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 33


WP_033888930.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 34


WP_038431314.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 35


WP_038432938.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 36


WP_038434062.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 37


BAQ51233.1
CRISPR-associated protein, Csn1 family [Streptococcus pyogenes]
SEQ ID NO: 38


KGE60162.1
hypothetical protein MGAS2111_0903 [Streptococcus pyogenes MGAS2111]
SEQ ID NO: 39


KGE60856.1
CRISPR-associated endonuclease protein [Streptococcus pyogenes SS1447]
SEQ ID NO: 40


WP_002989955.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus]
SEQ ID NO: 41


WP_003030002.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus]
SEQ ID NO: 42


WP_003065552.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus]
SEQ ID NO: 43


WP_001040076.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 44


WP_001040078.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 45


WP_001040080.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 46


WP_001040081.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 47


WP_001040083.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 48


WP_001040085.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 49


WP_001040087.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 50


WP_001040088.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 51


WP_001040089.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 52


WP_001040090.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 53


WP_001040091.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 54


WP_001040092.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 55


WP_001040094.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 56


WP_001040095.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 57


WP_001040096.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 58


WP_001040097.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 59


WP_001040098.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 60


WP_001040099.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 61


WP_001040100.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 62


WP_001040104.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 63


WP_001040105.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 64


WP_001040106.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 65


WP_001040107.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 66


WP_001040108.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 67


WP_001040109.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 68


WP_001040110.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 69


WP_015058523.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 70


WP_017643650.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 71


WP_017647151.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 72


WP_017648376.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 73


WP_017649527.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 74


WP_017771611.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 75


WP_017771984.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 76


CFQ25032.1
CRISPR-associated protein [Streptococcus agalactiae]
SEQ ID NO: 77


CFV16040.1
CRISPR-associated protein [Streptococcus agalactiae]
SEQ ID NO: 78


KLJ37842.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae]
SEQ ID NO: 79


KLJ72361.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae]
SEQ ID NO: 80


KLL20707.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae]
SEQ ID NO: 81


KLL42645.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae]
SEQ ID NO: 82


WP_047207273.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 83


WP_047209694.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 84


WP_050198062.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 85


WP_050201642.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 86


WP_050204027.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 87


WP_050881965.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 88


WP_050886065.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 89


AHN30376.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae 138P]
SEQ ID NO: 90


EAO78426.1
reticulocyte binding protein [Streptococcus agalactiae H36B]
SEQ ID NO: 91


CCW42055.1
CRISPR-associated protein, SAG0894 family [Streptococcus agalactiae ILRI112]
SEQ ID NO:92


WP_003041502.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus anginosus]
SEQ ID NO: 93


WP_037593752.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus anginosus]
SEQ ID NO: 94


WP_049516684.1
CRISPR-associated protein Csn1 [Streptococcus anginosus]
SEQ ID NO: 95


GAD46167.1
hypothetical protein ANG6_0662 [Streptococcus anginosus T5]
SEQ ID NO: 96


WP_018363470.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus caballi]
SEQ ID NO: 97


WP_003043819.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus canis]
SEQ ID NO: 98


WP_006269658.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus constellatus]
SEQ ID NO: 99


WP_048800889.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus constellatus]
SEQ ID NO: 100


WP_012767106.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae]
SEQ ID NO: 101


WP_014612333.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae]
SEQ ID NO: 102


WP_015017095.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae]
SEQ ID NO: 103


WP_015057649.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae]
SEQ ID NO: 104


WP_048327215.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae]
SEQ ID NO: 105


WP_049519324.1
CRISPR-associated protein Csn1 [Streptococcus dysgalactiae]
SEQ ID NO: 106


WP_012515931.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi]
SEQ ID NO: 107


WP_021320964.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi]
SEQ ID NO: 108


WP_037581760.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi]
SEQ ID NO: 109


WP_004232481.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equinus]
SEQ ID NO: 110


WP_009854540.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]
SEQ ID NO: 111


WP_012962174.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]
SEQ ID NO: 112


WP_039695303.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]
SEQ ID NO: 113


WP_014334983.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus infantarius]
SEQ ID NO: 114


WP_003099269.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus iniae]
SEQ ID NO: 115


AHY15608.1
CRISPR-associated protein Csn1 [Streptococcus iniae]
SEQ ID NO: 116


AHY17476.1
CRISPR-associated protein Csn1 [Streptococcus iniae]
SEQ ID NO: 117


ESR09100.1
hypothetical protein IUSA1_08595 [Streptococcus iniae IUSA1]
SEQ ID NO: 118


AGM98575.1
CRISPR-associated protein Cas9/Csn1, subtype II/NMEMI [Streptococcus iniae SF1]
SEQ ID NO: 119


ALF27331.1
CRISPR-associated protein Csn1 [Streptococcus intermedius]
SEQ ID NO: 120


WP_018372492.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus massiliensis]
SEQ ID NO: 121


WP_045618028.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis]
SEQ ID NO: 122


WP_045635197.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis]
SEQ ID NO: 123


WP_002263549.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 124


WP_002263887.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 125


WP_002264920.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 126


WP_002269043.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 127


WP_002269448.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 128


WP_002271977.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 129


WP_002272766.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 130


WP_002273241.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 131


WP_002275430.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 132


WP_002276448.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 133


WP_002277050.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 134


WP_002277364.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 135


WP_002279025.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 136


WP_002279859.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 137


WP_002280230.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 138


WP_002281696.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 139


WP_002282247.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 140


WP_002282906.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 141


WP_002283846.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 142


WP_002287255.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 143


WP_002288990.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 144


WP_002289641.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 145


WP_002290427.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 146


WP_002295753.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 147


WP_002296423.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 148


WP_002304487.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 149


WP_002305844.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 150


WP_002307203.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 151


WP_002310390.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 152


WP_002352408.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 153


WP_012997688.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 154


WP_014677909.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 155


WP_019312892.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 156


WP_019313659.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 157


WP_019314093.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 158


WP_019315370.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 159


WP_019803776.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 160


WP_019805234.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 161


WP_024783594.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 162


WP_024784288.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 163


WP_024784666.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 164


WP_024784894.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 165


WP_024786433.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 166


WP_049473442.1
CRISPR-associated protein Csn1 [Streptococcus mutans]
SEQ ID NO: 167


WP_049474547.1
CRISPR-associated protein Csn1 [Streptococcus mutans]
SEQ ID NO: 168


EMC03581.1
hypothetical protein SMU69_09359 [Streptococcus mutans NLML4]
SEQ ID NO: 169


WP_000428612.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus oralis]
SEQ ID NO: 170


WP_000428613.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus oralis]
SEQ ID NO: 171


WP_049523028.1
CRISPR-associated protein Csn1 [Streptococcus parasanguinis]
SEQ ID NO: 172


WP_003107102.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus parauberis]
SEQ ID NO: 173


WP_054279288.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus phocae]
SEQ ID NO: 174


WP_049531101.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae]
SEQ ID NO: 175


WP_049538452.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae]
SEQ ID NO: 176


WP_049549711.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae]
SEQ ID NO: 177


WP_007896501.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pseudoporcinus]
SEQ ID NO: 178


EFR44625.1
CRISPR-associated protein, Csn1 family [Streptococcus pseudoporcinus SPIN 20026]
SEQ ID NO: 179


WP_002897477.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sanguinis]
SEQ ID NO: 180


WP_002906454.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sanguinis]
SEQ ID NO: 181


WP_009729476.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. F0441]
SEQ ID NO: 182


CQR24647.1
CRISPR-associated protein [Streptococcus sp. FF10]
SEQ ID NO: 183


WP_000066813.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. M334]
SEQ ID NO: 184


WP_009754323.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. taxon 056]
SEQ ID NO: 185


WP_044674937.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis]
SEQ ID NO: 186


WP_044676715.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis]
SEQ ID NO: 187


WP_044680361.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis]
SEQ ID NO: 188


WP_044681799.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis]
SEQ ID NO: 189


WP_049533112.1
CRISPR-associated protein Csn1 [Streptococcus suis]
SEQ ID NO: 190


WP_029090905.1
type II CRISPR RNA-guided endonuclease Cas9 [Brochothrix thermosphacta]
SEQ ID NO: 191


WP_006506696.1
type II CRISPR RNA-guided endonuclease Cas9 [Catenibacterium mitsuokai]
SEQ ID NO: 192


AIT42264.1
Cas9hc:NLS:HA [Cloning vector pYB196]
SEQ ID NO: 193


WP_034440723.1
type II CRISPR endonuclease Cas9 [Clostridiales bacterium S5-A11]
SEQ ID NO: 194


AKQ21048.1
Cas9 [CRISPR-mediated gene targeting vector p(bhsp68-Cas9)]
SEQ ID NO: 195


WP_004636532.1
type II CRISPR RNA-guided endonuclease Cas9 [Dolosigranulum pigrum]
SEQ ID NO: 196


WP_002364836.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus]
SEQ ID NO: 197


WP_016631044.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus]
SEQ ID NO: 198


EMS75795.1
hypothetical protein H318_06676 [Enterococcus durans IPLA 655]
SEQ ID NO: 199


WP_002373311.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 200


WP_002378009.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 201


WP_002407324.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 202


WP_002413717.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 203


WP_010775580.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 204


WP_010818269.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 205


WP_010824395.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 206


WP_016622645.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 207


WP_033624816.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 208


WP_033625576.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 209


WP_033789179.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 210


WP_002310644.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 211


WP_002312694.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 212


WP_002314015.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 213


WP_002320716.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 214


WP_002330729.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 215


WP_002335161.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 216


WP_002345439.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 217


WP_034867970.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 218


WP_047937432.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 219


WP_010720994.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae]
SEQ ID NO: 220


WP_010737004.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae]
SEQ ID NO: 221


WP_034700478.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae]
SEQ ID NO: 222


WP_007209003.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus italicus]
SEQ ID NO: 223


WP_023519017.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus mundtii]
SEQ ID NO: 224


WP_010770040.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus phoeniculicola]
SEQ ID NO: 225


WP_048604708.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus sp. AM1]
SEQ ID NO: 226


WP_010750235.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus villorum]
SEQ ID NO: 227


AII16583.1
Cas9 endonuclease [Expression vector pCas9]
SEQ ID NO: 228


WP_029073316.1
type II CRISPR RNA-guided endonuclease Cas9 [Kandleria vitulina]
SEQ ID NO: 229


WP_031589969.1
type II CRISPR RNA-guided endonuclease Cas9 [Kandleria vitulina]
SEQ ID NO: 230


KDA45870.1
CRISPR-associated protein Cas9/Csn1, subtype II/NMEMI [Lactobacillus animalis]
SEQ ID NO: 231


WP_039099354.1
type II CRISPR RNA-guided endonuclease Cas9 [Lactobacillus curvatus]
SEQ ID NO: 232


AKP02966.1
hypothetical protein ABB45_04605 [Lactobacillus farciminis]
SEQ ID NO: 233


WP_010991369.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria innocua]
SEQ ID NO: 234


WP_033838504.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria innocua]
SEQ ID NO: 235


EHN60060.1
CRISPR-associated protein, Csn1 family [Listeria innocua ATCC 33091]
SEQ ID NO: 236


EFR89594.1
crispr-associated protein, Csn1 family [Listeria innocua FSL S4-378]
SEQ ID NO: 237


WP_038409211.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria ivanovii]
SEQ ID NO: 238


EFR95520.1
crispr-associated protein Csn1 [Listeria ivanovii FSL F6-596]
SEQ ID NO: 239


WP_003723650.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 240


WP_003727705.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 241


WP_003730785.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 242


WP_003733029.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 243


WP_003739838.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 244


WP_014601172.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 245


WP_023548323.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 246


WP_031665337.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 247


WP_031669209.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 248


WP_033920898.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 249


AKI42028.1
CRISPR-associated protein [Listeria monocytogenes]
SEQ ID NO: 250


AKI50529.1
CRISPR-associated protein [Listeria monocytogenes]
SEQ ID NO: 251


EFR83390.1
crispr-associated protein Csn1 [Listeria monocytogenes FSL F2-208]
SEQ ID NO: 252


WP_046323366.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria seeligeri]
SEQ ID NO: 253


AKE81011.1
Cas9 [Plant multiplex genome editing vector pYLCRISPR/Cas9Pubi-H]
SEQ ID NO: 254


CUO82355.1
Uncharacterized protein conserved in bacteria [Roseburia hominis]
SEQ ID NO: 255


WP_033162887.1
type II CRISPR RNA-guided endonuclease Cas9 [Sharpea azabuensis]
SEQ ID NO: 256


AGZ01981.1
Cas9 endonuclease [synthetic construct]
SEQ ID NO: 257


AKA60242.1
nuclease deficient Cas9 [synthetic construct]
SEQ ID NO: 258


AKS40380.1
Cas9 [Synthetic plasmid pFC330]
SEQ ID NO: 259


4UN5_B
Cas9, Chain B, Crystal Structure
SEQ ID NO: 260









Non-Limiting Examples of Suitable Deaminase Domains are Provided.










Human AID



(SEQ ID NO: 270)




MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGCHVELLFLRYISDWD







LDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTARLYFCEDRKAEPEGLRRLHRAGVQIAIMT





FKDYFYCWNTFVENHERTFKAWEGLHENSVRLSRQLRRILLPLYEVDDLRDAFRTLGL


(underline: nuclear localization signal; double underline: nuclear export signal) 





Mouse AID


(SEQ ID NO: 271)




MDSLLMKQKKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSCSLDFGHLRNKSGCHVELLFLRYISDWD







LDPGRCYRVTWFTSWSPCYDCARHVAEFLRWNPNLSLRIFTARLYFCEDRKAEPEGLRRLHRAGVQIGIMT





FKDYFYCWNTFVENRERTFKAWEGLHENSVRLTRQLRRILLPLYEVDDLRDAFRMLGF


(underline: nuclear localization signal; double underline: nuclear export signal)





Dog AID


(SEQ ID NO: 272)




MDSLLMKQRKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSFSLDFGHLRNKSGCHVELLFLRYISDWD







LDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSLRIFAARLYFCEDRKAEPEGLRRLHRAGVQIAIMT





FKDYFYCWNTFVENREKTFKAWEGLHENSVRLSRQLRRILLPLYEVDDLRDAFRTLGL


(underline: nuclear localization signal; double underline: nuclear export signal)





Bovine AID


(SEQ ID NO: 273)




MDSLLKKQRQFLYQFKNVRWAKGRHETYLCYVVKRRDSPTSFSLDFGHLRNKAGCHVELLFLRYISDWD







LDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSLRIFTARLYFCDKERKAEPEGLRRLHRAGVQIAIM





TFKDYFYCWNTFVENHERTFKAWEGLHENSVRLSRQLRRILLPLYEVDDLRDAFRTLGL (underline:


nuclear localization signal; double underline: nuclear export signal)





Mouse APOBEC-3


(SEQ ID NO: 274)



MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLHHGVFKNKDNIH







AEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHHNLSLDIFSSRLYNVQDPETQQNLCR






LVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWKRLLTNFRYQDSKLQEILRPCYIPVPSSSSSTLSNIC





LTKGLPETRFCVEGRRMDPLSEEEFYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGK





QHAEILFLDKIRSMELSQVTITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLYFHWKRPFQKGLCSLWQ





SGILVDVMDLPQFTDCWTNFVNPKRPFWPWKGLEIISRRTQRRLRRIKESWGLQDLVNDFGNLQLGPPMS


(italic: nucleic acid editing domain) 





Rat APOBEC-3


(SEQ ID NO: 275)



MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLRYAIDRKDTFLCYEVTRKDCDSPVSLHHGVFKNKDNIHA







EICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQVLRFLATHHNLSLDIFSSRLYNIRDPENQQNLCRL






VQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWKKLLTNFRYQDSKLQEILRPCYIPVPSSSSSTLSNICL





TKGLPETRFCVERRRVHLLSEEEFYSQFYNQRVKHLCYYHGVKPYLCYQLEQFNGQAPLKGCLLSEKGKQ






HAEILFLDKIRSMELSQVIITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLYFHWKRPFQKGLCSLWQSG






ILVDVMDLPQFTDCWTNFVNPKRPFWPWKGLEIISRRTQRRLHRIKESWGLQDLVNDFGNLQLGPPMS


(italic: nucleic acid editing domain) 





Rhesus macaque APOBEC-3G


(SEQ ID NO: 276)




MVEPMDPRTFVSNFNNRPILSGLNTVWLCCEVKTKDPSGPPLDAKIFQGKVYSKAKYHPEM
RFLRWFHKW








RQLHHDQEYKVTWYVSWSPCTRCANSVATFLAKDPKVTLTIFVARLYYFWKPDYQQALRILCQKRGGPHAT






MKIMNYNEFQDCWNKFVDGRGKPFKPRNNLPKHYTLLQATLGELLRHLMDPGTFTSNFNNKPWVSGQHE





TYLCYKVERLHNDTWVPLNQHRGFLRNQAPNIHGFPKGRHAELCFLDLIPFWKLDGQQYRWCFTSWSPCFS






CAQEMAKFISNNEHVSLCIFAARIYDDQGRYQEGLRALHRDGAKIAMMNYSEFEYCWDTFVDRQGRPFQP



WDGLDEHSQALSGRLRAI


(italic: nucleic acid editing domain; underline: cytoplasmic


localization signal) 





Chimpanzee APOBEC-3G


(SEQ ID NO: 277)




MKPHFRNPVERMYQDTFSDNFYNRPILSHRNTVWLCYEVKTKGPSRPPLDAKIFRGQVYSKLKYHPEMRF








FHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDVATFLAEDPKVTLTIFVARLYYFWDPDYQEALRSLCQKR






DGPRATMKIMNYDEFQHCWSKFVYSQRELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTSNFNNELWVR





GRHETYLCYEVERLHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLHQDYRWCFTS






WSPCFSCAQEMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLAKAGAKISIMTYSEFKHCWDTFVDHQG






CPFQPWDGLEEHSQALSGRLRAILQNQGN


(italic: nucleic acid editing domain; underline:


cytoplasmic localization signal) 





Green monkey APOBEC-3G


(SEQ ID NO: 278)




MNPQIRNMVEQMEPDIFVYYFNNRPILSGRNTVWLCYEVKTKDPSGPPLDANIFQGKLYPEAKDHPEMKFL








HWFRKWRQLHRDQEYEVTWYVSWSPCTRCANSVATFLAEDPKVTLTIFVARLYYFWKPDYQQALRILCQER






GGPHATMKIMNYNEFQHCWNEFVDGQGKPFKPRKNLPKHYTLLHATLGELLRHVMDPGTFTSNFNNKPW





VSGQRETYLCYKVERSHNDTWVLLNQHRGFLRNQAPDRHGFPKGRHAELCFLDLIPFWKLDDQQYRVTCFT






SWSPCFSCAQKMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLHRDGAKIAVMNYSEFEYCWDTFVDR






QGRPFQPWDGLDEHSQALSGRLRAI


(italic: nucleic acid editing domain; underline:


cytoplasmic localization signal) 





Human APOBEC-3G


(SEQ ID NO: 279)




MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGQVYSELKYHPEMRFF








HWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKVTLTIFVARLYYFWDPDYQEALRSLCQKR






DGPRATMKIMNYDEFQHCWSKFVYSQRELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPWVR





GRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVTCFTS






WSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVDHQG






CPFQPWDGLDEHSQDLSGRLRAILQNQEN  


(italic: nucleic acid editing domain; underline:


cytoplasmic localization signal) 





Human APOBEC-3F


(SEQ ID NO: 280)



MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPRLDAKIFRGQVYSQPEHHAEMCFL







SWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLAEHPNVTLTISAARLYYYWERDYRRALCRLSQAGA






RVKIMDDEEFAYCWENFVYSEGQPFMPWYKFDDNYAFLHRTLKEILRNPMEAMYPHIFYFHFKNLRKAY





GRNESWLCFTMEVVKHHSPVSWKRGVFRNQVDPETHCHAERCFLSWFCDDILSPNTNYEVTWYTSWSPCPE






CAGEVAEFLARHSNVNLTIFTARLYYFWDTDYQEGLRSLSQEGASVEIMGYKDFKYCWENFVYNDDEPFK






PWKGLKYNFLFLDSKLQEILE  


(italic: nucleic acid editing domain)





Human APOBEC-3B


(SEQ ID NO: 281)



MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFRGQVYFKPQYHAEM







CFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLSEHPNVTLTISAARLYYYWERDYRRALCRLSQA






GARVTIMDYEEFAYCWENFVYNEGQQFMPWYKFDENYAFLHRTLKEILRYLMDPDTFTFNFNNDPLVLRR





RQTYLCYEVERLDNGTWVLMDQHMGFLCNEAKNLLCGFYGRHAELRFLDLVPSLQLDPAQIYRVTWFISWS






PCFSWGCAGEVRAFLQENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTYDEFEYCWDTFVYRQ






GCPFQPWDGLEEHSQALSGRLRAILQNQGN


(italic: nucleic acid editing domain)





Human APOBEC-3C:


(SEQ ID NO: 282)



MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCFTVEGIKRRSVVSWKTGVFRNQVDSETHCHAER







CFLSWFCDDILSPNTKYQVTWYTSWSPCPDCAGEVAEFLARHSNVNLTIFTARLYYFQYPCYQEGLRSLSQEG






VAVEIMDYEDFKYCWENFVYNDNEPFKPWKGLKTNFRLLKRRLRESLQ  


(italic: nucleic acid editing domain) 





Human APOBEC-3A:


(SEQ ID NO: 283)



MEASPASGPRHLMDPHIFTSNFNNGIGRHKTYLCYEVERLDNGTSVKMDQHRGFLHNQAKNLLCGFYGRH







AELRFLDLVPSLQLDPAQIYRVTWFISWSPCFSWGCAGEVRAFLQENTHVRLRIFAARIYDYDPLYKEALQML






RDAGAQVSIMTYDEFKHCWDTFVDHQGCPFQPWDGLDEHSQALSGRLRAILQNQGN


(italic: nucleic acid editing domain) 





Human APOBEC-3H:


(SEQ ID NO: 284)



MALLTAETFRLQFNNKRRLRRPYYPRKALLCYQLTPQNGSTPTRGYFENKKKCHAEICHNEIKSMGLDETQ







CYQVTCYLTWSPCSSCAWELVDFIKAHDHLNLGIFASRLYYHWCKPQQKGLRLLCGSQVPVEVMGFPKFAD






CWENFVDHEKPLSFNPYKMLEELDKNSRAIKRRLERIKIPGVRAQGRYMDILCDAEV


(italic: nucleic acid editing domain) 





Human APOBEC-3D


(SEQ ID NO: 285)



MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFRGPVLPKRQSNHRQE






VYFRFENHAEMCFLSWFCGNRLPANRRFQITWFVSWNPCLPCVVKVTKFLAEHPNVTLTISAARLYYYRDRD





WRWVLLRLHKAGARVKIMDYEDFAYCWENFVCNEGQPFMPWYKFDDNYASLHRTLKEILRNPMEAMYP





HIFYFHFKNLLKACGRNESWLCFTMEVTKHHSAVFRKRGVFRNQVDPETHCHAERCFLSWFCDDILSPNTN






YEVTWYTSWSPCPECAGEVAEFLARHSNVNLTIFTARLCYFWDTDYQEGLCSLSQEGASVKIMGYKDFVSC






WKNFVYSDDEPFKPWKGLQTNFRLLKRRLREILQ  


(italic: nucleic acid editing domain)





Human APOBEC-1


(SEQ ID NO: 286)



MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKNTTNHVEVNFIKKFTS






ERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVTLVIYVARLFWHMDQQNRQGLRDLVNSGVTIQI





MRASEYYHCWRNFVNYPPGDEAHWPQYPPLWMMLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNC





HYQTIPPHILLATGLIHPSVAWR





Mouse APOBEC-1


(SEQ ID NO: 287)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSVWRHTSQNTSNHVEVNFLEKFTT






ERYFRPNTRCSITWFLSWSPCGECSRAITEFLSRHPYVTLFIYIARLYHHTDQRNRQGLRDLISSGVTIQIMTE





QEYCYCWRNFVNYPPSNEAYWPRYPHLWVKLYVLELYCIILGLPPCLKILRRKQPQLTFFTITLQTCHYQRI





PPHLLWATGLK





Rat APOBEC-1


(SEQ ID NO: 288)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTTE






RYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTEQ





ESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLP





PHILWATGLK






Petromyzonmarinus CDA1 (pmCDA1)



(SEQ ID NO: 289)



MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSGTERGIHAEIFSI






RKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGNGHTLKIWACKLYYEKNARNQIGLWNL





RDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAV





Human APOBEC3G D316R D317R


(SEQ ID NO: 290)



MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGQVYSELKYHPEMRFF






HWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKVTLTIFVARLYYFWDPDYQEALRSLCQ





KRDGPRATMKIMNYDEFQHCWSKFVYSQRELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPW





VRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVT





CFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYRRQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVD





HQGCPFQPWDGLDEHSQDLSGRLRAILQNQEN





Human APOBEC3G chain A


(SEQ ID NO: 291)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV






IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISI





MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQ





Human APOBEC3G chain A D120R_D121R


(SEQ ID NO: 292)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV






IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYRRQGRCQEGLRTLAEAGAKISI





MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQ






Non-Limiting Examples of Fusion Proteins/Nucleobase Editors are Provided.










His6-rAPOBEC1-XTEN-dCas9 for Escherichiacoli expression



(SEQ ID NO: 293) 




MGSSHHHHHHMSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKH








VEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLI







SSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTI







ALQSCHYQRLPPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLG






NTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVE






EDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSD







VDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFK







SNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY







DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNRE







DLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKS







EETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL







SGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEEN







EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLK







SDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRH







KPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVD







QELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQR







KFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR







KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYF







FYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESI







LPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDF







LEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDN







EQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK







YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV






rAPOBEC1-XTEN-dCas9-NLS for Mammalian expression


(SEQ ID NO: 294) 



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN





LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIF





GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL





QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK





ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN





GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV





VDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFM





QLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY





DVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG





GLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI





NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKT





EITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIA





RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVK





KDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH





KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRY





TSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





hAPOBEC1-XTEN-dCas9-NLS for Mammalian expression


(SEQ ID NO: 295) 



MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKNTTNHVEVNFIKKFTS






ERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVTLVIYVARLFWHMDQQNRQGLRDLVNSGVTIQI





MRASEYYHCWRNFVNYPPGDEAHWPQYPPLWMMLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNC





HYQTIPPHILLATGLIHPSVAWRSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVL





GNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLV





EEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNS





DVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNF





KSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKR





YDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNR





EDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRK





SEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAF





LSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEE





NEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFL





KSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGR





HKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYV





DQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQ





RKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDF





RKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAK





YFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSK





ESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPI





DFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA





FKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





rAPOBEC1-XTEN-dCas9-UGI-NLS


(SEQ ID NO: 296) 



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN





LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIF





GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL





QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK





ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN





GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV





VDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFM





QLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY





DVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG





GLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI





NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKT





EITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIA





RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVK





KDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH





KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRY





TSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESD





ILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV





rAPOBEC1-XTEN-Cas9 nickase-UGI-NLS


(BE3, SEQ ID NO: 297) 



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN





LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIF





GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL





QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK





ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN





GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV





VDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTITL





FEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQ





LIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMAREN





QTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYD





VDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREIN





NYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTE





ITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIAR





KKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKK





DLI1KLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEI1EQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENI1HLFTLTNLGAPAAFKYFDTTIDRKRYT





STKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDI





LVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV





pmCDA1-XTEN-dCas9-UGI (bacteria)


(SEQ ID NO: 298) 



MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSGTERGIHAEIFSI






RKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGNGHTLKIWACKLYYEKNARNQIGLWNL





RDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAVSGSET





PGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEAT





RLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPT





IYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGV





DAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNL





LAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAIL





RRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM





TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK





EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTY





AHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQK





AQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRER





MKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSI





DNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQL





VETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAV





VGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIET





NGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFD





SPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELEN





GRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR





VILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSI





TGLYETRIDLSQLGGDSGGSMTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDEN





VMLLTSDAPEYKPWALVIQDSNGENKIKML





pmCDA1-XTEN-nCas9-UGI-NLS (mammalian construct) (SEQ ID NO: 299): 


MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSGTERGIHAEIFSI





RKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGNGHTLKIWACKLYYEKNARNQIGLWNL





RDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAVSGSET





PGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEAT





RLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPT





IYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGV





DAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNL





LAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAIL





RRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM





TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK





EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTY





AHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQK





AQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRER





MKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSI





DNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQL





VETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAV





VGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIET





NGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFD





SPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELEN





GRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR





VILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSI





TGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENV





MLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV





huAPOBEC3G-XTEN-dCas9-UGI (bacteria)


(SEQ ID NO: 300) 



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV






IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISI





MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQSGSETPGTSESATPESDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIF





SNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLAL





AHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPG





EKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILL





SDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYK





FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIP





YYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT





VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNAS





LGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGR





LSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIK





KGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ





LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEV





VKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDE





NDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV





YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL





SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKL





KSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPS





KYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI





REQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSMTN





LSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSN





GENKIKML





huAPOBEC3G-XTEN-nCas9-UGI-NLS (mammalian construct)


(SEQ ID NO: 301) 



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV






IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISI





MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQSGSETPGTSESATPESDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIF





SNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLAL





AHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPG





EKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILL





SDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYK





FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIP





YYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT





VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNAS





LGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGR





LSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIK





KGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ





LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEV





VKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDE





NDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV





YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL





SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKL





KSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPS





KYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI





REQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLS





DIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGE





NKIKMLSGGSPKKKRKV





huAPOBEC3G (D316R_D317R)-XTEN-nCas9-UGI-NLS (mammalian construct)


(SEQ ID NO: 302) 



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV






IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYRRQGRCQEGLRTLAEAGAKISI





MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQSGSETPGTSESATPESDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIF





SNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLAL





AHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPG





EKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILL





SDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYK





FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIP





YYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT





VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNAS





LGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGR





LSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIK





KGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ





LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEV





VKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDE





NDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV





YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL





SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKL





KSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPS





KYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI





REQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLS





DIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGE





NKIKMLSGGSPKKKRKV






Example 2: Genome/Base-Editing Methods for Modifying the CCR5 Receptor Gene to Protect Against HIV Infection

Disclosed herein are new ways for introducing novel engineered variants, as well as naturally-occurring allelic variants, of the co-receptor C—C Chemokine Receptor 5 (CCR5) that prevent or hinder cellular entry of the Human Immunodeficiency Virus (HIV). These methods include CRISPR-Cas9-based tools programmed by guide RNAs requiring either: (i) “base-editors” that catalyze chemical reactions on nucleobases (e.g., cytidine deaminase-Cas9 fusion, e.g. BE31); (ii) an engineered nuclease with DNA cutting activity (e.g., WT Cas9,2 Cas9 nickases3 or Fok1-nuclease-dCas9 fusions4). The variants selected (FIG. 1, Tables 1-5) include residues that directly alter the affinity for the HIV coat protein and/or destabilize the CCR5 protein folding, which mimics the potentially curative effects of the CCR5Δ32 variant.5 Using a similar strategy, the intron-exon splicing junction adjacent to the open-reading frame of CCR5 can be altered to prevent the maturation and/or destabilize the mRNA transcript (FIGS. 2A to 2C, Table 2).


Subsequently, other natural protective variants may be identified in human populations that can be replicated in the same manner (FIG. 3, Tables 6 and 7). Moreover, new protective variants of CCR5 (Tables 8-10), and also CCR2,6 could be identified by treating cells in vitro with guide-RNA libraries designed for all possible PAMs in these gene, coupled with FACS sorting using reporters/labeling methods and DNA-deep sequencing, to find the guide-RNAs that programmed base-editing reactions that lower CCR5 protein expression, prevent gp120 binding, and/or hinder HIV entry into the cell. For example, engineered alterations to destabilize CCR5 may follow a simple design of switching hydrophobic to polar residues on the transmembrane helices (FIG. 1). The precisely-targeted methods for CCR5 modifications proposed herein are complementary to previous methods that create random indels in the CCR5 genomic site using engineered nucleases such as CRISPR/Cas9, TALEN, or zinc-finger nucleases in hematopoietic cells ex vivo.7 Moreover, “base-editors” such as BE3 may have a more favorable safety profile, due to the relatively low impact that off-target cytosine deamination has on genomic stability,8 including oncogene activation or tumor suppressor inactivation9.


Example 3: Exemplary C to T Editing Demonstrating Modification of the CCR5 Receptor Gene to Generate Q186X and Q188X Stop Codons

C to T editing of CCR5 was performed in HEK293 cells using KKH-SaBE3 and guide-RNA Q186X-e [spacer sequence TACAGTCAGTATCAATTCTGG (SEQ ID NO: 735); PAM sequence: AAGAAT (SEQ ID NO: 736)]. The results from these experiments are shown in FIG. 5, panels A-C. The editing was calculated from total reads (MiSeq). FIG. 5, panel A demonstrates that significant editing was observed at position C7 and C13, both of which generate premature stop codons in tandem (Q186X and Q188X, see inset graphic of FIG. 5, panel A). The PAM sequence is shown as underlined and the last nucleotide of the protospacer is separated with a line. Raw data used for base-calling and calculating base-editing for KKH-BE3 and Q186X-e treated HEK293 cells is shown in FIG. 5, panel B. The indel percentage was 1.97%. FIG. 5, panel C shows raw data collected for untreated control cells.









TABLE 1







Introduction of HIV-protective naturally-occurring allelic variants of


CCR5 and CCR2 using genome/base-editing with APOBEC1-Cas9 tools (e.g. BE31).












