1. Field of the Invention
The present invention relates to an electric compressor having an electric motor driving a compression mechanism and an inverter control apparatus controlling the electric motor integrated with the compression mechanism and, more particularly, to an electric compressor whose inverter control apparatus includes a control circuit board and a power board.
2. Description of the Related Art
A vehicle-mounted air conditioner in an electric vehicle, a fuel cell electric vehicle or the like without mounting an engine has a compressor incorporating an electric motor as a power source that compresses and circulates a refrigerant. Since it is necessary for the electric motor to rotate at a desired rpm according to an instruction from a main control apparatus of the air conditioner, another control apparatus is required. The control apparatus includes an electric circuit or an electronic circuit. Specifically, the control apparatus includes an electronic element such as a central processing unit or a memory, and a switching element (power transistor element) such as an IGBT (Insulated Gate Bipolar Transistor) or an FET (Field Effect Transistor) for forming an inverter circuit (switching circuit). Then, there is an electric compressor having the control apparatus integrated into one housing with the compression mechanism and the electric motor because of a request for space saving. Hereinafter, the electric compressor may be mentioned as an integrated electric compressor.
Vehicle-mounted components such as integrated electric compressors are always required to be downsized and various proposals are made in view of the downsizing (for example, Japanese Patent No. 3760887).
Japanese Patent No. 3760887 has a main point of screwing a switching element to a base having a predetermined shape. The proposal of Japanese Patent No. 3760887 provides an integrated electric compressor capable of downsizing while still keeping shock resistance.
The present invention has an object to provide an integrated electric compressor further downsized.
In order to achieve the object, an electric compressor of the present invention comprises: a compression mechanism taking in, compressing and discharging a refrigerant; an electric motor driving the compression mechanism; an inverter control apparatus controlling a drive of the electric motor; and a housing accommodating the compression mechanism, the electric motor and the inverter control apparatus. Further, the inverter control apparatus of the present invention comprises: a power board converting a direct current supplied from a high voltage power supply to an alternating current and applying it to the motor; and a control circuit board controlling the application of the alternating current to the electric motor, wherein the power board has a first tall component surface-mounted on one surface, the first tall component is taller than a component on the other surface, the control circuit board has a second tall component surface-mounted on one surface, the second tall component is taller than a component on the other surface, and the one surface of the power board and the one surface of the control circuit board face each other. Further, it is characterized that the first tall component and the second tall component are placed facing each other without interfering with each other in projection directions thereof.
The electric compressor of the present invention can narrow a space between the power board and the control circuit board compared with the case where tall components of the power board and the control circuit board are piled up together because the second tall component is placed in a region where the first tall component does not exist, while the first tall component is placed in a region where the second tall component does not exist. As a result, lowering a height of the inverter control apparatus is achieved.
The electric compressor of the present invention can be formed of a bus bar in which power supply wiring for applying a voltage from the high voltage power supply to the power board is fixed to the power board. The bus bar is provided to a periphery of the power board and the control circuit board, and between the power board and the control circuit board. Accordingly, the first tall component and the second tall component and the bus bar are placed in the space between the power board and the control circuit board. Because of this, an outside diameter dimension of the inverter control apparatus can be substantially reduced up to an outside diameter dimension of the power board and the control circuit board.
For a configuration to further lower the height, the control circuit comprises a recess into which the first tall component is inserted at a location corresponding to the first tall component. Also, the power board comprises a recess into which the second tall component is inserted at a location corresponding to the second tall component. Then, a distal end of first tall component is inserted into the recess of the control circuit board and a distal end of the second tall component is inserted into the recess of the power board. As a result, lowering the height by a part or whole of thickness of the power board and the control circuit board can be realized. Here, a recess may be a through-hole or a blind hole.
In the present invention, it is preferable that the space between the power board and the control circuit board is filled with insulating gel to prevent the first and second tall components from dropping off.
According to the present invention, it is possible to lower a height of an inverter control apparatus obtained by combining a power board and a control circuit board. Accordingly, it is possible to downsize a part of a housing accommodating the inverter control apparatus, which contributes to downsizing and weight reducing the whole housing and further to reducing a cost thereof.
Hereinafter, the present invention is described according to an embodiment shown in the appended drawings.
As shown in
The inverter control apparatus 12 comprises: a capacitor 13 and a reactor 14 for smoothing a direct current voltage input to the inverter control apparatus 12; a control circuit board 15 for controlling an application of a high voltage alternating current to a motor; and a power board 16 converting a direct current supplied from a high voltage power supply to an alternating current, applying it to the motor, and rotating and driving the motor. The control circuit board 15 and the power board 16 are provided so as to face each other with a space between them.
The switching element 18 is mounted to the power board 16 on a surface opposite to a side where the control circuit board 15 is located. Thus, a shield effect to noise generated at the switching element 18 and the like appears because of low impedance surfaces (layers) provided in the power board 16 and made of conductive materials such as a power supply frame, a GND frame and a GND layer. As a result, an influence of the noise on the control circuit board 15 is suppressed. Since a digital circuit such as a microcomputer driven by a low voltage is on the control circuit board 15, it is possible to prevent a malfunction of the microcomputer and the like by suppressing the noise from the switching element 18. Additionally, as shown in
In the circuit configuration above, a power supply from the high voltage power supply to the power board 16 is performed through input/output terminals 20. The input/output terminals 20 are pin type PN terminals 20a and 20b mounted on the power board 16, as shown in
A bus bar (wiring for applying a voltage to the power board 16) 23 is connected from the high voltage power supply side to the PN terminals 20a and 20b so as to provide an electrical conduction. The bus bar 23 is provided to a periphery of the power board 16 (the control circuit board 15). The periphery means being within a plane of projection of the power board 16 (the control circuit board 15).
