The present invention relates to an elastically deformable flange locator arrangement for aligning components relative to each other, as well as a method of reducing positional variation for components of the elastically deformable flange locator arrangement.
Currently, components which are to be mated together in a manufacturing process are subject to positional variation based on the mating arrangements used to assemble the components. One common arrangement includes components mutually located with respect to each other by 2-way and/or 4-way male alignment features, typically upstanding bosses, which are received into corresponding female alignment features, typically apertures in the form of openings and/or slots. Alternatively, adhesives or welding processes may be employed to mate parts. Regardless of the precise mating arrangement, a clearance typically exists between at least a portion of the mated components, which is predetermined to match anticipated size and positional variation tolerances of the mating features as a result of manufacturing (or fabrication) variances. As a result, the occurrence of significant positional variation between the mated components, which contributes to the presence of undesirably large and varying gaps and otherwise poor fit may occur.
In one exemplary embodiment, an elastically deformable flange locator arrangement includes a first component having a first engagement surface. Also included is a second component configured to be mated with the first component. Further included is a first portion of the second component. Yet further included is a second portion of the second component extending relatively perpendicularly from the first portion proximate a perimeter of the first portion, the second portion having a second engagement surface, wherein the second portion is configured to elastically deform at a first interface upon contact between the first engagement surface and the second engagement surface.
In another exemplary embodiment, an automotive lighting assembly includes an automotive lighting housing. Also included is a channel formed and extending proximate a housing perimeter of the automotive lighting housing, the channel comprising a first channel engagement surface and a second channel engagement surface. Further included is a lens configured to be mated with the automotive lighting housing. Yet further included is a first portion of the lens. Also included is a second portion and a third portion of the lens, each extending relatively perpendicularly from the first portion proximate a lens perimeter, the second portion having a first lens engagement surface and the third portion having a second lens engagement surface, wherein at least one of the first lens engagement surface and the second lens engagement surface is configured to elastically deform upon contact with the channel of the automotive lighting housing.
In yet another exemplary embodiment, a method of reducing positional variation of mated components is provided. The method includes forming a first engagement surface in a first component. The method also includes contacting a second engagement surface located proximate a perimeter of a second component with the first engagement surface, wherein the second component comprises a first portion and a second portion, the second portion extending relatively perpendicularly from the first portion, wherein the second portion comprises the second engagement surface. The method further includes elastically deforming second portion of the second component upon contacting the second engagement surface with the first engagement surface. The method yet further includes performing an elastic averaging of the elastic deformation over the second engagement surface, wherein upon reaching a fully engaged position of the second portion of the second component a fitted alignment between the first component and the second component is established.
The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.
Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:
Referring to
Although illustrated in a specific geometry, the first component 12 and the second component 14 may be configured in countless geometries. Regardless of the precise geometry of the first component 12 and the second component 14, the second component 14 is configured to align with and fittingly mate with the first component 12, which will be described in detail below. In an alternative embodiment, rather than two components comprising the elastically deformable flange locator arrangement 10, additional layers or components may be included. It is to be appreciated that the elastically deformable flange locator arrangement 10 is to be employed for providing a self-aligning relationship between components, such as the first component 12 and the second component 14, while also assisting in securely mating the components to each other.
Referring now to
The second component 14 includes a first portion 22 and a second portion 24. The first portion 22 comprises a main portion of the second component 14 that is to be mated with the first component 12. The first portion 22 may be substantially planar or curvilinear and is aligned relatively parallel to the base wall 18 and the elevated wall 20 of the first component 12. The second portion 24 extends relatively non-perpendicularly from the first portion 22 toward the first component 12 and includes a second engagement surface 26. The second portion 24 is typically disposed proximate a perimeter of the first portion 22 of the second component 14, but may be disposed inwardly from the perimeter. Ultimately, the location of the second portion 24 is determined by the location of the first engagement surface 16 of the first component 12. Specifically, the first engagement surface 16 and the second engagement surface 26 are aligned to contact each other upon mating of the first component 12 and the second component 14.
Similar to the first engagement surface 16, the second engagement surface 26 extends in a peripheral manner around the first portion 22 of the second component 14, as well as continuously around a portion of the second component 14. The second engagement surface 26 comprises a second engagement surface length, also referred to herein as a second perimeter. The second perimeter is less than the first perimeter described above, such that the second engagement surface 26 is disposed radially inwardly of the first engagement surface 16. More particularly, the second engagement surface 26 is positioned to ensure contact between the surfaces, with such a contact region comprising a first interface region 28. The second portion 24 is positioned and engaged with the first engagement surface 16 of the first component 12 upon translation of the second component 14 toward the base wall 18. The second engagement surface 26 engages the first engagement surface 16 at a position spaced from the base wall 18. Subsequent translation of the second portion 24 toward the base wall 18 results in an elastic deformation of the second portion 24 at the first interface region 28. Furthermore, as shown, the first engagement surface 16 includes a chamfer portion 21 disposed at a distal end from the base wall 18. The chamfer portion 21 comprises a beveled surface and is configured to provide a “lead-in” region for the second engagement surface 26. Numerous angles of the chamfer portion 21 are contemplated. In addition to the “lead-in” benefit provided by the chamfer portion 21, the angled surface enhances a contact interference condition between the first component 12 and the second component 14 by increasing the compressive surface area that is available to impart a compressive force on the second engagement surface 26.
Any suitable elastically deformable material may be used for the second component 24. More specifically, elastically deformable material is disposed proximate, or integral to, the second engagement surface 26 of the second component 24. The term “elastically deformable” refers to components, or portions of components, including component features, comprising materials having a generally elastic deformation characteristic, wherein the material is configured to undergo a resiliently reversible change in its shape, size, or both, in response to application of a force. The force causing the resiliently reversible or elastic deformation of the material may include a tensile, compressive, shear, bending or torsional force, or various combinations of these forces. The elastically deformable materials may exhibit linear elastic deformation, for example that described according to Hooke's law, or non-linear elastic deformation.