Known
Target
Genome-editing
Edited
Match/



variant
codon
reaction(s)
codon
mimic
Predicted outcome (ref)





CCR5
GAT
1st base C → T on
AAT
Asparagine
Charge neutralized, unfolding,


(D2V)

complementary strand

(mimic)
and destabilization5c





CCR5
TGC
2nd base C → T on
TAC
Tyrosine
Lack of major disulfide bridge,


(C20S)

complementary strand

(mimic)
unfolding5c





CCR5
TGT
2nd base C → T on
TAT
Tyrosine
Lack of minor disulfide bridge,


(C101X)

complementary strand

(mimic)
unfolding, destabilization5c





CCR5
GGG
1st base C → T on
AGG
Arginine
Transmembrane helix


(G106R)

complementary strand

(match)
disruption, destabilization5a, 5c





CCR5
TGC
2nd base C → T on
TAC
Tyrosine
Lack of minor disulfide bridge,


(C178R)

complementary strand

(mimic)
destabilization5c





CCR5
CGG
2nd base C → T on
CAG
Glutamine
Charge neutralized,


(R2230)

complementary strand

(match)
destabilization5c





CCR5
TGC
2nd base C → T on
TAC
Tyrosine
Lack of major disulfide bridge,


(C269F)

complementary strand

(mimic)
unfolding, destabilization5a, 5c





CCR2
GCA
2nd base C → T on coding
GTA
Valine
Hydrophobic patch, unfolding,


(A335V)

strand

(match)
destabilization5c





CCR2
GTC
2nd base C → T on
TAA
Isoleucine
Affects CCR5 stability6


(V641)

complementary strand

(match)
















TABLE 2







Examples of genome-editing reactions to alter intron-exon junctions and


the START site and produce non-functional CCR5 protein, mimicking the HIV


protective effect of the CCR5-Δ32 allele.












Target
Consensus

Genome-editing
Edited



site
sequence
Method
reaction(s)
sequence
Outcome





Intron

G-G-G-T-R-A-

Base-
2nd or 3rd base C → T
G-A-G-T-R-
Intron sequence is


donor
G-T
editing
on complementary
A-G-T
translated as exon, next





strand
(example)
TAG, TGA, or TAA







sequence is used as







STOP codon





Lariat
T-T-G-T-A
Base-
3th base C → T on
T-T-A-T-A
The following exon is


branch

editing
coding strand

skipped from the mature


point




mRNA, which may affect







the coding frame





Intron
Y(rich)-A-C-A-
Base-
2nd to last base C → T
Y(rich)-A-C-
The exon is skipped from


acceptor
G-G
editing
on complementary
A-A-G
the mature mRNA, which





strand

may affect the coding







frame





Start
ATG
Base-
3rd base C → T on
ATA
The next ATG is used as


codon
(Methionine)
editing
complementary
(Isoleucine)
start, which may affect





strand

the coding frame





Intron

G-G-G-T-R-A-

Cas9
random insertions

Intron sequence is


donor
G-T
Nickase
and deletions due to
indels
translated as exon, next




Fok-1
NHEJ

TAG, TGA, or TAA







sequence is used as







STOP codon





Lariat
T-T-N-T-A
Cas9
random insertions
indels
The following exon is


branch

Nickase
and deletions due to

skipped from the mature


point

Fok-1
NHEJ

mRNA, which may affect







the coding frame





Intron
Y(rich)-A-C-A-
Cas9
random insertions
indels
The exon is skipped from


acceptor
G-G
Nickase
and deletions due to

the mature mRNA, which




Fok-1
NHEJ

may affect the coding







frame
















TABLE 3







Guide-RNAs designed for introducing naturally-occurring HIV-protective variants of genome/base


editing of CCR5 using base-editor BE3 or WT Cas9.














Target
Target
Edited

SEQ ID


GE/BE


variant
codon
codon
Guide-RNA sequence
NO:
(PAM)
Size (C#)
method





CCR5
GAT
AAT
UAAUCCAUCUUGUUCCACCC
381
(TGTG)
20 (C5)
VRER-SpBE3


(D2N)


CCAUCUUGUUCCACCCUGUGC
382
(ATAAAT)
21 (C-1)
KKH-SaBE3





CCR5
TGC
TAC
CAGGGCUCCGAUGUAUAAUA
383
(ATTGAT)
20 (C1)
KKH-SaBE3


(C20Y)


UUGGCAGGGCUCCGAUGUAU
384
(AATAAT)
20 (C5)
KKH-SaBE3





CCR5
TGT
TAT
GUUGACACAUUGUAUUUCCA
385
(AAG)
20 (C6)
SpBE3


(C101Y)


GAGUUGACACAUUGUAUUUC
386
(CAAAGT)
20 (C8)
KKH-SaBE3





CCR5
GGG
AGG
AUAAAAUAGAGCCCUGUCAA
387
(GAG)
20 (C13)
VQR-SpBE3


(G106R) 












CCR5
TGC
TAC
UGAGAGCUGCAGGUGUAAUG
388
(AAG)
20 (C10)
SpBE3


(C178Y)


GAGAGCUGCAGGUGUAAUGA
389
(AGA)
20 (C9)
VQR-SpBE3





CCR5
CGG
CAG
CGACACCGAAGCAGAGUUUU
390
(TAG)
20 (C7)
SpBE3


(R223Q)


GACACCGAAGCAGAGUUUUU
391
(AGG)
20 (C6)
SpBE3





ACACCGAAGCAGAGUUUUUA
392
(GGA)
20 (C5)
VQR-SpBE3





CGACACCGAAGCAGAGUUUU
393
(TAGGAT)
20 (C7)
SaBE3





CGAAGCAGAGUUUUUAGGAUUC
394
(CCGAGT)
22 (C-2)
SaBE3





CCR5
TGC
TAC
UACUGCAAUUAUUCAGGCCA
395
(AAG)
20 (C6)
SpBE3


(C269Y)


ACUGCAAUUAUUCAGGCCAA
396
(AGA)
20 (C5)
VQR-SpBE3





UACUGCAAUUAUUCAGGCCA
397
(AAGAAT)
20 (C6)
SaBE3





splicing
CAGG
CAAG
CCACCCUGUGCAUAAAUAAA
398
(AAG)
20 (C6/5)
SpBE3


acceptor


CCCUGUGCAUAAAUAAAAAG
399
(TGA)
20 (C3/2)
VQR-SpBE3


site


CACCCUGUGCAUAAAUAAAA
400
(AGTG)
20 (C5/4)
VRER-SpBE3





CACCCUGUGCAUAAAUAAAA
401
(AGTGAT)
20 (C5/4)
KKH-SaBE3





UUCCACCCUGUGCAUAAAUAUUUAUGC
402
(AAAAGT)
20 (C7/8)
KKH-





ACAGGGUGGAACA
403
(AGAT)
20 (C9)
SaBE3VQR-





UGCACAGGGUGGAACAAGAU
404
(GGAT)
20 (C5)
SpBE3





AUUUAUGCACAGGGUGGAAC
405
(AAG)
20 (C10)
VQR-SpBE3





AUGCACAGGGUGGAACAAGA
406
(TGG)
20 (C6)
SpBE3









SpBE3





splicing
RTNA
indels
GAGGGCAACUAAAUACAUUC
407
(TAG)
20
WT SpCas9


branch


AGGGCAACUAAAUACAUUCU
408
(AGG)
20
WT SpCas9


point


AAACUGUUUUAUACAUCAAU
409
(AGG)
20
WT SpCas9





CAAACUGUUUUAUACAUCAA
410
(TAG)
20
WT SpCas9





Base editors:


SpBE3 = APOBEC1-SpCas9n-UGI;


VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI;


EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI;


VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI;


SaBE3 = APOBEC1-SaCas9n-UGI;


KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI.













TABLE 4







Guide-RNAs designed for engineering new HIV-protective variants of genome/base editing of


CCR5 using base-editor BE3.














Target
Target
Edited

SEQ ID


GE/BE


variant(s)
codon
codon
Guide-RNA sequence
NO:
(PAM)
Size (C#)
method





P195/L
CCC
TCC
CCCUGCCAAAAAAUCAAUGUG
411
(AAG)
21 (C1/−1)
SpBE3




or
CCUGCCAAAAAAUCAAUGUG
412
(AAG)
20 (C1)
SpBE3




CTC
GAGCCCUGCCAAAAAAUCAA
413
(TGTG)
20 (C5/6)
VQR-SpBE3





GCCCUGCCAAAAAAUCAAUG
414
(TGAA)
20 (C2/3)
VQR-SpBE3





UAUACAUCGGAGCCCUGCCA
415
(AAAAAT)
20 (C13)
KKH-SaBE3





CAUCGGAGCCCUGCCAAAAA
416
(ATCAAT)
20 (C9/10)
KKH-SaBE3





P34S/L
CCT
TCT
CCUGCCUCCGCUCUACUCAC
417
(TGG)
20 (C5/6)
SpBE3




or
CUGCCUCCGCUCUACUCACU
418
(GGTG)
20 (C4/5)
VQR-SpBE3




CTT
CUCCUGCCUCCGCUCUACUC
419
(ACTGGT)
20 (C7/8)
KKH-SaBE3













P35S/L
CCG
TCG
same as above for P34S/L




or





CTG


















G44S/D
GGT
AGT
AACCAAAGAUGAACACCAGU
420
(GAG)
20 (C3/4)
SpBE3




or
CAAAACCAAAGAUGAACACC
421
(AGTG)
20 (C5/6)
VQR-SpBE3




GAT
ACAAAACCAAAGAUGAACAC
422
(CAG)
20 (C7/8)
SpBE3





AAAACCAAAGAUGAACACCA
423
(GTGAGT)
20 (C5/6)
SaBE3





CCACAAAACCAAAGAUGAAC
424
(ACCAGT)
20 (C9/10)
KKH-SaBE3





G47S/D
GGC
AGC
GCAUGUUGCCCACAAAACCA
425
(AAG)
20 (C9/10)
SpBE3




or
GUUGCCCACAAAACCAAAGA
426
(TGAA)
20 (C5/6)
VQR-SpBE3




GAC
CAUGUUGCCCACAAAACCAA
427
(AGAT)
20 (C8/9)
VQR-SpBE3





AGCAUGUUGCCCACAAAACC
428
(AAAGAT)
20 (10/11)
KKH-SaBE3





G111S/D
GGC
AGC
GAGAAGAAGCCUAUAAAAUA
429
(GAG)
20 (C10)
SpBE3




or
CAGAGAAGAAGCCUAUAAAA
430
(TAG)
20 (C12)
SpBE3




GAC










G115R/E
GGA
AGA
CCAGAGAAGAAGCCUAUAAAAUGAAGA
431
(TAG)
21 (C1/−1)
SpBE3




or
AGAUUCCAGAGAAG
432
(AAG)
20 (C12)
SpBE3




GAA
GAUUCCAGAGAAGAAGCCUA
433
(TAAAAT)
20 (C4/5)
KKH-SaBE3





G145R/E
GGG
AGG
CACCCCAAAGGUGACCGUCC
434
(TGG)
20 (C5/6)
SpBE3




or









GAG










S149N
AGT
AAT
CACACUUGUCACCACCCCAA
435
(AGG)
20 (C5)
SpBE3





UCACACUUGUCACCACCCCA
436
(AAG)
20 (C6)
SpBE3





ACUUGUCACCACCCCAAAGG
437
(TGAC)
20 (C2)
VQR-SpBE3





ACACUUGUCACCACCCCAAA
438
(GGTG)
20 (C4)
VQR-SpBE3





AUCACACUUGUCACCACCCC
439
(AAAGGT)
20 (C7)
KKH-SaBE3





P162S/L
CCA
TCA
CUCCCAGGAAUCAUCUUUAC
440
(CAG)
20 (C4/5)
SpBE3




or
UCCCAGGAAUCAUCUUUACC
441
(AGAT)
20 (C3/4)
VQR-SpBE3




CTA
UCUCCCAGGAAUCAUCUUUA
442
(CCAGAT)
20 (C5/6)
KKH-SaBE3





G163R/E
GGA
AGA
UCCUGGGAGAGACGCAAACA
443
(CAG)
20 (C3/2)
SpBE3




or
GUAAAGAUGAUUCCUGGGAG
444
(AGAC)
20 (C13)
VQR-SpBE3




GAA










P183S/L
CCA
TCA
CCAUACAGUCAGUAUCAAUUC
445
(TGG)
21 (C1/−1)
SpBE3




or
CAUACAGUCAGUAUCAAUUC
446
(TGG)
20 (C1)
SpBE3




CTA
GCUCUCAUUUUCCAUACAGU
447
(CAG)
20 (C12)
SpBE3





UCAUUUUCCAUACAGUCAGU
448
(ATCAAT)
20 (C8)
KKH-SaBE3





G202R/E
GGG
AGG
UCAUUUUCCAUACAGUCAGU
449
(ATCAAT)
20 (C6/C7)
KKH-SaBE3




or









GAG










P206S/L
CCG
TCG
GGUCCUGCCGCUGCUUGUCA
450
(TGG)
20 (c8/9)
SpBE3




or
CUGGUCCUGCCGCUGCUUGU
451
(CATGGT)
20 (10/11)
KKH-SaBE3




CTG










G216R/E
GGA
AGA
UCCCGAGUAGCAGAUGACCA
452
(TGAC)
20 (C2/3)
VQR-SpBE3




or
UAGGAUUCCCGAGUAGCAGA
453
(TGAC)
20 (C8/9)
VQR-SpBE3




GAA
UUUUAGGAUUCCCGAGUAGC
454
(AGAT)
20 (11/12)
VQR-SpBE3





E283K
GAG
AAG
UCUCUGUCACCUGCAUAGCU
455
(TGG)
20 (C4)
SpBE3





AAGAGUCUCUGUCACCUGCA
456
(TAG)
20 (C9)
SpBE3





AGUCUCUGUCACCUGCAUAG
457
(CTTGGT)
20 (C6)
KKH-SaBE3





G286R/E
GGG
AGG
CCAAGAGUCUCUGUCACCUGCA
458
(TAG)
22 (−1/−2)
SpBE3




or









GAG










C290Y
TGC
TAC
GCAGCAGUGCGUCAUCCCAA
459
(GAG)
20 (C5)
SpBE3





UGCAGCAGUGCGUCAUCCCA
460
(AGAG)
20 (C6)
VQR-SpBE3





AUGCAGCAGUGCGUCAUCCC
461
(AAG)
20 (C7)
SpBE3





AUGCAGCAGUGCGUCAUCCC
462
(AAGAGT)
20 (C7)
SaBE3





C291Y
TGC
TAC
GCAGCAGUGCGUCAUCCCAA
463
(GAG)
20 (C2)
VQR-SpBE3





AUGCAGCAGUGCGUCAUCCC
464
(AAG)
20 (C4)
SpBE3





AUGCAGCAGUGCGUCAUCCC
465
(AAGAGT)
20 (C4)
SaBE3





P293S/L
CCC
TCC
CCCAUCAUCUAUGCCUUUGU
466
(CGG)
20 (C1/2)
SpBE3




or
CCAUCAUCUAUGCCUUUGU
467
(CGG)
19 (C2)
SpBE3




CTC










P332S/L
CCC
TCC
GGCUCCCGAGCGAGCAAGCU
468
(CAG)
20 (C4/5)
SpBE3




or
CAAGAGGCUCCCGAGCGAGC
469
(AAG)
20 (10/11)
SpBE3




CTC
GAGGCUCCCGAGCGAGCAAG
470
(CTCAGT)
20 (C7/8)
KKH-SaBE3





Base editors:


SpBE3 = APOBEC1-SpCas9n-UGI;


VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI;


EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI;


VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI;


SaBE3 = APOBEC1-SaCas9n-UGI;


KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI.













TABLE 5







Guide-RNAs designed for engineering new HIV-protective variants of genome/base editing of


CCR5 using base-editor BE3.














Target
Target
Stop

SEQ ID


GE / BE


variant
codon
codon
Designed guide-RNAs
NO:
(PAM)
Size (C#)
method





Q4X
CAA
TAA
CAAGUGUCAAGUCCAAUCUA
471
(UGAC)
20 (C1)
VQR-SpBE3




(Ochre)
AAGAUGGAUUAUCAAGUGUC
472
(AAG)
20 (C13)
SpBE3





Q21X
CAA
TAA
CCUGCCAAAAAAUCAAUGUG
473
(AAG)
20 (C6)
SpBE3




(Ochre)
UGCCAAAAAAUCAAUGUGAA
474
(GCAAAT)
20 (C4)
SaBE3





W86X
TGG
TAG
CCCAGAAGGGGACAGUAAGA
475
(AGG)
20 (C3/2)
SpBE3




(Amber)
GCCCAGAAGGGGACAGUAAG
476
(AAG)
20 (C4/3)
SpBE3




or
GAGCCCAGAAGGGGACAGUA
477
(AGAA)
20 (C5/4)
VQR-SpBE3




TGA
UGAGCCCAGAAGGGGACAGU
478
(AAG)
20 (C6/7)
SpBE3




(Opal)
AGCAUAGUGAGCCCAGAAGGG
479
(GACAGT)
21 (C13)
KKH-SaBE3





Q93X
CAG
TAG
GCUGCCGCCCAGUGGGACUU
480
(TGG)
20 (C9)
SpBE3




(Amber)
CUGCCGCCCAGUGGGACUUU
481
(GGAA)
20 (C9)
VQR-SpBE3





CUGCCGCCCAGUGGGACUUU
482
(GGAAAT)
20 (C9)
KKH-SaBE3





GCCCAGUGGGACUUUGGAAA
483
(TACAAT)
20 (C4)
KKH-SaBE3





W94X
TGG
TAG
AGUCCCACUGGGCGGCAGCA
484
(TAG)
20 (C5/6)
SpBE3




(Amber)
UCCAAAGUCCCACUGGGCGG
485
(CAG)
20 (C10)
SpBE3




or
CCCACUGGGCGGCAGCAUAG
486
(TGAG)
20 (C2/1)
VQR-SpBE3




TGA
GUCCCACUGGGCGGCAGCAU
487
(AGTG)
20 (C4/3)
VQR-SpBE3




(Opal)
CAAAGUCCCACUGGGCGGCAG
488
(CATAGT)
21 (C8/9)
KKH-SaBE3





Q102X
CAA
TAA
CAAUGUGUCAACUCUUGACA
489
(GGG)
20 (C9)
SpBE3




(Ochre)
ACAAUGUGUCAACUCUUGAC
490
(AGG)
20 (C10)
SpBE3





Q170X
CAA
TAA
UUUACCAGAUCUCAAAAAGA
491
(AGG)
20 (C13)
SpBE3




(Ochre)










Q186X
CAG
TAG
ACAGUCAGUAUCAAUUCUGG
492
(AAG)
20 (C6)
SpBE3




(Amber)
CAUACAGUCAGUAUCAAUUC
493
(TGG)
20 (C9)
SpBE3





AUACAGUCAGUAUCAAUUCU
494
(GGAA)
20 (C8)
VQR-SpBE3





CAGUCAGUAUCAAUUCUGGA
495
(AGAA)
20 (C5)
VQR-SpBE3





ACAGUCAGUAUCAAUUCUGG
496
(AAGAAT)
20 (C6)
SaBE3





Q188X
CAA
TAA
AUCAAUUCUGGAAGAAUUUC
497
(CAG)
20 (C3)
SpBE3




(Ochre)
ACAGUCAGUAUCAAUUCUGG
498
(AAG)
20 (C12)
SpBE3





CAGUCAGUAUCAAUUCUGGA
499
(AGAA)
20 (C11)
VQR-SpBE3





UCAAUUCUGGAAGAAUUUCC
500
(AGAC)
20 (C2)
VQR-SpBE3





ACAGUCAGUAUCAAUUCUGG
501
(AAGAAT)
20 (C12)
SaBE3





W190X
TGG
TAG
CAGAAUUGAUACUGACUGUA
502
(TGG)
20 (C1)
SpBE3




(Amber)
AAUUCUUCCAGAAUUGAUAC
503
(TGA)
20 (C8/9)
SpBE3




or









TGA









(Opal)










Q194X
CAG
TAG
GAAUUUCCAGACAUUAAAGA
504
(TAG)
20 (C8)
SpBE3




(Amber)
GGAAGAAUUUCCAGACAUUA
505
(AAG)
20 (C12)
SpBE3





GAAGAAUUUCCAGACAUUAA
506
(AGAT)
20 (C11)
VQR-SpBE3





UGGAAGAAUUUCCAGACAUU
507
(AAAGAT)
20 (C13)
KKH-SaBE3





AAGAAUUUCCAGACAUUAAA
508
(GATAGT)
20 (C10)
KKH-SaBE3





W248X
TGG
TAG
CCAGAAGAGAAAAUAAACAAU
509
(CATGAT)
21 (C1/−1)
KKH-SaBE3




(Amber)
GGAGCCCAGAAGAGAAAAUA
510
(AACAAT)
20 (C7/6)
KKH-SaBE3




or









TGA









(Opal)










Q261X
CAG
TAG
AACACCUUCCAGGAAUUCUU
511
(TGG)
20 (C10)
20 (010)




(Amber)
CUUCCAGGAAUUCUUUGGCC
512
(TGAA)
20 (C5)
20(05)





CCUUCCAGGAAUUCUUUGGC
513
(CTGAAT)
20 (C6)
20(06)





UCCAGGAAUUCUUUGGCCUG
514
(AATAAT)
20 (C3)
20(03)





Q277X
CAA
TAA
GGACCAAGCUAUGCAGGUGA
515
(CAG)
20 (C5)
SpBE3




(Ochre)
ACCAAGCUAUGCAGGUGACA
516
(GAG)
20 (C3)
SpBE3





ACAGGUUGGACCAAGCUAUG
517
(CAG)
20 (C12)
SpBE3





CAGGUUGGACCAAGCUAUGC
518
(AGG)
20 (C11)
SpBE3





AGGUUGGACCAAGCUAUGCA
519
(GGTG)
20 (C10)
VQR-SpBE3





GUUGGACCAAGCUAUGCAGG
520
(TGAC)
20 (C8)
VQR-SpBE3





GACCAAGCUAUGCAGGUGAC
521
(AGAG)
20 (C4)
VQR-SpBE3





AACAGGUUGGACCAAGCUAU
522
(GCAGGT)
20 (C13)
KKH-SaBE3





Q280X
CAG
TAG
AUGCAGGUGACAGAGACUCU
523
(UGG)
20 (C4)
SpBE3




(Amber)
UGCAGGUGACAGAGACUCUU
524
(GGG)
20 (C3)
SpBE3





GACCAAGCUAUGCAGGUGAC
525
(AGAG)
20 (C13)
VQR-SpBE3





ACCAAGCUAUGCAGGUGACA
526
(GAG)
20 (C12)
SpBE3





CCAAGCUAUGCAGGUGACAG
527
(AGAC)
20 (C11)
VQR-SpBE3





GCAGGUGACAGAGACUCUUG
528
(GGAU)
20 (C2)
VQR-SpBE3





AUGCAGGUGACAGAGACUCU
529
(UGGGAU)
20 (C4)
SaBE3





Q328X
CAG
TAG
UUUUCCAGCAAGAGGCUCCC
530
(GAG)
20 (C6)
VQR-SpBE3




(Amber)
AUUUUCCAGCAAGAGGCUCC
531
(CGAG)
20 (C7)
EQR-SpBE3





UUUCCAGCAAGAGGCUCCCG
532
(AGCG)
20 (C5)
VRER-SpBE3





UCCAGCAAGAGGCUCCCGAG
533
(CGAG)
20 (C3)
EQR-SpBE3





CCAGCAAGAGGCUCCCGAGC
534
(GAG)
20 (C2)
EQR-SpBE3













Q329X
CAA
TAA
same as above for Q328X




(Ochre)


















R334X
CGA
TGA
GGCUCCCGAGCGAGCAAGCU
535
(CAG)
20 (C13)
SpBE3




(Opal)
GAGGCUCCCGAGCGAGCAAG
536
(CUCAGU)
20 (C13)
KKH-SaBE3





GCGAGCAAGCUCAGUUUACA
537
(CCCGAU)
20 (C2)
KKH-SaBE3





R341X
CGA
TGA
GUUUACACCCGAUCCACUGG
538
(GGAG)
20 (C10)
VQR-SpBE3




(Opal)
ACACCCGAUCCACUGGGGAG
539
(CAG)
20 (C6)
SpBE3





CACCCGAUCCACUGGGGAGC
540
(AGG)
20 (C5)
SpBE3





ACCCGAUCCACUGGGGAGCA
541
(GGAA)
20 (C4)
VQR-SpBE3





ACCCGAUCCACUGGGGAGCA
542
(GGAAAU)
20 (C4)
KKH-SaBE3





Q346X
CAA
TAA
GGGGAGCAGGAAAUAUCUGU
543
(GGG)
20 (C7)
SpBE3




(Ochre)
UGGGGAGCAGGAAAUAUCUG
544
(UGG)
20 (C8)
SpBE3





ACUGGGGAGCAGGAAAUAUC
545
(UGUG)
20 (C10)
VQR-SpBE3





GCAGGAAAUAUCUGUGGGCU
546
(UGUG)
20 (C2)
VQR-SpBE3





Base editors:


SpBE3 = APOBEC1-SpCas9n-UGI;


VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI;


EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI;


VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI;


SaBE3 = APOBEC1-SaCas9n-UGI;


KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI.













TABLE 6







Examples of genome-editing reactions to introduce STOP codons to destabilize or


prevent the translation of full-length functional CCR5 protein (FIG. 3),


mimicking the HIV protective effect of the CCR5-Δ32 allele.












Target
Amino acid

Genome-editing
Edited
Stop codon


codon
(abbreviation)
Method
reaction(s)
outcome
name





CAG
Glutamine (Gln/Q)
Base-
1st base C → T coding
TAG
Amber




editing
strand







TGG
Tryptophan
Base-
2nd base C → T on
TAG
Amber



(Trp/W)
editing
complementary strand







CGA
Arginine (Arg/R)
Base-
1st base C → T coding
TGA
Opal




editing
strand







CAA
Glutamine (Gln/Q)
Base-
1st base C → T coding
TAA
Ochre




editing
strand







TGG
Tryptophan
Base-
3rd base C → T on
UGA
Opal



(Trp/W)
editing
complementary strand







CGG
Arginine (Arg/R)
Base-
1st base C → T on coding
TAG
Amber




editing
strand and 2nd base







C → T on complementary







strand







CGA
Arginine (Arg/R)
Base-
1st base C → T on coding
TAA
Ochre




editing
strand and 2nd base







C → T on complementary







strand
















TABLE 7







Examples of base-editing reactions to alter amino acid codons in order


to produce novel CCR5 variants (FIG. 3).











Target
Amino acid
Base-editing
Edited
Edited amino acid


codon
(abbreviations)
reaction(s)
codon
(abbreviations)





CTT
Leucine (Leu/L)
1st base C → T on coding
TTT
Phenylalanine (Phe, F)




strand







CTC
Leucine (Leu/L)
1st base C → T on coding
TTC
Phenylalanine (Phe, F)




strand







ATG
Methionine (Met/M)
3rd base C → T on
ATA
Isoleucine (Ile, I)




complementary strand







GTT
Valine (Val/V)
1st base C → T on
ATT
Isoleucine (Ile, I)




complementary strand







GTC
Valine (Val/V)
1st base C → T on
ATC
Isoleucine (Ile, I)




complementary strand







GTA
Valine (Val/V)
1st base C → T on
ATA
Isoleucine (Ile, I)




complementary strand







GTG
Valine (Val/V)
1st base C → T on
ATG
Methionine (Met/M)




complementary strand







TCT
Serine (Ser/S)
2nd base C → T on coding
TTT
Phenylalanine (Phe, F)




strand







TCC
Serine (Ser/S)
2nd base C → T on coding
TTC
Phenylalanine (Phe, F)




strand







TCA
Serine (Ser/S)
2nd base C → T on coding
TTA
Leucine (Leu/L)




strand







TCG
Serine (Ser/S)
2nd base C → T on coding
TTG
Leucine (Leu/L)




strand







AGT
Serine (Ser/S)
2nd base C → T on
AAT
Asparagine (Asp/N)




complementary strand







AGC
Serine (Ser/S)
2nd base C → T on
AAC
Asparagine (Asp/N)




complementary strand







CCT
Proline (Pro/P)
1st base C → T on coding
TCT
Serine (Ser/S)




strand







CCC
Proline (Pro/P)
1st base C → T on coding
TCC
Serine (Ser/S)




strand







CCA
Proline (Pro/P)
1st base C → T on coding
TCA
Serine (Ser/S)




strand







CCG
Proline (Pro/P)
1st base C → T on coding
TCG
Serine (Ser/S)




strand







CCT
Proline (Pro/P)
2nd base C → T on coding
CTT
Leucine (Leu/L)




strand







CCC
Proline (Pro/P)
2nd base C → T on coding
CTC
Leucine (Leu/L)




strand







CCA
Proline (Pro/P)
2nd base C → T on coding
CTA
Leucine (Leu/L)




strand







CCG
Proline (Pro/P)
2nd base C → T on coding
CTG
Leucine (Leu/L)




strand







ACT
Threonine (Thr/T)
2nd base C → T on coding
ATT
Isoleucine (Ile/I)




strand







ACC
Threonine (Thr/T)
2nd base C → T on coding
ATC
Isoleucine (Ile/I)




strand







ACA
Threonine (Thr/T)
2nd base C → T on coding
ATA
Isoleucine (Ile/I)




strand







ACG
Threonine (Thr/T)
2nd base C → T on coding
ATG
Methionine (Met/M)




strand







GCT
Alanine (Ala/A)
2nd base C → T on coding
GTT
Valine (Val/V)




strand







GCC
Alanine (Ala/A)
2nd base C → T on coding
GTC
Valine (Val/V)




strand







GCA
Alanine (Ala/A)
2nd base C → T on coding
GTA
Valine (Val/V)




strand







GCG
Alanine (Ala/A)
2nd base C → T on coding
GTG
Valine (Val/V)




strand







GCT
Alanine (Ala/A)
1st base CT on
ACT
Threonine (Thr/T)




complementary strand







GCC
Alanine (Ala/A)
1st base C → T on
ACC
Threonine (Thr/T)




complementary strand







GCA
Alanine (Ala/A)
1st base C → T on
ACA
Threonine (Thr/T)




complementary strand







GCG
Alanine (Ala/A)
1st base C → T on
ACG
Threonine (Thr/T)




complementary strand







CAT
Histidine (His/H)
1st base C → T on
TAT
Tyrosine (Tyr/Y)




complementary strand







CAC
Histidine (His/H)
1st base C → T on
TAC
Tyrosine (Tyr/Y)




complementary strand







GAT
Aspartate (Asp/D)
1st base C → T on
AAT
Asparagine (Asp/N)




complementary strand







GAC
Aspartate (Asp/D)
1st base C → T on
AAC
Asparagine (Asp/N)




complementary strand







GAA
Glutamate (Glu/E)
1st base C → T on
AAA
Lysine (Lys/K)




complementary strand







GAG
Glutamate (Glu/E)
1st base C → T on
AAG
Lysine (Lys/K)




complementary strand







TGT
Cysteine (Cys/C)
2nd base C → T on
TAT
Tyrosine (Tyr/Y)




complementary strand







TGC
Cysteine (Cys/C)
2nd base C → T on
TAC
Tyrosine (Tyr/Y)




complementary strand







CGT
Arginine (Arg/R)
1st base C → T on coding
TGT
Cysteine (Cys/C)




strand







CGC
Arginine (Arg/R)
1st base C → T on coding
TGC
Cysteine (Cys/C)




strand







CGC
Arginine (Arg/R)
1st base C → T on coding
TGC
Cysteine (Cys/C)




strand







AGA
Arginine (Arg/R)
2nd base C → T on
AAA
Lysine (Lys/K)




complementary strand







AGG
Arginine (Arg/R)
2nd base C → T on
AAG
Lysine (Lys/K)




complementary strand







GGT
Glycine (Gly/G)
2nd base C → T on
GAT
Aspartate (Asp/D)




complementary strand







GGC
Glycine (Gly/G)
2nd base C → T on
GAC
Aspartate (Asp/D)




complementary strand







GGA
Glycine (Gly/G)
2nd base C → T on
GAA
Glutamate (Glu/E)




complementary strand







GGG
Glycine (Gly/G)
2nd base C → T on
GAG
Glutamate (Glu/E)




complementary strand







GGT
Glycine (Gly/G)
1st base C → T on
AGT
Serine (Ser/S)




complementary strand







GGC
Glycine (Gly/G)
1st base C → T on
AGC
Serine (Ser/S)




complementary strand







GGA
Glycine (Gly/G)
1st base C → T on
AGA
Arginine (Arg/R)




complementary strand







GGG
Glycine (Gly/G)
1st base C → T on
AGG
Arginine (Arg/R)




complementary strand
















TABLE 8





Examples of specific guide RNA sequences used for making variants. The sequences, from top


to bottom, correspond to SEQ ID NOs: 547-636.






