Additionally, tall components 28 (first tall components) such as transformers are surface-mounted on a surface of the power board 16 opposite to the surface having the switching element 18 provided. The tall components 28 are taller than any components surface-mounted on the surface having the switching element 18 provided (including the switching element 18).
As shown in
The bus bar 23 is coated with a resin body 24 except the terminal portions. A substantially T-shaped support portion 24a is formed on the resin body 24 at joint parts of the terminals 14a, 14b of the reactor 14 and the reactor side terminal portion 23f, the joint portion 23g of the bus bar 23 so as to reinforce the joint parts.
The resin body 24 functions not only as an insulating member for preventing a short circuit between the bus bars 23 but also as a reinforcing member of the bus bar 23. Because of this, it is possible to handle a bus bar unit 40 having the bus bar 23, the capacitor 13 and the reactor 14 integrated with each other.
The capacitor 13 and the reactor 14 are previously welded to the capacitor side terminal portion 23e, the reactor side terminal portion 23f and the joint portion 23g of the bus bar 23. Then, the board side terminal portions 23c and 23d of the bus bar 23, and the PN terminals 20a and 20b are welded when the inverter control apparatus 12 is assembled.
In the power board 16, the PN terminals 20a and 20b are formed of the bus bar 23. UVW terminals (wiring for supplying a current to respective phases of a polyphase motor) 25a, 25b and 25c for connecting the switching element 18 and the motor 19 are provided to the power board 16. These UVW terminals 25a, 25b and 25c are also formed of the bus bar 23. Then, as shown in
The resin body 26 is provided to the power board 16 on a surface opposite to the surface having the bus bar 23 placed. As shown in
Additionally, projections (positioning means) 27a and 27b are formed close to the UVW terminals 25a, 25b and 25c in the resin body 26. Apertures are formed at locations corresponding to the projections 27a and 27b in the power board 16 and the projections 27a and 27b are inserted into the apertures. The projections 27a and 27b can easily and certainly position the bus bar unit 40 to the power board 16.
As shown in
As described above, the control circuit board 15 is provided facing to the power board 16. In the embodiment, the control circuit board 15 and the power board 16 are provided so that the second surface of the control circuit board 15 and a surface of the power board 16 having the tall components 28 thereon are faced each other, as shown in
In order to realize lowering a height like this in the embodiment, it is necessary to adjust locations where the tall components 52 are surface-mounted on the control circuit board 15 and the tall components 28 are surface-mounted on the power board 16. That is, a region where the tall components 52 are surface-mounted on the control circuit board 15 is a region where the tall components 28 are not surface-mounted on the power board 16 with the region facing to the power board 16. On the other hand, a region where the tall components 28 are surface-mounted on the power board 16 is a region where the tall components 52 are not surface-mounted on the control circuit board 15 with the region facing to the control circuit board 15. Designing the regions locating the tall components 28 and 52 can realize lowering the height of the inverter control apparatus 12.
The embodiment has an effect of reducing noise that the CPU 51 experiences in addition to lowering the height. It is apparent from the comparison of
According to the embodiment, the bus bar 23 is provided to the periphery of the power board 16 and the control circuit board 15, and between the power board 16 and the control circuit board 15. That is, the bus bar 23 does not project outside of the plane direction of the power board 16 and the control circuit board 15, and therefore, an outside diameter dimension of the inverter control apparatus 12 can be substantially reduced up to an outside diameter dimension of the power board 16 and the control circuit board 15.
Considerable vibration is generated according to movement of the compressor in the vehicle-mounted electric compressor 10. As a matter of course, the vibration reaches the inverter control apparatus 12. As shown in the embodiment, if the tall components 52 surface-mounted on the control circuit board 15 are placed downward, it is preferable to have a configuration preventing the tall components 52 from dropping off due to the vibration. In the embodiment, as shown in
In this manner, the space between the control circuit board 15 and the power board 16 is filled with the insulating gel 53 so that the insulating gel 53 absorbs the vibration, suppresses the vibration added to the control circuit board 15, and prevents the tall components 52 from dropping off from the control circuit board 15.
Insulation of electrical components including the tall components 52 is performed by filling with the insulating gel 53. Filling with the insulating gel 53 is also effective for dampproofing. In particular, since inside of an engine room to which the electric compressor 10 is provided is under a circumstance with large temperature variation, drops of water are generated because of condensation when a temperature falls with high humidity. The drops of water such as condensation water cause troubles such as a short circuit of the electric components. However, covering the electric components with the insulating gel 53 waterproofs the electric components so as that the drops of water do not reach them.
Next, another embodiment capable of further lowering the height of the inverter control apparatus 12 is described with the
As shown in
Also, through-holes H16 are formed in the power board 16. The through-holes H16 are formed at locations corresponding to the tall components 52 surface-mounted on the control circuit board 15. The through-holes H16 are also formed in the power board 16 in an area where elements of circuits such as electronic components and wiring do not exist.
As shown in
Number | Date | Country | Kind |
---|---|---|---|
2007-256554 | Sep 2007 | JP | national |