The present disclosure relates to operations in a subterranean formations. In particular, the present disclosure relates to a system that uses fluid pressurized by electrically powered pumps for fracturing and for pump down operations.
Hydraulic fracturing is a technique used to stimulate production from some hydrocarbon producing wells. The technique usually involves injecting fluid into a wellbore at a pressure sufficient to generate fissures in the formation surrounding the wellbore. Typically the pressurized fluid is injected into a portion of the wellbore that is pressure isolated from the remaining length of the wellbore so that fracturing is limited to a designated portion of the formation. The fracturing fluid slurry, whose primary component is usually water, includes proppant (such as sand or ceramic) that migrate into the fractures with the fracturing fluid slurry and remain to prop open the fractures after pressure is no longer applied to the wellbore. A primary fluid for the slurry other than water, such as nitrogen, carbon dioxide, foam (nitrogen and water), diesel, or other fluids is sometimes used as the primary component instead of water. Typically hydraulic fracturing fleets include a data van unit, blender unit, hydration unit, chemical additive unit, hydraulic fracturing pump unit, sand equipment, and other equipment.
Traditionally, the fracturing fluid slurry has been pressurized on surface by high pressure pumps powered by diesel engines. To produce the pressures required for hydraulic fracturing, the pumps and associated engines have substantial volume and mass. Heavy duty trailers, skids, or trucks are required for transporting the large and heavy pumps and engines to sites where wellbores are being fractured. Each hydraulic fracturing pump is usually composed of a power end and a fluid end. The hydraulic fracturing pump also generally contains seats, valves, a spring, and keepers internally. These parts allow the hydraulic fracturing pump to draw in low pressure fluid slurry (approximately 100 psi) and discharge the same fluid slurry at high pressures (over 10,000 psi). Recently electrical motors controlled by variable frequency drives have been introduced to replace the diesel engines and transmission, which greatly reduces the noise, emissions, and vibrations generated by the equipment during operation, as well as its size footprint.
On each separate unit, a closed circuit hydraulic fluid system is often used for operating auxiliary portions of each type of equipment. These auxiliary components may include dry or liquid chemical pumps, augers, cooling fans, fluid pumps, valves, actuators, greasers, mechanical lubrication, mechanical cooling, mixing paddles, landing gear, and other needed or desired components. This hydraulic fluid system is typically separate and independent of the main hydraulic fracturing fluid slurry that is being pumped into the wellbore.
Certain embodiments of the present technology provide a method of operations in a subterranean formation. The method includes driving a pump with an electrically powered motor to pressurize fluid, inserting a tool into a wellbore that intersects the formation, and directing the pressurized fluid into the wellbore above the tool to push the tool into the wellbore. In some embodiments, the method can further include urging the tool into the wellbore with the pressurized fluid until the tool reaches a predetermined location in the formation. In addition, the tool can be a perforating gun.
According to some embodiments, the wellbore can include a first wellbore, wherein the pressurized fluid is simultaneously directed to a second wellbore that also intersects the subterranean formation. Hydraulic fracturing can be performed in the second wellbore. Furthermore, the pump can include a first pump and a second pump, wherein fluid pressurized by the first pump is directed into the first wellbore to push the tool into the first wellbore, and fluid pressurized by the second pump is directed into the second wellbore to use in hydraulic fracturing.
Additional embodiments can include pressurizing fluid with an electric blender to form a boost fluid, directing the boost fluid to the pump. In addition, the electricity that powers the motor can be generated with a generator that is proximate the electric motor, and a wireline system can be powered by the electricity.
Alternate embodiments of the present technology can include a method of operations in a subterranean formation, including generating electricity, energizing electric motors with the electricity, driving a fracturing pump with at least one of the electric motors, and driving a pump down pump with at least one of the electric motors. In certain embodiments, the electricity can be generated by a turbine generator, and the method can include powering a sand conveyer and hydration unit with the electricity.
In some embodiments, the method can further include using a first fluid pressurized by the fracturing pump to fracture the formation, and using a second fluid that is pressurized by the pump down pump in a pump down operation. In addition, the first fluid can be directed to a first wellbore that intersects the formation, and the second fluid can be directed to a second wellbore that intersects the formation.
Yet another embodiment of the present technology includes system for use in a subterranean formation operation. The system includes a pump down pump in communication with a first wellbore that intersects the formation, and that pressurizes fluid in the first wellbore, an electric motor that drives the pump down pump, and a tool positioned in the wellbore below at least a portion of the fluid pressurized by the pump down pump, and that is pushed toward the bottom of the wellbore by the fluid. Certain embodiments of the system can also include a hydraulic fracturing pump in communication with a second wellbore that intersects the formation, and that pressurizes fluid in the second wellbore, and the electric motor that drives the hydraulic fracturing pump.