CCR5









variant
Cas9-Bea
guide RNA sequence
PAM
C target
EfEb
Hsuc
Fusi





P332S/L
KKH-SaBE3
GAGGCUCCCGAGCGAGCAAG
(CTCAGT)
C7/C8
4.9
97






R334X
KKH-SaBE3
GAGGCUCCCGAGCGAGCAAG
(CTCAGT)
C13
4.9
97






W94X
SpBE3
UCCAAAGUCCCACUGGGCGG
(CAG)
C10/C11
7.8
82
51





C290Y,
SpBE3
GCAGCAGUGCGUCAUCCCAA
(GAG)
C4/C-1
7.2
46
64


C291Y












P19S/L
VQR-SpBE3
GAGCCCUGCCAAAAAAUCAA
(TGTG)
C5/C6
6.2
100






W94X
KKH-SaBE3
CAAAGUCCCACUGGGCGGCAG
(CATAGT)
C8/C9
5.0
98






Q328X,
VRER-SpBE3
UUUCCAGCAAGAGGCUCCCG
(AGCG)
C5/C8
5.5
95



Q329X












Q188X
SaBE3
ACAGUCAGUAUCAAUUCUGG
(AAGAAT)
C12
4.5
92






G115R/E
KKH-SaBE3
GAUUCCAGAGAAGAAGCCUA
(TAAAAT)
C4/C5
5.4
87






P19S/L
KKH-SaBE3
UAUACAUCGGAGCCCUGCCA
(AAAAAT)
C13
4.8
97






A335V
VQR-SpBE3
GAGCAAGCUCAGUUUACACC
(CGAT)
C4
7.8
82






R341X
VQR-SpBE3
GUUUACACCCGAUCCACUGG
(GGAG)
C10
6.8
91






Q277X
VQR-SpBE3
AGGUUGGACCAAGCUAUGCA
(GGTG)
C10
7.6
99






E283K
KKH-SaBE3
AGUCUCUGUCACCUGCAUAG
(CTTGGT)
C6
9.0
91






G44D/S
SaBE3
AAAACCAAAGAUGAACACCA
(GTGAGT)
C5/C6
4.6
44






G163R/E
VQR-SpBE3
GUAAAGAUGAUUCCUGGGAG
(AGAC)
C13
4.9
41






Q186X
SpBE3
ACAGUCAGUAUCAAUUCUGG
(AAG)
C6
4.5
62
66





W248X
KKH-SaBE3
GGAGCCCAGAAGAGAAAAUA
(AACAAT)
C7/6
5.2
82






G47S/D
VQR-SpBE3
CAUGUUGCCCACAAAACCAA
(AGAT)
C8/C9
7.1
39






Q277X
SpBE3
ACAGGUUGGACCAAGCUAUG
(CAG)
C12
5.5
81
68





Q277X
KKH-SaBE3
AACAGGUUGGACCAAGCUAU
(GCAGGT)
C13
5.6
95






P183S/L
KKH-SaBE3
UCAUUUUCCAUACAGUCAGU
(ATCAAT)
C8
3.7
89






G202R/E
KKH-SaBE3
UCAUUUUCCAUACAGUCAGU
(ATCAAT)
C6/C7
3.7
89






R334X
KKH-SaBE3
GCGAGCAAGCUCAGUUUACA
(CCCGAT)
C2
7.2
95






S149N
KKH-SaBE3
AUCACACUUGUCACCACCCC
(AAAGGT)
C7
4.7
90






C20Y
KKH-SaBE3
UUGGCAGGGCUCCGAUGUAU
(AATAAT)
C5
7.5
99






Q4X
VQR-SpBE3

CAAGUGUCAAGUCCAAUCUA

(TGAC)
Cl
3.5
81






C178Y
SpBE3
UGAGAGCUGCAGGUGUAAUG
(AAG)
C10
10.1
70
58





P332S/L
SpBE3
CAAGAGGCUCCCGAGCGAGC
(AAG)
C10/C11
6.8
87
47





Q93X
KKH-SaBE3
GCCCAGUGGGACUUUGGAAA
(TACAAT)
C4
6.0
92






C20Y
KKH-SaBE3

CAGGGCUCCGAUGUAUAAUA

(ATTGAT)
C1
6.9
96






D2N
VRER-SpBE3
UAAUCCAUCUUGUUCCACCC
(TGTG)
C5
5.6
99






P332S/L
SpBE3
GGCUCCCGAGCGAGCAAGCU
(CAG)
C5/C6
4.2
88
43





R334X
SpBE3
GGCUCCCGAGCGAGCAAGCU
(CAG)
C13
4.2
88
43





G216S/D
VQR-SpBE3
UAGGAUUCCCGAGUAGCAGA
(TGAC)
C8/C9
7.7
45






W86X
VQR-SpBE3
GAGCCCAGAAGGGGACAGUA
(AGAA)
C5/C6
5.2
54






C290Y,
SaBE3
AUGCAGCAGUGCGUCAUCCC
(AAGAGT)
C4/C7
8.2
65



C291Y












S149N
VQR-SpBE3
ACUUGUCACCACCCCAAAGG
(TGAC)
C2
7.4
40






C269Y
VQR-SpBE3
ACUGCAAUUAUUCAGGCCAA
(AGA)
C5
5.3
58






D2N
KKH-SaBE3

CCAUCUUGUUCCACCCUGUGC

(ATAAAT)
C-1
4.2
94






C178Y
VQR-SpBE3
GAGAGCUGCAGGUGUAAUGA
(AGA)
C9
3.2
70






S149N
SpBE3
CACACUUGUCACCACCCCAA
(AGG)
C5
6.2
39
64





Pl9S/L
KKH-SaBE3
CAUCGGAGCCCUGCCAAAAA
(ATCAAT)
C9/10
7.4
93






Q261X
KKH-SaBE3
UCCAGGAAUUCUUUGGCCUG
(AATAAT)
C3
6.5
88






C290Y,
SpBE3
AUGCAGCAGUGCGUCAUCCC
(AAG)
C4/C7
8.2
59
50


C291Y












Q93X
KKH-SaBE3
CUGCCGCCCAGUGGGACUUU
(GGAAAT)
C9
6.2
96
40





C269Y
SaBE3
UACUGCAAUUAUUCAGGCCA
(AAGAAT)
C6
4.4
93






P206S/L
KKH-SaBE3
CUGGUCCUGCCGCUGCUUGU
(CATGGT)
C10/C11
9.7
88






G47S/D
VQR-SpBE3
GUUGCCCACAAAACCAAAGA
(TGAA)
C5/C6
5.1
37






G47S/D
KKH-SaBE3
AGCAUGUUGCCCACAAAACC
(AAAGAT)
C10/C11
6.2
90






Q93X
SpBE3
GCUGCCGCCCAGUGGGACUU
(TGG)
C10
7.4
70
42





R341X
KKH-SaBE3
ACCCGAUCCACUGGGGAGCA
(GGAAAT)
C4
4.4
94
55





P34S/L,
SpBE3
CCUGCCUCCGCUCUACUCAC
(TGG)
C5-C9
6.3
55
47


P35S/L












G216S/D
VQR-SpBE3
UCCCGAGUAGCAGAUGACCA
(TGAC)
C2/C3
3.9
46






Splice
VQR-SpBE3
UGCACAGGGUGGAACAAGAU
(GGAT)
C5
5.5
65



site












Splice
SpBE3
AUGCACAGGGUGGAACAAGA
(TGG)
C6
4.9
42
55


site












Splice
KKH-SaBE3
UUCCACCCUGUGCAUAAAUA
(AAAAGT)
C7/8
3.1
93



site












Splice
VQR-SpBE3
CCCUGUGCAUAAAUAAAAAG
(TGA)
C3/2
6.3
36



site












Q277X
SpBE3
CAGGUUGGACCAAGCUAUGC
(AGG)
C11
6.1
79
47





Q93X
VQR-SpBE3
CUGCCGCCCAGUGGGACUUU
(GGAA)
C9
6.2
78






R223Q
SaBE3

CGAAGCAGAGUUUUUAGGAUUC

(CCGAGT)
C-2
6.5
86






G44D/S
KKH-SaBE3
CCACAAAACCAAAGAUGAAC
(ACCAGT)
C9/C10
6.1
85






P206S/L
SpBE3
GGUCCUGCCGCUGCUUGUCA
(TGG)
C8/C9
4.9
65
46





P34S/L,
KKH-SaBE3
CUCCUGCCUCCGCUCUACUC
(ACTGGT)
C3-C8
7.2
93



P35S/L












W94X
VQR-SpBE3

CCCACUGGGCGGcAGcAuAG

(TGAG)
C2/1
7.3
85






Splice
SpBE3
AUUUAUGCACAGGGUGGAAC
(AAG)
C10
7.7
61
39


site












Splice
VQR-SpBE3
UUUAUGCACAGGGUGGAACA
(AGAT)
C9
6.9
58



site












C290Y,
VQR-SpBE3
UGCAGCAGUGCGUCAUCCCA
(AGAG)
C6/C3
7.2
59



C291Y












W190X
SpBE3

CAGAAUUGAUACUGACUGUA

(TGG)
C1
3.7
73
42





Q102X
SpBE3
ACAAUGUGUCAACUCUUGAC
(AGG)
C10
8.3
77
50





Q21X
SaBE3
UGCCAAAAAAUCAAUGUGAA
(GCAAAT)
C4
3.7
75






Splice
WT SpCas9
GAGGGCAACUAAAUACAUUC
(TAG)
n/a
6.5
69
40


site












Q280X
SaBE3
AUGCAGGUGACAGAGACUCU
(TGGGAT)
C4
6.4
47
49





R341X
SpBE3
CACCCGAUCCACUGGGGAGC
(AGG)
C5
6.9
68
45





R223Q
VQR-SpBE3
ACACCGAAGCAGAGUUUUUA
(GGA)
C5
7.1
63






P162S/L
KKH-SaBE3
UCUCCCAGGAAUCAUCUUUA
(CCAGAT)
C5/C6
6.0
91






Q261X
VQR-SpBE3
CUUCCAGGAAUUCUUUGGCC
(TGAA)
C5
6.3
56






Splice
WT SpCas9
AGGGCAACUAAAUACAUUCU
(AGG)
n/a
5.3
40
40


site












W190X
SpBE3
AAUUCUUCCAGAAUUGAUAC
(TGA)
C8/9
5.6
61






P162S/L
VQR-SpBE3
UCCCAGGAAUCAUCUUUACC
(AGAT)
C3/C4
3.3
74






Q328X,
EQR-SpBE3
AUUUUCCAGCAAGAGGCUCC
(CGAG)
C7/C10
9.8
54



Q329X












Splice
WT SpCas9
AAACUGUUUUAUACAUCAAU
(AGG)
n/a
4.4
49
36


site












R223Q
SaBE3
CGACACCGAAGCAGAGUUUU
(TAGGAT)
C7
4.7
77






Q261X
SaBE3
CCUUCCAGGAAUUCUUUGGC
(CTGAAT)
C6
6.1
61






G145R/E
SpBE3
CACCCCAAAGGUGACCGUCC
(TGG)
C5/C6
5.4
48
51





R223Q
SpBE3
CGACACCGAAGCAGAGUUUU
(TAG)
C7
4.7
68
14





P293S/L
SpBE3

CCCAUCAUCUAUGCCUUUGU

(CGG)
Cl/C2
6.3
58
44





R223Q
SpBE3
GACACCGAAGCAGAGUUUUU
(AGG)
C6
5.3
70
22





Q261X
SpBE3
AACACCUUCCAGGAAUUCUU
(TGG)
C10
7.0
34
31





P1835/L
SpBE3

CAUACAGUCAGUAUCAAUUC

(TGG)
C1-/−1
7.1
41
27





CCR5





Prox/
Off-


variant
Chari
Doench
Wang
M. - M.
Housden
GC
targetsd





P332S/L
85
38
80
92
4

0 - 0 - 0 -









1 - 8





R334X
85
38
80
92
4

0 - 0 - 0 -









1 - 8





W94X
91
69
85
57
7
+GG
0 - 0 - 0 -









12 -109





C290Y,
88
87
84
60
7

0 - 1 - 0 -


C291Y






8 - 88





P19S/L
85
49
83
41
6

0 - 0 - 0 - 









0 - 2





W94X
65
19
76
76
7
+
0 - 0 - 0 -









1 - 19





Q328X,
96
38
73
53
5
+
0 - 0 - 0 -


Q329X






2 - 6





Q188X
84
39
87
36
4
−GG
0 - 0 - 0 -









2 - 31





G115R/E
95
44
78
45
5

0 - 0 - 0 -









4 - 46





P19S/L
36
30
78
48
4
+
0 - 0 - 0 -









1 - 9





A335V
10
53
70
39
7

0 - 0 - 0 -









8 - 88





R341X
87
30
83
37
6
+GG
0 - 0 - 0 -









2 - 31





Q277X
67
27
71
35
7

0 - 0 - 0 -









1 - 5





E283K
81
39
62
40
9

0 - 0 - 0 -









6 - 42





G44D/S
94
54
86
45
4

1 - 0 - 0 -









13 -190





G163R/E
70
51
84
50
4
+
0 - 1 - 2 -









37-211





Q186X
84
37
87
36
4
−GG
0 - 0 - 2 -









25 - 95





W248X
86
12
77
48
5

0 - 0 - 1 -









3 - 95





G47S/D
65
41
81
58
7

1 - 0 - 0 -









17 - 207





Q277X
95
21
47
69
5

0 - 0 - 0 -









11 - 78





Q277X
18
17
46
54
5

0 - 0 - 0 -









3 - 15





P183S/L
42
43
52
28
3

0 - 0 - 0 -









9 - 53





G202R/E
42
43
52
28
3

0 - 0 - 0 -









9 - 53





R334X
60
29
41
46
7

0 - 0 - 0 -









1 - 14





S149N
53
1
60
58
4
+
0 - 0 - 0 -









4 - 36





C20Y
8
2
36
71
7

0 - 0 - 0 -









1 - 6





Q4X
23
5
72
48
3

0 - 0 - 1 -









9 - 139





C178Y
85
31
66
38
10

0 - 0 - 0 -









26 - 226





P332S/L
60
3
77
35
6
+
0 - 0 - 0 -









4 - 100





Q93X
28
11
59
39
6

0 - 0 - 0 -









6 - 38





C20Y
9
8
41
55
6

0 - 0 - 0 -









1 - 15





D2N
35
12
57
30
5
+
0 - 0 - 0 -









0 - 3





P332S/L
68
9
47
50
4

0 - 0 - 0 -









4 - 61





R334X
68
9
47
50
4

0 - 0 - 0 -









4 - 61





G216S/D
48
27
76
46
7

0 - 1 - 0 -









5 - 99





W86X
93
8
63
68
4

0 - 0 - 2 -









29 - 348





C290Y,
65
8
57
62
8
+
0 - 1 - 0 -


C291Y






2 - 26





S149N
95
23
78
51
7
−GG
1 - 0 - 0 -









10 - 148





C269Y
70
7
61
65
5
+
0 - 0 - 2 -









26 - 277





D2N
19
7
57
30
6
+
0 - 0 - 0 -









3 -29





C178Y
53
6
76
36
3

0 - 0 - 0 -









22 - 251





S149N
87
21
65
63
6
+
1 - 0 - 0 -









22 - 147





Pl9S/L
66
15
38
40
7

0 - 0 - 0 -









0 - 19





Q261X
79
8
41
49
6
+
0 - 0 - 0 -









3 - 59





C290Y,
65
7
57
62
8
+
0 - 1 - 1 -


C291Y






5 - 83





Q93X
16
3
18
67
6

0 - 0 - 0 -









0 - 16





C269Y
15
11
57
22
4
+
0 - 0 - 0 -









4 - 38





P206S/L
22
6
29
60
9

0 - 0 - 1 -









3 - 48





G47S/D
94
24
88
32
5

1 - 1 - 1 -









15 - 198





G47S/D
27
13
56
21
6

0 - 0 - 0 -









6 - 36





Q93X
32
3
56
51
7

0 - 0 - 2 -









13 - 126





R341X
28
7
26
51
4
+
0 - 0 - 0 -









1 - 18





P34S/L,
25
17
47
56
6

0 - 1 - 0 -


P35S/L






26 - 175





G216S/D
68
31
53
44
3

1 - 0 - 0 -









4 - 60





Splice
47
8
29
71
5

0 - 0 - 1 -


site






15 - 253





Splice
71
11
65
55
4

0 - 0 - 1 -


site






43 - 421





Splice
31
11
24
43
3

0 - 0 - 0 -


site






5 - 26





Splice
72
44
67
21
6

0 - 1 - 3 -


site






40 - 394





Q277X
44
4
50
33
6

0 - 0 - 2 -









9 - 77





Q93X
16
3
18
67
6

0 - 0 - 1 -









4 - 88





R223Q
4
2
19
57
4

0 - 0 - 1 -









9 - 74





G44D/S
39
9
54
16
6

0 - 0 - 1 -









6 - 77





P206S/L
14
4
62
33
4

0 - 0 - 3 -









18 - 149





P34S/L,
12
3
29
37
7

0 - 0 - 0 -


P35S/L






6 - 47





W94X
94
1
42
31
7

0 - 0 - 0 -









7 - 98





Splice
11
13
41
44
7

0 - 0 - 3 -


site






11 - 172





Splice
82
9
45
46
6

0 - 0 - 2 -


site






18 - 283





C290Y,
51
7
40
51
3

0 - 1 - 0 -


C291Y






7 - 73





W190X
41
3
32
48
3

0 - 0 - 1 -









14 - 140





Q102X
55
9
48
21
8

0 - 0 - 1 -









7 - 96





Q21X
48
22
24
30
3

0 - 0 - 0 -









18 - 172





Splice
51
2
69
10
6

0 - 0 - 0 -


site






15 - 134





Q280X
48
3
54
43
6

0 - 1 - 0 -









6 - 55





R341X
32
1
42
34
6
+
0 - 0 - 1 -









17 - 100





R223Q
47
21
30
30
7

0 - 0 - 3 -









10 - 160





P162S/L
56
1
23
24
6

0 - 0 - 0 -









1 - 50





Q261X
10
7
49
27
6
+
0 - 1 - 2 -









20 - 207





Splice
14
2
56
40
5

0 - 0 - 6 -


site






39 - 217





W190X
14
12
49
11
5

0 - 0 - 0 -









34 - 335





P162S/L
35
10
21
25
3

0 - 0 - 2 -









16 - 168





Q328X,
56
5
39
32
9
+
0 - 0 - 3 -


Q329X






18 - 484





Splice
5
6
48
25
4

0 - 0 - 7 -


site






33 - 312





R223Q
21
3
14
33
4

0 - 1 - 0 -









0 - 11





Q261X
16
10
38
14
6

0 - 1 - 2 -









2 - 54





G145R/E
32
0
29
44
5
+
0 - 1 - 0 -









3 - 71





R223Q
21
2
14
33
4

0 - 1 - 0 -









4 - 43





P293S/L
2
5
18
35
6

0 - 1 - 2 -









23 - 127





R223Q
76
3
17
25
5

0 - 0 - 4 -









10 - 92





Q261X
15
13
41
21
7

1 - 0 - 3 -









29 - 202





P1835/L
15
5
36
25
7

0 - 1 - 2 -









17 - 133






aBase editors: SpBE3 = APOBEC1-SpCas9n-UGI; VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI; EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI; VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI; SaBE3 = APOBEC1-SaCas9n-UGI; KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI.




bEfficiency score, based on Housden et al (Science Signaling, 2015, 8(393): rs9), which is herein incorporated by reference in its entirety.




cSpecificity scores based on Hsu et al (Nature biotechnology, 2013, 31(9): 827-832), Fusi et al (bioRxiv 021568; doi: http://dx.doi.org/10.1101/021568), Chari et al (Nature Methods, 2015, 12(9): 823-6), Doench et al (Nature Biotechnology, 2014, 32(12): 1262-7), Wang et al (Science, 2014, 343(6166): 80-4), Moreno-Mateos et al (Nature Methods, 2015, 12(10): 982-8), Housden et al (Science Signaling, 2015, 8(393): rs9), and the “Prox/GC” column shows “+” if the proximal 6 bp to the PAM has a GC count ≥4, and GG if the guide ends with GG, based on Farboud et al (Genetics, 2015, 199(4): 959-71). Each of the foregoing references is hereby incorporated by reference in its entirety.




dNumber of predicted off-target binding sites in the human genome allowing up to 0, 1, 2, 3 or 4 mismatches, respectively shown in the format 0 - 1 - 2 - 3 - 4. Algorithm used: Haeussler et al, Genome Biol. 2016; 17: 148, which is herein incorporated by reference in its entirety.














TABLE 9





Examples of specific guide RNA sequences used for making variants. The guide RNA sequences,


from top to bottom, correspond to SEQ ID NOs: 637-657 and the CCR2 sequences, from top to


bottom, correspond to SEQ ID NOs: 658-678.























CCR5
Cas9-


C






variant
BE
guide RNA sequence
PAM
target
CCR2 seq. (gRNA mismatches)
(m)
Eff.a
Hsub





C290Y/
SpBE3
GCAGCAGUGCGUCAUCCCAA
(GAG)
C5
GCAGCAGTGcustom character GTCATCCCAAGAG
1
7.2
46


C291Y













G44D/S
SaBE3
AAAACCAAAGAUGAACACCA
(GTGAGT)
C5/C6
AAAACCAAAGATGAACACCAGcustom character GAGT
0
4.6
44





G163R/
VQR-
GUAAAGAUGAUUCCUGGGAG
(AGAC)
C13
GTAAAGATGATTCCTGGGAcustom character AGAC
1
4.9
41


E
SpBE3












G47S/D
VQR-
CAUGUUGCCCACAAAACCAA
(AGAT)
C8/C9
CATGTTGCCCACAAAACCAAAGAT
0
7.1
39



SpBE3












G216S/
VQR-
UAGGAUUCCCGAGUAGCAGA
(TGAC)
C8/C9

custom character AGGATTCCCGAGTAGCAGATGAC

1
7.7
45


D
SpBE3












C290Y/
SaBE3
AUGCAGCAGUGCGUCAUCCC
(AAGAGT)
C4/C7
ATGCAGCAGTGcustom character GTCATCCCAAGAGT
1
8.2
65


C291Y













S149N
VQR-
ACUUGUCACCACCCCAAAGG
(TGAC)
C2
ACTTGTCACCACCCCAAAGGTGAC
0
7.4
40



SpBE3












S149N
SpBE3
CACACUUGUCACCACCCCAA
(AGG)
C5
CACACTTGTCACCACCCCAAAGG
0
6.2
39





C290Y/
SpBE3
AUGCAGCAGUGCGUCAUCCC
(AAG)
C4/C7
ATGCAGCAGTGcustom character GTCATCCCAAG
1
8.2
59


C291Y













G47S/D
VQR-
GUUGCCCACAAAACCAAAGA
(TGAA)
C5/C6
GTTGCCCACAAAACCAAAGATGAA
0
5.1
37



SpBE3












P34S/L/
SpBE3
CCUGCCUCCGCUCUACUCAC
(TGG)
C5-C9
CCTGCCTCCGCTCTACTCcustom character CTGG
1
6.3
55


P35S/L













G216S/
VQR-
UCCCGAGUAGCAGAUGACCA
(TGAC)
C2/C3
TCCCGAGTAGCAGATGACCATGAC
0
3.9
46


D
SpBE3












C290Y/
VQR-
UGCAGCAGUGCGUCAUCCCA
(AGAG)
C6
TGCAGCAGTGcustom character GTCATCCCAAGAG
1
7.2
59


C291Y
SpBE3












Q280X
SaBE3
AUGCAGGUGACAGAGACUCU
(TGGGAT)
C4
Acustom character GCAGGTGACAGAGACTCTTGGGAT
1
6.4
47





Q261X
VQR-
CUUCCAGGAAUUCUUUGGCC
(TGAA)
C5
CTTCCAGGAATTCTTcustom character GGCCTGAA
1
6.3
56



SpBE3












R223Q
SaBE3
CGACACCGAAGCAGAGUUUU
(TAGGAT)
C7
CGACACCGAAGCAGcustom character GTTTTcustom character AGGAT
1
4.7
77





Q261X
SaBE3
CCUUCCAGGAAUUCUUUGGC
(CTGAAT)
C6
CCTTCCAGGAATTCTTcustom character GGCCTGAcustom character T
1
6.1
61





G145R/
SpBE3
CACCCCAAAGGUGACCGUCC
(TGG)
C5/C6
CACCCCAAAGGTGACCGTCCTGG
0
5.4
48


E













R223Q
SpBE3
CGACACCGAAGCAGAGUUUU
(TAG)
C7
CGACACCGAAGCAGGcustom character TTTTcustom character AG
1
4.7
68





P293S/
SpBE3

CCCAUCAUCUAUGCCUUUGU

(CGG)
C1/C2
CCCATCATCTATGCCTTcustom character GTcustom character GG
1
6.3
58


L













Q261X
SpBE3
AACACCUUCCAGGAAUUCUU
(TGG)
C10
AACACCTTCCAGGAATTCTTcustom character GG
0
7.0
34













Off-







CCR5


targetsc







variant
Doench
M.-M.
(corrected)










C290Y/
87
60
0 - 0 - 0 -







C291Y


8 - 88










G44D/S
54
45
0 - 0 - 0 -










13 - 190










G163R/
51
50
0 - 0 - 2 -







E


37 - 211










G47S/D
41
58
0 - 0 - 0 -










17 - 207










G216S/
27
46
0 - 0 - 0 -







D


5 - 99










C290Y/
8
62
0 - 0 - 0 -







C291Y


2 - 26










S149N
23
51
0 - 0 - 0 -










10 - 148










S149N
21
63
0 - 0 - 0 -










22 - 147










C290Y/
7
62
0 - 0 - 1 -







C291Y


5 - 83










G47S/D
24
32
0 - 1 - 1 -










15 - 198










P34S/L/
17
56
0 - 0 - 0 -







P35S/L


26 - 175










G216S/
31
44
0 - 0 - 0 -







D


4 - 60










C290Y/
7
51
0 - 0 - 0 -







C291Y


7 - 73










Q280X
3
43
0 - 0 - 0 -










6 - 55










Q261X
7
27
0 - 0 - 2 -










20 - 207










R223Q
3
33
0 - 0 - 0 -










0 - 11










Q261X
10
14
0 - 0 - 2 -










2 - 54










G145R/
0
44
0 - 0 - 0 -







E


3 - 71










R223Q
2
33
0 - 0 - 0 -










4 - 43










P293S/
5
35
0 - 0 - 2 -







L


23 - 127










Q261X
13
21
0 - 0 - 3 -










29 - 202






aBase editors: SpBE3 = APOBEC1-SpCas9n-UGI; VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI; EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI; VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI; SaBE3 = APOBEC1-SaCas9n-UGI; KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI.




bEfficiency score, based on Housden et al (Science Signaling, 2015, 8(393): rs9), which is herein incorporated by reference in its entirety.




cSpecificity scores based on Hsu et al (Nature biotechnology, 2013, 31(9): 827-832), Doench et al (Nature Biotechnology, 2014, 32(12): 1262-7), Moreno-Mateos et al (Nature Methods, 2015, 12(10): 982-8), each of which is herein incorporated by reference in its entirety.



d) Number of predicted off-target binding sites in the human genome allowing up to 0, 1, 2, 3 or 4 mismatches, respectively shown in the format 0 - 1 - 2 - 3 - 4. These numbers were corrected to the CCR2 gene as an off-target, therefore, the specificity scores are expected to be higher. Algorithm used: Haeussler et al, Genome Biol. 2016; 17: 148, which is herein incorporated by reference in its entirety.






REFERENCES



  • 1. Komor, A. C.; Kim, Y. B.; Packer, M. S.; Zuris, J. A.; Liu, D. R., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, advance online publication.

  • 2. (a) Cong, L.; Ran, F. A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X.; Jiang, W.; Marraffini, L. A.; Zhang, F., Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339 (6121), 819-23; (b) Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337 (6096), 816-21; (c) Mali, P.; Yang, L.; Esvelt, K. M.; Aach, J.; Guell, M.; DiCarlo, J. E.; Norville, J. E.; Church, G. M., RNA-guided human genome engineering via Cas9. Science 2013, 339 (6121), 823-6.

  • 3. Ran, F. A.; Hsu, P. D.; Lin, C. Y.; Gootenberg, J. S.; Konermann, S.; Trevino, A. E.; Scott, D. A.; Inoue, A.; Matoba, S.; Zhang, Y.; Zhang, F., Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013, 154 (6), 1380-9.

  • 4. (a) Guilinger, J. P.; Thompson, D. B.; Liu, D. R., Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature biotechnology 2014, 32 (6), 577-82; (b) Tsai, S. Q.; Wyvekens, N.; Khayter, C.; Foden, J. A.; Thapar, V.; Reyon, D.; Goodwin, M. J.; Aryee, M. J.; Joung, J. K., Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature biotechnology 2014, 32 (6), 569-76.

  • 5. (a) Capoulade-Metay, C.; Ma, L.; Truong, L. X.; Dudoit, Y.; Versmisse, P.; Nguyen, N. V.; Nguyen, M.; Scott-Algara, D.; Barre-Sinoussi, F.; Debre, P.; Bismuth, G.; Pancino, G.; Theodorou, I., New CCR5 variants associated with reduced HIV coreceptor function in southeast Asia. AIDS 2004, 18 (17), 2243-52; (b) Carrington, M.; Kissner, T.; Gerrard, B.; Ivanov, S.; O'Brien, S. J.; Dean, M., Novel alleles of the chemokine-receptor gene CCR5. American journal of human genetics 1997, 61 (6), 1261-7; (c) Barmania, F.; Pepper, M. S., C—C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection. Applied & Translational Genomics 2013, 2, 3-16; (d) Cox, D. B.; Platt, R. J.; Zhang, F., Therapeutic genome editing: prospects and challenges. Nature medicine 2015, 21 (2), 121-31; (e) Dean, M.; Carrington, M.; Winkler, C.; Huttley, G. A.; Smith, M. W.; Allikmets, R.; Goedert, J. J.; Buchbinder, S. P.; Vittinghoff, E.; Gomperts, E.; Donfield, S.; Vlahov, D.; Kaslow, R.; Saah, A.; Rinaldo, C.; Detels, R.; O'Brien, S. J., Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 1996, 273 (5283), 1856-62.

  • 6. (a) Lee, B.; Doranz, B. J.; Rana, S.; Yi, Y.; Mellado, M.; Frade, J. M.; Martinez, A. C.; O'Brien, S. J.; Dean, M.; Collman, R. G.; Doms, R. W., Influence of the CCR2-V64I polymorphism on human immunodeficiency virus type 1 coreceptor activity and on chemokine receptor function of CCR2b, CCR3, CCR5, and CXCR4. Journal of virology 1998, 72 (9), 7450-8; (b) Apostolakis, S.; Baritaki, S.; Krambovitis, E.; Spandidos, D. A., Distribution of HIV/AIDS protective SDF1, CCR5 and CCR2 gene variants within Cretan population. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology 2005, 34 (4), 310-4; (c) Nakayama, E. E.; Tanaka, Y.; Nagai, Y.; Iwamoto, A.; Shioda, T., A CCR2-V64I polymorphism affects stability of CCR2A isoform. AIDS 2004, 18 (5), 729-38.

  • 7. (a) Cradick, T. J.; Fine, E. J.; Antico, C. J.; Bao, G., CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic acids research 2013; (b) Holt, N.; Wang, J.; Kim, K.; Friedman, G.; Wang, X.; Taupin, V.; Crooks, G. M.; Kohn, D. B.; Gregory, P. D.; Holmes, M. C.; Cannon, P. M., Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nature biotechnology 2010, 28 (8), 839-47.

  • 8. Koonin, E. V.; Novozhilov, A. S., Origin and evolution of the genetic code: the universal enigma. IUBMB life 2009, 61 (2), 99-111.

  • 9. (a) Thomas, M. A.; Weston, B.; Joseph, M.; Wu, W.; Nekrutenko, A.; Tonellato, P. J., Evolutionary dynamics of oncogenes and tumor suppressor genes: higher intensities of purifying selection than other genes. Molecular biology and evolution 2003, 20 (6), 964-8; (b) Iengar, P., An analysis of substitution, deletion and insertion mutations in cancer genes. Nucleic acids research 2012, 40 (14), 6401-13.



All publications, patents, patent applications, publication, and database entries (e.g., sequence database entries) mentioned herein, e.g., in the Background, Summary, Detailed Description, Examples, and/or References sections, are hereby incorporated by reference in their entirety as if each individual publication, patent, patent application, publication, and database entry was specifically and individually incorporated herein by reference. In case of conflict, the present application, including any definitions herein, will control.


EQUIVALENTS AND SCOPE

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the embodiments described herein. The scope of the present disclosure is not intended to be limited to the above description, but rather is as set forth in the appended claims.


Articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between two or more members of a group are considered satisfied if one, more than one, or all of the group members are present, unless indicated to the contrary or otherwise evident from the context. The disclosure of a group that includes “or” between two or more group members provides embodiments in which exactly one member of the group is present, embodiments in which more than one members of the group are present, and embodiments in which all of the group members are present. For purposes of brevity those embodiments have not been individually spelled out herein, but it will be understood that each of these embodiments is provided herein and may be specifically claimed or disclaimed.


It is to be understood that the instant compositions and methods encompasses all variations, combinations, and permutations in which one or more limitation, element, clause, or descriptive term, from one or more of the claims or from one or more relevant portion of the description, is introduced into another claim. For example, a claim that is dependent on another claim can be modified to include one or more of the limitations found in any other claim that is dependent on the same base claim. Furthermore, where the claims recite a composition, it is to be understood that methods of making or using the composition according to any of the methods of making or using disclosed herein or according to methods known in the art, if any, are included, unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise.


Where elements are presented as lists, e.g., in Markush group format, it is to be understood that every possible subgroup of the elements is also disclosed, and that any element or subgroup of elements can be removed from the group. It is also noted that the term “comprising” is intended to be open and permits the inclusion of additional elements or steps. It should be understood that, in general, where an embodiment, product, or method is referred to as comprising particular elements, features, or steps, embodiments, products, or methods that consist, or consist essentially of, such elements, features, or steps, are provided as well. For purposes of brevity those embodiments have not been individually spelled out herein, but it will be understood that each of these embodiments is provided herein and may be specifically claimed or disclaimed.


Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value within the stated ranges in some embodiments, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise. For purposes of brevity, the values in each range have not been individually spelled out herein, but it will be understood that each of these values is provided herein and may be specifically claimed or disclaimed. It is also to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values expressed as ranges can assume any subrange within the given range, wherein the endpoints of the subrange are expressed to the same degree of accuracy as the tenth of the unit of the lower limit of the range.


In addition, it is to be understood that any particular embodiment of the present compositions and methods may be explicitly excluded from any one or more of the claims. Where ranges are given, any value within the range may explicitly be excluded from any one or more of the claims. Any embodiment, element, feature, application, or aspect of the compositions and/or methods of the disclosure can be excluded from any one or more claims. For purposes of brevity, all of the embodiments in which one or more elements, features, purposes, or aspects is excluded are not set forth explicitly herein.