Numerous examples of materials that may at least partially form the components include various metals, polymers, ceramics, inorganic materials or glasses, or composites of any of the aforementioned materials, or any other combinations thereof Many composite materials are envisioned, including various filled polymers, including glass, ceramic, metal and inorganic material filled polymers, particularly glass, metal, ceramic, inorganic or carbon fiber filled polymers. Any suitable filler morphology may be employed, including all shapes and sizes of particulates or fibers. More particularly any suitable type of fiber may be used, including continuous and discontinuous fibers, woven and unwoven cloths, felts or tows, or a combination thereof Any suitable metal may be used, including various grades and alloys of steel, cast iron, aluminum, magnesium or titanium, or composites thereof, or any other combinations thereof. Polymers may include both thermoplastic polymers or thermoset polymers, or composites thereof, or any other combinations thereof, including a wide variety of co-polymers and polymer blends. In one embodiment, a preferred plastic material is one having elastic properties so as to deform elastically without fracture, as for example, a material comprising an acrylonitrile butadiene styrene (ABS) polymer, and more particularly a polycarbonate ABS polymer blend (PC/ABS), such as an ABS acrylic. The material may be in any form and formed or manufactured by any suitable process, including stamped or formed metal, composite or other sheets, forgings, extruded parts, pressed parts, castings, or molded parts and the like, to include the deformable features described herein. The material, or materials, may be selected to provide a predetermined elastic response characteristic of the second portion 24. The predetermined elastic response characteristic may include, for example, a predetermined elastic modulus.
The precise position where engagement between the first engagement surface 16 and the second engagement surface 26 occurs will vary depending on positional variance imposed by manufacturing factors. Due to the elastically deformable properties of the elastic material comprising the second portion 24, the criticality of the initial location of engagement is reduced. Further insertion of the second portion 24 along the first engagement surface 16 toward the base wall 18 ultimately leads to a fully engaged position of the second portion 24, and more particularly the second component 14. It is contemplated that the second portion 24 may engage the base wall 18 of the first component 12 or may not contact the base wall 18. The dimensions of the second portion 24 and the first engagement surface 16, as well as the elastic properties of the elastic material(s), ultimately dictate the fully engaged position. In the fully engaged position, the second portion 24 is in contact with the first engagement surface 16 along an entirety of the second engagement surface 26.
Irrespective of the precise location of the fully engaged position, fitted engagement between the first engagement surface 16 and the second engagement surface 26 is achieved by elastically averaging the deformation along the first interface region 28, thereby positioning the second component 14 to the first component 12. Regardless of whether the first component 12 and the second component 14 are retained merely by engagement between the first engagement surface 16 and the second engagement surface 26 or in conjunction with additional retaining features, the elastic deformation of the second portion 24 elastically averages any positional errors of the first component 12 and the second component 14. In other words, gaps that would otherwise be present due to positional errors associated with portions or segments of the first component 12 and the second component 14, particularly locating and retaining features, are eliminated by offsetting the gaps with an over-constrained condition along other portions or segments of the first engagement surface 16 and the second engagement surface 26. Such errors are accounted for by averaging deformation of the second portion 24 over the second engagement surface 26.
Elastic averaging provides elastic deformation of the interface(s) between mated components, wherein the average deformation provides a precise alignment, the manufacturing positional variance being minimized to Xmin, defined by, Xmin=X/√{square root over (N)}, wherein X is the manufacturing positional variance of the locating features of the mated components and N is the number of features inserted. To obtain elastic averaging, an elastically deformable component is configured to have at least one feature and its contact surface(s) that is over-constrained and provides an interference fit with a mating feature of another component and its contact surface(s). The over-constrained condition and interference fit resiliently reversibly (elastically) deforms at least one of the at least one feature or the mating feature, or both features. The resiliently reversible nature of these features of the components allows repeatable insertion and withdrawal of the components that facilitates their assembly and disassembly. Positional variance of the components may result in varying forces being applied over regions of the contact surfaces that are over-constrained and engaged during insertion of the component in an interference condition. It is to be appreciated that a single inserted component may be elastically averaged with respect to a length of the perimeter of the component. The principles of elastic averaging are described in detail in commonly owned, co-pending U.S. patent application Ser. No. 13/187,675, the disclosure of which is incorporated by reference herein in its entirety. The embodiments disclosed above provide the ability to convert an existing component that is not compatible with the above-described elastic averaging principles to an assembly that does facilitate elastic averaging and the benefits associated therewith.
Referring to
Referring now to
Rather than the semi-trough like “fall off” portion of the first component 12 of the first embodiments, the third embodiment includes a channel 40. The channel 40 includes the first engagement surface 16, also referred to as a first channel engagement surface, the base wall 18 and a second channel engagement surface 42. In addition to engagement between the first engagement surface 16 and the second engagement surface 26, the second portion 24 of the second component 14 includes an additional engagement surface 44 configured to contact the second channel engagement surface 42. The distance between the second engagement surface 26 and the additional engagement surface 44 may be referred to as a second portion width. The second portion width is greater than the width of the channel 40, such that contact between the second portion 24 and the channel 40 is ensured proximate at least one of the interfaces. As with the first engagement surface 16, the second channel engagement surface 42 includes an additional chamfer portion 45 for engaging with and compressing the additional engagement surface 44. The structure and function of the chamfer portions is described in detail above.
Referring now to
In addition to the first portion 22 and the second portion 24 of the second component 14, a third portion 50 is included in the third embodiment. The third portion 50 is constructed and oriented similarly to that of the second portion 24 and includes a third portion engagement surface 52. Similar to the second embodiment, the first component 12 includes the channel 40 having the first channel engagement surface 16, the base wall 18 and the second channel engagement surface 42. Extending longitudinally through the second component 14 is a recess 54 disposed between the second portion 24 and the third portion 50. The recess 54 extends from an end 56 toward the first portion 22 of the second component 14.