According to some embodiments, the electric motor can be a first electric motor and a second electric motor, the first electric motor driving the pump down pump, and the second electric motor driving the hydraulic fracturing pump. In addition, the system can further include gas powered turbine generators, and a wireline system that is in electrical communication with the turbine generators.
Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout. In an embodiment, usage of the term “about” includes +/−5% of the cited magnitude. In an embodiment, usage of the term “substantially” includes +/−5% of the cited magnitude.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
After being discharged from pump assembly 36, slurry is injected into a wellhead assembly 411, 412; discharge piping 421, 422 connects discharge of pump assembly 36 with wellhead assembly 411, 412 and provides a conduit for the slurry between the pump assembly 36 and the wellhead assembly 411, 412. In an alternative, hoses or other connections can be used to provide a conduit for the slurry between the pump assembly 36 and the wellhead assembly 411, 412. Optionally, any type of fluid can be pressurized by the pump assembly 36 to form injection fluid that is then pumped into the wellbores 121, 122, and is not limited to fluids having chemicals or proppant. As detailed below, fluid from pump assembly 36 can be used for fracturing the formation 16, for pump down operations in wellbores 121, 122. Examples exist wherein the system 10 includes multiple pump assemblies 36, and multiple motors 39 for driving the multiple fracturing pump assemblies 36. Valves 431, 432, are shown provided respectively on lines 421, 422 for selectively allowing flow into the wellhead assemblies 411, 412.
An example of a turbine 44 is provided in the example of
An example of a micro-grid 54 is further illustrated in
In an example, additive source 24 contains ten or more chemical pumps for supplementing the existing chemical pumps on the hydration unit 18 and blender unit 28. Chemicals from the additive source 24 can be delivered via lines 26 to either the hydration unit 18 and/or the blender unit 28. In one embodiment, the elements of the system 10 are mobile and can be readily transported to a wellsite adjacent the wellbore 12, such as on trailers or other platforms equipped with wheels or tracks.
Still referring to
An advantage of the system 10 is that in situations when wellbores 121, 122 are proximate one another, the pump system 36 can provide pressurized fluid to each of these wellbores 121, 122, and for different purposes. As illustrated in
In one example of operation, the system 10 can be used to selectively provide the pressurized fluid to the adjacent wellbores 121, 122 so that what is referred to in the industry as a zipper operation can take place. A zipper operation is where adjacent wellbores are perforated and fractured along an alternating sequence. Moreover, the zipper operation is done sequentially so that the different operations can be performed on different wells on the same well site, which speeds up completion activities. As illustrated in the figures described below, separate pumping systems can provide the fluid for the fracturing and the pump down operations.
Shown in
Further illustrated in
The separate data van 100A and blender 98A can be used, for example, during zipper fracturing operations, but are not required for stack fracturing operations. This is because during stack fracturing operations, only one operation is occurring at a time, so the frac datavan 95A and frac blender 28A can be used for all operations. Further illustrated in
Provided in a perspective view in
Shown in
An alternate embodiment of a pump down system 108E is shown in a plan schematic view in
Another alternate example of the pump down system 108F is illustrated in plan schematic view in
Use of auxiliary units 94G is advantageous because each separate auxiliary unit 94G provides a separate power grid, thereby creating multiple power centers, which in turn allows for greater flexibility in the positioning of equipment at a site, and creates redundancy in the operations. The use of auxiliary units 94G also helps with power cable management, providing multiple different cable routing for the equipment.
The present invention described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.