Claims
  • 1. A method of editing a polynucleotide encoding a C—C chemokine receptor type five (CCR5) protein, the method comprising contacting the CCR5-encoding polynucleotide with: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; (b) a cytosine deaminase domain, and (c) a uracil glycosylase inhibitor (UGI) domain; and(ii) a guide nucleotide sequence targeting the fusion protein of (i) to a target cytosine (C) base in the CCR5-encoding polynucleotide;
  • 2. The method of claim 1, wherein the guide nucleotide sequence-programmable DNA binding protein is a nickase.
  • 3. The method of claim 1, wherein the guide nucleotide sequence-programmable DNA binding protein is a Cas9 nickase.
  • 4. The method of claim 3, wherein the Cas9 nickase comprises a mutation corresponding to a D10A mutation or an H840A mutation in SEQ ID NO: 1.
  • 5. The method of claim 3, wherein the Cas9 nickase comprises a mutation corresponding to a D10A mutation in SEQ ID NO: 1.
  • 6. The method of claim 1, wherein the guide nucleotide sequence-programmable DNA binding protein domain is selected from the group consisting of: a nuclease inactive Cas9 (dCas9) domain, a nuclease inactive Cpf1 domain, a nuclease inactive Argonaute domain, and variants and combinations thereof.
  • 7. The method of claim 6, wherein the guide nucleotide sequence-programmable DNA-binding protein domain comprises a nuclease inactive Cpf1 (dCpf1) domain.
  • 8. The method of claim 6, wherein the guide nucleotide sequence-programmable DNA-binding protein domain comprises a nuclease inactive Argonaute (dAgo) domain.
  • 9. The method of claim 1, wherein the cytosine deaminase domain comprises an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase.
  • 10. The method of claim 1, wherein the fusion protein of (i) further comprises a Gam protein.
  • 11. The method of claim 10, wherein the Gam protein comprises the amino acid sequence of any one of SEQ ID NOs: 710-734.
  • 12. The method of claim 1, wherein the polynucleotide encoding the CCR5 protein comprises a coding strand and a complementary strand.
  • 13. The method of claim 1, wherein the C to T change in the CCR5-encoding polynucleotide leads to a mutation in the CCR5 protein.
  • 14. The method of claim 13, wherein the mutation is selected from any one of the mutations listed in Tables 1-9.
  • 15. The method of claim 13, wherein the mutation is a premature stop codon that leads to a truncated or non-functional CCR5 protein.
  • 16. The method of claim 13, wherein the mutation destabilizes CCR5 protein folding.
  • 17. The method of claim 1, wherein the C to T change modifies a splicing site in the CCR5-encoding polynucleotide.
  • 18. The method of claim 1, wherein the guide nucleotide sequence is RNA (gRNA).
  • 19. The method of claim 1, wherein the guide nucleotide sequence comprises a guide-RNA sequence listed in any one of Tables 3, 4, 5, 8, or 9.
  • 20. The method of claim 1, wherein the UGI domain is fused to the dCas9 domain via a linker.
  • 21. The method of claim 1, wherein the fusion protein comprises the structure NH2-[cytosine deaminase domain]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA-binding protein domain]-[optional linker sequence]-[UGI domain]-COOH.
  • 22. The method of claim 1, wherein the cytosine deaminase is selected from the group consisting of APOBEC1, APOBEC2, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G deaminase, APOBEC3H deaminase, APOBEC4 deaminase, activation-induced deaminase (AID), and pmCDA1.
  • 23. The method of claim 1, wherein the cytosine deaminase comprises the amino acid sequence of any one of SEQ ID NOs: 1-260, 270-292, or 315-323.
  • 24. The method of claim 1, wherein the fusion protein comprises the amino acid sequence of any one of SEQ ID NO: 293-302.
  • 25. The method of claim 1, wherein the guide nucleotide sequence is a single guide RNA (sgRNA).
RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent application, U.S. Ser. No. 62/438,827, filed Dec. 23, 2016, which is incorporated herein by reference.

GOVERNMENT SUPPORT

This invention was made with government support under grant number GM065865, awarded by the National Institutes of Health (NIH). The government has certain rights in the invention.