The second portion 24 and the third portion 50 of the second component 14 are positioned and engaged with the channel 40 of the first component 12 upon translation of the second component 14 toward the base wall 18. The second engagement surface 26 and the third portion engagement surface 52 engage the first channel engagement surface 16 and the second channel engagement surface 42, respectively, at a position spaced from the base wall 18 within the channel 40. Subsequent translation of the second portion 24 and the third portion 50 toward the base wall 18 results in an elastic deformation at an interface between the first channel engagement surface 16 and the second engagement surface 26, as well as at an interface between the third portion engagement surface 52 and the second channel engagement surface 42. Depending on the positional variance of the features of the first component 12 and the second component 14, elastic deformation of one or both of the second portion 24 and the third portion 50 may occur in response to resistance imposed on the second engagement surface 26 and the third portion engagement surface 52 by the channel 40. It is to be appreciated that elastic deformation of the second portion 24 and the third portion 50 is further facilitated by the presence of the recess 54 disposed between the second portion 24 and the third portion 50. The void of material proximate the recess 54 enhances the flexibility of the second portion 24 and the third portion 50 in regions closely located to the recess 54. Elastic averaging of the elastic deformation of the second component 14 is averaged in aggregate between the second portion 24 and the third portion 50, similar to the elastic averaging described in detail above.
Referring to
As with previous embodiments, the first component 12 also includes the chamfer portion 21 for lead-in purposes, but the second engagement surface 26 of the second portion 24 primarily engages the first channel engagement surface 16 along a portion of the first channel engagement surface 16 that is similarly aligned in a substantially orthogonal manner to the base wall 18. Similarly, the third portion engagement surface 52 of the third portion 50 primarily engages the second channel engagement surface 42 along a portion of the second channel engagement surface 42 that is similarly aligned in a substantially orthogonal manner to the base wall 18.
In one embodiment (
A method of reducing positional variation of mated components 100 is also provided, as illustrated in
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.
Number | Name | Date | Kind |
---|---|---|---|
1219398 | Huntsman | Mar 1917 | A |
1261036 | Kerns | Apr 1918 | A |
1301302 | Nolan | Apr 1919 | A |
1556233 | Maise | Oct 1925 | A |
1819126 | Scheibe | Aug 1931 | A |
1929848 | Neely | Oct 1933 | A |
1968168 | Place | Jul 1934 | A |
1982076 | Spahn | Nov 1934 | A |
2006525 | Thal | Jul 1935 | A |
2267558 | Birger et al. | Dec 1941 | A |
2275103 | Gooch, Jr. et al. | Mar 1942 | A |
2275900 | Hall | Mar 1942 | A |
2482488 | Franc | Sep 1949 | A |
2612139 | Collins | Sep 1952 | A |
2688894 | Modrey | Sep 1954 | A |
2707607 | O'Connor | May 1955 | A |
2778399 | Mroz | Jan 1957 | A |
2780128 | Rapata | Feb 1957 | A |
2862040 | Curran | Nov 1958 | A |
2902902 | Slone | Sep 1959 | A |
2946612 | Ahlgren | Jul 1960 | A |
3005282 | Christiansen | Oct 1961 | A |
3014563 | Bratton | Dec 1961 | A |
3087352 | Daniel | Apr 1963 | A |
3089269 | McKiernan | May 1963 | A |
3130512 | Buren Jr. | Apr 1964 | A |
3152376 | Boser | Oct 1964 | A |
3168961 | Yates | Feb 1965 | A |
3169004 | Rapata | Feb 1965 | A |
3169439 | Rapata | Feb 1965 | A |
3188731 | Sweeney | Jun 1965 | A |
3194292 | Borowsky | Jul 1965 | A |
3213189 | Mitchell et al. | Oct 1965 | A |
3230592 | Hosea | Jan 1966 | A |
3233358 | Dehm | Feb 1966 | A |
3233503 | Birger | Feb 1966 | A |
3244057 | Mathison | Apr 1966 | A |
3248995 | Meyer | May 1966 | A |
3291495 | Liebig | Dec 1966 | A |
3310929 | Garvey | Mar 1967 | A |
3413752 | Perry | Dec 1968 | A |
3473283 | Meyer | Oct 1969 | A |
3531850 | Durand | Oct 1970 | A |
3551963 | Long | Jan 1971 | A |
3643968 | Horvath | Feb 1972 | A |
3680272 | Meyer | Aug 1972 | A |
3841044 | Brown | Oct 1974 | A |
3842565 | Brown et al. | Oct 1974 | A |
3845961 | Byrd, III | Nov 1974 | A |
3847492 | Kennicutt et al. | Nov 1974 | A |
3895408 | Leingang | Jul 1975 | A |
3905570 | Nieuwveld | Sep 1975 | A |
3972550 | Boughton | Aug 1976 | A |
4035874 | Liljendahl | Jul 1977 | A |
4039215 | Minhinnick | Aug 1977 | A |
4042307 | Jarvis | Aug 1977 | A |
4043585 | Yamanaka | Aug 1977 | A |
4158511 | Herbenar | Jun 1979 | A |
4169297 | Weihrauch | Oct 1979 | A |
4213675 | Pilhall | Jul 1980 | A |
4237573 | Weihrauch | Dec 1980 | A |
4300851 | Thelander | Nov 1981 | A |
4313609 | Clements | Feb 1982 | A |
4318208 | Borja | Mar 1982 | A |
4325574 | Umemoto et al. | Apr 1982 | A |
4363839 | Watanabe et al. | Dec 1982 | A |