US Referenced Citations (308)
Number Name Date Kind
4182449 Kozlow Jan 1980 A
4235871 Papahadjopoulos et al. Nov 1980 A
4501728 Geho et al. Feb 1985 A
4737323 Martin et al. Apr 1988 A
4837028 Allen Jun 1989 A
4880635 Janoff et al. Nov 1989 A
4906477 Kurono et al. Mar 1990 A
4911928 Wallach Mar 1990 A
4917951 Wallach Apr 1990 A
4920016 Allen et al. Apr 1990 A
4921757 Wheatley et al. May 1990 A
5139941 Muzyczka et al. Aug 1992 A
5449639 Wei et al. Sep 1995 A
5580737 Polisky et al. Dec 1996 A
5767099 Harris et al. Jun 1998 A
5780053 Ashley et al. Jul 1998 A
5830430 Unger et al. Nov 1998 A
5835699 Kimura Nov 1998 A
5851548 Dattagupta et al. Dec 1998 A
5855910 Ashley et al. Jan 1999 A
5962313 Podsakoff et al. Oct 1999 A
6057153 George et al. May 2000 A
6453242 Eisenberg et al. Sep 2002 B1
6503717 Case et al. Jan 2003 B2
6534261 Cox, III et al. Mar 2003 B1
6599692 Case et al. Jul 2003 B1
6607882 Cox, III et al. Aug 2003 B1
6824978 Cox, III et al. Nov 2004 B1
6933113 Case et al. Aug 2005 B2
6979539 Cox, III et al. Dec 2005 B2
7013219 Case et al. Mar 2006 B2
7163824 Cox, III et al. Jan 2007 B2
7479573 Chu et al. Jan 2009 B2
7794931 Breaker et al. Sep 2010 B2
7919277 Russell et al. Apr 2011 B2
7993672 Huang et al. Aug 2011 B2
8361725 Russell et al. Jan 2013 B2
8394604 Liu et al. Mar 2013 B2
8492082 De Franciscis et al. Jul 2013 B2
8546553 Terns et al. Oct 2013 B2
8569256 Heyes et al. Oct 2013 B2
8680069 de Fougerolles et al. Mar 2014 B2
8691750 Constien et al. Apr 2014 B2
8697359 Zhang Apr 2014 B1
8709466 Coady et al. Apr 2014 B2
8728526 Heller May 2014 B2
8748667 Budzik et al. Jun 2014 B2
8758810 Okada et al. Jun 2014 B2
8759103 Kim et al. Jun 2014 B2
8759104 Unciti-Broceta et al. Jun 2014 B2
8771728 Huang et al. Jul 2014 B2
8790664 Pitard et al. Jul 2014 B2
8795965 Zhang Aug 2014 B2
8846578 McCray et al. Sep 2014 B2
8993233 Zhang et al. Mar 2015 B2
8999641 Zhang et al. Apr 2015 B2
9068179 Liu et al. Jun 2015 B1
9163284 Liu et al. Oct 2015 B2
9228207 Liu et al. Jan 2016 B2
9234213 Wu Jan 2016 B2
9322006 Liu et al. Apr 2016 B2
9322037 Liu et al. Apr 2016 B2
9340799 Liu et al. May 2016 B2
9340800 Liu et al. May 2016 B2
9359599 Liu et al. Jun 2016 B2
9388430 Liu et al. Jul 2016 B2
9512446 Joung et al. Dec 2016 B1
9526724 Oshlack et al. Dec 2016 B2
9526784 Liu et al. Dec 2016 B2
9737604 Liu et al. Aug 2017 B2
9816093 Donohoue et al. Nov 2017 B1
9840690 Karli et al. Dec 2017 B2
9840699 Liu et al. Dec 2017 B2
9873907 Zeiner et al. Jan 2018 B2
9879270 Hittinger et al. Jan 2018 B2
9938288 Kishi et al. Apr 2018 B1
9944933 Storici et al. Apr 2018 B2
9982279 Gill et al. May 2018 B1
9999671 Liu et al. Jun 2018 B2
10059940 Zhong Aug 2018 B2
10077453 Liu et al. Sep 2018 B2
10113163 Liu et al. Oct 2018 B2
10167457 Liu Jan 2019 B2
10227581 Liu et al. Mar 2019 B2
10323236 Liu et al. Jun 2019 B2
10465176 Liu et al. Nov 2019 B2
10508298 Liu et al. Dec 2019 B2
20030082575 Schultz et al. May 2003 A1
20030108885 Schultz et al. Jun 2003 A1
20040003420 Kuhn et al. Jan 2004 A1
20040115184 Smith et al. Jun 2004 A1
20050222030 Allison Oct 2005 A1
20060088864 Smolke et al. Apr 2006 A1
20060104984 Littlefield et al. May 2006 A1
20060246568 Honjo et al. Nov 2006 A1
20070264692 Liu et al. Nov 2007 A1
20080124725 Barrangou et al. May 2008 A1
20080182254 Hall et al. Jul 2008 A1
20090130718 Short May 2009 A1
20090234109 Han et al. Sep 2009 A1
20100076057 Sontheimer et al. Mar 2010 A1
20100093617 Barrangou et al. Apr 2010 A1
20100104690 Barrangou et al. Apr 2010 A1
20100316643 Eckert et al. Dec 2010 A1
20110059160 Essner et al. Mar 2011 A1
20110104787 Church et al. May 2011 A1
20110189776 Terns et al. Aug 2011 A1
20110217739 Terns et al. Sep 2011 A1
20120129759 Liu et al. May 2012 A1
20120141523 Castado et al. Jun 2012 A1
20120244601 Bertozzi et al. Sep 2012 A1
20120270273 Zhang et al. Oct 2012 A1
20130117869 Duchateau et al. May 2013 A1
20130130248 Haurwitz et al. May 2013 A1
20130158245 Russell et al. Jun 2013 A1
20130165389 Schellenberger et al. Jun 2013 A1
20130309720 Schultz et al. Nov 2013 A1
20130344117 Mirosevich et al. Dec 2013 A1
20140004280 Loomis Jan 2014 A1
20140005269 Ngwuluka et al. Jan 2014 A1
20140017214 Cost Jan 2014 A1
20140018404 Chen et al. Jan 2014 A1
20140044793 Goll et al. Feb 2014 A1
20140065711 Liu et al. Mar 2014 A1
20140068797 Doudna et al. Mar 2014 A1
20140127752 Zhou et al. May 2014 A1
20140141094 Smyth et al. May 2014 A1
20140141487 Feldman et al. May 2014 A1
20140186843 Zhang et al. Jul 2014 A1
20140186958 Zhang et al. Jul 2014 A1
20140234289 Liu et al. Aug 2014 A1
20140248702 Zhang et al. Sep 2014 A1
20140273037 Wu Sep 2014 A1
20140273226 Wu Sep 2014 A1
20140273230 Chen et al. Sep 2014 A1
20140295556 Joung et al. Oct 2014 A1
20140295557 Joung et al. Oct 2014 A1
20140342456 Mali et al. Nov 2014 A1
20140342457 Mali et al. Nov 2014 A1
20140342458 Mali et al. Nov 2014 A1
20140349400 Jakimo et al. Nov 2014 A1
20140356867 Peter et al. Dec 2014 A1
20140356956 Church et al. Dec 2014 A1
20140356958 Mali et al. Dec 2014 A1
20140356959 Church et al. Dec 2014 A1
20140357523 Zeiner et al. Dec 2014 A1
20140377868 Joung et al. Dec 2014 A1
20150010526 Liu et al. Jan 2015 A1
20150031089 Lindstrom Jan 2015 A1
20150031132 Church et al. Jan 2015 A1
20150031133 Church et al. Jan 2015 A1
20150044191 Liu et al. Feb 2015 A1
20150044192 Liu et al. Feb 2015 A1
20150044772 Zhao Feb 2015 A1
20150050699 Siksnys et al. Feb 2015 A1
20150056177 Liu et al. Feb 2015 A1
20150056629 Guthrie-Honea Feb 2015 A1
20150064138 Lu et al. Mar 2015 A1
20150064789 Paschon et al. Mar 2015 A1
20150071898 Liu et al. Mar 2015 A1
20150071899 Liu et al. Mar 2015 A1
20150071900 Liu et al. Mar 2015 A1
20150071901 Liu et al. Mar 2015 A1
20150071902 Liu et al. Mar 2015 A1
20150071903 Liu et al. Mar 2015 A1
20150071906 Liu et al. Mar 2015 A1
20150079680 Bradley et al. Mar 2015 A1
20150079681 Zhang Mar 2015 A1
20150098954 Hyde et al. Apr 2015 A1
20150118216 Liu et al. Apr 2015 A1
20150132269 Orkin et al. May 2015 A1
20150140664 Byrne et al. May 2015 A1
20150159172 Miller et al. Jun 2015 A1
20150165054 Liu et al. Jun 2015 A1
20150166980 Liu et al. Jun 2015 A1
20150166981 Liu et al. Jun 2015 A1
20150166982 Liu Jun 2015 A1
20150166984 Liu et al. Jun 2015 A1
20150166985 Liu et al. Jun 2015 A1
20150191744 Wolfe et al. Jul 2015 A1
20150197759 Xu et al. Jul 2015 A1
20150211058 Carstens Jul 2015 A1
20150218573 Loque et al. Aug 2015 A1
20150225773 Farmer et al. Aug 2015 A1
20150252358 Maeder et al. Sep 2015 A1
20150307889 Petolino et al. Oct 2015 A1
20150315252 Haugwitz et al. Nov 2015 A1
20160015682 Cawthorne et al. Jan 2016 A2
20160017393 Jacobson et al. Jan 2016 A1
20160017396 Cann et al. Jan 2016 A1
20160032292 Storici et al. Feb 2016 A1
20160032353 Braman et al. Feb 2016 A1
20160046952 Hittinger et al. Feb 2016 A1
20160046961 Jinek et al. Feb 2016 A1
20160046962 May et al. Feb 2016 A1
20160053272 Wurtzel et al. Feb 2016 A1
20160053304 Wurtzel et al. Feb 2016 A1
20160074535 Ranganathan et al. Mar 2016 A1
20160076093 Shendure et al. Mar 2016 A1
20160090603 Carnes et al. Mar 2016 A1
20160090622 Liu et al. Mar 2016 A1
20160115488 Zhang et al. Apr 2016 A1
20160138046 Wu May 2016 A1
20160186214 Brouns et al. Jun 2016 A1
20160200779 Liu et al. Jul 2016 A1
20160201040 Liu et al. Jul 2016 A1
20160201089 Gersbach et al. Jul 2016 A1
20160206566 Lu et al. Jul 2016 A1
20160208243 Zhang et al. Jul 2016 A1
20160208288 Liu et al. Jul 2016 A1
20160215275 Zhong Jul 2016 A1
20160215276 Liu et al. Jul 2016 A1
20160215300 May et al. Jul 2016 A1
20160244784 Jacobson et al. Aug 2016 A1
20160244829 Bang et al. Aug 2016 A1
20160272965 Zhang et al. Sep 2016 A1
20160281072 Zhang Sep 2016 A1
20160304846 Liu et al. Oct 2016 A1
20160304855 Stark et al. Oct 2016 A1
20160312304 Sorrentino et al. Oct 2016 A1
20160333389 Liu et al. Nov 2016 A1
20160340662 Zhang et al. Nov 2016 A1
20160345578 Barrangou et al. Dec 2016 A1
20160346360 Quake et al. Dec 2016 A1
20160346361 Quake et al. Dec 2016 A1
20160346362 Quake et al. Dec 2016 A1
20160348074 Quake et al. Dec 2016 A1
20160350476 Quake et al. Dec 2016 A1
20160369262 Reik et al. Dec 2016 A1
20170009242 McKinley et al. Jan 2017 A1
20170014449 Bangera et al. Jan 2017 A1
20170020922 Wagner et al. Jan 2017 A1
20170037432 Donohoue et al. Feb 2017 A1
20170044520 Liu et al. Feb 2017 A1
20170044592 Peter et al. Feb 2017 A1
20170053729 Kotani et al. Feb 2017 A1
20170058271 Joung et al. Mar 2017 A1
20170058272 Carter et al. Mar 2017 A1
20170058298 Kennedy et al. Mar 2017 A1
20170073663 Wang et al. Mar 2017 A1
20170073670 Nishida et al. Mar 2017 A1
20170087224 Quake Mar 2017 A1
20170087225 Quake Mar 2017 A1
20170088587 Quake Mar 2017 A1
20170088828 Quake Mar 2017 A1
20170107536 Zhang et al. Apr 2017 A1
20170107560 Peter et al. Apr 2017 A1
20170114367 Hu et al. Apr 2017 A1
20170121693 Liu et al. May 2017 A1
20170145394 Yeo et al. May 2017 A1
20170145405 Tang et al. May 2017 A1
20170145438 Kantor May 2017 A1
20170152528 Zhang Jun 2017 A1
20170152787 Kubo et al. Jun 2017 A1
20170159033 Kamtekar et al. Jun 2017 A1
20170166928 Vyas et al. Jun 2017 A1
20170175104 Doudna et al. Jun 2017 A1
20170175142 Zhang et al. Jun 2017 A1
20170191047 Terns et al. Jul 2017 A1
20170191078 Zhang et al. Jul 2017 A1
20170198269 Zhang et al. Jul 2017 A1
20170198277 Kmiec et al. Jul 2017 A1
20170198302 Feng et al. Jul 2017 A1
20170226522 Hu et al. Aug 2017 A1
20170233703 Xie et al. Aug 2017 A1
20170233756 Begemann et al. Aug 2017 A1
20170247671 Yung et al. Aug 2017 A1
20170247703 Sloan et al. Aug 2017 A1
20170268022 Liu et al. Sep 2017 A1
20170283797 Robb et al. Oct 2017 A1
20170314016 Kim et al. Nov 2017 A1
20170362635 Chamberlain et al. Dec 2017 A1
20180064077 Dunham et al. Mar 2018 A1
20180066258 Powell Mar 2018 A1
20180068062 Zhang et al. Mar 2018 A1
20180073012 Liu et al. Mar 2018 A1
20180100147 Yates et al. Apr 2018 A1
20180105867 Xiao et al. Apr 2018 A1
20180119118 Lu et al. May 2018 A1
20180127780 Liu et al. May 2018 A1
20180155708 Church et al. Jun 2018 A1
20180155720 Donohoue et al. Jun 2018 A1
20180163213 Aneja et al. Jun 2018 A1
20180170984 Harris et al. Jun 2018 A1
20180179547 Zhang et al. Jun 2018 A1
20180201921 Malcolm Jul 2018 A1
20180230464 Zhong Aug 2018 A1
20180230471 Storici et al. Aug 2018 A1
20180236081 Liu et al. Aug 2018 A1
20180237787 Maianti et al. Aug 2018 A1
20180245066 Yao et al. Aug 2018 A1
20180265864 Li et al. Sep 2018 A1
20180273939 Yu et al. Sep 2018 A1
20180282722 Jakimo et al. Oct 2018 A1
20180305688 Zhong Oct 2018 A1
20180305704 Zhang Oct 2018 A1
20180312825 Liu et al. Nov 2018 A1
20180312828 Liu et al. Nov 2018 A1
20180312835 Yao et al. Nov 2018 A1
20180327756 Zhang et al. Nov 2018 A1
20190093099 Liu et al. Mar 2019 A1
20190185883 Liu et al. Jun 2019 A1
20190225955 Liu et al. Jul 2019 A1
20190322992 Liu et al. Oct 2019 A1
20190352632 Liu et al. Nov 2019 A1
20190367891 Liu et al. Dec 2019 A1
20200010818 Liu et al. Jan 2020 A1
20200010835 Maianti et al. Jan 2020 A1
Foreign Referenced Citations (1497)
Number Date Country
2012244264 Nov 2012 AU
2015252023 Nov 2015 AU
2015101792 Jan 2016 AU
112015013786 Jul 2017 BR
2894668 Jun 2014 CA
2894681 Jun 2014 CA
2894684 Jun 2014 CA
2 852 593 Nov 2015 CA
1069962 Mar 1993 CN
103224947 Jul 2013 CN
103233028 Aug 2013 CN
103388006 Nov 2013 CN
103614415 Mar 2014 CN
103642836 Mar 2014 CN
103668472 Mar 2014 CN
103820441 May 2014 CN
103820454 May 2014 CN
103911376 Jul 2014 CN
103923911 Jul 2014 CN
103981211 Aug 2014 CN
103981212 Aug 2014 CN
104004778 Aug 2014 CN
104004782 Aug 2014 CN
104017821 Sep 2014 CN
104109687 Oct 2014 CN
104178461 Dec 2014 CN
104342457 Feb 2015 CN
104404036 Mar 2015 CN
104450774 Mar 2015 CN
104480144 Apr 2015 CN
104498493 Apr 2015 CN
104504304 Apr 2015 CN
104531704 Apr 2015 CN
104531705 Apr 2015 CN
104560864 Apr 2015 CN
104561095 Apr 2015 CN
104593418 May 2015 CN
104593422 May 2015 CN
104611370 May 2015 CN
104651392 May 2015 CN
104651398 May 2015 CN
104651399 May 2015 CN
104651401 May 2015 CN
104673816 Jun 2015 CN
104725626 Jun 2015 CN
104726449 Jun 2015 CN
104726494 Jun 2015 CN
104745626 Jul 2015 CN
104762321 Jul 2015 CN
104805078 Jul 2015 CN
104805099 Jul 2015 CN
104805118 Jul 2015 CN
104846010 Aug 2015 CN
104894068 Sep 2015 CN
104894075 Sep 2015 CN
104928321 Sep 2015 CN
105039339 Nov 2015 CN
105039399 Nov 2015 CN
105063061 Nov 2015 CN
105087620 Nov 2015 CN
105112422 Dec 2015 CN
105112445 Dec 2015 CN
105112519 Dec 2015 CN
105121648 Dec 2015 CN
105132427 Dec 2015 CN
105132451 Dec 2015 CN
105177038 Dec 2015 CN
105177126 Dec 2015 CN
105210981 Jan 2016 CN
105219799 Jan 2016 CN
105238806 Jan 2016 CN
105255937 Jan 2016 CN
105274144 Jan 2016 CN
105296518 Feb 2016 CN
105296537 Feb 2016 CN
105316324 Feb 2016 CN
105316327 Feb 2016 CN
105316337 Feb 2016 CN
105331607 Feb 2016 CN
105331608 Feb 2016 CN
105331609 Feb 2016 CN
105331627 Feb 2016 CN
105400773 Mar 2016 CN
105400779 Mar 2016 CN
105400810 Mar 2016 CN
105441451 Mar 2016 CN
105462968 Apr 2016 CN
105463003 Apr 2016 CN
105463027 Apr 2016 CN
105492608 Apr 2016 CN
105492609 Apr 2016 CN
105505976 Apr 2016 CN
105505979 Apr 2016 CN
105518134 Apr 2016 CN
105518135 Apr 2016 CN
105518137 Apr 2016 CN
105518138 Apr 2016 CN
105518139 Apr 2016 CN
105518140 Apr 2016 CN
105543228 May 2016 CN
105543266 May 2016 CN
105543270 May 2016 CN
105567688 May 2016 CN
105567689 May 2016 CN
105567734 May 2016 CN
105567735 May 2016 CN
105567738 May 2016 CN
105593367 May 2016 CN
105594664 May 2016 CN
105602987 May 2016 CN
105624146 Jun 2016 CN
105624187 Jun 2016 CN
105646719 Jun 2016 CN
105647922 Jun 2016 CN
105647962 Jun 2016 CN
105647968 Jun 2016 CN
105647969 Jun 2016 CN
105671070 Jun 2016 CN
105671083 Jun 2016 CN
105695485 Jun 2016 CN
105779448 Jul 2016 CN
105779449 Jul 2016 CN
105802980 Jul 2016 CN
105821039 Aug 2016 CN
105821040 Aug 2016 CN
105821049 Aug 2016 CN
105821072 Aug 2016 CN
105821075 Aug 2016 CN
105821116 Aug 2016 CN
105838733 Aug 2016 CN
105861547 Aug 2016 CN
105861552 Aug 2016 CN
105861554 Aug 2016 CN
105886498 Aug 2016 CN
105886534 Aug 2016 CN
105886616 Aug 2016 CN
105907758 Aug 2016 CN
105907785 Aug 2016 CN
105925608 Sep 2016 CN
105950560 Sep 2016 CN
105950626 Sep 2016 CN
105950633 Sep 2016 CN
105950639 Sep 2016 CN
105985985 Oct 2016 CN
106011104 Oct 2016 CN
106011150 Oct 2016 CN
106011167 Oct 2016 CN
106011171 Oct 2016 CN
106032540 Oct 2016 CN
106047803 Oct 2016 CN
106047877 Oct 2016 CN
106047930 Oct 2016 CN
106086008 Nov 2016 CN
106086028 Nov 2016 CN
106086061 Nov 2016 CN
106086062 Nov 2016 CN
106109417 Nov 2016 CN
106119275 Nov 2016 CN
106119283 Nov 2016 CN
106148286 Nov 2016 CN
106148370 Nov 2016 CN
106148416 Nov 2016 CN
106167525 Nov 2016 CN
106167808 Nov 2016 CN
106167810 Nov 2016 CN
106167821 Nov 2016 CN
106172238 Dec 2016 CN
106190903 Dec 2016 CN
106191057 Dec 2016 CN
106191061 Dec 2016 CN
106191062 Dec 2016 CN
106191064 Dec 2016 CN
106191071 Dec 2016 CN
106191099 Dec 2016 CN
106191107 Dec 2016 CN
106191113 Dec 2016 CN
106191114 Dec 2016 CN
106191116 Dec 2016 CN
106191124 Dec 2016 CN
106222177 Dec 2016 CN
106222193 Dec 2016 CN
106222203 Dec 2016 CN
106244555 Dec 2016 CN
106244591 Dec 2016 CN
106244609 Dec 2016 CN
106282241 Jan 2017 CN
106318934 Jan 2017 CN
106318973 Jan 2017 CN
106350540 Jan 2017 CN
106367435 Feb 2017 CN
106399306 Feb 2017 CN
106399311 Feb 2017 CN
106399360 Feb 2017 CN
106399367 Feb 2017 CN
106399375 Feb 2017 CN
106399377 Feb 2017 CN
106434651 Feb 2017 CN
106434663 Feb 2017 CN
106434688 Feb 2017 CN
106434737 Feb 2017 CN
106434748 Feb 2017 CN
106434752 Feb 2017 CN
106434782 Feb 2017 CN
106446600 Feb 2017 CN
106479985 Mar 2017 CN
106480027 Mar 2017 CN
106480036 Mar 2017 CN
106480067 Mar 2017 CN
106480080 Mar 2017 CN
106480083 Mar 2017 CN
106480097 Mar 2017 CN
106544351 Mar 2017 CN
106544353 Mar 2017 CN
106544357 Mar 2017 CN
106554969 Apr 2017 CN
106566838 Apr 2017 CN
106701763 May 2017 CN
106701808 May 2017 CN
106701818 May 2017 CN
106701823 May 2017 CN
106701830 May 2017 CN
106754912 May 2017 CN
106755026 May 2017 CN
106755077 May 2017 CN
106755088 May 2017 CN
106755091 May 2017 CN
106755097 May 2017 CN
106755424 May 2017 CN
106801056 Jun 2017 CN
106834323 Jun 2017 CN
106834341 Jun 2017 CN
106834347 Jun 2017 CN
106845151 Jun 2017 CN
106868008 Jun 2017 CN
106868031 Jun 2017 CN
106906240 Jun 2017 CN
106906242 Jun 2017 CN
106916820 Jul 2017 CN
106916852 Jul 2017 CN
106939303 Jul 2017 CN
106947750 Jul 2017 CN
106947780 Jul 2017 CN
106957830 Jul 2017 CN
106957831 Jul 2017 CN
106957844 Jul 2017 CN
106957855 Jul 2017 CN
106957858 Jul 2017 CN
106967697 Jul 2017 CN
106967726 Jul 2017 CN
106978428 Jul 2017 CN
106987570 Jul 2017 CN
106987757 Jul 2017 CN
107012164 Aug 2017 CN
107012174 Aug 2017 CN
107012213 Aug 2017 CN
107012250 Aug 2017 CN
107022562 Aug 2017 CN
107034188 Aug 2017 CN
107034218 Aug 2017 CN
107034229 Aug 2017 CN
107043775 Aug 2017 CN
107043779 Aug 2017 CN
107043787 Aug 2017 CN
107058320 Aug 2017 CN
107058328 Aug 2017 CN
107058358 Aug 2017 CN
107058372 Aug 2017 CN
107083392 Aug 2017 CN
107099533 Aug 2017 CN
107099850 Aug 2017 CN
107119053 Sep 2017 CN
107119071 Sep 2017 CN
107129999 Sep 2017 CN
107130000 Sep 2017 CN
107142272 Sep 2017 CN
107142282 Sep 2017 CN
107177591 Sep 2017 CN
107177595 Sep 2017 CN
107177631 Sep 2017 CN
107190006 Sep 2017 CN
107190008 Sep 2017 CN
107217042 Sep 2017 CN
107217075 Sep 2017 CN
107227307 Oct 2017 CN
107227352 Oct 2017 CN
107236737 Oct 2017 CN
107236739 Oct 2017 CN
107236741 Oct 2017 CN
107245502 Oct 2017 CN
107254485 Oct 2017 CN
107266541 Oct 2017 CN
107267515 Oct 2017 CN
107287245 Oct 2017 CN
107298701 Oct 2017 CN
107299114 Oct 2017 CN
107304435 Oct 2017 CN
107312785 Nov 2017 CN
107312793 Nov 2017 CN
107312795 Nov 2017 CN
107312798 Nov 2017 CN
107326042 Nov 2017 CN
107326046 Nov 2017 CN
107354156 Nov 2017 CN
107354173 Nov 2017 CN
107356793 Nov 2017 CN
107362372 Nov 2017 CN
107365786 Nov 2017 CN
107365804 Nov 2017 CN
107384894 Nov 2017 CN
107384922 Nov 2017 CN
107384926 Nov 2017 CN
107400677 Nov 2017 CN
107418974 Dec 2017 CN
107435051 Dec 2017 CN
107435069 Dec 2017 CN
107446922 Dec 2017 CN
107446923 Dec 2017 CN
107446924 Dec 2017 CN
107446932 Dec 2017 CN
107446951 Dec 2017 CN
107446954 Dec 2017 CN
107460196 Dec 2017 CN
107474129 Dec 2017 CN
107475300 Dec 2017 CN
107488649 Dec 2017 CN
107502608 Dec 2017 CN
107502618 Dec 2017 CN
107513531 Dec 2017 CN
107519492 Dec 2017 CN
107523567 Dec 2017 CN
107523583 Dec 2017 CN
107541525 Jan 2018 CN
107557373 Jan 2018 CN
107557378 Jan 2018 CN
107557381 Jan 2018 CN
107557390 Jan 2018 CN
107557393 Jan 2018 CN
107557394 Jan 2018 CN
107557455 Jan 2018 CN
107574179 Jan 2018 CN
107586777 Jan 2018 CN
107586779 Jan 2018 CN
107604003 Jan 2018 CN
107619837 Jan 2018 CN
107630006 Jan 2018 CN
107630041 Jan 2018 CN
107630042 Jan 2018 CN
107630043 Jan 2018 CN
107641631 Jan 2018 CN
107653256 Feb 2018 CN
107686848 Feb 2018 CN
206970581 Feb 2018 CN
107760652 Mar 2018 CN
107760663 Mar 2018 CN
107760684 Mar 2018 CN
107760715 Mar 2018 CN
107784200 Mar 2018 CN
107794272 Mar 2018 CN
107794276 Mar 2018 CN
107815463 Mar 2018 CN
107828738 Mar 2018 CN
107828794 Mar 2018 CN
107828826 Mar 2018 CN
107828874 Mar 2018 CN
107858346 Mar 2018 CN
107858373 Mar 2018 CN
107880132 Apr 2018 CN
107881184 Apr 2018 CN
107893074 Apr 2018 CN
107893075 Apr 2018 CN
107893076 Apr 2018 CN
107893080 Apr 2018 CN
107893086 Apr 2018 CN
107904261 Apr 2018 CN
107937427 Apr 2018 CN
107937432 Apr 2018 CN
107937501 Apr 2018 CN
107974466 May 2018 CN
107988229 May 2018 CN
107988246 May 2018 CN
107988256 May 2018 CN
107988268 May 2018 CN
108018316 May 2018 CN
108034656 May 2018 CN
108048466 May 2018 CN
108102940 Jun 2018 CN
108103092 Jun 2018 CN
108103098 Jun 2018 CN
108103586 Jun 2018 CN
108148835 Jun 2018 CN
108148837 Jun 2018 CN
108148873 Jun 2018 CN
108192956 Jun 2018 CN
108251423 Jul 2018 CN
108251451 Jul 2018 CN
108251452 Jul 2018 CN
108342480 Jul 2018 CN
108359691 Aug 2018 CN
108359712 Aug 2018 CN
108384784 Aug 2018 CN
108396027 Aug 2018 CN
108410877 Aug 2018 CN
108410906 Aug 2018 CN
108410907 Aug 2018 CN
108410911 Aug 2018 CN
108424931 Aug 2018 CN
108441519 Aug 2018 CN
108441520 Aug 2018 CN
108486108 Sep 2018 CN
108486111 Sep 2018 CN
108486145 Sep 2018 CN
108486146 Sep 2018 CN
108486154 Sep 2018 CN
108486159 Sep 2018 CN
108486234 Sep 2018 CN
108504657 Sep 2018 CN
108504685 Sep 2018 CN
108504693 Sep 2018 CN
108546712 Sep 2018 CN
108546717 Sep 2018 CN
108546718 Sep 2018 CN
108559730 Sep 2018 CN
108559732 Sep 2018 CN
108559745 Sep 2018 CN
108559760 Sep 2018 CN
108570479 Sep 2018 CN
108588071 Sep 2018 CN
108588123 Sep 2018 CN
108588128 Sep 2018 CN
108588182 Sep 2018 CN
108610399 Oct 2018 CN
108611364 Oct 2018 CN
108624622 Oct 2018 CN
108642053 Oct 2018 CN
108642055 Oct 2018 CN
108642077 Oct 2018 CN
108642078 Oct 2018 CN
108642090 Oct 2018 CN
108690844 Oct 2018 CN
108707604 Oct 2018 CN
108707620 Oct 2018 CN
108707621 Oct 2018 CN
108707628 Oct 2018 CN
108707629 Oct 2018 CN
108715850 Oct 2018 CN
108728476 Nov 2018 CN
108728486 Nov 2018 CN
108753772 Nov 2018 CN
108753783 Nov 2018 CN
108753813 Nov 2018 CN
108753817 Nov 2018 CN
108753832 Nov 2018 CN
108753835 Nov 2018 CN
108753836 Nov 2018 CN
108795902 Nov 2018 CN
108822217 Nov 2018 CN
108823248 Nov 2018 CN
108823249 Nov 2018 CN
108823291 Nov 2018 CN
108841845 Nov 2018 CN
108853133 Nov 2018 CN
108866093 Nov 2018 CN
108893529 Nov 2018 CN
108913664 Nov 2018 CN
108913691 Nov 2018 CN
108913714 Nov 2018 CN
108913717 Nov 2018 CN
2 604 255 Jun 2013 EP
2840140 Feb 2015 EP
2 966 170 Jan 2016 EP
3009511 Apr 2016 EP
3031921 Jun 2016 EP
3045537 Jul 2016 EP
3 115 457 Jan 2017 EP
3144390 Mar 2017 EP
3199632 Aug 2017 EP
3216867 Sep 2017 EP
3252160 Dec 2017 EP
2 528 177 Jan 2016 GB
2 531 454 Apr 2016 GB
2542653 Mar 2017 GB
1208045 Feb 2016 HK
2007-501626 Feb 2007 JP
2008-515405 May 2008 JP
2010-539929 Dec 2010 JP
2011-081011 Apr 2011 JP
2011-523353 Aug 2011 JP
2012-525146 Oct 2012 JP
2012-531909 Dec 2012 JP
101584933 Jan 2016 KR
20160133380 Nov 2016 KR
20170037025 Apr 2017 KR
20170037028 Apr 2017 KR
101748575 Jun 2017 KR
2018-0022465 Mar 2018 KR
2016104674 Aug 2017 RU
2634395 Oct 2017 RU
2652899 May 2018 RU
2015128057 Mar 2019 RU
2015128098 Mar 2019 RU
2687451 May 2019 RU
2019112514 Jun 2019 RU
2019127300 Sep 2019 RU
2701850 Oct 2019 RU
I608100 Dec 2017 TW
2018-29773 Aug 2018 TW
WO 2001036452 May 2001 WO
WO-200138547 May 2001 WO
WO-2002059296 Aug 2002 WO
WO-2002068676 Sep 2002 WO
WO-2002103028 Dec 2002 WO
WO-2004007684 Jan 2004 WO
WO-2005014791 Feb 2005 WO
WO 2005019415 Mar 2005 WO
WO-2006002547 Jan 2006 WO
WO-2006042112 Apr 2006 WO
WO-2007025097 Mar 2007 WO
WO-2007136815 Nov 2007 WO
WO-2007143574 Dec 2007 WO
WO-2008108989 Sep 2008 WO
WO-2009134808 Nov 2009 WO
WO-2010011961 Jan 2010 WO
WO-2010054108 May 2010 WO
WO-2010054154 May 2010 WO
WO-2010068289 Jun 2010 WO
WO-2010075424 Jul 2010 WO
WO-2010102257 Sep 2010 WO
WO-2010129019 Nov 2010 WO
WO-2010129023 Nov 2010 WO
WO-2010132092 Nov 2010 WO
WO-2010144150 Dec 2010 WO
WO-2011002503 Jan 2011 WO
WO-2011017293 Feb 2011 WO
WO-2011053868 May 2011 WO
WO-2011053982 May 2011 WO
WO-2011075627 Jun 2011 WO
WO-2011091311 Jul 2011 WO
WO-2011109031 Sep 2011 WO
WO-2011143124 Nov 2011 WO
WO-2012054726 Apr 2012 WO
WO-2012065043 May 2012 WO
WO-2012125445 Sep 2012 WO
WO-2012138927 Oct 2012 WO
WO 2012149470 Nov 2012 WO
WO-2012158985 Nov 2012 WO
WO-2012158986 Nov 2012 WO
WO-2012164565 Dec 2012 WO
WO-2013012674 Jan 2013 WO
WO-2013013105 Jan 2013 WO
WO 2013047844 Apr 2013 WO
WO-2013066438 May 2013 WO
WO-2013098244 Jul 2013 WO
WO-2013119602 Aug 2013 WO
WO-2013126794 Aug 2013 WO
WO-2013130824 Sep 2013 WO
WO-2013141680 Sep 2013 WO
WO-2013142578 Sep 2013 WO
WO 2013152359 Oct 2013 WO
WO-2013160230 Oct 2013 WO
WO-2013166315 Nov 2013 WO
WO-2013169398 Nov 2013 WO
WO-2013169802 Nov 2013 WO
WO-2013176772 Nov 2013 WO
WO-2013176915 Nov 2013 WO
WO-2013176916 Nov 2013 WO
WO-2013181440 Dec 2013 WO
WO-2013186754 Dec 2013 WO
WO-2013188037 Dec 2013 WO
WO-2013188522 Dec 2013 WO
WO-2013188638 Dec 2013 WO
WO-2013192278 Dec 2013 WO
WO-2013142378 Jan 2014 WO
WO-2014005042 Jan 2014 WO
WO-2014011237 Jan 2014 WO
WO-2014011901 Jan 2014 WO
WO-2014018423 Jan 2014 WO
WO-2014020608 Feb 2014 WO
WO-2014022120 Feb 2014 WO
WO-2014022702 Feb 2014 WO
WO-2014036219 Mar 2014 WO
WO-2014039513 Mar 2014 WO
WO-2014039523 Mar 2014 WO
WO-2014039684 Mar 2014 WO
WO-2014039692 Mar 2014 WO
WO-2014039702 Mar 2014 WO
WO-2014039872 Mar 2014 WO
WO-2014039970 Mar 2014 WO
WO-2014041327 Mar 2014 WO
WO-2014043143 Mar 2014 WO
WO-2014047103 Mar 2014 WO
WO-2014059173 Apr 2014 WO
WO-2014059255 Apr 2014 WO
WO-2014065596 May 2014 WO
WO-2014066505 May 2014 WO
WO-2014068346 May 2014 WO
WO-2014070887 May 2014 WO
WO-2014071006 May 2014 WO
WO-2014071219 May 2014 WO
WO-2014071235 May 2014 WO
WO-2014072941 May 2014 WO
WO-2014081729 May 2014 WO
WO-2014081730 May 2014 WO
WO-2014081855 May 2014 WO
WO-2014082644 Jun 2014 WO
WO-2014085261 Jun 2014 WO
WO-2014085593 Jun 2014 WO
WO-2014085830 Jun 2014 WO
WO-2014089212 Jun 2014 WO
WO-2014089290 Jun 2014 WO
WO-2014089348 Jun 2014 WO
WO-2014089513 Jun 2014 WO
WO-2014089533 Jun 2014 WO
WO-2014089541 Jun 2014 WO
WO-2014093479 Jun 2014 WO
WO-2014093595 Jun 2014 WO
WO-2014093622 Jun 2014 WO
WO-2014093635 Jun 2014 WO
WO-2014093655 Jun 2014 WO
WO-2014093661 Jun 2014 WO
WO-2014093694 Jun 2014 WO
WO-2014093701 Jun 2014 WO
WO-2014093709 Jun 2014 WO
WO-2014093712 Jun 2014 WO
WO-2014093718 Jun 2014 WO
WO-2014093736 Jun 2014 WO
WO-2014093768 Jun 2014 WO
WO-2014093852 Jun 2014 WO
WO-2014096972 Jun 2014 WO
WO-2014099744 Jun 2014 WO
WO-2014099750 Jun 2014 WO
WO-2014104878 Jul 2014 WO
WO-2014110006 Jul 2014 WO
WO-2014110552 Jul 2014 WO
WO-2014113493 Jul 2014 WO
WO-2014123967 Aug 2014 WO
WO-2014124226 Aug 2014 WO
WO-2014125668 Aug 2014 WO
WO-2014127287 Aug 2014 WO
WO-2014128324 Aug 2014 WO
WO-2014128659 Aug 2014 WO
WO-2014130706 Aug 2014 WO
WO-2014130955 Aug 2014 WO
WO-2014131833 Sep 2014 WO
WO-2014138379 Sep 2014 WO
WO-2014143381 Sep 2014 WO
WO-2014144094 Sep 2014 WO
WO-2014144155 Sep 2014 WO
WO-2014144288 Sep 2014 WO
WO-2014144592 Sep 2014 WO
WO-2014144761 Sep 2014 WO
WO-2014144951 Sep 2014 WO
WO-2014145599 Sep 2014 WO
WO-2014145736 Sep 2014 WO
WO-2014150624 Sep 2014 WO
WO-2014152432 Sep 2014 WO
WO-2014153118 Sep 2014 WO
WO-2014153470 Sep 2014 WO
WO-2014161821 Oct 2014 WO
WO-2014164466 Oct 2014 WO
WO-2014165177 Oct 2014 WO
WO-2014165349 Oct 2014 WO
WO-2014165612 Oct 2014 WO
WO-2014165707 Oct 2014 WO
WO-2014165825 Oct 2014 WO
WO-2014172458 Oct 2014 WO
WO-2014172470 Oct 2014 WO
WO-2014172489 Oct 2014 WO
WO-2014173955 Oct 2014 WO
WO-2014182700 Nov 2014 WO
WO-2014183071 Nov 2014 WO
WO-2014184143 Nov 2014 WO
WO-2014184741 Nov 2014 WO
WO-2014184744 Nov 2014 WO
WO-2014186585 Nov 2014 WO
WO-2014186686 Nov 2014 WO
WO-2014190181 Nov 2014 WO
WO-2014191128 Dec 2014 WO
WO-2014191518 Dec 2014 WO
WO-2014191521 Dec 2014 WO
WO-2014191525 Dec 2014 WO
WO-2014191527 Dec 2014 WO
WO-2014193583 Dec 2014 WO
WO-2014194190 Dec 2014 WO
WO-2014197568 Dec 2014 WO
WO-2014199358 Dec 2014 WO
WO-2014200659 Dec 2014 WO
WO-2014201015 Dec 2014 WO
WO-2014204578 Dec 2014 WO
WO-2014204723 Dec 2014 WO
WO-2014204724 Dec 2014 WO
WO-2014204725 Dec 2014 WO
WO-2014204726 Dec 2014 WO
WO-2014204727 Dec 2014 WO
WO-2014204728 Dec 2014 WO
WO-2014204729 Dec 2014 WO
WO-2014205192 Dec 2014 WO
WO-2014207043 Dec 2014 WO
WO-2014197748 Dec 2014 WO
WO-2015002780 Jan 2015 WO
WO-2015004241 Jan 2015 WO
WO-2015006290 Jan 2015 WO
WO-2015006294 Jan 2015 WO
WO-2015006437 Jan 2015 WO
WO-2015006498 Jan 2015 WO
WO-2015007194 Jan 2015 WO
WO-2015010114 Jan 2015 WO
WO-2015011483 Jan 2015 WO
WO-2015013583 Jan 2015 WO
WO-2015006747 Jan 2015 WO
WO-2015017866 Feb 2015 WO
WO-2015018503 Feb 2015 WO
WO-2015021353 Feb 2015 WO
WO-2015021426 Feb 2015 WO
WO-2015021990 Feb 2015 WO
WO-2015024017 Feb 2015 WO
WO-2015024986 Feb 2015 WO
WO-2015026883 Feb 2015 WO
WO-2015026885 Feb 2015 WO
WO-2015026886 Feb 2015 WO
WO-2015026887 Feb 2015 WO
WO-2015027134 Feb 2015 WO
WO-2015028969 Mar 2015 WO
WO-2015030881 Mar 2015 WO
WO-2015031619 Mar 2015 WO
WO-2015031775 Mar 2015 WO
WO-2015032494 Mar 2015 WO
WO-2015033293 Mar 2015 WO
WO-2015034872 Mar 2015 WO
WO-2015034885 Mar 2015 WO
WO-2015035136 Mar 2015 WO
WO-2015035139 Mar 2015 WO
WO-2015035162 Mar 2015 WO
WO-2015040075 Mar 2015 WO
WO-2015040402 Mar 2015 WO
WO-2015042585 Mar 2015 WO
WO-2015048577 Apr 2015 WO
WO-2015048690 Apr 2015 WO
WO-2015048707 Apr 2015 WO
WO-2015048801 Apr 2015 WO
WO-2015049897 Apr 2015 WO
WO-2015051191 Apr 2015 WO
WO-2015052133 Apr 2015 WO
WO-2015052231 Apr 2015 WO
WO-2015052335 Apr 2015 WO
WO-2015053995 Apr 2015 WO
WO-2015054253 Apr 2015 WO
WO-2015054315 Apr 2015 WO
WO-2015057671 Apr 2015 WO
WO-2015057834 Apr 2015 WO
WO-2015057852 Apr 2015 WO
WO-2015057976 Apr 2015 WO
WO-2015057980 Apr 2015 WO
WO-2015059265 Apr 2015 WO
WO-2015065964 May 2015 WO
WO-2015066119 May 2015 WO
WO-2015066634 May 2015 WO
WO-2015066636 May 2015 WO
WO-2015066637 May 2015 WO
WO-2015066638 May 2015 WO
WO-2015066643 May 2015 WO
WO-2015069682 May 2015 WO
WO-2015070083 May 2015 WO
WO-2015070193 May 2015 WO
WO-2015070212 May 2015 WO
WO-2015071474 May 2015 WO
WO-2015073683 May 2015 WO
WO-2015073867 May 2015 WO
WO-2015073990 May 2015 WO
WO-2015075056 May 2015 WO
WO-2015075154 May 2015 WO
WO-2015075175 May 2015 WO
WO-2015075195 May 2015 WO
WO-2015075557 May 2015 WO
WO-2015077058 May 2015 WO
WO-2015077290 May 2015 WO
WO-2015077318 May 2015 WO
WO-2015079056 Jun 2015 WO
WO-2015079057 Jun 2015 WO
WO-2015086795 Jun 2015 WO
WO-2015086798 Jun 2015 WO
WO-2015088643 Jun 2015 WO
WO-2015089046 Jun 2015 WO
WO-2015089077 Jun 2015 WO
WO-2015089277 Jun 2015 WO
WO-2015089351 Jun 2015 WO
WO-2015089354 Jun 2015 WO
WO-2015089364 Jun 2015 WO
WO-2015089406 Jun 2015 WO
WO-2015089419 Jun 2015 WO
WO-2015089427 Jun 2015 WO
WO-2015089462 Jun 2015 WO
WO-2015089465 Jun 2015 WO
WO-2015089473 Jun 2015 WO
WO-2015089486 Jun 2015 WO
WO-2015095804 Jun 2015 WO
WO-2015099850 Jul 2015 WO
WO-2015100929 Jul 2015 WO
WO-2015103057 Jul 2015 WO
WO-2015103153 Jul 2015 WO
WO-2015105928 Jul 2015 WO
WO-2015108993 Jul 2015 WO
WO-2015109752 Jul 2015 WO
WO-2015110474 Jul 2015 WO
WO-2015112790 Jul 2015 WO
WO-2015112896 Jul 2015 WO
WO-2015113063 Jul 2015 WO
WO-2015114365 Aug 2015 WO
WO-2015115903 Aug 2015 WO
WO-2015116686 Aug 2015 WO
WO-2015116969 Aug 2015 WO
WO-2015117021 Aug 2015 WO
WO-2015117041 Aug 2015 WO
WO-2015117081 Aug 2015 WO
WO-2015118156 Aug 2015 WO
WO-2015119941 Aug 2015 WO
WO-2015121454 Aug 2015 WO
WO-2015122967 Aug 2015 WO
WO-2015123339 Aug 2015 WO
WO-2015124715 Aug 2015 WO
WO-2015124718 Aug 2015 WO
WO-2015126927 Aug 2015 WO
WO-2015127428 Aug 2015 WO
WO-2015127439 Aug 2015 WO
WO-2015129686 Sep 2015 WO
WO-2015131101 Sep 2015 WO
WO-2015133554 Sep 2015 WO
WO-2015134812 Sep 2015 WO
WO-2015136001 Sep 2015 WO
WO-2015138510 Sep 2015 WO
WO-2015138739 Sep 2015 WO
WO-2015138855 Sep 2015 WO
WO-2015138870 Sep 2015 WO
WO-2015139008 Sep 2015 WO
WO-2015139139 Sep 2015 WO
WO-2015143046 Sep 2015 WO
WO-2015143177 Sep 2015 WO
WO-2015145417 Oct 2015 WO
WO-2015148431 Oct 2015 WO
WO-2015148670 Oct 2015 WO
WO-2015148680 Oct 2015 WO
WO2015148760 Oct 2015 WO
WO-2015148761 Oct 2015 WO
WO-2015148860 Oct 2015 WO
WO-2015148863 Oct 2015 WO
WO-2015153760 Oct 2015 WO
WO-2015153780 Oct 2015 WO
WO-2015153789 Oct 2015 WO
WO-2015153791 Oct 2015 WO
WO-2015153889 Oct 2015 WO
WO-2015153940 Oct 2015 WO
WO-2015155341 Oct 2015 WO
WO-2015155686 Oct 2015 WO
WO-2015157070 Oct 2015 WO
WO-2015157534 Oct 2015 WO
WO-2015159068 Oct 2015 WO
WO-2015159086 Oct 2015 WO
WO-2015159087 Oct 2015 WO
WO-2015160683 Oct 2015 WO
WO-2015161276 Oct 2015 WO
WO-2015163733 Oct 2015 WO
WO-2015164740 Oct 2015 WO
WO-2015164748 Oct 2015 WO
WO-2015165274 Nov 2015 WO
WO-2015165275 Nov 2015 WO
WO-2015165276 Nov 2015 WO
WO-2015166272 Nov 2015 WO
WO-2015167766 Nov 2015 WO
WO-2015167956 Nov 2015 WO
WO-2015168125 Nov 2015 WO
WO-2015168158 Nov 2015 WO
WO-2015168404 Nov 2015 WO
WO-2015168547 Nov 2015 WO
WO-2015168800 Nov 2015 WO
WO-2015171603 Nov 2015 WO
WO-2015171894 Nov 2015 WO
WO-2015171932 Nov 2015 WO
WO-2015172128 Nov 2015 WO
WO-2015173436 Nov 2015 WO
WO-2015175642 Nov 2015 WO
WO-2015179540 Nov 2015 WO
WO-2015183025 Dec 2015 WO
WO-2015183026 Dec 2015 WO
WO-2015183885 Dec 2015 WO
WO-2015184259 Dec 2015 WO
WO-2015184262 Dec 2015 WO
WO-2015184268 Dec 2015 WO
WO-2015188056 Dec 2015 WO
WO-2015188065 Dec 2015 WO
WO-2015188094 Dec 2015 WO
WO-2015188109 Dec 2015 WO
WO-2015188132 Dec 2015 WO
WO-2015188135 Dec 2015 WO
WO-2015188191 Dec 2015 WO
WO-2015189693 Dec 2015 WO
WO-2015191693 Dec 2015 WO
WO-2015191899 Dec 2015 WO
WO-2015191911 Dec 2015 WO
WO-2015193858 Dec 2015 WO
WO-2015195547 Dec 2015 WO
WO-2015195621 Dec 2015 WO
WO-2015195798 Dec 2015 WO
WO-2015198020 Dec 2015 WO
WO-2015200334 Dec 2015 WO
WO-2015200378 Dec 2015 WO
WO-2015200555 Dec 2015 WO
WO-2015200805 Dec 2015 WO
WO-2016001978 Jan 2016 WO
WO-2016004010 Jan 2016 WO
WO-2016007347 Jan 2016 WO
WO-2016007604 Jan 2016 WO
WO-2016007948 Jan 2016 WO
WO-2016011080 Jan 2016 WO
WO-2016011210 Jan 2016 WO
WO-2016011428 Jan 2016 WO
WO-2016012544 Jan 2016 WO
WO-2016012552 Jan 2016 WO
WO-2016014409 Jan 2016 WO
WO-2016014565 Jan 2016 WO
WO-2016014794 Jan 2016 WO
WO-2016014837 Jan 2016 WO
WO-2016016119 Feb 2016 WO
WO-2016016358 Feb 2016 WO
WO-2016019144 Feb 2016 WO
WO-2016020399 Feb 2016 WO
WO-2016021972 Feb 2016 WO
WO-2016021973 Feb 2016 WO
WO-2016022363 Feb 2016 WO
WO-2016022866 Feb 2016 WO
WO-2016022931 Feb 2016 WO
WO-2016025131 Feb 2016 WO
WO-2016025469 Feb 2016 WO
WO-2016025759 Feb 2016 WO
WO-2016026444 Feb 2016 WO
WO-2016028682 Feb 2016 WO
WO-2016028843 Feb 2016 WO
WO-2016028887 Feb 2016 WO
WO-2016033088 Mar 2016 WO
WO-2016033230 Mar 2016 WO
WO-2016033246 Mar 2016 WO
WO-2016033298 Mar 2016 WO
WO-2016035044 Mar 2016 WO
WO-2016036754 Mar 2016 WO
WO-2016037157 Mar 2016 WO
WO-2016040030 Mar 2016 WO
WO-2016040594 Mar 2016 WO
WO-2016044182 Mar 2016 WO
WO-2016044416 Mar 2016 WO
WO-2016046635 Mar 2016 WO
WO-2016049024 Mar 2016 WO
WO-2016049163 Mar 2016 WO
WO-2016049230 Mar 2016 WO
WO-2016049251 Mar 2016 WO
WO-2016049258 Mar 2016 WO
WO-2016053397 Apr 2016 WO
WO-2016054326 Apr 2016 WO
WO-2016057061 Apr 2016 WO
WO-2016057821 Apr 2016 WO
WO-2016057835 Apr 2016 WO
WO-2016057850 Apr 2016 WO
WO-2016057951 Apr 2016 WO
WO-2016057961 Apr 2016 WO
WO-2016061073 Apr 2016 WO
WO-2016061374 Apr 2016 WO
WO-2016061481 Apr 2016 WO
WO-2016061523 Apr 2016 WO
WO-2016064894 Apr 2016 WO
WO-2016069282 May 2016 WO
WO-2016069283 May 2016 WO
WO-2016069591 May 2016 WO
WO-2016069910 May 2016 WO
WO-2016069912 May 2016 WO
WO-2016070037 May 2016 WO
WO-2016070070 May 2016 WO
WO-2016070129 May 2016 WO
WO-2016072399 May 2016 WO
WO-2016072936 May 2016 WO
WO-2016073433 May 2016 WO
WO-2016073559 May 2016 WO
WO-2016073990 May 2016 WO
WO-2016075662 May 2016 WO
WO 2016076672 May 2016 WO
WO-2016077273 May 2016 WO
WO-2016077350 May 2016 WO
WO-2016080097 May 2016 WO
WO-2016080795 May 2016 WO
WO-2016081923 May 2016 WO
WO-2016081924 May 2016 WO
WO-2016082135 Jun 2016 WO
WO-2016083811 Jun 2016 WO
WO-2016084084 Jun 2016 WO
WO-2016084088 Jun 2016 WO
WO-2016086177 Jun 2016 WO
WO-2016089433 Jun 2016 WO
WO-2016089866 Jun 2016 WO
WO-2016089883 Jun 2016 WO
WO-2016090385 Jun 2016 WO
WO 2016094679 Jun 2016 WO
WO-2016094845 Jun 2016 WO
WO-2016094867 Jun 2016 WO
WO-2016094872 Jun 2016 WO
WO-2016094874 Jun 2016 WO
WO-2016094880 Jun 2016 WO
WO-2016094888 Jun 2016 WO
WO-2016097212 Jun 2016 WO
WO-2016097231 Jun 2016 WO
WO-2016097751 Jun 2016 WO
WO-2016099887 Jun 2016 WO
WO-2016100272 Jun 2016 WO
WO-2016100389 Jun 2016 WO
WO-2016100568 Jun 2016 WO
WO-2016100571 Jun 2016 WO
WO-2016100951 Jun 2016 WO
WO-2016100955 Jun 2016 WO
WO-2016100974 Jun 2016 WO
WO-2016103233 Jun 2016 WO
WO-2016104716 Jun 2016 WO
WO-2016106236 Jun 2016 WO
WO-2016106239 Jun 2016 WO
WO-2016106244 Jun 2016 WO
WO-2016106338 Jun 2016 WO
WO-2016108926 Jul 2016 WO
WO-2016109255 Jul 2016 WO
WO-2016109840 Jul 2016 WO
WO-2016110214 Jul 2016 WO
WO-2016110453 Jul 2016 WO
WO-2016110511 Jul 2016 WO
WO-2016110512 Jul 2016 WO
WO 2016111546 Jul 2016 WO
WO-2016112242 Jul 2016 WO
WO-2016112351 Jul 2016 WO
WO-2016112963 Jul 2016 WO
WO-2016114972 Jul 2016 WO
WO-2016115179 Jul 2016 WO
WO-2016115326 Jul 2016 WO
WO-2016115355 Jul 2016 WO
WO-2016116032 Jul 2016 WO
WO-2016120480 Aug 2016 WO
WO-2016123071 Aug 2016 WO
WO-2016123230 Aug 2016 WO
WO-2016123243 Aug 2016 WO
WO-2016123578 Aug 2016 WO
WO 2016126747 Aug 2016 WO
WO-2016130600 Aug 2016 WO
WO-2016130697 Aug 2016 WO
WO 2016131009 Aug 2016 WO
WO-2016132122 Aug 2016 WO
WO-2016133165 Aug 2016 WO
WO-2016135507 Sep 2016 WO
WO-2016135557 Sep 2016 WO
WO-2016135558 Sep 2016 WO
WO-2016135559 Sep 2016 WO
WO-2016137774 Sep 2016 WO
WO-2016137949 Sep 2016 WO
WO-2016141224 Sep 2016 WO
WO-2016141893 Sep 2016 WO
WO-2016142719 Sep 2016 WO
WO-2016145150 Sep 2016 WO
WO-2016148994 Sep 2016 WO
WO-2016149484 Sep 2016 WO
WO-2016149547 Sep 2016 WO
WO-2016150336 Sep 2016 WO
WO-2016150855 Sep 2016 WO
WO-2016154016 Sep 2016 WO
WO-2016154579 Sep 2016 WO
WO-2016154596 Sep 2016 WO
WO-2016155482 Oct 2016 WO
WO-2016161004 Oct 2016 WO
WO-2016161207 Oct 2016 WO
WO-2016161260 Oct 2016 WO
WO-2016161380 Oct 2016 WO
WO-2016161446 Oct 2016 WO
WO-2016164356 Oct 2016 WO
WO-2016164797 Oct 2016 WO
WO-2016166340 Oct 2016 WO
WO-2016167300 Oct 2016 WO
WO-2016170484 Oct 2016 WO
WO-2016172359 Oct 2016 WO
WO-2016172727 Oct 2016 WO
WO-2016174056 Nov 2016 WO
WO-2016174151 Nov 2016 WO
WO-2016174250 Nov 2016 WO
WO-2016176191 Nov 2016 WO
WO-2016176404 Nov 2016 WO
WO-2016176690 Nov 2016 WO
WO-2016177682 Nov 2016 WO
WO-2016178207 Nov 2016 WO
WO-2016179038 Nov 2016 WO
WO-2016179112 Nov 2016 WO
WO-2016181357 Nov 2016 WO
WO-2016182893 Nov 2016 WO
WO-2016182917 Nov 2016 WO
WO-2016182959 Nov 2016 WO
WO-2016183236 Nov 2016 WO
WO-2016183298 Nov 2016 WO
WO-2016183345 Nov 2016 WO
WO-2016183402 Nov 2016 WO
WO-2016183438 Nov 2016 WO
WO-2016183448 Nov 2016 WO
WO-2016184955 Nov 2016 WO
WO-2016184989 Nov 2016 WO
WO-2016185411 Nov 2016 WO
WO-2016186745 Nov 2016 WO
WO-2016186772 Nov 2016 WO
WO-2016186946 Nov 2016 WO
WO-2016186953 Nov 2016 WO
WO-2016187717 Dec 2016 WO
WO-2016187904 Dec 2016 WO
WO-2016191684 Dec 2016 WO
WO-2016191869 Dec 2016 WO
WO-2016196273 Dec 2016 WO
WO-2016196282 Dec 2016 WO
WO-2016196308 Dec 2016 WO
WO-2016196361 Dec 2016 WO
WO-2016196499 Dec 2016 WO
WO-2016196539 Dec 2016 WO
WO-2016196655 Dec 2016 WO
WO-2016196805 Dec 2016 WO
WO-2016196887 Dec 2016 WO
WO-2016197132 Dec 2016 WO
WO-2016197133 Dec 2016 WO
WO-2016197354 Dec 2016 WO
WO-2016197355 Dec 2016 WO
WO-2016197356 Dec 2016 WO
WO-2016197357 Dec 2016 WO
WO-2016197358 Dec 2016 WO
WO-2016197359 Dec 2016 WO
WO-2016197360 Dec 2016 WO
WO-2016197361 Dec 2016 WO
WO-2016197362 Dec 2016 WO
WO-2016198361 Dec 2016 WO
WO-2016198500 Dec 2016 WO
WO-2016200263 Dec 2016 WO
WO-2016201047 Dec 2016 WO
WO-2016201138 Dec 2016 WO
WO-2016201152 Dec 2016 WO
WO-2016201153 Dec 2016 WO
WO-2016201155 Dec 2016 WO
WO-2016205276 Dec 2016 WO
WO-2016205613 Dec 2016 WO
WO-2016205623 Dec 2016 WO
WO-2016205680 Dec 2016 WO
WO-2016205688 Dec 2016 WO
WO-2016205703 Dec 2016 WO
WO-2016205711 Dec 2016 WO
WO-2016205728 Dec 2016 WO
WO-2016205745 Dec 2016 WO
WO-2016205749 Dec 2016 WO
WO-2016205759 Dec 2016 WO
WO-2016205764 Dec 2016 WO
WO-2017001572 Jan 2017 WO
WO-2017001988 Jan 2017 WO
WO-2017004261 Jan 2017 WO
WO-2017004279 Jan 2017 WO
WO-2017004616 Jan 2017 WO
WO-2017005807 Jan 2017 WO
WO-2017009399 Jan 2017 WO
WO 2017010556 Jan 2017 WO
WO-2017011519 Jan 2017 WO
WO-2017011721 Jan 2017 WO
WO-2017011804 Jan 2017 WO
WO-2017015015 Jan 2017 WO
WO-2017015101 Jan 2017 WO
WO-2017015567 Jan 2017 WO
WO-2017015637 Jan 2017 WO
WO-2017017016 Feb 2017 WO
WO-2017019867 Feb 2017 WO
WO-2017019895 Feb 2017 WO
WO-2017023803 Feb 2017 WO
WO-2017023974 Feb 2017 WO
WO-2017024047 Feb 2017 WO
WO-2017024319 Feb 2017 WO
WO-2017024343 Feb 2017 WO
WO-2017024602 Feb 2017 WO
WO-2017025323 Feb 2017 WO
WO-2017027423 Feb 2017 WO
WO-2017028768 Feb 2017 WO
WO-2017029664 Feb 2017 WO
WO-2017031360 Feb 2017 WO
WO-2017031483 Feb 2017 WO
WO-2017035416 Mar 2017 WO
WO-2017040348 Mar 2017 WO
WO-2017040511 Mar 2017 WO
WO-2017040709 Mar 2017 WO
WO-2017040786 Mar 2017 WO
WO-2017040793 Mar 2017 WO
WO-2017040813 Mar 2017 WO
WO-2017043573 Mar 2017 WO
WO-2017043656 Mar 2017 WO
WO-2017044419 Mar 2017 WO
WO-2017044776 Mar 2017 WO
WO-2017044857 Mar 2017 WO
WO-2017049129 Mar 2017 WO
WO-2017050963 Mar 2017 WO
WO-2017053312 Mar 2017 WO
WO-2017053431 Mar 2017 WO
WO-2017053713 Mar 2017 WO
WO-2017053729 Mar 2017 WO
WO-2017053753 Mar 2017 WO
WO-2017053762 Mar 2017 WO
WO-2017053879 Mar 2017 WO
WO 2017054721 Apr 2017 WO
WO-2017058658 Apr 2017 WO
WO 2017059241 Apr 2017 WO
WO-2017062605 Apr 2017 WO
WO-2017062723 Apr 2017 WO
WO-2017062754 Apr 2017 WO
WO-2017062855 Apr 2017 WO
WO-2017062886 Apr 2017 WO
WO-2017062983 Apr 2017 WO
WO-2017064439 Apr 2017 WO
WO-2017064546 Apr 2017 WO
WO-2017064566 Apr 2017 WO
WO-2017066175 Apr 2017 WO
WO-2017066497 Apr 2017 WO
WO-2017066588 Apr 2017 WO
WO 2017066707 Apr 2017 WO
WO 2017068077 Apr 2017 WO
WO-2017068377 Apr 2017 WO
WO-2017069829 Apr 2017 WO
WO-2017070029 Apr 2017 WO
WO-2017070032 Apr 2017 WO
WO-2017070169 Apr 2017 WO
WO-2017070284 Apr 2017 WO
WO-2017070598 Apr 2017 WO
WO-2017070605 Apr 2017 WO
WO-2017070632 Apr 2017 WO
WO-2017070633 Apr 2017 WO
WO-2017072590 May 2017 WO
WO-2017074526 May 2017 WO
WO-2017074962 May 2017 WO
WO-2017075261 May 2017 WO
WO 2017075335 May 2017 WO
WO-2017075475 May 2017 WO
WO-2017077135 May 2017 WO
WO-2017077329 May 2017 WO
WO-2017078751 May 2017 WO
WO-2017079400 May 2017 WO
WO-2017079428 May 2017 WO
WO-2017079673 May 2017 WO
WO-2017079724 May 2017 WO
WO-2017081097 May 2017 WO
WO-2017081288 May 2017 WO
WO-2017083368 May 2017 WO
WO-2017083722 May 2017 WO
WO-2017083766 May 2017 WO
WO-2017087395 May 2017 WO
WO-2017090724 Jun 2017 WO
WO-2017091510 Jun 2017 WO
WO-2017091630 Jun 2017 WO
WO-2017092201 Jun 2017 WO
WO-2017093370 Jun 2017 WO
WO-2017095111 Jun 2017 WO
WO-2017096041 Jun 2017 WO
WO-2017096237 Jun 2017 WO
WO-2017100158 Jun 2017 WO
WO-2017100431 Jun 2017 WO
WO-2017104404 Jun 2017 WO
WO-2017105251 Jun 2017 WO
WO-2017105350 Jun 2017 WO
WO-2017105991 Jun 2017 WO
WO-2017106414 Jun 2017 WO
WO-2017106528 Jun 2017 WO
WO-2017106537 Jun 2017 WO
WO-2017106569 Jun 2017 WO
WO-2017106616 Jun 2017 WO
WO-2017106657 Jun 2017 WO
WO-2017106767 Jun 2017 WO
WO 2017109134 Jun 2017 WO
WO 2017109757 Jun 2017 WO
WO-2017112620 Jun 2017 WO
WO-2017115268 Jul 2017 WO
WO-2017117395 Jul 2017 WO
WO 2017118598 Jul 2017 WO
WO-2017118720 Jul 2017 WO
WO-2017123609 Jul 2017 WO
WO-2017123910 Jul 2017 WO
WO-2017124086 Jul 2017 WO
WO-2017124100 Jul 2017 WO
WO-2017124652 Jul 2017 WO
WO-2017126987 Jul 2017 WO
WO-2017127807 Jul 2017 WO
WO-2017131237 Aug 2017 WO
WO-2017132112 Aug 2017 WO
WO 2017132580 Aug 2017 WO
WO-2017136520 Aug 2017 WO
WO-2017136629 Aug 2017 WO
WO-2017136794 Aug 2017 WO
WO-2017139264 Aug 2017 WO
WO-2017139505 Aug 2017 WO
WO 2017141173 Aug 2017 WO
WO-2017142835 Aug 2017 WO
WO-2017142999 Aug 2017 WO
WO-2017143042 Aug 2017 WO
WO-2017147278 Aug 2017 WO
WO-2017147432 Aug 2017 WO
WO-2017147446 Aug 2017 WO
WO-2017147555 Aug 2017 WO
WO-2017151444 Sep 2017 WO
WO-2017152015 Sep 2017 WO
WO 2017155717 Sep 2017 WO
WO-2017157422 Sep 2017 WO
WO-2017158153 Sep 2017 WO
WO-2017160689 Sep 2017 WO
WO-2017160752 Sep 2017 WO
WO-2017160890 Sep 2017 WO
WO-2017161068 Sep 2017 WO
WO-2017165826 Sep 2017 WO
WO-2017165862 Sep 2017 WO
WO-2017172644 Oct 2017 WO
WO-2017172645 Oct 2017 WO
WO-2017172860 Oct 2017 WO
WO-2017173004 Oct 2017 WO
WO-2017173054 Oct 2017 WO
WO-2017173092 Oct 2017 WO
WO-2017174329 Oct 2017 WO
WO-2017176529 Oct 2017 WO
WO 2017176806 Oct 2017 WO
WO-2017178590 Oct 2017 WO
WO-2017180694 Oct 2017 WO
WO-2017180711 Oct 2017 WO
WO-2017180915 Oct 2017 WO
WO-2017180926 Oct 2017 WO
WO-2017181107 Oct 2017 WO
WO-2017181735 Oct 2017 WO
WO-2017182468 Oct 2017 WO
WO-2017184334 Oct 2017 WO
WO-2017184768 Oct 2017 WO
WO-2017184786 Oct 2017 WO
WO-2017186550 Nov 2017 WO
WO-2017189308 Nov 2017 WO
WO-2017189336 Nov 2017 WO
WO-2017190257 Nov 2017 WO
WO-2017190664 Nov 2017 WO
WO-2017191210 Nov 2017 WO
WO-2017192172 Nov 2017 WO
WO-2017192512 Nov 2017 WO
WO-2017192544 Nov 2017 WO
WO-2017192573 Nov 2017 WO
WO-2017193029 Nov 2017 WO
WO-2017193053 Nov 2017 WO
WO-2017196768 Nov 2017 WO
WO-2017197038 Nov 2017 WO
WO-2017197238 Nov 2017 WO
WO-2017197301 Nov 2017 WO
WO 2017201476 Nov 2017 WO
WO-2017205290 Nov 2017 WO
WO-2017205423 Nov 2017 WO
WO-2017207589 Dec 2017 WO
WO-2017208247 Dec 2017 WO
WO-2017209809 Dec 2017 WO
WO-2017213896 Dec 2017 WO
WO-2017213898 Dec 2017 WO
WO-2017214460 Dec 2017 WO
WO-2017216392 Dec 2017 WO
WO-2017216771 Dec 2017 WO
WO 2017218185 Dec 2017 WO
WO-2017219027 Dec 2017 WO
WO-2017219033 Dec 2017 WO
WO-2017220751 Dec 2017 WO
WO-2017222370 Dec 2017 WO
WO-2017222773 Dec 2017 WO
WO-2017222834 Dec 2017 WO
WO-2017223107 Dec 2017 WO
WO-2017223330 Dec 2017 WO
WO-2018000657 Jan 2018 WO
WO-2018002719 Jan 2018 WO
WO-2018005117 Jan 2018 WO
WO-2018005289 Jan 2018 WO
WO-2018005691 Jan 2018 WO
WO-2018005782 Jan 2018 WO
WO-2018005873 Jan 2018 WO
WO 201806693 Jan 2018 WO
WO-2018009520 Jan 2018 WO
WO-2018009562 Jan 2018 WO
WO-2018009822 Jan 2018 WO
WO-2018013821 Jan 2018 WO
WO-2018013990 Jan 2018 WO
WO 2018014384 Jan 2018 WO
WO 2018015444 Jan 2018 WO
WO 2018015936 Jan 2018 WO
WO 2018017754 Jan 2018 WO
WO 2018018979 Feb 2018 WO
WO 2018020248 Feb 2018 WO
WO 2018022480 Feb 2018 WO
WO 2018022634 Feb 2018 WO
WO 2018025206 Feb 2018 WO
WO 2018026723 Feb 2018 WO
WO 2018026976 Feb 2018 WO
WO 2018027078 Feb 2018 WO
WO 2018030608 Feb 2018 WO
WO 2018031683 Feb 2018 WO
WO 2018035250 Feb 2018 WO
WO 2018035300 Feb 2018 WO
WO 2018035423 Feb 2018 WO
WO 2018035503 Feb 2018 WO
WO 2018039145 Mar 2018 WO
WO 2018039438 Mar 2018 WO
WO 2018039440 Mar 2018 WO
WO 2018039448 Mar 2018 WO
WO 2018045630 Mar 2018 WO
WO 2018048827 Mar 2018 WO
WO 2018049168 Mar 2018 WO
WO 2018051347 Mar 2018 WO
WO 2018058064 Mar 2018 WO
WO 2018062866 Apr 2018 WO
WO 2018064352 Apr 2018 WO
WO 2018064371 Apr 2018 WO
WO 2018064516 Apr 2018 WO
WO 2018067546 Apr 2018 WO
WO 2018067846 Apr 2018 WO
WO 2018068053 Apr 2018 WO
WO 2018069474 Apr 2018 WO
WO 2018071623 Apr 2018 WO
WO 2018071663 Apr 2018 WO
WO 2018071868 Apr 2018 WO
WO 2018071892 Apr 2018 WO
WO 2018074979 Apr 2018 WO
WO 2018079134 May 2018 WO
WO 2018080573 May 2018 WO
WO 2018081504 May 2018 WO
WO 2018081535 May 2018 WO
WO 2018081728 May 2018 WO
WO 2018083128 May 2018 WO
WO 2018083606 May 2018 WO
WO 2018085288 May 2018 WO
WO 2018086623 May 2018 WO
WO 2018093990 May 2018 WO
WO 2018098383 May 2018 WO
WO 2018098480 May 2018 WO
WO 2018098587 Jun 2018 WO
WO 2018099256 Jun 2018 WO
WO 2018103686 Jun 2018 WO
WO 2018106268 Jun 2018 WO
WO 2018107028 Jun 2018 WO
WO 2018107103 Jun 2018 WO
WO 2018107129 Jun 2018 WO
WO 2018108272 Jun 2018 WO
WO 2018109101 Jun 2018 WO
WO 2018111946 Jun 2018 WO
WO 2018111947 Jun 2018 WO
WO 2018112336 Jun 2018 WO
WO 2018112446 Jun 2018 WO
WO 2018119354 Jun 2018 WO
WO 2018119359 Jun 2018 WO
WO 2018130830 Jul 2018 WO
WO 2018135838 Jul 2018 WO
WO 2018136396 Jul 2018 WO
WO 2018138385 Aug 2018 WO
WO 2018148246 Aug 2018 WO
WO 2018148256 Aug 2018 WO
WO 2018148647 Aug 2018 WO
WO 2018149418 Aug 2018 WO
WO 2018149888 Aug 2018 WO
WO 2018152418 Aug 2018 WO
WO 2018154380 Aug 2018 WO
WO 2018154387 Aug 2018 WO
WO 2018154412 Aug 2018 WO
WO 2018154413 Aug 2018 WO
WO 2018154418 Aug 2018 WO
WO 2018154439 Aug 2018 WO
WO 2018154459 Aug 2018 WO
WO 2018154462 Aug 2018 WO
WO 2018156372 Aug 2018 WO
WO 2018161009 Sep 2018 WO
WO 2018165504 Sep 2018 WO
WO 2018165629 Sep 2018 WO
WO 2018170015 Sep 2018 WO
WO 2018170340 Sep 2018 WO
WO 2018175502 Sep 2018 WO
WO 2018177351 Oct 2018 WO
WO 2018179578 Oct 2018 WO
WO 2018183403 Oct 2018 WO
WO 2018195545 Oct 2018 WO
WO 2018195555 Oct 2018 WO
WO 2018197020 Nov 2018 WO
WO 2018197495 Nov 2018 WO
WO 2018202800 Nov 2018 WO
WO 2018204493 Nov 2018 WO
WO 2018208755 Nov 2018 WO
WO 2018208998 Nov 2018 WO
WO 2018209158 Nov 2018 WO
WO 2018209320 Nov 2018 WO
WO 2018213708 Nov 2018 WO
WO 2018213726 Nov 2018 WO
WO 2018213771 Nov 2018 WO
WO 2018213791 Nov 2018 WO
WO 2018217852 Nov 2018 WO
WO 2018217981 Nov 2018 WO
WO 2018218166 Nov 2018 WO
WO 2018218188 Nov 2018 WO
WO 2018218206 Nov 2018 WO
WO 2019079347 Apr 2019 WO
WO 2019118949 Jun 2019 WO
WO 2019139645 Jul 2019 WO
WO 2019226953 Nov 2019 WO
WO 2020014261 Jan 2020 WO
WO 2020041751 Feb 2020 WO
Non-Patent Literature Citations (737)
Entry
Stephanie Pelletier ((Nov. 2016)  CRISPR-Cas Systems for the Study of Immune Function. In: eLS. John Wiley & Sons, Ltd: Chichester. DOI: 10.1002/9780470015902.a0026896 [available online Nov. 15, 2016]). (Year: 2016).
U.S. Appl. No. 61/837,481, filed Jun. 20, 2013, Cho et al.
U.S. Appl. No. 61/803,599, filed Mar. 20, 2013, Kim et al.
U.S. Appl. No. 61/794,422, filed Mar. 15, 2013, Knight et al.
U.S. Appl. No. 61/761,046, filed Feb. 5, 2013, Knight et al.
U.S. Appl. No. 61/758,624, filed Jan. 30, 2013, Chen et al.
U.S. Appl. No. 61/734,256, filed Dec. 6, 2012, Chen et al.
U.S. Appl. No. 61/717,324, filed Oct. 23, 2012, Cho et al.
U.S. Appl. No. 61/716,256, filed Oct. 19, 2012, Jinek et al.
[No Author Listed], EMBL Accession No. Q99ZW2. Nov. 2012. 2 pages.
[No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2002. 2 pages.
[No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2005. 3 pages.
[No Author Listed], Invitrogen Lipofectamine™ LTX product sheets, 2011. 4 pages.
[No Author Listed], Thermo Fisher Scientific—How Cationic Lipid Mediated Transfection Works, retrieved from the internet Aug. 27, 2015. 2 pages.
Abudayyeh et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science Aug. 2016;353(6299):aaf5573. DOI: 10.1126/science.aaf5573.
Addgene Plasmid # 44246. pdCas9-humanized, 2017, Stanley Qi.
Addgene Plasmid # 73021. PCMV-BE3, 2017, David Liu.
Addgene Plasmid # 79620. pcDNA3.1_pCMV-nCas-PmCDA1-ugi pH1-gRNA(HPRT), 2017, Akihiko Kondo.
Alexandrov et al., Signatures of mutational processes in human cancer. Nature. Aug. 22, 2013;500(7463):415-21. doi: 10.1038/nature12477. Epub Aug. 14, 2013.
Anders et al., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. Sep. 25, 2014;513(7519):569-73. doi: 10.1038/nature13579. Epub Jul. 27, 2014.
Arnold et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. EMBO J. Mar. 1, 1999;18(5):1407-14.
Barnes et al., Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445-76.
Barrangou et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science. Mar. 23, 2007;315(5819):1709-12.
Barrangou, RNA-mediated programmable DNA cleavage. Nat Biotechnol. Sep. 2012;30(9):836-8. doi: 10.1038/nbt.2357.
Basha et al., Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther. Dec. 2011;19(12):2186-200. doi: 10.1038/mt.2011.190. Epub Oct. 4, 2011.
Beale et al., Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J Mol Biol. Mar. 26, 2004;337(3):585-96.
Bedell et al., In vivo genome editing using a high-efficiency TALEN system. Nature. Nov. 1, 2012;491(7422):114-8. Doi: 10.1038/nature11537. Epub Sep. 23, 2012.
Begley, Scientists unveil the ‘most clever CRISPR gadget’ so far. STAT, Apr. 20, 2016. https://www.statnews.com/2016/04/20/clever-crispr-advance-unveiled/.
Beumer et al., Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics. Apr. 2006;172(4):2391-403. Epub Feb. 1, 2006.
Birling et al., Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol. 2009;561:245-63. doi: 10.1007/978-1-60327-019-9_16.
Bitinaite et al., Fokl dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10570-5.
Boch, TALEs of genome targeting. Nat Biotechnol. Feb. 2011;29(2):135-6. Doi: 10.1038/nbt.1767.
Boeckle et al., Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J Control Release. May 15, 2006;112(2):240-8. Epub Mar. 20, 2006.
Borman, Improved route to single-base genome editing. Chemical & Engineering News, Apr. 25, 2016;94(17)p5. http://cen.acs.org/articles/94/i17/Improved-route-single-base-genome.html.
Branden and Tooze, Introduction to Protein Structure. 1999; 2nd edition. Garland Science Publisher: 3-12.
Britt et al., Re-engineering plant gene targeting. Trends Plant Sci. Feb. 2003;8(2):90-5.
Brown et al., Serine recombinases as tools for genome engineering. Methods. Apr. 2011;53(4):372-9. doi: 10.1016/j.ymeth.2010.12.031. Epub Dec. 30, 2010.
Brusse et al., Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord. Mar. 2006;21(3):396-401.
Buchholz et al., Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol. Nov. 2001;19(11):1047-52.
Bulow et al., Multienzyme systems obtained by gene fusion. Trends Biotechnol. Jul. 1991;9(7):226-31.
Burstein et al., New CRISPR-Cas systems from uncultivated microbes. Nature Feb. 2017;542(7640):237-240.
Cade et al., Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. Sep. 2012;40(16):8001-10. Doi: 10.1093/nar/gks518. Epub Jun. 7, 2012.
Caldecott et al., Single-strand break repair and genetic disease. Nat Rev Genet. Aug. 2008;9(8):619-31. doi: 10.1038/nrg2380.
Cameron, Recent advances in transgenic technology. Mol Biotechnol. Jun. 1997;7(3):253-65.
Cargill et al.,Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. Jul. 1999;22(3):231-8.
Caron et al., Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther. Mar. 2001;3(3):310-8.
Carroll et al., Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods Mol Biol. 2008;435:63-77. doi: 10.1007/978-1-59745-232-8_5.
Carroll et al., Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. Nov. 2008;15(22):1463-8. doi: 10.1038/gt.2008.145. Epub Sep. 11, 2008.
Carroll, A CRISPR approach to gene targeting. Mol Ther. Sep. 2012;20(9):1658-60. doi: 10.1038/mt.2012.171.
Cermak et al., Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. Jul. 2011;39(12):e82. Doi: 10.1093/nar/gkr218. Epub Apr. 14, 2011.
Chadwick et al., In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing. Arterioscler Thromb Vasc Biol. Sep. 2017;37(9):1741-1747. doi: 10.1161/ATVBAHA.117.309881. Epub Jul. 27, 2017.
Chaikind et al., A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res. Nov. 16, 2016;44(20):9758-9770. Epub Aug. 11, 2016.
Charpentier et al., Biotechnology: Rewriting a genome. Nature. Mar. 7, 2013;495(7439):50-1. doi: 10.1038/495050a.
Chavez et al., Highly efficient Cas9-mediated transcriptional programming. Nat Methods. Apr. 2015;12(4):326-8. doi: 10.1038/nmeth.3312. Epub Mar. 2, 2015.
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. Jun. 14, 2016. doi:https://doi.org/10.1101/058974. [Preprint].
Chelico et al., Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem. Oct. 9, 2009;284(41):27761-5. doi: 10.1074/jbc.R109.052449. Epub Aug. 13, 2009.
Chen et al., Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature. Mar. 6, 2008;452(7183):116-9. doi: 10.1038/nature06638. Epub Feb. 20, 2008.
Chesnoy et al., Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct. 2000;29:27-47.
Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016.
Chichili et al., Linkers in the structural biology of protein-protein interactions. Protein Science. 2013;22:153-67.
Chipev et al., A leucine—proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell. Sep. 4, 1992;70(5):821-8.
Cho et al., Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. Jan. 2014;24(1):132-41. doi: 10.1101/gr.162339.113. Epub Nov. 19, 2013.
Cho et al., Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. Mar. 2013;31(3):230-2. doi: 10.1038/nbt.2507. Epub Jan. 29, 2013.
Christian et al, Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One. 2012;7(9):e45383. doi: 10.1371/journal.pone.0045383. Epub Sep. 24, 2012.
Christian et al., Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. Oct. 2010;186(2):757-61. Doi: 10.1534/genetics.110.120717. Epub Jul. 26, 2010.
Chu et al., Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotech. Feb. 13, 2015;33:543-8.
Chung-Il et al., Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. RNA. May 2006;12(5):710-6. Epub Apr. 10, 2006.
Chylinski et al., The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. May 2013;10(5):726-37. doi: 10.4161/rna.24321. Epub Apr. 5, 2013.
Cole-Strauss et al., Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. Sep. 6, 1996;273(5280):1386-9.
Cong et al., Multiplex genome engineering using CRISPR/Cas systems. Science. Feb. 15, 2013;339(6121):819-23. doi: 10.1126/science.1231143. Epub Jan. 3, 2013.
Conticello, The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9(6):229. doi: 10.1186/gb-2008-9-6-229. Epub Jun. 17, 2008.
Cox et al., Conditional gene expression in the mouse inner ear using Cre-loxP. J Assoc Res Otolaryngol. Jun. 2012;13(3):295-322. doi: 10.1007/s10162-012-0324-5. Epub Apr. 24, 2012.
Cox et al., Therapeutic genome editing: prospects and challenges. Nat Med. Feb. 2015;21(2):121-31. doi: 10.1038/nm.3793.
Cradick et al., CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. Nov. 1, 2013;41(20):9584-92. doi: 10.1093/nar/gkt714. Epub Aug. 11, 2013.
Cradick et al., ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics. May 13, 2011;12:152. doi: 10.1186/1471-2105-12-152.
Cradick et al., Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther. May 2010;18(5):947-54. Doi: 10.1038/mt.2010.20. Epub Feb. 16, 2010.
Cui et al., Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol. Jan. 2011;29(1):64-7. Doi: 10.1038/nbt.1731. Epub Dec. 12, 2010.
Cunningham et al., Ensembl 2015. Nucleic Acids Res. Jan. 2015;43(Database issue):D662-9. doi: 10.1093/nar/gku1010. Epub Oct. 28, 2014.
Dahlem et al., Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 2012;8(8):e1002861. doi: 10.1371/journal.pgen.1002861. Epub Aug. 16, 2012.
Davis et al., Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol. May 2015;11(5):316-8. doi: 10.1038/nchembio.1793. Epub Apr. 6, 2015.
De Souza, Primer: genome editing with engineered nucleases. Nat Methods. Jan. 2012;9(1):27.
Deltcheva et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. Mar. 31, 2011;471(7340):602-7. doi: 10.1038/nature09886.
Dicarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research Apr. 2013;41(7):4336-43.
Ding et al., A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. Feb. 7, 2013;12(2):238-51. Doi: 10.1016/j.stem.2012.11.011. Epub Dec. 13, 2012.
Dormiani et al., Long-term and efficient expression of human β-globin gene in a hematopoietic cell line using a new site-specific integrating non-viral system. Gene Ther. Aug. 2015;22(8):663-74. doi: 10.1038/gt.2015.30. Epub Apr. 1, 2015.
Doudna et al., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. Nov. 28, 2014;346(6213):1258096. doi: 10.1126/science.1258096.
Doyon et al., Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):702-8. Doi: 10.1038/nbt1409. Epub May 25, 2008.
Dunaime, Breakthrough method means CRISPR just got a lot more relevant to human health. The Verge. Apr. 20, 2016. http://www.theverge.com/2016/4/20/11450262/crispr-base-editing-single-nucleotides-dna-gene-liu-harvard.
East-Seletsky et al., Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature Oct. 2016;538(7624):270-3.
Eltoukhy et al., Nucleic acid-mediated intracellular protein delivery by lipid-like nanoparticles. Biomaterials. Aug. 2014;35(24):6454-61. doi: 10.1016/j.biomaterials.2014.04.014. Epub May 13, 2014.
Esvelt et al., Genome-scale engineering for systems and synthetic biology. Mol Syst Biol. 2013;9:641. doi: 10.1038/msb.2012.66.
Esvelt et al., Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. Nov. 2013;10(11):1116-21. doi: 10.1038/nmeth.2681. Epub Sep. 29, 2013.
Fine et al., Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Scientific Reports 2015;5(1):Article No. 10777. doi:10.1038/srep10777. With Supplementary Information.
Fonfara et al., Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. Feb. 2014;42(4):2577-90. doi: 10.1093/nar/gkt1074. Epub Nov. 22, 2013.
Freshney, Culture of Animal Cells. A Manual of Basic Technique. Alan R. Liss, Inc. New York. 1983;4.
Fu et al., Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. Mar. 2014;32(3):279-84. doi: 10.1038/nbt.2808. Epub Jan. 26, 2014.
Fu et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. Sep. 2013;31(9):822-6. doi: 10.1038/nbt.2623. Epub Jun. 23, 2013.
Fuchs et al., Polyarginine as a multifunctional fusion tag. Protein Sci. Jun. 2005;14(6):1538-44.
Fujisawa et al., Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. Apr. 1, 2007;109(7):2903-11.
Fung et al., Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells. PLoS One. 2011;6(5):e20514. doi: 10.1371/journal.pone.0020514. Epub May 25, 2011.
Gaj et al., A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res. Feb. 6, 2013;41(6):3937-46.
Gaj et al., Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J Am Chem Soc. Apr. 2, 2014;136(13):5047-56. doi: 10.1021/ja4130059. Epub Mar. 20, 2014.
Gaj et al., Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng. Jan. 2014;111(1):1-15. doi: 10.1002/bit.25096. Epub Sep. 13, 2013.
Gaj et al., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. Jul. 2013;31(7):397-405. doi: 10.1016/j.tibtech.2013.04.004. Epub May 9, 2013.
Gallo et al., A novel pathogenic PSEN1 mutation in a family with Alzheimer's disease: phenotypical and neuropathological features. J Alzheimers Dis. 2011;25(3):425-31. doi: 10.3233/JAD-2011-110185.
Gao et al., DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol. Jul. 2016;34(7):768-73. doi: 10.1038/nbt.3547. Epub May 2, 2016.
Gardlik et al., Vectors and delivery systems in gene therapy. Med Sci Monit. Apr. 2005;11(4):RA110-21. Epub Mar. 24, 2005.
Gasiunas et al., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. Sep. 25, 2012;109(39):E2579-86. Epub Sep. 4, 2012. Supplementary materials included.
Gasiunas et al., RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol. Nov. 2013;21(11):562-7. doi: 10.1016/j.tim.2013.09.001. Epub Oct. 1, 2013.
Genbank Submission; NIH/NCBI, Accession No. J04623. Kita et al., Apr. 26, 1993. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. NC_002737.1. Ferretti et al., Jun. 27, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_015683.1. Trost et al., Jul. 6, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_016782.1. Trost et al., Jun. 11, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_016786.1. Trost et al., Aug. 28, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_017053.1. Fittipaldi et al., Jul. 6, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_017317.1. Trost et al., Jun. 11, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_017861.1. Heidelberg et al., Jun. 11, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_018010.1. Lucas et al., Jun. 11, 2013. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. NC_018721.1. Feng et al., Jun. 11, 2013. 1 pages.
Genbank Submission; NIH/NCBI, Accession No. NC_021284.1. Ku et al., Jul. 12, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_021314.1. Zhang et al., Jul. 15, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_021846.1. Lo et al., Jul. 22, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NP_472073.1. Glaser et al., Jun. 27, 2013. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. P42212. Prasher et al., Mar. 19, 2014. 7 pages.
Genbank Submission; NIH/NCBI, Accession No. YP_002342100.1. Bernardini et al., Jun. 10, 2013. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. YP_002344900.1. Gundogdu et al., Mar. 19, 2014. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. YP_820832.1. Makarova et al., Aug. 27, 2013. 2 pages.
Gerber et al., RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci. Jun. 2001;26(6):376-84.
Gersbach et al., Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res. Jul. 2010;38(12):4198-206. doi: 10.1093/nar/gkq125. Epub Mar. 1, 2010.
Gersbach et al., Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res. Sep. 1, 2011;39(17):7868-78. doi: 10.1093/nar/gkr421. Epub Jun. 7, 2011.
Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013 154(2):442-51.
Gilleron et al., Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. Jul. 2013;31(7):638-46. doi: 10.1038/nbt.2612. Epub Jun. 23, 2013.
Gonzalez et al., An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. Aug. 7, 2014;15(2):215-26. doi: 10.1016/j.stem.2014.05.018. Epub Jun. 12, 2014.
Guilinger et al., Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods. Apr. 2014;11(4):429-35. doi: 10.1038/nmeth.2845. Epub Feb. 16, 2014.
Guilinger et al., Fusion of catalytically inactive Cas9 to Fokl nuclease improves the specificity of genome modification. Nat Biotechnol. Jun. 2014;32(6):577-82. doi: 10.1038/nbt.2909. Epub Apr. 25, 2014.
Guo et al., Protein tolerance to random amino acid change. Proc Natl Acad Sci U S A. Jun. 22, 2004;101(25):9205-10. Epub Jun. 14, 2004.
Hale et al., RNA-guided Rna cleavage by a CRISPR RNA-Cas protein complex. Cell. Nov. 25, 2009;139(5):945-56. doi: 10.1016/j.ce11.2009.07.040.
Han, New CRISPR/Cas9-based Tech Edits Single Nucleotides Without Breaking DNA. Genome Web, Apr. 20, 2016. https://www.genomeweb.com/gene-silencinggene-editing/new-crisprcas9-based-tech-edits-single-nucleotides-without-breaking-dna.
Harris et al., RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell. Nov. 2002;10(5):1247-53.
Hartung et al., Correction of metabolic, craniofacial, and neurologic abnormalities in MPS I mice treated at birth with adeno-associated virus vector transducing the human alpha-L-iduronidase gene. Mol Ther. Jun. 2004;9(6):866-75.
Hasadsri et al., Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem. Mar. 13, 2009;284(11):6972-81. doi: 10.1074/jbc.M805956200. Epub Jan. 7, 2009.
Hess et al., Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. Dec. 2016;13(12):1036-1042. doi: 10.1038/nmeth.4038. Epub Oct. 31, 2016.
Hill et al., Functional analysis of conserved histidines in ADP-glucose pyrophosphorylase from Escherichia coli.Biochem Biophys Res Commun. Mar. 17, 1998;244(2):573-7.
Hilton et al., Enabling functional genomics with genome engineering. Genome Res. Oct. 2015;25(10):1442-55. doi: 10.1101/gr.190124.115.
Hockemeyer et al., Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. Sep. 2009;27(9):851-7. doi: 10.1038/nbt.1562. Epub Aug. 13, 2009.
Hockemeyer et al., Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. Jul. 7, 2011;29(8):731-4. doi: 10.1038/nbt.1927.
Holden et al., Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. Nov. 6, 2008;456(7218):121-4. doi: 10.1038/nature07357. Epub Oct. 12, 2008.
Hondares et al., Peroxisome Proliferator-activated Receptor α (PPARα) Induces PPARγ Coactivator 1α (PGC-1α) Gene Expression and Contributes to Thermogenic Activation of Brown Fat. J Biol. Chem Oct. 2011; 286(50):43112-22. doi: 10.1074/jbc.M111.252775.
Horvath et al., CRISPR/Cas, the immune system of bacteria and archaea. Science. Jan. 8, 2010;327(5962):167-70. doi: 10.1126/science.1179555.
Hou et al., Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. Sep. 24, 2013;110(39):15644-9. doi: 10.1073/pnas.1313587110. Epub Aug. 12, 2013.
Houdebine, The methods to generate transgenic animals and to control transgene expression. J Biotechnol. Sep. 25, 2002;98(2-3):145-60.
Hower et al., Shape-based peak identification for ChIP-Seq. BMC Bioinformatics. Jan. 12, 2011;12:15. doi: 10.1186/1471-2105-12-15.
Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013.
Huang et al., Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):699-700. doi: 10.1038/nbt.1939.
Hurt et al., Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci U S A. Oct. 14, 2003;100(21):12271-6. Epub Oct. 3, 2003.
Hwang et al., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. Mar. 2013;31(3):227-9. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013.
Ikediobi et al., Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. Nov. 2006;5(11):2606-12. Epub Nov. 6, 2006.
International Preliminary Report on Patentability for PCT/US2012/047778, dated Feb. 6, 2014.
International Preliminary Report on patentability for PCT/US2014/050283, dated Feb. 18, 2016.
International Preliminary Report on Patentability for PCT/US2014/052231, dated Mar. 3, 2016.
International Preliminary Report on Patentability for PCT/US2014/054247, dated Mar. 17, 2016.
International Preliminary Report on Patentability for PCT/US2014/054291, dated Mar. 17, 2016.
International Preliminary Report on Patentability for PCT/US2014/070038, dated Jun. 23, 2016.
International Preliminary Report on Patentability for PCT/US2015/042770, dated Dec. 19, 2016.