4364150 | Remington | Dec 1982 | A |
4384803 | Cachia | May 1983 | A |
4394853 | Lopez-Crevillen et al. | Jul 1983 | A |
4406033 | Chisholm et al. | Sep 1983 | A |
4477142 | Cooper | Oct 1984 | A |
4481160 | Bree | Nov 1984 | A |
4575060 | Kitagawa | Mar 1986 | A |
4605575 | Auld et al. | Aug 1986 | A |
4616951 | Maatela | Oct 1986 | A |
4648649 | Beal | Mar 1987 | A |
4654760 | Matheson et al. | Mar 1987 | A |
4745656 | Revlett | May 1988 | A |
4767647 | Bree | Aug 1988 | A |
4805272 | Yamaguchi | Feb 1989 | A |
4807335 | Candea | Feb 1989 | A |
4817999 | Drew | Apr 1989 | A |
4819983 | Alexander et al. | Apr 1989 | A |
4865502 | Maresch | Sep 1989 | A |
4881764 | Takahashi et al. | Nov 1989 | A |
4973212 | Jacobs | Nov 1990 | A |
4977648 | Eckerud | Dec 1990 | A |
5005265 | Muller | Apr 1991 | A |
5039267 | Wollar | Aug 1991 | A |
5139285 | Lasinski | Aug 1992 | A |
5154479 | Sautter, Jr. | Oct 1992 | A |
5180219 | Geddie | Jan 1993 | A |
5208507 | Jung | May 1993 | A |
5212853 | Kaneko | May 1993 | A |
5234122 | Cherng | Aug 1993 | A |
5297322 | Kraus | Mar 1994 | A |
5339491 | Sims | Aug 1994 | A |
5342139 | Hoffman | Aug 1994 | A |
5368797 | Quentin et al. | Nov 1994 | A |
5397206 | Sihon | Mar 1995 | A |
5446965 | Makridis | Sep 1995 | A |
5507610 | Benedetti et al. | Apr 1996 | A |
5513603 | Ang et al. | May 1996 | A |
5524786 | Skudlarek | Jun 1996 | A |
5538079 | Pawlick | Jul 1996 | A |
5556808 | Williams et al. | Sep 1996 | A |
5575601 | Skufca | Nov 1996 | A |
5577301 | Demaagd | Nov 1996 | A |
5577779 | Dangel | Nov 1996 | A |
5580204 | Hultman | Dec 1996 | A |
5586372 | Eguchi et al. | Dec 1996 | A |
5601453 | Horchler | Feb 1997 | A |
5629823 | Mizuta | May 1997 | A |
5634757 | Schanz | Jun 1997 | A |
5657516 | Berg et al. | Aug 1997 | A |
5667271 | Booth | Sep 1997 | A |
5670013 | Huang et al. | Sep 1997 | A |
5698276 | Mirabitur | Dec 1997 | A |
5736221 | Hardigg et al. | Apr 1998 | A |
5765942 | Shirai et al. | Jun 1998 | A |
5775860 | Meyer | Jul 1998 | A |
5795118 | Osada et al. | Aug 1998 | A |
5797170 | Akeno | Aug 1998 | A |
5803646 | Weihrauch | Sep 1998 | A |
5806915 | Takabatake | Sep 1998 | A |
5810535 | Fleckenstein et al. | Sep 1998 | A |
5820292 | Fremstad | Oct 1998 | A |
5846631 | Nowosiadly | Dec 1998 | A |
5934729 | Baack | Aug 1999 | A |
5941673 | Hayakawa et al. | Aug 1999 | A |
6073315 | Rasmussen | Jun 2000 | A |
6079083 | Akashi | Jun 2000 | A |
6095594 | Riddle et al. | Aug 2000 | A |
6164603 | Kawai | Dec 2000 | A |
6193430 | Culpepper et al. | Feb 2001 | B1 |
6199248 | Akashi | Mar 2001 | B1 |
6202962 | Snyder | Mar 2001 | B1 |
6209175 | Gershenson | Apr 2001 | B1 |
6209178 | Wiese et al. | Apr 2001 | B1 |
6264869 | Notarpietro et al. | Jul 2001 | B1 |
6299478 | Jones et al. | Oct 2001 | B1 |
6321495 | Oami | Nov 2001 | B1 |
6349904 | Polad | Feb 2002 | B1 |
6351380 | Curlee | Feb 2002 | B1 |
6354815 | Svihla et al. | Mar 2002 | B1 |
6398449 | Loh | Jun 2002 | B1 |
6484370 | Kanie et al. | Nov 2002 | B2 |
6485241 | Oxford | Nov 2002 | B1 |
6523817 | Landry, Jr. | Feb 2003 | B1 |
6533391 | Pan | Mar 2003 | B1 |
6543979 | Iwatsuki | Apr 2003 | B2 |
6557260 | Morris | May 2003 | B1 |
6568701 | Burdack et al. | May 2003 | B1 |
6579397 | Spain et al. | Jun 2003 | B1 |
6591801 | Fonville | Jul 2003 | B1 |
6609717 | Hinson | Aug 2003 | B2 |
6658698 | Chen | Dec 2003 | B2 |
6662411 | Rubenstein | Dec 2003 | B2 |
6664470 | Nagamoto | Dec 2003 | B2 |
6677065 | Blauer | Jan 2004 | B2 |
6692016 | Yokota | Feb 2004 | B2 |
6712329 | Ishigami et al. | Mar 2004 | B2 |
6746172 | Culpepper | Jun 2004 | B2 |
6757942 | Matsui | Jul 2004 | B2 |
6799758 | Fries | Oct 2004 | B2 |
6840969 | Kobayashi et al. | Jan 2005 | B2 |
6857676 | Kawaguchi et al. | Feb 2005 | B2 |
6857809 | Granata | Feb 2005 | B2 |
6908117 | Pickett, Jr. et al. | Jun 2005 | B1 |
6932416 | Clauson | Aug 2005 | B2 |
6948753 | Yoshida et al. | Sep 2005 | B2 |
6951349 | Yokota | Oct 2005 | B2 |
6959954 | Brandt et al. | Nov 2005 | B2 |
6966601 | Matsumoto et al. | Nov 2005 | B2 |
6971831 | Fattori et al. | Dec 2005 | B2 |
6997487 | Kitzis | Feb 2006 | B2 |
7000941 | Yokota | Feb 2006 | B2 |
7008003 | Hirose et al. | Mar 2006 | B1 |
7014094 | Alcoe | Mar 2006 | B2 |
7017239 | Kurily et al. | Mar 2006 | B2 |
7036779 | Kawaguchi et al. | May 2006 | B2 |
7055849 | Yokota | Jun 2006 | B2 |
7059628 | Yokota | Jun 2006 | B2 |
7073260 | Jensen | Jul 2006 | B2 |
7089998 | Crook | Aug 2006 | B2 |
7097198 | Yokota | Aug 2006 | B2 |
7121611 | Hirotani et al. | Oct 2006 | B2 |
7144183 | Lian et al. | Dec 2006 | B2 |
7172210 | Yokota | Feb 2007 | B2 |
7178855 | Catron et al. | Feb 2007 | B2 |
7198315 | Cass et al. | Apr 2007 | B2 |
7234852 | Nishizawa et al. | Jun 2007 | B2 |
7306418 | Kornblum | Dec 2007 | B2 |
7322500 | Maierholzner | Jan 2008 | B2 |
7344056 | Shelmon et al. | Mar 2008 | B2 |
7360964 | Tsuya | Apr 2008 | B2 |
7369408 | Chang | May 2008 | B2 |
7435031 | Granata | Oct 2008 | B2 |
7454105 | Yi | Nov 2008 | B2 |