International Preliminary Report on Patentability for PCT/US2015/058479, dated May 11, 2017.
International Preliminary Report on Patentability or PCT/US2014/054252, dated Mar. 17, 2016.
International Search Report and Written Opinion for PCT/US2012/047778, dated May 30, 2013.
International Search Report and Written Opinion for PCT/US2014/050283, dated Nov. 6, 2014.
International Search Report and Written Opinion for PCT/US2014/052231, dated Dec. 4, 2014.
International Search Report and Written Opinion for PCT/US2014/052231, dated Jan. 30, 2015 (Corrected Version).
International Search Report and Written Opinion for PCT/US2014/054247, dated Mar. 27, 2015.
International Search Report and Written Opinion for PCT/US2014/054252, dated Mar. 5, 2015.
International Search Report and Written Opinion for PCT/US2014/054291, dated Mar. 27, 2015.
International Search Report and Written Opinion for PCT/US2014/070038, dated Apr. 14, 2015.
International Search Report and Written Opinion for PCT/US2015/042770, dated Feb. 23, 2016.
International Search Report and Written Opinion for PCT/US2015/058479, dated Feb. 11, 2016.
International Search Report and Written Opinion for PCT/US2016/044546, dated Dec. 28, 2016.
International Search Report and Written Opinion for PCT/US2016/058344, dated Apr. 20, 2017.
International Search Report and Written Opinion for PCT/US2017/045381, dated Oct. 26, 2017.
International Search Report and Written Opinion for PCT/US2017/046144, dated Oct. 10, 2017.
International Search Report and Written Opinion for PCT/US2017/056671, dated Feb. 20, 2018.
International Search Report and Written Opinion for PCT/US2017/48390, dated Jan. 9, 2018.
International Search Report for PCT/US2013/032589, dated Jul. 26, 2013.
Invitation to Pay Additional Fees for PCT/US2014/054291, dated Dec. 18, 2014.
Invitation to Pay Additional Fees for PCT/US2016/058344, dated Mar. 1, 2017.
Invitation to Pay Additional Fees for PCT/US2017/056671, dated Dec. 21, 2017.
Invitation to Pay Additional Fees for PCT/US2017/48390, dated Nov. 7, 2017.
Irrthum et al., Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. Aug. 2000;67(2):295-301. Epub Jun. 9, 2000.
Jamieson et al., Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov. May 2003;2(5):361-8.
Jansen et al., Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme. Nat Struct Mol Biol. Jun. 2006;13(6):517-23. Epub May 14, 2006.
Jenkins et al., Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J Biol Chem. Jul. 15, 2011;286(28):24626-37. doi: 10.1074/jbc.M111.230375. Epub May 18, 2011.
Jiang et al., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. Mar. 2013;31(3):233-9. doi: 10.1038/nbt.2508. Epub Jan. 29, 2013.
Jiang et al., Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science. Feb. 19, 2016;351(6275):867-71. doi: 10.1126/science.aad8282. Epub Jan. 14, 2016.
Jinek et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. Aug. 17, 2012;337(6096):816-21. doi: 10.1126/science.1225829. Epub Jun. 28, 2012.
Jinek et al., RNA-programmed genome editing in human cells. Elife. Jan. 29, 2013;2:e00471. doi: 10.7554/eLife.00471.
Jinek et al., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. Mar. 14, 2014;343(6176):1247997. doi: 10.1126/science.1247997. Epub Feb. 6, 2014.
Jore et al., Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. May 2011;18(5):529-36. doi: 10.1038/nsmb.2019. Epub Apr. 3, 2011.
Joung et al., TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. Jan. 2013;14(1):49-55. doi: 10.1038/nrm3486. Epub Nov. 21, 2012.
Kaiser et al., Gene therapy. Putting the fingers on gene repair. Science. Dec. 23, 2005;310(5756):1894-6.
Kandavelou et al., Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochem Biophys Res Commun. Oct. 9, 2009;388(1):56-61. doi: 10.1016/j.bbrc.2009.07.112. Epub Jul. 25, 2009.
Kappel et al., Regulating gene expression in transgenic animals.Curr Opin Biotechnol. Oct. 1992;3(5):548-53.
Karpenshif et al., From yeast to mammals: recent advances in genetic control of homologous recombination. DNA Repair (Amst). Oct. 1, 2012;11(10):781-8. doi: 10.1016/j.dnarep.2012.07.001. Epub Aug. 11, 2012. Review.
Karpinsky et al., Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat Biotechnol. Apr. 2016;34(4):401-9. doi: 10.1038/nbt.3467. Epub Feb. 22, 2016.
Kaya et al., A bacterial Argonaute with noncanonical guide RNA specificity. Proc. Natl. Acad. Sci. USA Apr. 2016;113(15):4057-62.
Kellendonk et al., Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. Apr. 15, 1996;24(8):1404-11.
Kim et al., A library of TAL effector nucleases spanning the human genome. Nat Biotechnol. Mar. 2013;31(3):251-8. Doi: 10.1038/nbt.2517. Epub Feb. 17, 2013.
Kim et al., Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol. May 2017;35(5):475-480. doi: 10.1038/nbt.3852. Epub Apr. 10, 2017.
Kim et al., Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol. May 2017;35(5):435-437. doi: 10.1038/nbt.3816. Epub Feb. 27, 2017.
Kim et al., Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. Jun. 2014;24(6):1012-9. doi: 10.1101/gr.171322.113. Epub Apr. 2, 2014.
Kim et al., Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. Apr. 2017;35(4):371-376. doi: 10.1038/nbt.3803. Epub Feb. 13, 2017.
Kim et al., TALENs and ZFNs are associated with different mutationsignatures. Nat Methods. Mar. 2013;10(3):185. doi: 10.1038/nmeth.2364. Epub Feb. 10, 2013.
Kim et al., Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. Jul. 2009;19(7):1279-88. doi: 10.1101/gr.089417.108. Epub May 21, 2009.
Kim et al., The role of apolipoprotein E in Alzheimer's disease. Neuron. Aug. 13, 2009;63(3):287-303. doi: 10.1016/j.neuron.2009.06.026.
Kim et al., Transcriptional repression by zinc finger peptides. Exploring the potential for applications in gene therapy. J Biol Chem. Nov. 21, 1997;272(47):29795-800.
Kitamura et al., Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA. PLoS Pathog. 2013;9(5):e1003361. doi: 10.1371/journal.ppat.1003361. Epub May 16, 2013.
Klauser et al., An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res. May 1, 2013;41(10):5542-52. doi: 10.1093/nar/gkt253. Epub Apr. 12, 2013.
Kleinstiver et al., Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. Dec. 2015;33(12):1293-1298. doi: 10.1038/nbt.3404. Epub Nov. 2, 2015.
Kleinstiver et al., Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. Jul. 23, 2015;523(7561):481-5. doi: 10.1038/nature14592. Epub Jun. 22, 2015.
Kleinstiver et al., High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. Jan. 28, 2016;529(7587):490-5. doi: 10.1038/nature16526. Epub Jan. 6, 2016.
Kleinstiver et al., Monomeric site-specific nucleases for genome editing. Proc Natl Acad Sci U S A. May 22, 2012;109(21):8061-6. doi: 10.1073/pnas.1117984109. Epub May 7, 2012.
Klippel et al., Isolation and characterization of unusual gin mutants. EMBO J. Dec. 1, 1988;7(12):3983-9.
Klippel et al., The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. EMBO J. Apr. 1988;7(4):1229-37.
Komor et al., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. Apr. 20, 2016;533(7603):420-4. doi: 10.1038/nature17946.
Kumar et al., Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem. Aug. 20, 1999;274(34):24137-41.
Kundu et al., Leucine to proline substitution by SNP at position 197 in Caspase-9 gene expression leads to neuroblastoma: a bioinformatics analysis. 3 Biotech. 2013; 3:225-34.
Kuscu et al., CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods. Jul. 2017;14(7):710-712. doi: 10.1038/nmeth.4327. Epub Jun. 5, 2017.
Kuscu et al., Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol. Jul. 2014;32(7):677-83. doi: 10.1038/nbt.2916. Epub May 18, 2014.
Landrum et al., ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. Jan. 4, 2016;44(D1):D862-8. doi: 10.1093/nar/gkv1222. Epub Nov. 17, 2015.
Larson et al., CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. Nov. 2013;8(11):2180-96. doi: 10.1038/nprot.2013.132. Epub Oct. 17, 2013.
Lau et al., Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc Natl Acad Sci U S A. Dec. 5, 2000;97(25):13573-8.
Lavergne et al., Defects in type IIA von Willebrand disease: a cysteine 509 to arginine substitution in the mature von Willebrand factor disrupts a disulphide loop involved in the interaction with platelet glycoprotein Ib-Ix. Br J Haematol. Sep. 1992;82(1):66-72.
Lawrence et al., Supercharging proteins can impart unusual resilience. J Am Chem Soc. Aug. 22, 2007;129(33):10110-2. Epub Aug. 1, 2007.
Lazar et al., Transforming growth factor alpha: mutation of aspartic acid 47 and leucine 48 results in different biological activities. Mol Cell Biol. Mar. 1988;8(3):1247-52.
Ledford, Gene-editing hack yields pinpoint precision. Nature, Apr. 20, 2016. http://www.nature.com/news/gene-editing-hack-yields-pinpoint-precision-1.19773.
Lee et al., A chimeric thyroid hormone receptor constitutively bound to DNA requires retinoid X receptor for hormone-dependent transcriptional activation in yeast. Mol Endocrinol. Sep. 1994;8(9):1245-52.
Lee et al., PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. Feb. 17, 2005;24(8):1477-80.
Lee et al., Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta. Jan. 31, 1992;1103(2):185-97.
Lei et al., Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. Oct. 23, 2012;109(43):17484-9. Doi: 10.1073/pnas.1215421109. Epub Oct. 8, 2012.
Lenk et al., Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet. Jun. 2011;7(6):e1002104. doi: 10.1371/journal.pgen.1002104. Epub Jun. 2, 2011.
Lewis et al., A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc Natl Acad Sci U S A. Apr. 16, 1996;93(8):3176-81.
Lewis et al., Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation. J Gen Virol. Aug. 2006;87(Pt 8):2443-9.
Li et al., Current approaches for engineering proteins with diverse biological properties. Adv Exp Med Biol. 2007;620:18-33.
Li et al., Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):526-529. doi: 10.1016/j.molp.2016.12.001. Epub Dec. 8, 2016.
Li et al., Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell. Aug. 19, 2017. doi: 10.1007/s13238-017-0458-7. [Epub ahead of print].
Li et al., Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. Aug. 2011;39(14):6315-25. doi: 10.1093/nar/gkr188. Epub Mar. 31, 2011.
Li et al., TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and Fokl DNA-cleavage domain. Nucleic Acids Res. Jan. 2011;39(1):359-72. doi: 10.1093/nar/gkq704. Epub Aug. 10, 2010.
Lin et al., Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. Dec. 15, 2014;3:e04766. doi: 10.7554/eLife.04766.
Liu et al., C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Molecular Cell Jan. 2017;65(2):310-22.
Liu et al., Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. Feb. 2013;9(2):106-18. doi: 10.1038/nrneuro1.2012.263. Epub Jan. 8, 2013.
Liu et al., Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One. Jan. 20, 2014;9(1):e85755. doi: 10.1371/journal.pone.0085755. eCollection 2014.
Liu et al., Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A. May 27, 1997;94(11):5525-30.
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. 2006;118(1):96-100.
Lombardo et al., Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. Nov. 2007;25(11):1298-306. Epub Oct. 28, 2007.
Losey et al., Crystal structure of Staphylococcus sureus tRNA adenosine deaminase tadA in complex with RNA. Nature Struct. Mol. Biol. Feb. 2006;13(2):153-9.
Lu et al., Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):523-525. doi: 10.1016/j.molp.2016.11.013. Epub Dec. 6, 2016.
Lundberg et al., Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J. Sep. 2007;21(11):2664-71. Epub Apr. 26, 2007.
Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J Biol Chem. Aug. 22, 1997;272(34):21408-19.
Lyons et al., Efficient Recognition of an Unpaired Lesion by a DNA Repair Glycosylase. J. Am. Chem. Soc., 2009;131(49):17742-3. Doi: 10.1021/ja908378y.
Ma et al., Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature Methods. Oct. 2016;13:1029-35. doi:10.1038/nmeth.4027.
Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. Oct. 2013;10(10):977-9. doi: 10.1038/nmeth.2598. Epub Jul. 25, 2013.
Maeder et al., Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. Jul. 25, 2008;31(2):294-301. doi:10.1016/j.molce1.2008.06.016.
Maeder et al., Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods. Mar. 2013;10(3):243-5. doi: 10.1038/nmeth.2366. Epub Feb. 10, 2013.
Mahfouz et al., De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A. Feb. 8, 2011;108(6):2623-8. doi: 10.1073/pnas.1019533108. Epub Jan. 24, 2011.
Makarova et al., Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct 2009;4:29.
Mali et al., Cas9 as a versatile tool for engineering biology. Nat Methods. Oct. 2013;10(10):957-63. doi: 10.1038/nmeth.2649.
Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. Sep. 2013;31(9):833-8. doi: 10.1038/nbt.2675. Epub Aug. 1, 2013.
Mali et al., RNA-guided human genome engineering via Cas9. Science. Feb. 15, 2013;339(6121):823-6. doi: 10.1126/science.1232033. Epub Jan. 3, 2013.
Mani et al., Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun. Sep. 23, 2005;335(2):447-57.
Marioni et al., DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. Jan. 30, 2015;16:25. doi: 10.1186/s13059-015-0584-6.
Maruyama et al., Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. May 2015;33(5):538-42. doi: 10.1038/nbt.3190. Epub Mar. 23, 2015.
Meng et al., Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):695-701. doi: 10.1038/nbt1398. Epub May 25, 2008.
Mercer et al., Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. Nov. 2012;40(21):11163-72. doi: 10.1093/nar/gks875. Epub Sep. 26, 2012.
Meyer et al., Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc. Mar. 19, 2008;130(11):3272-3. doi: 10.1021/ja710344v. Epub Feb. 21, 2008.
Midoux et al., Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol. May 2009;157(2):166-78. doi: 10.1111/j.1476-5381.2009.00288.x.
Miller et al., A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. Feb. 2011;29(2):143-8. doi:10.1038/nbt.1755. Epub Dec. 22, 2010.
Miller et al., An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. Jul. 2007;25(7):778-85. Epub Jul. 1, 2007.
Minoche et al., Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. Nov. 8, 2011;12(11):R112. doi: 10.1186/gb-2011-12-11-r112.
Minoretti et al., A W148R mutation in the human FOXD4 gene segregating with dilated cardiomyopathy, obsessive-compulsive disorder, and suicidality. Int J Mol Med. Mar. 2007;19(3):369-72.
Mol et al., Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell. Sep. 8, 1995;82(5):701-8.
Moore et al., Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PloS One. 2012;7(5):e37877. Doi: 10.1371/journal.pone.0037877. Epub May 24, 2012.
Morbitzer et al., Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res. Jul. 2011;39(13):5790-9. doi: 10.1093/nar/gkr151. Epub Mar. 18, 2011.
Morris et al., A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. Dec. 2001;19(12):1173-6.
Moscou et al., A simple cipher governs DNA recognition by TAL effectors. Science. Dec. 11, 2009;326(5959):1501. doi: 10.1126/science.1178817.
Mullins et al., Transgenesis in nonmurine species. Hypertension. Oct. 1993;22(4):630-3.
Mussolino et al., A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. Nov. 2011;39(21):9283-93. Doi: 10.1093/nar/gkr597. Epub Aug. 3, 2011.
Mussolino et al., TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol. Oct. 2012;23(5):644-50. doi: 10.1016/j.copbio.2012.01.013. Epub Feb. 17, 2012.
Nahvi et al., Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res. Jan. 2, 2004;32(1):143-50.
Narayanan et al., Clamping down on weak terminal base pairs: oligonucleotides with molecular caps as fidelity-enhancing elements at the 5′- and 3′-terminal residues. Nucleic Acids Res. May 20, 2004;32(9):2901-11. Print 2004.
Navaratnam et al., An overview of cytidine deaminases. Int J Hematol. Apr. 2006;83(3):195-200.
NCBI Reference Sequence: NM_002427.3. Wu et al., May 3, 2014. 5 pages.
Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. Sep. 16, 2016;353(6305):1248. pii: aaf8729. doi: 10.1126/science.aaf8729. Epub Aug. 4, 2016.
Nishimasu et al., Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. Feb. 27, 2014;156(5):935-49. doi: 10.1016/j.ce11.2014.02.001. Epub Feb. 13, 2014.
Nomura et al., Synthetic mammalian riboswitches based on guanine aptazyme. Chem Commun (Camb). Jul. 21, 2012;48(57):7215-7. doi: 10.1039/c2cc33140c. Epub Jun. 13, 2012.
Noris et al., A phenylalanine-55 to serine amino-acid substitution in the human glycoprotein IX leucine-rich repeat is associated with Bernard-Soulier syndrome. Br J Haematol. May 1997;97(2):312-20.
O'Connell et al., Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. Dec. 11, 2014;516(7530):263-6. doi: 10.1038/nature13769. Epub Sep. 28, 2014.
Offord, Advances in Genome Editing. The Scientist, Apr. 20, 2016. http://www.the-scientist.com/?articles.view/articleNo/45903/title/Advances-in-Genome-Editing/.
Osborn et al., TALEN-based gene correction for epidermolysis bullosa. Mol Ther. Jun. 2013;21(6):1151-9. doi: 10.1038/mt.2013.56. Epub Apr. 2, 2013.
Pan et al., Biological and biomedical applications of engineered nucleases. Mol Biotechnol. Sep. 2013;55(1):54-62. doi: 10.1007/s12033-012-9613-9.
Parker et al., Admixture mapping identifies a quantitative trait locus associated with FEV1/FVC in the COPDGene Study. Genet Epidemiol. Nov. 2014;38(7):652-9. doi: 10.1002/gepi.21847. Epub Aug. 11, 2014.
Partial Supplementary European Search Report for Application No. EP 12845790.0, dated Mar. 18, 2015.
Pattanayak et al., Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol. 2014;546:47-78. doi: 10.1016/B978-0-12-801185-0.00003-9.
Pattanayak et al., High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. Sep. 2013;31(9):839-43. doi: 10.1038/nbt.2673. Epub Aug. 11, 2013.
Pattanayak et al., Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. Aug. 7, 2011;8(9):765-70. doi: 10.1038/nmeth.1670.
Pavletich et al., Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. May 10, 1991;252(5007):809-17.
Pennisi et al., The CRISPR craze. Science. Aug. 23, 2013;341(6148):833-6. doi: 10.1126/science.341.6148.833.
Pennisi et al., The tale of the TALEs. Science. Dec. 14, 2012;338(6113):1408-11. doi: 10.1126/science.338.6113.1408.
Perez et al., Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. Jul. 2008;26(7):808-16. Doi: 10.1038/nbt1410. Epub Jun. 29, 2008.
Perez-Pinera et al., Advances in targeted genome editing. Curr Opin Chem Biol. Aug. 2012;16(3-4):268-77. doi: 10.1016/j.cbpa.2012.06.007. Epub Jul. 20, 2012.
Perez-Pinera et al., RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. Oct. 2013;10(10):973-6. doi: 10.1038/nmeth.2600. Epub Jul. 25, 2013.
Petek et al., Frequent endonuclease cleavage at off-target locations in vivo. Mol Ther. May 2010;18(5):983-6. Doi: 10.1038/mt.2010.35. Epub Mar. 9, 2010.
Petolino et al., Editing Plant Genomes: a new era of crop improvement. Plant Biotechnol J. Feb. 2016;14(2):435-6. doi: 10.1111/pbi.12542.
Phillips, The challenge of gene therapy and DNA delivery. J Pharm Pharmacol. Sep. 2001;53(9):1169-74.
Plasterk et al., DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems. Proc Natl Acad Sci U S A. Sep. 1983;80(17):5355-8.
Pluciennik et al., PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc Natl Acad Sci U S A. Sep. 14, 2010;107(37):16066-71. doi: 10.1073/pnas.1010662107. Epub Aug. 16, 2010.
Poller et al., A leucine-to-proline substitution causes a defective alpha 1-antichymotrypsin allele associated with familial obstructive lung disease. Genomics. Sep. 1993;17(3):740-3.
Porteus, Design and testing of zinc finger nucleases for use in mammalian cells. Methods Mol Biol. 2008;435:47-61. doi: 10.1007/978-1-59745-232-8_4.
Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 2013;31(9):833-8.
Prorocic et al., Zinc-finger recombinase activities in vitro. Nucleic Acids Res. Nov. 2011;39(21):9316-28. doi: 10.1093/nar/gkr652. Epub Aug. 17, 2011.
Proudfoot et al., Zinc finger recombinases with adaptable DNA sequence specificity. PLoS One. Apr. 29, 2011;6(4):e19537. doi: 10.1371/journal.pone.0019537.
Prykhozhij et al., CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One. Mar. 5, 2015;10(3):e0119372. doi: 10.1371/journal.pone.0119372. eCollection 2015.
Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J Mol Biol. Mar. 26, 1999;287(2):331-46.
Qi et al., Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res. Jul. 2012;40(12):5775-86. doi: 10.1093/nar/gks168. Epub Mar. 1, 2012.
Qi et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. Feb. 28, 2013;152(5):1173-83. doi: 10.1016/j.ce11.2013.02.022.
Ramakrishna et al., Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. Jun. 2014;24(6):1020-7. doi: 10.1101/gr.171264.113. Epub Apr. 2, 2014.
Ramirez et al., Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. Jul. 2012;40(12):5560-8. doi: 10.1093/nar/gks179. Epub Feb. 28, 2012.
Ramirez et al., Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. May 2008;5(5):374-5. Doi: 10.1038/nmeth0508-374.
Ran et al., Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. Sep. 12, 2013;154(6):1380-9. doi: 10.1016/j.ce11.2013.08.021. Epub Aug. 29, 2013.
Ran et al., Genome engineering using the CRISPR-Cas9 system. Nat Protoc. Nov. 2013;8(11):2281-308. doi: 10.1038/nprot.2013.143. Epub Oct. 24, 2013.
Ran et al., In vivo genome editing using Staphylococcus aureus Cas9. Nature. Apr. 9, 2015;520(7546):186-91. doi: 10.1038/nature14299. Epub Apr. 1, 2015.
Rath et al., Fidelity of end joining in mammalian episomes and the impact of Metnase on joint processing. BMC Mol Biol. Mar. 22, 2014;15:6. doi: 10.1186/1471-2199-15-6.
Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nuclei Acids Res. 26 (21): 4880-4887 (1998).
Rebuzzini et al., New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining. DNA Repair (Amst). May 2, 2005;4(5):546-55.
Rees et al., Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun. Jun. 6, 2017;8:15790. doi: 10.1038/ncomms15790.
Reyon et al., Flash assembly of TALENs for high-throughput genome editing. Nat Biotechnol. May 2012;30(5):460-5. doi: 10.1038/nbt.2170.
Richardson et al., Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. Mar. 2016;34(3):339-44. doi: 10.1038/nbt.3481. Epub Jan. 20, 2016.
Rong et al., Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell. Apr. 2014;5(4):258-60. doi: 10.1007/s13238014-0032-5.
Rowland et al., Regulatory mutations in Sin recombinase support a structure-based model of the synaptosome. Mol Microbiol. Oct. 2009;74(2):282-98. doi: 10.1111/j.1365-2958.2009.06756.x. Epub Jun. 8, 2009.
Sadelain et al., Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer. Dec. 1, 2011;12(1):51-8. doi: 10.1038/nrc3179.
Sage et al., Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science. Feb. 18, 2005;307(5712):1114-8. Epub Jan. 13, 2005.
Samal et al., Cationic polymers and their therapeutic potential. Chem Soc Rev. Nov. 7, 2012;41(21):7147-94. doi: 10.1039/c2cs35094g. Epub Aug. 10, 2012.
Sander et al., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. Apr. 2014;32(4):347-55. doi: 10.1038/nbt.2842. Epub Mar. 2, 2014.
Sander et al., In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res. Oct. 2013;41(19):e181. doi: 10.1093/nar/gkt716. Epub Aug. 14, 2013.
Sander et al., Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):697-8. doi: 10.1038/nbt.1934.
Sang, Prospects for transgenesis in the chick. Mech Dev. Sep. 2004;121(9):1179-86.
Sanjana et al., A transcription activator-like effector toolbox for genome engineering. Nat Protoc. Jan. 5, 2012;7(1):171-92. doi: 10.1038/nprot.2011.431.
Santiago et al., Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A. Apr. 15, 2008;105(15):5809-14. doi: 10.1073/pnas.0800940105. Epub Mar. 21, 2008.
Sapranauskas et al., The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. Nov. 2011;39(21):9275-82. doi: 10.1093/nar/gkr606. Epub Aug. 3, 2011.
Saraconi et al., The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol. Jul. 31, 2014;15(7):417. doi: 10.1186/s13059-014-0417-z.
Sashital et al., Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell. Jun. 8, 2012;46(5):606-15. doi: 10.1016/j.molce1.2012.03.020. Epub Apr. 19, 2012.
Schriefer et al., Low pressure DNA shearing: a method for random DNA sequence analysis. Nucleic Acids Res. Dec. 25, 1990;18(24):7455-6.
Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. Dec. 5, 2013;13(6):653-8. doi:10.1016/j.stem.2013.11.002.
Schwartz et al., Post-translational enzyme activation in an animal via optimized conditional protein splicing. Nat Chem Biol. Jan. 2007;3(1):50-4. Epub Nov. 26, 2006.
Schwarze et al., In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. Sep. 3, 1999;285(5433):1569-72.
Sclimenti et al., Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res. Dec. 15, 2001;29(24):5044-51.
Segal et al., Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci U S A. Mar. 16, 1999;96(6):2758-63.
Sells et al., Delivery of protein into cells using polycationic liposomes. Biotechniques. Jul. 1995;19(1):72-6, 78.
Semenova et al., Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A. Jun. 21, 2011;108(25):10098-103. doi: 10.1073/pnas.1104144108. Epub Jun. 6, 2011.
Semple et al., Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. Feb. 2010;28(2):172-6. doi: 10.1038/nbt.1602. Epub Jan. 17, 2010.
Seripa et al., The missing ApoE allele. Ann Hum Genet. Jul. 2007;71(Pt 4):496-500. Epub Jan. 22, 2007.
Shah et al., Inteins: nature's gift to protein chemists. Chem Sci. 2014;5(1):446-461.
Shah et al., Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl. Jul. 11, 2011;50(29):6511-5. doi: 10.1002/anie.201102909. Epub Jun. 8, 2011.
Shah et al., Target-specific variants of Flp recombinase mediate genome engineering reactions in mammalian cells. FEBS J. Sep. 2015;282(17):3323-33. doi: 10.1111/febs.13345. Epub Jul. 1, 2015.
Shalem et al., Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. Jan. 3, 2014;343(6166):84-7. doi: 10.1126/science.1247005. Epub Dec. 12, 2013.
Sharbeen et al., Ectopic restriction of DNA repair reveals that UNG2 excises AID-induced uracils predominantly or exclusively during G1 phase. J Exp Med. May 7, 2012;209(5):965-74. doi: 10.1084/jem.20112379. Epub Apr. 23, 2012.
Sheridan, First CRISPR-Cas patent opens race to stake out intellectual property. Nat Biotechnol. 2014;32(7):599-601.
Sheridan, Gene therapy finds its niche. Nat Biotechnol. Feb. 2011;29(2):121-8. doi: 10.1038/nbt.1769.
Shimantani et al., Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):441-443. doi: 10.1038/nbt.3833. Epub Mar. 27, 2017.
Shimojima et al., Spinocerebellar ataxias type 27 derived from a disruption of the fibroblast growth factor 14 gene with mimicking phenotype of paroxysmal non-kinesigenic dyskinesia. Brain Dev. Mar. 2012;34(3):230-3. doi: 10.1016/j.braindev.2011.04.014. Epub May 19, 2011.
Shmakov et al., Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems. Molecular Cell Nov. 2015;60(3):385-97.
Siebert et al., An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. Mar. 25, 1995;23(6):1087-8.
Simonelli et al., Base excision repair intermediates are mutagenic in mammalian cells. Nucleic Acids Res. Aug. 2, 2005;33(14):4404-11. Print 2005.
Sirk et al., Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants. Nucleic Acids Res. Apr. 2014;42(7):4755-66. doi: 10.1093/nar/gkt1389. Epub Jan. 21, 2014.
Slaymaker et al., Rationally engineered Cas9 nucleases with improved specificity. Science. Jan. 1, 2016;351(6268):84-8. doi: 10.1126/science.aad5227. Epub Dec. 1, 2015.
Smith et al., Expression of a dominant negative retinoic acid receptor γ in Xenopus embryos leads to partial resistance to retinoic acid. Roux Arch Dev Biol. Mar. 1994;203(5):254-265. doi: 10.1007/BF00360521.
Stenglein et al., APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol. Feb. 2010;17(2):222-9. doi: 10.1038/nsmb.1744. Epub Jan. 10, 2010.
Sternberg et al., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature.Mar. 6, 2014;507(7490):62-7. doi: 10.1038/nature13011. Epub Jan. 29, 2014.
Stevens et al., Design of a Split Intein with Exceptional Protein-Splicing Activity. J Am Chem Soc. Feb. 24, 2016;138(7):2162-5. doi: 10.1021/jacs.5b13528. Epub Feb. 8, 2016.
Sun et al., Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst. Apr. 2012;8(4):1255-63. doi: 10.1039/c2mb05461b. Epub Feb. 3, 2012.
Supplementary European Search Report for Application No. EP 12845790.0, dated Oct. 12, 2015.
Swarts et al., Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. May 26, 2015;43(10):5120-9. doi: 10.1093/nar/gkv415. Epub Apr. 29, 2015.
Swarts et al., DNA-guided DNA interference by a prokaryotic Argonaute. Nature. Mar. 13, 2014;507(7491):258-61. doi: 10.1038/nature12971. Epub Feb. 16, 2014.
Swarts et al., The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol. Sep. 2014;21(9):743-53. doi: 10.1038/nsmb.2879.
Tagalakis et al., Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol Reprod Dev. Jun. 2005;71(2):140-4.
Tebas et al., Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. Mar. 6, 2014;370(10):901-10. doi: 10.1056/NEJMoa1300662.
Tessarollo et al., Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11844-8.
Tesson et al., Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):695-6. doi: 10.1038/nbt.1940.
Thompson et al., Cellular uptake mechanisms and endosomal trafficking of supercharged proteins. Chem Biol. Jul. 27, 2012;19(7):831-43. doi: 10.1016/j.chembiol.2012.06.014.
Thompson et al., Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol. 2012;503:293-319. doi: 10.1016/B978-0-12-396962-0.00012-4.
Thorpe et al., Functional correction of episomal mutations with short DNA fragments and RNA-DNA oligonucleotides. J Gene Med. Mar.-Apr. 2002;4(2):195-204.
Thyagarajan et al., Mammalian genomes contain active recombinase recognition sites. Gene. Feb. 22, 2000;244(1-2):47-54.
Thyagarajan et al., Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. Jun. 2001;21(12):3926-34.
Tirumalai et al., Recognition of core-type DNA sites by lambda integrase. J Mol Biol. Jun. 12, 1998;279(3):513-27.
Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015.
Tsai et al., Dimeric CRISPR RNA-guided Fokl nucleases for highly specific genome editing. Nat Biotechnol. Jun. 2014;32(6):569-76. doi: 10.1038/nbt.2908. Epub Apr. 25, 2014.
Tsai et al., Guide-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. Feb. 2015;33(2):187-97. doi: 10.1038/nbt.3117. Epub Dec. 16, 2014.
Turan et al., Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene. Feb. 15, 2013;515(1):1-27. doi: 10.1016/j.gene.2012.11.016. Epub Nov. 29, 2012.
Turan et al., Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol. Mar. 25, 2011;407(2):193-221. doi: 10.1016/j.jmb.2011.01.004. Epub Jan. 15, 2011.
Turan et al., Site-specific recombinases: from tag-and-target- to tag-and-exchange-based genomic modifications. Faseb J. Dec. 2011;25(12):4088-107. doi: 10.1096/fj.11-186940. Epub Sep. 2, 2011. Review.
UNIPROT Submission; UniProt, Accession No. P01011. Last modified Jun. 11, 2014, version 2. 15 pages.
UNIPROT Submission; UniProt, Accession No. P01011. Last modified Sep. 18, 2013, version 2. 15 pages.
UNIPROT Submission; UniProt, Accession No. P04264. Last modified Jun. 11, 2014, version 6. 15 pages.
UNIPROT Submission; UniProt, Accession No. P04275. Last modified Jul. 9, 2014, version 107. 29 pages.
Urnov et al., Genome editing with engineered zinc finger nucleases. Nat Rev Genet. Sep. 2010;11(9):636-46. doi: 10.1038/nrg2842.
Urnov et al., Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. Jun. 2, 2005;435(7042):646-51. Epub Apr. 3, 2005.
Van Duyne et al., Teaching Cre to follow directions. Proc Natl Acad Sci U S A. Jan. 6, 2009;106(1):4-5. doi: 10.1073/pnas.0811624106. Epub Dec. 31, 2008.
Van Swieten et al., A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet. Jan. 2003;72(1):191-9. Epub Dec. 13, 2002.
Vanamee et al., Fokl requires two specific DNA sites for cleavage. J Mol Biol. May 25, 2001;309(1):69-78.
Vitreschak et al., Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA. Sep. 2003;9(9):1084-97.
Wacey et al., Disentangling the perturbational effects of amino acid substitutions in the DNA-binding domain of p53. Hum Genet. Jan. 1999;104(1):15-22.
Wadia et al., Modulation of cellular function by TAT mediated transduction of full length proteins. Curr Protein Pept Sci. Apr. 2003;4(2):97-104.
Wadia et al., Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. Mar. 2004;10(3):310-5. Epub Feb. 8, 2004.
Wah et al., Structure of Fokl has implications for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10564-9.
Wang et al., Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A. Feb. 29, 2016. pii: 201520244. [Epub ahead of print].
Wang et al., Genetic screens in human cells using the CRISPR-Cas9 system. Science. Jan. 3, 2014;343(6166):80-4. doi: 10.1126/science.1246981. Epub Dec. 12, 2013.
Wang et al., Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature. Oct. 8, 2009;461(7265):754-61. doi: 10.1038/nature08434.
Wang et al., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. May 9, 2013;153(4):910-8. doi: 10.1016/j.ce11.2013.04.025. Epub May 2, 2013.
Wang et al., Recombinase technology: applications and possibilities. Plant Cell Rep. Mar. 2011;30(3):267-85. doi: 10.1007/s00299-010-0938-1. Epub Oct. 24, 2010.
Wang et al., Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell. Mar. 28, 2008;29(6):691-702. doi: 10.1016/j.molcel.2008.01.012.
Wang et al., Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. Jul. 2012;22(7):1316-26. doi: 10.1101/gr.122879.111. Epub Mar. 20, 2012.
Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J Biol Chem. Jan. 15, 1989;264(2):1163-71.
Warren et al., A chimeric Cre recombinase with regulated directionality. Proc Natl Acad Sci U S A. Nov. 25, 2008;105(47):18278-83. doi: 10.1073/pnas.0809949105. Epub Nov. 14, 2008.