7487884 | Kim | Feb 2009 | B2 |
7493716 | Brown | Feb 2009 | B2 |
7557051 | Ryu et al. | Jul 2009 | B2 |
7568316 | Choby et al. | Aug 2009 | B2 |
7591573 | Maliar et al. | Sep 2009 | B2 |
D602349 | Andersson | Oct 2009 | S |
7614836 | Mohiuddin | Nov 2009 | B2 |
7672126 | Yeh | Mar 2010 | B2 |
7677650 | Huttenlocher | Mar 2010 | B2 |
7764853 | Yi et al. | Jul 2010 | B2 |
7793998 | Matsui et al. | Sep 2010 | B2 |
7802831 | Isayama et al. | Sep 2010 | B2 |
7828372 | Ellison | Nov 2010 | B2 |
7862272 | Nakajima | Jan 2011 | B2 |
7869003 | Van Doren et al. | Jan 2011 | B2 |
7883137 | Bar | Feb 2011 | B2 |
7922415 | Rudduck et al. | Apr 2011 | B2 |
7946684 | Drury et al. | May 2011 | B2 |
8029222 | Nitsche | Oct 2011 | B2 |
8061861 | Paxton et al. | Nov 2011 | B2 |
8101264 | Pace et al. | Jan 2012 | B2 |
8136819 | Yoshitsune et al. | Mar 2012 | B2 |
8162375 | Gurtatowski et al. | Apr 2012 | B2 |
8203496 | Miller et al. | Jun 2012 | B2 |
8203843 | Chen | Jun 2012 | B2 |
8261581 | Cerruti et al. | Sep 2012 | B2 |
8276961 | Kwolek | Oct 2012 | B2 |
8297137 | Dole | Oct 2012 | B2 |
8297661 | Proulx et al. | Oct 2012 | B2 |
8414048 | Kwolek | Apr 2013 | B1 |
8444199 | Takeuchi et al. | May 2013 | B2 |
8677573 | Lee | Mar 2014 | B2 |
8695201 | Morris | Apr 2014 | B2 |
8720016 | Beaulieu | May 2014 | B2 |
8726473 | Dole | May 2014 | B2 |
8826499 | Tempesta | Sep 2014 | B2 |
8833832 | Whipps | Sep 2014 | B2 |
8834058 | Woicke | Sep 2014 | B2 |
9039318 | Mantei et al. | May 2015 | B2 |
9050690 | Hammer et al. | Jun 2015 | B2 |
9061715 | Morris | Jun 2015 | B2 |
9067625 | Morris | Jun 2015 | B2 |
20010030414 | Yokota | Oct 2001 | A1 |
20010045757 | Hideki et al. | Nov 2001 | A1 |
20020045086 | Tsuji et al. | Apr 2002 | A1 |
20020060275 | Polad | May 2002 | A1 |
20020092598 | Jones et al. | Jul 2002 | A1 |
20020136617 | Imahigashi | Sep 2002 | A1 |
20030007831 | Lian et al. | Jan 2003 | A1 |
20030080131 | Fukuo | May 2003 | A1 |
20030082986 | Wiens et al. | May 2003 | A1 |
20030087047 | Blauer | May 2003 | A1 |
20030108401 | Agha et al. | Jun 2003 | A1 |
20030180122 | Dobson | Sep 2003 | A1 |
20040037637 | Lian et al. | Feb 2004 | A1 |
20040131896 | Blauer | Jul 2004 | A1 |
20040139678 | Pervan | Jul 2004 | A1 |
20040140651 | Yokota | Jul 2004 | A1 |
20040208728 | Fattori et al. | Oct 2004 | A1 |
20050016116 | Scherff | Jan 2005 | A1 |
20050031946 | Kruger et al. | Feb 2005 | A1 |
20050054229 | Tsuya | Mar 2005 | A1 |
20050082449 | Kawaguchi et al. | Apr 2005 | A1 |
20050156409 | Yokota | Jul 2005 | A1 |
20050156410 | Yokota | Jul 2005 | A1 |
20050156416 | Yokota | Jul 2005 | A1 |
20050244250 | Okada et al. | Nov 2005 | A1 |
20060092653 | Tachiiwa et al. | May 2006 | A1 |
20060102214 | Clemons | May 2006 | A1 |
20060110109 | Yu | May 2006 | A1 |
20060113755 | Yokota | Jun 2006 | A1 |
20060125286 | Horimatsu et al. | Jun 2006 | A1 |
20060141318 | MacKinnon et al. | Jun 2006 | A1 |
20060170242 | Forrester et al. | Aug 2006 | A1 |
20060197356 | Catron et al. | Sep 2006 | A1 |
20060202449 | Yokota | Sep 2006 | A1 |
20060237995 | Huttenlocher | Oct 2006 | A1 |
20060249520 | DeMonte | Nov 2006 | A1 |
20060264076 | Chen | Nov 2006 | A1 |
20070040411 | Dauvergne | Feb 2007 | A1 |
20070113483 | Hernandez | May 2007 | A1 |
20070113485 | Hernandez | May 2007 | A1 |
20070126211 | Moerke et al. | Jun 2007 | A1 |
20070144659 | De La Fuente | Jun 2007 | A1 |
20080014508 | Van Doren et al. | Jan 2008 | A1 |
20080018128 | Yamagiwa et al. | Jan 2008 | A1 |
20080073888 | Enriquez | Mar 2008 | A1 |
20080094447 | Drury et al. | Apr 2008 | A1 |
20080128346 | Bowers | Jun 2008 | A1 |
20080217796 | Van Bruggen et al. | Sep 2008 | A1 |
20080260488 | Scroggie et al. | Oct 2008 | A1 |
20090028506 | Yi et al. | Jan 2009 | A1 |
20090072591 | Baumgartner | Mar 2009 | A1 |
20090091156 | Neubrand | Apr 2009 | A1 |
20090126168 | Kobe et al. | May 2009 | A1 |
20090134652 | Araki | May 2009 | A1 |
20090174207 | Lota | Jul 2009 | A1 |
20090265896 | Beak | Oct 2009 | A1 |
20090309388 | Ellison | Dec 2009 | A1 |
20100001539 | Kikuchi et al. | Jan 2010 | A1 |
20100021267 | Nitsche | Jan 2010 | A1 |
20100061045 | Chen | Mar 2010 | A1 |
20100102538 | Paxton et al. | Apr 2010 | A1 |
20100134128 | Hobbs | Jun 2010 | A1 |
20100147355 | Shimizu et al. | Jun 2010 | A1 |
20100247034 | Yi et al. | Sep 2010 | A1 |
20100270745 | Hurlbert et al. | Oct 2010 | A1 |
20110012378 | Ueno et al. | Jan 2011 | A1 |
20110036542 | Woicke | Feb 2011 | A1 |
20110076588 | Yamaura | Mar 2011 | A1 |
20110083392 | Timko | Apr 2011 | A1 |
20110119875 | Iwasaki | May 2011 | A1 |
20110131918 | Glynn | Jun 2011 | A1 |
20110175376 | Whitens et al. | Jul 2011 | A1 |
20110207024 | Bogumil et al. | Aug 2011 | A1 |
20110239418 | Huang | Oct 2011 | A1 |
20110296764 | Sawatani et al. | Dec 2011 | A1 |
20110311332 | Ishman | Dec 2011 | A1 |
20120020726 | Jan | Jan 2012 | A1 |
20120073094 | Bishop | Mar 2012 | A1 |
20120115010 | Smith et al. | May 2012 | A1 |
20120240363 | Lee | Sep 2012 | A1 |