Warren et al., Mutations in the amino-terminal domain of lambda-integrase have differential effects on integrative and excisive recombination. Mol Microbiol. Feb. 2005;55(4):1104-12.
Weber et al., Assembly of designer TAL effectors by Golden Gate cloning. PLoS One. 2011;6(5):e19722. doi:10.1371/journal.pone.0019722. Epub May 19, 2011.
Weinberger et al., Disease-causing mutations C277R and C277Y modify gating of human CIC-1 chloride channels in myotonia congenita. J Physiol. Aug. 1, 2012;590(Pt 15):3449-64. doi: 0.1113/jphysio1.2012.232785. Epub May 28, 2012.
Wiedenheft et al., RNA-guided genetic silencing systems in bacteria and archaea. Nature. Feb. 15, 2012;482(7385):331-8. doi: 10.1038/nature10886. Review.
Wijnker et al., Managing meiotic recombination in plant breeding. Trends Plant Sci. Dec. 2008;13(12):640-6. doi: 10.1016/j.tplants.2008.09.004. Epub Oct. 22, 2008.
Wolf et al., tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J. Jul. 15, 2002;21(14):3841-51.
Wolfe et al., Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J Mol Biol. Feb. 5, 1999;285(5):1917-34.
Wood et al., Targeted genome editing across species using ZFNs and TALENs. Science. Jul. 15, 2011;333(6040):307. doi: 10.1126/science.1207773. Epub Jun. 23, 2011.
Wu et al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. Dec. 5, 2013;13(6):659-62. doi: 10.1016/j.stem.2013.10.016.
Wu et al., Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. Jul. 2014;32(7):670-6. doi: 10.1038/nbt.2889. Epub Apr. 20, 2014.
Xu et al., Sequence determinants of improved CRISPR sgRNA design. Genome Res. Aug. 2015;25(8):1147-57. doi: 10.1101/gr.191452.115. Epub Jun. 10, 2015.
Yamano et al., Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell May 2016;165(4)949-62.
Yang et al., Engineering and optimising deaminase fusions for genome editing. Nat Commun. Nov. 2, 2016;7:13330. doi: 10.1038/ncomms13330.
Yang et al., Genome editing with targeted deaminases. BioRxiv. Preprint. First posted online Jul. 28, 2016.
Yang et al., PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease. Cell Dec. 2016;167(7):1814-28.
Yanover et al., Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers. Nucleic Acids Res. Jun. 2011;39(11):4564-76. doi: 10.1093/nar/gkr048. Epub Feb. 22, 2011.
Yazaki et al., Hereditary systemic amyloidosis associated with a new apolipoprotein All stop codon mutation Stop78Arg. Kidney Int. Jul. 2003;64(1):11-6.
Yin et al., Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. Jun. 2014;32(6):551-3. doi: 10.1038/nbt.2884. Epub Mar. 30, 2014.
Yuan et al., Tetrameric structure of a serine integrase catalytic domain. Structure. Aug. 6, 2008;16(8):1275-86. doi: 10.1016/j.str.2008.04.018.
Yuen et al., Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein. J Am Chem Soc. Jul. 12, 2006;128(27):8939-46.
Zelphati et al., Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol Chem. Sep. 14, 2001;276(37):35103-10. Epub Jul. 10, 2001.
Zetsche et al., A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. Feb. 2015;33(2):139-42. doi: 10.1038/nbt.3149.
Zetsche et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. Oct. 22, 2015;163(3):759-71. doi: 10.1016/j.ce11.2015.09.038. Epub Sep. 25, 2015.
Zhang et al., Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep. Jun. 2014;4:5405.
Zhang et al., Conditional gene manipulation: Cre-ating a new biological era. J Zhejiang Univ Sci B. Jul. 2012;13(7):511-24. doi: 10.1631/jzus.B1200042. Review.
Zhang et al., CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. Sep. 15, 2014;23(R1):R40-6. doi: 10.1093/hmg/ddu125. Epub Mar. 20, 2014.
Zhang et al., Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. Feb. 2011;29(2):149-53. doi: 10.1038/nbt.1775. Epub Jan. 19, 2011.
Zhang et al., Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun. Jul. 25, 2017;8(1):118. doi: 10.1038/s41467-017-00175-6.
Zheng et al., DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Res. Apr. 7, 2017;45(6):3369-3377. doi: 10.1093/nar/gkx050.
Zong et al., Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):438-440. doi: 10.1038/nbt.3811. Epub Feb. 27, 2017.
Zorko et al., Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. Feb. 28, 2005;57(4):529-45. Epub Jan. 22, 2005.
Zou et al., Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. Jul. 2, 2009;5(1):97-110. doi: 10.1016/j.stem.2009.05.023. Epub Jun. 18, 2009.
Zuris et al., Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33:73-80.
U.S. Appl. No. 61/838,178, Joung et al., filed Jun. 21, 2013.
U.S. Appl. No. 61/874,682, Liu et al., filed Sep. 6, 2013.
U.S. Appl. No. 61/874,746, Liu et al., filed Sep. 6, 2013.
U.S. Appl. No. 62/357,332, Liu et al., filed Jun. 30, 2016.
Aihara et al., A conformational switch controls the DNA cleavage activity of lambda integrase. Mol Cell. Jul. 2003;12(1):187-98.
Ames et al., A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem Biol. Jul. 30, 2010;17(7):681-5. doi: 10.1016/j.chembio1.2010.05.020.
Batey et al., Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature. Nov. 18, 2004;432(7015):411-5.
Bershtein et al., Advances in laboratory evolution of enzymes. Curr Opin; Chem Biol. Apr. 2008;12(2):151-8. doi: 10.1016/j.cbpa.2008.01.027. Epub Mar. 7, 2008. Review.
Billon et al., CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons. Mol Cell. Sep. 21, 2017;67(6):1068-1079.e4. doi: 10.1016/j.molce1.2017.08.008. Epub Sep. 7, 2017.
Bogdanove et al., TAL effectors: customizable proteins for DNA targeting. Science. Sep. 30, 2011;333(6051):1843-6. doi: 10.1126/science.1204094.
Bohlke et al., Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion. FEMS Microbiol Lett. Feb. 2014;351(2):133-44. doi: 10.1111/1574-6968.12371. Epub Jan. 27, 2014.
Bolotin et al., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. Aug. 2005;151(Pt 8):2551-61.
Briner et al., Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell. Oct. 23, 2014;56(2):333-339. doi: 10.1016/j.molce1.2014.09.019.
Brouns et al., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. Aug. 15, 2008;321(5891):960-4. doi: 10.1126/science.1159689.
Buchwald et al., Long-term, continuous intravenous heparin administration by an implantable infusion pump in ambulatory patients with recurrent venous thrombosis. Surgery. Oct. 1980;88(4):507-16.
Budisa et al., Residue-specific bioincorporation of non-natural, biologically active amino acids into proteins as possible drug carriers: structure and stability of the per-thiaproline mutant of annexin V. Proc Natl Acad Sci U S A. Jan. 20, 1998;95(2):455-9.
Buskirk et al., Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci U S A. Jul. 20, 2004;101(29):10505-10. Epub Jul. 9, 2004.
Böck et al., Selenocysteine: the 21st amino acid. Mol Microbiol. Mar. 1991;5(3):515-20.
Carroll, Genome engineering with zinc-finger nucleases. Genetics. Aug. 2011;188(4):773-82. doi: 10.1534/genetics.111.131433. Review.
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. bioRxiv. Jun. 14, 2016; http://dx/doi.oreg/10.1101/058974. 6 pages.
Chelico et al., Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci. Mar. 12, 2009;364(1517):583-93. doi: 10.1098/rstb.2008.0195.
Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. Oct. 2013;65(10):1357-69. doi:10.1016/j.addr.2012.09.039. Epub Sep. 29, 2012.
Cobb et al., Directed evolution as a powerful synthetic biology tool. Methods. Mar. 15, 2013;60(1):81-90. doi: 10.1016/j.ymeth.2012.03.009. Epub Mar. 23, 2012.
Covino et al., The CCL2/CCR2 Axis in the Pathogenesis of HIV-1 Infection: A New Cellular Target for Therapy? Current Drug Targets Dec. 2016;17(1):76-110. DOI : 10.2174/138945011701151217110917.
Davis et al., DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. Jun. 2013;2(3):130-143.
Ding et al., Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. Aug. 15, 2014;115(5):488-92. doi: 10.1161/CIRCRESAHA.115.304351. Epub Jun. 10, 2014.
Dixon et al., Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A. Feb. 16, 2010;107(7):2830-5. doi: 10.1073/pnas.0911209107. Epub Jan. 26, 2010.
Doench et al., Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. Feb. 2016;34(2):184-191. doi: 10.1038/nbt.3437.
Dumas et al., Designing logical codon reassignment—Expanding the chemistry in biology. Chem Sci. Jan. 1, 2015;6(1):50-69. doi: 10.1039/c4sc01534g. Epub Jul. 14, 2014. Review.
During et al., Controlled release of dopamine from a polymeric brain implant: in vivo characterization. Ann Neurol. Apr. 1989;25(4):351-6.
Edwards et al., An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. Feb. 15, 1991;88(4):1153-6.
Edwards et al., Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure. Sep. 2006;14(9):1459-68.
Endo et al., Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatalysis and Agricultural Biotechnology 2014;3,(1):2-6.
Esvelt et al., A system for the continuous directed evolution of biomolecules. Nature. Apr. 28, 2011;472(7344):499-503. doi: 10.1038/nature09929. Epub Apr. 10, 2011.
Fagerlund et al., The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biology Nov. 17, 2015;16:251. haps://doi.org/10.1186/s13059-015-0824-9.
Fang et al., Synthetic Studies Towards Halichondrins: Synthesis of the Left Halves of Norhalichondrins and Homohalichondrins. Tetrahedron Letters 1992;33(12):1557-1560.
Farhood et al., Codelivery to mammalian cells of a transcriptional factor with cis-acting element using cationic liposomes. Anal Biochem. Feb. 10, 1995;225(1):89-93.
Ferretti et al., Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A. Apr. 10, 2001;98(8):4658-63.
Ferry et al., Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nat Commun. Mar. 3, 2017;8:14633. doi: 10.1038/ncomms14633.
Fischer et al., Cryptic epitopes induce high-titer humoral immune response in patients with cancer. J Immunol. Sep. 1, 2010;185(5):3095-102. doi: 10.4049/jimmunol.0902166. Epub Jul. 26, 2010.
Fukui et al., DNA Mismatch Repair in Eukaryotes and Bacteria. J Nucleic Acids. Jul. 27, 2010;2010. pii: 260512. doi: 10.4061/2010/260512.
Garneau et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. Nov. 4, 2010;468(7320):67-71. doi: 10.1038/nature09523.
Haeussler et al., Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. Jul. 5, 2016;17(1):148. doi: 10.1186/s13059-016-1012-2.
Hamano-Takaku et al., A mutant Escherichia coli tyrosyl-tRNA synthetase utilizes the unnatural amino acid azatyrosine more efficiently than tyrosine. J Biol Chem. Dec. 22, 2000;275(51):40324-8.
Hayes et al., Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci U S A. Mar. 19, 2002;99(6):3440-5. Epub Mar. 12, 2002.
Heller et al., Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol. Dec. 2006;7(12):932-43. Epub Nov. 8, 2006.
Hickford et al., Antitumour polyether macrolides: four new halichondrins from the New Zealand deep-water marine sponge Lissodendoryx sp. Bioorg Med Chem. Mar. 15, 2009;17(6):2199-203. doi: 10.1016/j.bmc.2008.10.093. Epub Nov. 19, 2008.
Hida et al., Directed evolution for drug and nucleic acid; delivery. Adv Drug Deliv Rev. Dec. 22, 2007;59(15):1562-78. Epub Aug. 28, 2007; Review.
Howard et al., Intracerebral drug delivery in rats with lesion-induced memory deficits. J Neurosurg. Jul. 1989;71(1):105-12.
Hu et al., Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chem Biol. Jan. 21, 2016;23(1):57-73. doi: 10.1016/j.chembiol.2015.12.009.
Husimi, Selection and evolution of bacteriophages in cellstat. Adv Biophys. ; 1989;25:1-43. Review.
Hwang et al., Efficient In Vivo Genome Editing Using RNA-Guided Nucleases. Nat Biotechnol. Mar. 2013; 31(3): 227-229. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013.
Ishino et al., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. Dec. 1987;169(12):5429-33.
Jansen et al., Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. Mar. 2002;43(6):1565-75.
Kakiyama et al., A peptide release system using a photo-cleavable linker in a cell array format for cell-toxicity analysis. Polymer J. Feb. 27, 2013;45:535-9.
Kang et al., Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol Cell. Mar. 27, 2009;33(6):784-90. doi: 10.1016/j.molcel.2009.02.019. Epub Mar. 12, 2009.
Kiga et al., An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci U S A. Jul. 23, 2002;99(15):9715-20. Epub Jul. 3, 2002.
Klein et al., Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat Struct Mol Biol. Mar. 2009;16(3):343-4. doi: 10.1038/nsmb.1563.Epub Feb. 22, 2009.
Kohli et al., Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification. J Biol Chem. Dec. 24, 2010;285(52):40956-64. doi: 10.1074/jbc.M110.177402. Epub Oct. 6, 2010.
Komor et al., CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. Jan. 12, 2017;168(1-2):20-36. doi: 10.1016/j.cell.2016.10.044.
Komor et al., Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv. Aug. 30, 2017;3(8):eaao4774. doi: 10.1126/sciadv.aao4774. eCollection Aug. 2017.
Kouzminova et al., Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol Microbiol. Apr. 2008;68(1):202-15. doi: 10.1111/j.1365-2958.2008.06149.x.
Kowal et al., Exploiting unassigned codons in Micrococcus luteus for tRNA-based amino acid mutagenesis. Nucleic Acids Res. Nov. 15, 1997;25(22):4685-9.
Kunz et al., DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell Mol Life Sci. Mar. 2009;66(6):1021-38. doi: 10.1007/s00018-009-8739-9.
Kury et al., De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet. Feb. 2, 2017;100(2):352-363. doi: 10.1016/j.ajhg.2017.01.003. Epub Jan. 26, 2017.
Kwon et al., Chemical basis of glycine riboswitch cooperativity. RNA. Jan. 2008;14(1):25-34. Epub Nov. 27, 2007.
Köhrer et al., A possible approach to site-specific insertion of two different unnatural amino acids into proteins in mammalian cells via nonsense suppression. Chem Biol. Nov. 2003;10(11):1095-102.
Köhrer et al., Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Nucleic Acids Res. Dec. 1, 2004;32(21):6200-11. Print 2004.
Langer et al., Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. Journal of Macromolecular Science, 2006;23(1):61-126. DOI: 10.1080/07366578308079439.
Langer et al., New methods of drug delivery. Science. Sep. 28, 1990;249(4976):1527-33.
Lee et al., An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science. Aug. 13, 2010;329(5993):845-8. doi: 10.1126/science.1190713.
Lee et al., Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute. Nat Biotechnol. Nov. 28, 2016;35(1):17-18. doi: 10.1038/nbt.3753.
Lee et al., Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis. PLoS One. Nov. 10, 2016;11(11):e0166020. doi: 10.1371/journal.pone.0166020. eCollection 2016.
Levy et al., Inhibition of calcification of bioprosthetic heart valves by local controlled-release diphosphonate. Science. Apr. 12, 1985;228(4696):190-2.
Lewis et al., Building the Class 2 CRISPR-Cas Arsenal. Mol Cell 2017;65(3);377-379.
Li et al., Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol. Apr. 2018;36(4):324-327. doi: 10.1038/nbt.4102. Epub Mar. 19, 2018.
Li et al., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. Aug. 2013;31(8):688-91. doi: 10.1038/nbt.2654.
Liang et al., Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Send to; J Biotechnol. Aug. 20, 2015;208:44-53. doi: 10.1016/j.jbiotec.2015.04.024.
Lieber et al., Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. Sep. 2003;4(9):712-20.
Link et al., Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther. Oct. 2009;16(10):1189-201. doi: 10.1038/gt.2009.81. Epub Jul. 9, 2009. Review.
Liu et al., Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. Apr. 2009;30(4):173-81. doi: 10.1016/j.it.2009.01.007.
Liu et al., Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Res. Mar. 31, 2006;34(6):1755-64. Print 2006.
Liu et al., Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci U S A. Sep. 16, 1997;94(19):10092-7.
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. Dec. 16, 2006;45(1):90-4. DOI: 10.1002/anie.200502589.
Makarova et al., An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. Nov. 2015;13(11):722-36. doi: 10.1038/nrmicro3569. Epub Sep. 28, 2015.
Makarova et al., Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. Jun. 2011;9(6):467-77. doi: 10.1038/nrmicro2577. Epub May 9, 2011.
Marraffini et al., CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. Dec. 19, 2008;322(5909):1843-5. doi: 10.1126/science.1165771.
Mei et al., Recent Progress in CRISPR/Cas9 Technology. J Genet Genomics. Feb. 20, 2016;43(2):63-75. doi: 10.1016/j.jgg.2016.01.001. Epub Jan. 18, 2016.
Meyer et al., Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA. Apr. 2008;14(4):685-95. doi: 10.1261/rna.937308. Epub Feb. 27, 2008.
Mojica et al., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. Feb. 2005;60(2):174-82.
Monahan et al., Site-specific incorporation of unnatural amino acids into receptors expressed in Mammalian cells. Chem Biol. Jun. 2003;10(6):573-80.
Montange et al., Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. Jun. 29, 2006;441(7097):1172-5.
Mootz et al., Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc. Sep. 3, 2006;125(35):10561-9.
Mootz et al., Protein splicing triggered by a small molecule. J Am Chem Soc. Aug. 7, 2002;124(31):9044-5.
Neel et al., Riboswitches: Classification, function and in silico approach, International Journal of Pharma Sciences and Research. 2010;1(9):409-420.
Nelson et al., Filamentous phage DNA cloning vectors: a noninfective mutant with a nonpolar deletion in gene III. Virology. 1981; 108(2): 338-50.
Ni et al., Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 2011;18(27):4206-14. Review.
Pearl, Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res. Aug. 30, 2000;460(3-4):165-81.
Peck et al., Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem Biol. May 27, 2011;18(5):619-30. doi: 10.1016/j.chembiol.2011.02.014.
Plosky et al., CRISPR-Mediated Base Editing without DNA Double-Strand Breaks. Mol Cell. May 19, 2016;62(4):477-8. doi: 10.1016/j.molcel.2016.05.006.
Pourcel et al., CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. Mar. 2005;151(Pt 3):653-63.
Rakonjac et al., Roles of PIII in filamentous phage assembly. J Mol Biol. 1998; 282(1)25-41.
Ray et al., Homologous recombination: ends as the means. Trends Plant Sci. Oct. 2002;7(10):435-40.
Richter et al., Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems. Viruses. Oct. 19, 2012;4(10):2291-311. doi: 10.3390/v4102291.
Riechmann et al.,. The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell. 1997; 90(2):351-60. PMID:9244308.
Rudolph et al., Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology. Jul. 2013;159(Pt 7):1416-22. doi: 10.1099/mic.0.067322-0. Epub May 15, 2013.
Saleh-Gohari et al., Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. Jul. 13, 2004;32(12):3683-8. Print 2004.
Saudek et al., A preliminary trial of the programmable implantable medication system for insulin delivery. N Engl J Med. Aug. 31, 1989;321(9):574-9.
Sefton et al., Implantable pumps. Crit Rev Biomed Eng. 1987;14(3):201-40.
Serganov et al., Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature. Mar. 12, 2009;458(7235):233-7. doi: 10.1038/nature07642. Epub Jan. 25, 2009.
Serganov et al., Structural basis for discriminative regulation of gene expression by adenine-and guanine-sensing mRNAs. Chem Biol. Dec. 2004;11(12):1729-41.
Serganov et al., Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. Jun. 29, 2006;441(7097):1167-71. Epub May 21, 2006.
Sharma et al., Efficient introduction of aryl bromide functionality into proteins in vivo. FEBS Lett. Feb. 4, 2000;467(1):37-40.
Shcherbakova et al., Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods. Aug. 2013;10(8):751-4. doi: 10.1038/nmeth.2521. Epub Jun. 16, 2013.
Shee et al., Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. Elife. Oct. 29, 2013;2:e01222. doi: 10.7554/eLife.01222.
Skretas et al., Regulation of protein activity with small-molecule-controlled inteins. Protein Sci. Feb. 2005;14(2):523-32. Epub Jan. 4, 2005.
Smith, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. Jun. 14, 1985;228(4705):1315-7.
Stephens et al., The landscape of cancer genes and mutational processes in breast cancer. Nature Jun. 2012;486:400-404. doi:10.1038/nature11017.
Sudarsan et al., An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. Nov. 1, 2003;17(21):2688-97.
Suess et al., A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. Mar. 5, 2004;32(4):1610-4.
Tang et al., Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat Commun. Jun. 28, 2017;8:15939. doi: 10.1038/ncomms15939.
Tourdot et al., A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol. Dec. 2000;30(12):3411-21.
Trausch et al., The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure. Oct. 12, 2011;19(10):1413-23. doi: 10.1016/j.str.2011.06.019. Epub Sep. 8, 2011.
Vagner et al., Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome. J Bacteriol. Sep. 1988;170(9):3978-82.
Wals et al., Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins. Front Chem. Apr. 1, 2014;2:15. doi: 10.3389/fchem.2014.00015. eCollection 2014.
Wang et al., CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report. Arterioscler Thromb Vasc Biol. May 2016;36(5):783-6. doi: 10.1161/ATVBAHA.116.307227. Epub Mar. 3, 2016.
Weinberg et al., The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA. May 2008;14(5):822-8. doi: 10.1261/rna.988608. Epub Mar. 27, 2008.
Winkler et al., An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A. Dec. 10, 2002;99(25):15908-13. Epub Nov. 27, 2002.
Winkler et al., Control of gene expression by a natural metabolite-responsive ribozyme. Nature. Mar. 18, 2004;428(6980):281-6.
Winkler et al., Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. Oct. 31, 2002;419(6910):952-6. Epub Oct. 16, 2002.
Yahata et al., Unified, Efficient, and Scalable Synthesis of Halichondrins: Zirconium/Nickel-Mediated One-Pot Ketone Synthesis as the Final Coupling Reaction. Angew Chem Int Ed Engl. Aug. 28, 2017;56(36):10796-10800. doi: 10.1002/anie.201705523. Epub Jul. 28, 2017.
Yamamoto et al., Virological and immunological bases for HIV-1 vaccine design. Uirusu 2007;57(2):133-139. https://doi.org/10.2222/jsv.57.133.
Yang et al., New CRISPR-Cas systems discovered. Cell Res. Mar. 2017;27(3):313-314. doi: 10.1038/cr.2017.21. Epub Feb. 21, 2017.
Young et al., Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem. Apr. 9, 2010;285(15):11039-44. doi: 10.1074/jbc.R109.091306. Epub Feb. 10, 2010.
Yuan et al., Laboratory-directed protein evolution. Microbiol Mol Biol Rev. 2005; 69(3):37392. PMID: 16148303.
Zhang et al., Stabilized plasmid-lipid particles for regional gene therapy: formulation and transfection properties. Gene Ther. Aug. 1999;6(8):1438-47.
Zimmermann et al., Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA. May 2000;6(5):659-67.
Extended European Search Report for EP18199195.1, dated Feb. 12, 2019.
Extended European Search Report for EP 19181479.7, dated Oct. 31, 2019.
Extended European Search Report for EP 15830407.1, dated Mar. 2, 2018.
International Preliminary Report on Patentability for PCT/US2016/058344, dated May 3, 2018.
International Search Report for PCT/US2018/025887, dated Jun. 21, 2018.
International Preliminary Report on Patentability for PCT/US2014/048390, dated Mar. 7, 2019.
International Search Report and Written Opinion for PCT/US2017/068114, dated Mar. 20, 2018.
International Preliminary Report on Patentability for PCT/US2017/068114, dated Jul. 4, 2019.
International Search Report and Written Opinion for PCT/US2017/068105, dated Apr. 4, 2018.
International Preliminary Report on Patentability for PCT/US2017/068105, dated Jul. 4, 2019.
International Search Report for PCT/US2018/021880, dated Jun. 20, 2018.
International Preliminary Report on Patentability for PCT/US2018/021880, dated Sep. 19, 2019.
International Preliminary Report on Patentability for PCT/US2017/046144, dated Feb. 21, 2019.
International Preliminary Report on Patentability for PCT/US2017/045381, dated Feb. 14, 2019.
International Search Report for PCT/US2018/021664, dated Jun. 21, 2018.
International Preliminary Report on Patentability for PCT/US2018/021664, dated Sep. 19, 2019.
International Preliminary Report on Patentability for PCT/US2017/056671, dated Apr. 25, 2019.
Invitation to Pay Additional Fees for PCT/US2018/021878, dated Jun. 8, 2018.
International Search Report for PCT/US2018/021878, dated Aug. 20, 2018.
International Preliminary Report on Patentability for PCT/US2018/021878, dated Sep. 19, 2019.
International Search Report for PCT/US2018/024208, dated Aug. 23, 2018.
International Preliminary Report on Patentability for PCT/US2018/024208, dated Oct. 3, 2019.
International Search Report for PCT/US2018/032460, dated Jul. 11, 2018.
U.S. Appl. No. 16/266,937, filed Feb. 4, 2019, Liu et al.
U.S. Appl. No. 14/326,140, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 15/852,891, filed Dec. 22, 2017, Maianti et al.
PCT/US2016/058344, May 3, 2018, International Preliminary Report on Patentability.
PCT/US2018/025887, Jun. 21, 2018, International Search Report.
PCT/US2014/048390, Mar. 7, 2019, International Preliminary Report on Patentability.
PCT/US2017/068114, Mar. 20, 2018, International Search Report and Written Opinion.
PCT/US2017/068114, Jul. 4, 2019, International Preliminary Report on Patentability.
PCT/US2017/068105, Apr. 4, 2018, International Search Report and Written Opinion.
PCT/US2017/068105, Jul. 4, 2019, International Preliminary Report on Patentability.
PCT/US2018/021880, Jun. 20, 2018, International Search Report.
PCT/US2018/021880, Sep. 19, 2019, International Preliminary Report on Patentability.
PCT/US2017/046144, Feb. 21, 2019, International Preliminary Report on Patentability.
PCT/US2017/045381, Feb. 14, 2019, International Preliminary Report on Patentability.
PCT/US2018/021664, Jun. 21, 2018, International Search Report.
PCT/US2018/021664, Sep. 19, 2019, International Preliminary Report on Patentability.
PCT/US2017/056671, Apr. 25, 2019, International Preliminary Report on Patentability.
PCT/US2018/021878, Jun. 8, 2018, Invitation to Pay Additional Fees.
PCT/US2018/021878, Aug. 20, 2018, International Search Report.
PCT/US2018/021878, Sep. 19, 2019, International Preliminary Report on Patentability.
PCT/US2018/024208, Aug. 23, 2018, International Search Report.
PCT/US2018/024208, Oct. 3, 2019, International Preliminary Report on Patentability.
PCT/US2018/032460, Jul. 11, 2018, International Search Report.
EP 18199195.1, Feb. 12, 2019, Extended European Search Report.
EP 19181479.7, Oct. 31, 2019, Extended European Search Report.
EP 15830407.1, Mar. 2, 2018, Extended European Search Report.
EP 123845790.0, Mar. 18, 2015, Partial Supplementary European Search Report.
EP 123845790.0, Oct. 12, 2015, Supplementary European Search Report.
PCT/US2012/047778, May 30, 2013, International Search Report and Written Opinion.
PCT/US2012/047778, Feb. 6, 2014, International Preliminary Report on Patentability.
PCT/US2014/052231, Dec. 4, 2014, International Search Report and Written Opinion.
PCT/US2014/052231, Jan. 30, 2015, International Search Report and Written Opinion (Corrected Version).
PCT/US2014/052231, Mar. 3, 2016, International Preliminary Report on Patentability.
PCT/US2014/050283, Nov. 6, 2014, International Search Report and Written Opinion.
PCT/US2014/050283, Feb. 18, 2016, International Preliminary Report on Patentability.
PCT/US2014/054247, Mar. 27, 2015, International Search Report and Written Opinion.
PCT/US2014/054247, Mar. 17, 2016, International Preliminary Report on Patentability.
PCT/US2014/054291, Dec. 18, 2014, Invitation to Pay Additional Fees.
PCT/US2014/054291, Mar. 27, 2015, International Search Report and Written Opinion.
PCT/US2014/054291, Mar. 17, 2016, International Preliminary Report on Patentability.
PCT/US2014/054252, Mar. 5, 2015, International Search Report and Written Opinion.
PCT/US2014/054252, Mar. 17, 2016, International Preliminary Report on Patentability.
PCT/US2014/070038, Apr. 14, 2015, International Search Report and Written Opinion.
PCT/US2014/070038, Jun. 23, 2016, International Preliminary Report on Patentability.
PCT/US2015/042770, Feb. 23, 2016, International Search Report and Written Opinion.
PCT/US2015/042770, Dec. 19, 2016, International Preliminary Report on Patentability.
PCT/US2015/058479, Feb. 11, 2016, International Search Report and Written Opinion.
PCT/US2015/058479, May 11, 2017, International Preliminary Report on Patentability.
PCT/US2016/044546, Dec. 28, 2016, International Search Report and Written Opinion.
PCT/US2016/058344, Mar. 1, 2017, Invitation to Pay Additional Fees.
PCT/US2016/058344, Apr. 20, 2017, International Search Report and Written Opinion.
PCT/US2017/48390, Nov. 7, 2017, Invitation to Pay Additional Fees.
PCT/US2017/48390, Jan. 9, 2018, International Search Report and Written Opinion.
PCT/US2017/046144, Oct. 10, 2017, International Search Report and Written Opinion.
PCT/US2017/045381, Oct. 26, 2017, International Search Report and Written Opinion.
PCT/US2017/056671, Dec. 21, 2017, Invitation to Pay Additional Fees.
PCT/US2017/056671, Feb. 20, 2018, International Search Report and Written Opinion.
U.S. Appl. No. 62/288,661, Muir et al., filed Jan. 29, 2016.
[No Author Listed] Score result for SEQ 355 to W020117032580. Muir et al. 2016.
D'Adda di Fagagna et al., The Gam protein of bacteriophage Mu is an orthologuc of eukaryotic Ku. EMBO Rep. Jan. 2003;4(1):47-52.
Hirano et al., Structural Baths for the Altered PAM Specificities of Engineered CRISPR-Cas9. Mal Cell. Mar. 17, 2016;61(6):886-94. doi: 10.1016/j.molcel.2016.02.018.
Oakes et al., Protein engineering of Cas9 for enhanced function. Methods Enzymol. 2014;546:491-511.
Pelletier, CRISPR-Cas systems for the study of the immune function. Nov. 15, 2016. https://doi.org/10.1002/9780470015902.a0026896.
Yang et al., APOBEC: From mutator to editor. J Genet Genomics. Sep. 20, 2017;44(9):423-437, doi: 10.1016/j.jgg.2017.04.009. Epub Aug. 7, 2017.
International Preliminary Report on Patentability for PCT/US2018/032460, dated Nov. 21, 2019.
International Preliminary Report on Patentability for PCT/US2018/044242, dated Feb. 6, 2020.
International Search Report and Written Opinion for PCT/US2018/044242, dated Nov. 21, 2019.
International Search Report for PCT/US2018/048969, dated Jul. 31, 2019.
Partial European Search Report for Application No. EP 19187331.4, dated Dec. 19, 2019.
U.S. Appl. No. 14/234,031, filed Mar. 24, 2014, Liu et al.
U.S. Appl. No. 14/320,271, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 16/441,751, filed Jun. 14, 2019, Liu et al.
U.S. Appl. No. 14/320,519, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/913,458, filed Feb. 22, 2016, Liu et al.
U.S. Appl. No. 16/266,937, filed Feb. 5, 2019, Liu et al.
U.S. Appl. No. 14/320,370, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/320,413, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/874,123, filed Oct. 2, 2015, Liu et al.
U.S. Appl. No. 14/911,117, filed Feb. 9, 2016, Liu et al.
U.S. Appl. No. 14/462,163, filed Aug. 18, 2014, Liu et al.
U.S. Appl. No. 14/462,189, filed Aug. 18, 2014, Liu et al.
U.S. Appl. No. 14/916,679, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 14/320,498, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/320,467, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/916,681, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 14/326,329, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,340, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,361, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/916,683, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 14/325,815, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,109, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,140, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,269, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,290, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,318, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,303, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 15/103,608, filed Jun. 10, 2016, Liu et al.
U.S. Appl. No. 16/374,634, filed Apr. 30, 2019, Liu et al.
U.S. Appl. No. 15/329,925, filed Jan. 27, 2017, Liu et al.
U.S. Appl. No. 16/132,276, filed Sep. 14, 2018, Liu et al.
U.S. Appl. No. 14/529,010, filed Oct. 30, 2014, Liu et al.
U.S. Appl. No. 15/958,721, filed Apr. 20, 2018, Liu et al.
U.S. Appl. No. 15/331,852, filed Oct. 22, 2016, Liu et al.
U.S. Appl. No. 15/960,171, filed Apr. 23, 2018, Liu et al.
U.S. Appl. No. 15/770,076, filed Apr. 20, 2018, Liu et al.
U.S. Appl. No. 16/327,744, filed Feb. 22, 2019, Maianti et al.
U.S. Appl. No. 15/852,526, filed Dec. 22, 2017, Maianti et al.
U.S. Appl. No. 16/492,534, filed Sep. 9, 2019, Liu et al.
U.S. Appl. No. 16/324,476, filed Feb. 8, 2019, Liu et al.
U.S. Appl. No. 15/791,085, filed Oct. 23, 2017, Liu et al.
U.S. Appl. No. 16/143,370, filed Sep. 26, 2018, Liu et al.
U.S. Appl. No. 16/492,548, filed Sep. 9, 2019, Liu et al.
U.S. Appl. No. 15/784,033, filed Oct. 13, 2017, Liu et al.
U.S. Appl. No. 16/492,553, filed Sep. 9, 2019, Liu et al.
U.S. Appl. No. 15/934,945, filed Mar. 23, 2018, Liu et al.
U.S. Appl. No. 16/643,376, filed Feb. 28, 2020, Liu et al.
U.S. Appl. No. 16/612,988, filed Nov. 12, 2019, Liu et al.
U.S. Appl. No. 16/634,405, filed Jan. 27, 2020, Liu et al.
EP 19187331.4, Dec. 19, 2019, Partial European Search Report.
PCT/US2018/048969, Jul. 31, 2019, International Search Report and Written Opinion.
PCT/US2018/032460, Nov. 21, 2019, International Preliminary Report on Patentability.
PCT/US2018/044242, Nov. 21, 2019, International Search Report and Written Opinion.
PCT/US2018/044242, Feb. 6. 2020, International Preliminary Report on Patentability.
Related Publications (1)
Number Date Country
20180179503 A1 Jun 2018 US
Provisional Applications (1)
Number Date Country
62438827 Dec 2016 US