20120251226 | Liu et al. | Oct 2012 | A1 |
20120261951 | Mildner et al. | Oct 2012 | A1 |
20120311829 | Dickinson | Dec 2012 | A1 |
20120321379 | Wang et al. | Dec 2012 | A1 |
20130019454 | Colombo et al. | Jan 2013 | A1 |
20130019455 | Morris | Jan 2013 | A1 |
20130027852 | Wang | Jan 2013 | A1 |
20130071181 | Herzinger et al. | Mar 2013 | A1 |
20130157015 | Morris | Jun 2013 | A1 |
20130212858 | Herzinger et al. | Aug 2013 | A1 |
20130269873 | Herzinger et al. | Oct 2013 | A1 |
20130287992 | Morris | Oct 2013 | A1 |
20140033493 | Morris et al. | Feb 2014 | A1 |
20140041176 | Morris | Feb 2014 | A1 |
20140041185 | Morris et al. | Feb 2014 | A1 |
20140041199 | Morris | Feb 2014 | A1 |
20140042704 | Polewarczyk | Feb 2014 | A1 |
20140047691 | Colombo et al. | Feb 2014 | A1 |
20140047697 | Morris | Feb 2014 | A1 |
20140080036 | Smith et al. | Mar 2014 | A1 |
20140132023 | Watanabe | May 2014 | A1 |
20140175774 | Kansteiner | Jun 2014 | A1 |
20140202628 | Sreetharan et al. | Jul 2014 | A1 |
20140208561 | Colombo et al. | Jul 2014 | A1 |
20140208572 | Colombo et al. | Jul 2014 | A1 |
20140220267 | Morris et al. | Aug 2014 | A1 |
20140298638 | Colombo et al. | Oct 2014 | A1 |
20140298640 | Morris et al. | Oct 2014 | A1 |
20140298962 | Morris et al. | Oct 2014 | A1 |
20140301777 | Morris et al. | Oct 2014 | A1 |
20150016918 | Colombo | Jan 2015 | A1 |
20150050068 | Morris et al. | Feb 2015 | A1 |
20150165609 | Morris et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
1036250 | Oct 1989 | CN |
1129162 | Aug 1996 | CN |
1205285 | Jan 1999 | CN |
1328521 | Dec 2001 | CN |
1426872 | Jul 2003 | CN |
2661972 | Dec 2004 | CN |
1670986 | Sep 2005 | CN |
100573975 | Sep 2005 | CN |
1693721 | Nov 2005 | CN |
1771399 | May 2006 | CN |
1774580 | May 2006 | CN |
2888807 | Apr 2007 | CN |
1961157 | May 2007 | CN |
2915389 | Jun 2007 | CN |
101250964 | Apr 2008 | CN |
201259846 | Jun 2009 | CN |
201268336 | Jul 2009 | CN |
201310827 | Sep 2009 | CN |
201540513 | Aug 2010 | CN |
101821534 | Sep 2010 | CN |
201703439 | Jan 2011 | CN |
201737062 | Feb 2011 | CN |
201792722 | Apr 2011 | CN |
201890285 | Jul 2011 | CN |
102144102 | Aug 2011 | CN |
102235402 | Nov 2011 | CN |
202079532 | Dec 2011 | CN |
102313952 | Jan 2012 | CN |
102756633 | Oct 2012 | CN |
102803753 | Nov 2012 | CN |
102869891 | Jan 2013 | CN |
202686206 | Jan 2013 | CN |
102939022 | Feb 2013 | CN |
103201525 | Jul 2013 | CN |
1220673 | Jul 1966 | DE |
2736012 | Feb 1978 | DE |
3704190 | Dec 1987 | DE |
3711696 | Oct 1988 | DE |
3805693 | Feb 1989 | DE |
3815927 | Nov 1989 | DE |
4002443 | Aug 1991 | DE |
4111245 | Oct 1991 | DE |
29714892 | Oct 1997 | DE |
29800379 | May 1998 | DE |
69600357 | Dec 1998 | DE |
10234253 | Apr 2004 | DE |
102008005618 | Jul 2009 | DE |
102010028323 | Nov 2011 | DE |
102011050003 | Oct 2012 | DE |
102012212101 | Jul 2013 | DE |
0118796 | Sep 1984 | EP |
1132263 | Sep 2001 | EP |
1273766 | Jan 2003 | EP |
1293384 | Mar 2003 | EP |
1384536 | Jan 2004 | EP |
1388449 | Feb 2004 | EP |
2166235 | Mar 2010 | EP |
2450259 | May 2012 | EP |
2458454 | May 2012 | EP |
1369198 | Aug 1964 | FR |
2009941 | Feb 1970 | FR |
2750177 | Dec 1997 | FR |
2958696 | Oct 2011 | FR |
2281950 | Mar 1995 | GB |
2001141154 | May 2001 | JP |
2001171554 | Jun 2001 | JP |
2005268004 | Sep 2005 | JP |
2006205918 | Aug 2006 | JP |
2008307938 | Dec 2008 | JP |
2009084844 | Apr 2009 | JP |
2009187789 | Aug 2009 | JP |
2011085174 | Apr 2011 | JP |
20030000251 | Jan 2003 | KR |
2008140659 | Nov 2008 | WO |
2010105354 | Sep 2010 | WO |
2013191622 | Dec 2013 | WO |
Entry |
---|
U.S. Appl. No. 13/939,503, filed Jul. 11, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Joel Colombo. |
U.S. Appl. No. 13/940,912, filed Jul. 12, 2013, entitled “Alignment Arrangement for Mated Components and Method”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/945,231, filed Jul. 18, 2013, entitled “Lobular Elastic Tube Alignment System for Providing Precise Four-Way Alignment of Components”, Inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/954,198, filed Jul. 30, 2013, entitled “Elastic Alignment and Retention System and Method,” inventors: Steven E. Morris, Edward D. Groninger, and Raymond J. Chess. |
U.S. Appl. No. 13/966,523, filed Aug. 14, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo. |
U.S. Appl. No. 13/973,587, filed Aug. 22, 2013, entitled “Elastic Averaging Alignment System and Method,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/974,729, filed Aug. 23, 2013, entitled “Elastic Averaging Snap Member Aligning and Fastening System”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/012,205, filed Aug. 28, 2013, entitled “Elastically Deformable Alignment Fastener and System,” inventors: Steven E. Morris, Marc J. Tahnoose, Michael E. McGuire and Jennifer P. Lawall. |
U.S. Appl. No. 14/021,282, filed Sep. 9, 2013, entitled “Elastic Tube Alignment and Fastening System for Providing Precise Alignment and Fastening of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/031,647, filed Sep. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris, Joel Colombo, Jennifer P. Lawall, Jeffrey L. Konchan, and Steve J. Briggs. |
U.S. Appl. No. 14/038,241, filed Sep. 26, 2013, entitled “Serviceable Aligning and Self-Retaining Elastic Arrangement for Mated Components and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo. |
U.S. Appl. No. 14/039,614, filed Sep. 27, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Steven E. Morris. |
U.S. Appl. No. 14/044,199, filed Oct. 2, 2013, entitled “Lobular Elastic Tube Alignment and Retention System for Providing Precise Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/044,207, filed Oct. 2, 2013, entitled “Elastic Aperture Alignment System for Providing Precise Four-Way Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/045,463, filed Oct. 3, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/081,361, filed Nov. 15, 2013, entitled “Elastically Deformable Clip and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Jeffrey M. Gace. |
U.S. Appl. No. 14/104,321, filed Dec. 12, 2013, entitled “Alignment and Retention System for a Flexible Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/104,327, filed Dec. 12, 2013, entitled “Self-Retaining Alignment System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris, Jennifer P. Lawall and Toure D. Lee. |
U.S. Appl. No. 14/104,333, filed Dec. 12, 2013, entitled “Alignment System for Providing Precise Alignment and Retention of Components of a Sealable Compartment,” inventors: Steven E. Morris, Christopher J. Georgi, Jennifer P. Lawall and Gordan N. Noll. |
U.S. Appl. No. 14/104,541, filed Dec. 12, 2013, entitled “Alignment and Retention System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/104,549, filed Dec. 12, 2013, entitled “Alignment System for Providing Alignment of Components Having Contoured Features,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/108,921, filed Dec. 17, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/108,931, filed Dec. 17, 2013, entitled “Elastically Averaged Strap Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/109,296, filed Dec. 17, 2013, entitled “Fastener for Operatively Coupling Matable Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,622, filed Dec. 19, 2013, entitled “Elastic Averaging Alignment Member,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,801, filed Dec. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,844, filed Dec. 19, 2013, entitled “Elastically Deformable Module Installation Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,888, filed Dec. 19, 2013, entitled “Elastic Retaining Assembly and Method,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/136,502, filed Dec. 20, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Timothy A. Kiester, Steven E. Morris, Kenton L. West, Scott J. Fast, and Evan Phillips. |
U.S. Appl. No. 14/151,279, filed Jan. 9, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/153,741, filed Jan. 13, 2014, entitled “Elastically Averaged Assembly for Closure Applications,” inventors: Steven E. Morris, Jeffrey A. Abell, Jennifer P. Lawall, and Jeffrey L. Konchan. |
U.S. Appl. No. 14/180,882, filed on Feb. 14, 2014, entitled “Elastic Tube Alignment System for Precisely Locating Components,” inventor: Steven E. Morris. |
U.S. Appl. No. 14/181,142, filed Feb. 14, 2014, entitled “Elastic Tube Alignment System for Precisely Locating Components,” inventor: Steven E. Morris. |
U.S. Appl. No. 14/185,422, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall and Ashish M. Gollapalli. |
U.S. Appl. No. 14/185,472, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Kee Hyuk Im. |
U.S. Appl. No. 14/231,395, filed Mar. 31, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall, and Ashish M. Gollapalli. |
U.S. Appl. No. 14/249,746, filed Apr. 10, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo and Catherine A. Ostrander. |
U.S. Appl. No. 14/259,747, filed Apr. 23, 2014, entitled “System for Elastically Averaging Assembly of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
Cross-sectional view of a prior art infrared welded assembly of BMW, Munich, Germany. Believed on the market since about Jan. 1, 2010. |
“Coupling Types—Elastic Averaging.” MIT. Aug. 3, 2012, [online], [retrieved on Nov. 12, 2014]. Retrieved from the Internet <URL:https://web.archive.org/web/20120308055935/http://pergatory.mit.edu/kinematiccouplings/html/about/elastic—averaging.html>. |
“Elastic Averaging in Flexture Mechanisms: A Multi-Beam Paralleaogram Flexture Case-Study” by Shorya Awtar and Edip Sevincer, Proceedings of IDETC/CIE 2006, Paper DETC2006-99752, American Society of Mechanical Engineers (ASME), Sep. 2006. |
“An Anti Backlash Two-Part Shaft Coupling With Interlocking Elastically Averaged Teeth” by Mahadevan Balasubramaniam, Edmund Golaski, Seung-Kil Son, Krishnan Sriram, and Alexander Slocum, Precision Engineering, V. 26, No. 3, Elsevier Publishing, Jul. 2002. |
“The Design of High Precision Parallel Mechnisms Using Binary Actuation and Elastic Averaging: With Application to MRI Cancer Treatment” by L.M. Devita, J.S. Plante, and S. Dubowsky, 12th IFToMM World Congress (France), Jun. 2007. |
“Passive Alignment of Micro-Fluidic Chips Using the Principle of Elastic Averaging” by Sitanshu Gurung, Thesis, Louisiana State University, Dept. of Mechanical Engineering, Dec. 2007. |
“Precision Connector Assembly Using Elastic Averaging” by Patrick J. Willoughby and Alexander H. Slocum, Massachusetts Institute of Technology (MIT), Cambridge, MA, American Society for Precision Engineering, 2004. |
U.S. Appl. No. 13/229,926, filed Sep. 12, 2011, entitled “Using Elastic Averaging for Alignment of Battery Stack, Fuel Cell Stack, or Other Vehicle Assembly”, inventors: Mark A. Smith, Ronald Daul, Xiang Zhao, David Okonski, Elmer Santos, Lane Lindstrom, and Jeffrey A. Abell. |
U.S. Appl. No. 13/330,718, filed Dec. 20, 2011, entitled “Precisely Locating Components in an Infrared Welded Assembly”, inventor: Steven E. Morris. |
U.S. Appl. No. 13/459,118, filed Apr. 28, 2012, entitled “Stiffened Multi-Layer Compartment Door Assembly Utilizing Elastic Averaging,” inventor: Steven E. Morris. |
U.S. Appl. No. 13/567,580, filed Aug. 6, 2012, entitled “Semi-Circular Alignment Features of an Elastic Averaging Alignment System”, inventors: Steven E. Morris and Thomas F. Bowles. |
U.S. Appl. No. 13/570,959, filed Aug. 9, 2012, entitled “Elastic Cantilever Beam Alignment System for Precisely Aligning Components”, inventor: Steven E. Morris. |
U.S. Appl. No. 13/571,030, filed Aug. 9, 2012, entitled “Elastic Tube Alignment System for Precisely Locating an Emblem Lens to an Outer Bezel”, inventors: Joel Colombo, Steven E. Morris, and Michael D. Richardson. |
U.S. Appl. No. 13/752,449, filed Jan. 29, 2013, entitled “Elastic Insert Alignment Assembly and Method of Reducing Positional Variation”, inventors: Steven E. Morris and Michael D. Richardson. |
U.S. Appl. No. 13/755,759, filed Jan. 31, 2013, entitled “Elastic Alignment Assembly for Aligning Mated Components and Method of Reducing Positional Variation”, inventors: Joel Colombo, Michael D. Richardson, and Steven E. Morris. |
U.S. Appl. No. 13/851,222, filed Mar. 27, 2013, entitled “Elastically Averaged Alignment System”, inventors: Joel Colombo and Steven E. Morris. |
U.S. Appl. No. 13/855,928, filed Apr. 3, 2013, entitled “Elastic Averaging Alignment System, Method of Making the Same and Cutting Punch Therefor”, inventors: Steven E. Morris, Jennifer P. Lawall, Joel Colombo, and Jeffrey L. Konchan. |
U.S. Appl. No. 13/856,888, filed Apr. 4, 2013, entitled “Elastic Retaining Assembly for Matable Components and Method of Assembling”, inventors: Steven E. Morris, Jennifer P. Lawall, Joel Colombo, and Toure D. Lee. |
U.S. Appl. No. 13/856,927, filed Apr. 4, 2013, entitled “Elastic Tubular Attachment Assembly for Mating Components and Method of Mating Components”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/856,956, filed Apr. 4, 2013, entitled “Elastic Clip Retaining Arrangement and Method of Mating Structures with an Elastic Clip Retaining Arrangement”, inventors: Joel Colombo, Steven E. Morris and Jeffrey L. Konchan. |
U.S. Appl. No. 13/856,973, filed Apr. 4, 2013, entitled “Elastically Deformable Flange Locator Arrangement and Method of Reducing Positional Variation”, inventors: Joel Colombo, Steven E. Morris and Michael D. Richardson. |
U.S. Appl. No. 13/858,478, filed Apr. 8, 2013, entitled “Elastic Mating Assembly and Method of Elastically Assembling Matable Components”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/859,109, filed Apr. 9, 2013, entitled “Elastic Retaining Arrangement for Jointed Components and Method of Reducing a Gap Between Jointed Components,” inventors: Steven E. Morris, James M. Kushner, Victoria L. Enyedy, Jennifer P. Lawall, and Piotr J. Ogonek. |
U.S. Appl. No. 13/915,132, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Arrangement and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Randy A. Johnson and Jennifer P. Lawall. |
U.S. Appl. No. 13/915,177, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Assembly and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Jennifer P. Lawall, and Randy Johnson. |
U.S. Appl. No. 13/917,005, filed Jun. 13, 2013, entitled “Elastic Attachment Assembly and Method of Reducing Positional Variation and Increasing Stiffness,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/917,074, filed Jun. 13, 2013, entitled “Elastically Deformable Retaining Hook for Components to be Mated Together and Method of Assembling”, inventors: Joel Colombo, Jeffrey L. Konchan, Steven E. Morris, and Steve J. Briggs. |
U.S. Appl. No. 13/918,183, filed Jun. 14, 2013, entitled “Elastic Retaining Assembly for Matable Components and Method of Assembling,” inventors: Steven E. Morris and Jennifer P. Lawall. |
Number | Date | Country | |
---|---|---|---|
20140301103 A1 | Oct 2014 | US |