This application is a divisional of U.S. patent application Ser. No. 15/653,028, filed Jul. 18, 2017, which is a continuation of U.S. patent application Ser. No. 15/291,842, filed on Oct. 12, 2016, which issued as U.S. Pat. No. 9,745,840 on Aug. 29, 2017, and claims priority to and the benefit of U.S. Provisional Application Ser. No. 62/242,173, filed Oct. 15, 2015, and is a continuation-in-part of, and claims priority to and the benefit of U.S. patent application Ser. No. 15/202,085, filed Jul. 5, 2016, which issued as U.S. Pat. No. 10,337,308 on Jul. 2, 2019, and which claims priority to and the benefit of U.S. patent application Ser. No. 13/679,689, filed Nov. 16, 2012, which issued as U.S. Pat. No. 9,410,410 on Aug. 9, 2016; the full disclosures of which are hereby incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1541601 | Tribe | Jun 1925 | A |
1656861 | Leonard | Jan 1928 | A |
1671436 | Melott | May 1928 | A |
1743771 | Hall | Jan 1930 | A |
1967466 | Damsel | Jul 1934 | A |
2004077 | McCartney | Jun 1935 | A |
2183364 | Bailey | Dec 1939 | A |
2220622 | Aitken | Nov 1940 | A |
2244106 | Granberg | Jun 1941 | A |
2248051 | Armstrong | Jul 1941 | A |
2407796 | Page | Sep 1946 | A |
2416848 | Rothery | Mar 1947 | A |
2610741 | Schmid | Sep 1952 | A |
2753940 | Bonner | Jul 1956 | A |
2976025 | Pro | Mar 1961 | A |
3055682 | Bacher | Sep 1962 | A |
3061039 | Peters | Oct 1962 | A |
3066503 | Fleming | Dec 1962 | A |
3302069 | Webster | Jan 1967 | A |
3334495 | Jensen | Aug 1967 | A |
3347570 | Roessler | Oct 1967 | A |
3722595 | Kiel | Mar 1973 | A |
3764233 | Strickland | Oct 1973 | A |
3773140 | Mahajan | Nov 1973 | A |
3837179 | Barth | Sep 1974 | A |
3849662 | Blaskowski | Nov 1974 | A |
3878884 | Raleigh | Apr 1975 | A |
3881551 | Terry | May 1975 | A |
3967841 | Kendrick | Jul 1976 | A |
4037431 | Sugimoto | Jul 1977 | A |
4100822 | Rosman | Jul 1978 | A |
4151575 | Hogue | Apr 1979 | A |
4226299 | Hansen | Oct 1980 | A |
4265266 | Kierbow et al. | May 1981 | A |
4411313 | Johnson et al. | Oct 1983 | A |
4432064 | Barker | Feb 1984 | A |
4442665 | Fick | Apr 1984 | A |
4456092 | Kubozuka | Jun 1984 | A |
4506982 | Smithers et al. | Mar 1985 | A |
4512387 | Rodriguez | Apr 1985 | A |
4529887 | Johnson | Jul 1985 | A |
4538916 | Zimmerman | Sep 1985 | A |
4601629 | Zimmerman | Jul 1986 | A |
4676063 | Goebel et al. | Jun 1987 | A |
4759674 | Schroder | Jul 1988 | A |
4768884 | Elkin | Sep 1988 | A |
4783038 | Gilbert | Nov 1988 | A |
4793386 | Sloan | Dec 1988 | A |
4845981 | Pearson | Jul 1989 | A |
4922463 | Del Zotto et al. | May 1990 | A |
5004400 | Handke | Apr 1991 | A |
5006044 | Walker, Sr. | Apr 1991 | A |
5025861 | Huber et al. | Jun 1991 | A |
5050673 | Baldridge | Sep 1991 | A |
5114239 | Allen | May 1992 | A |
5130628 | Owen | Jul 1992 | A |
5131472 | Dees et al. | Jul 1992 | A |
5172009 | Mohan | Dec 1992 | A |
5189388 | Mosley | Feb 1993 | A |
5230366 | Marandi | Jul 1993 | A |
5293947 | Stratton | Mar 1994 | A |
5334899 | Skybyk | Aug 1994 | A |
5366324 | Arlt | Nov 1994 | A |
5422550 | McClanahan | Jun 1995 | A |
5433243 | Griswold | Jul 1995 | A |
5439066 | Gipson | Aug 1995 | A |
5486047 | Zimmerman | Jan 1996 | A |
5517822 | Haws et al. | May 1996 | A |
5548093 | Sato | Aug 1996 | A |
5549285 | Collins | Aug 1996 | A |
5590976 | Kilheffer et al. | Jan 1997 | A |
5606853 | Birch | Mar 1997 | A |
5655361 | Kishi | Aug 1997 | A |
5736838 | Dove et al. | Apr 1998 | A |
5755096 | Holleyman | May 1998 | A |
5790972 | Kohlenberger | Aug 1998 | A |
5791636 | Loziuk | Aug 1998 | A |
5798596 | Lordo | Aug 1998 | A |
5813455 | Pratt et al. | Sep 1998 | A |
5865247 | Paterson | Feb 1999 | A |
5879137 | Yie | Mar 1999 | A |
5894888 | Wiemers | Apr 1999 | A |
5907970 | Havlovick et al. | Jun 1999 | A |
5950726 | Roberts | Sep 1999 | A |
6035265 | Dister et al. | Mar 2000 | A |
6097310 | Harrell et al. | Aug 2000 | A |
6116040 | Stark | Sep 2000 | A |
6121705 | Hoong | Sep 2000 | A |
6138764 | Scarsdale et al. | Oct 2000 | A |
6142878 | Barin | Nov 2000 | A |
6164910 | Mayleben | Dec 2000 | A |
6202702 | Ohira | Mar 2001 | B1 |
6208098 | Kume | Mar 2001 | B1 |
6254462 | Kelton | Jul 2001 | B1 |
6271637 | Kushion | Aug 2001 | B1 |
6273193 | Hermann et al. | Aug 2001 | B1 |
6315523 | Mills | Nov 2001 | B1 |
6406011 | Kosar | Jun 2002 | B1 |
6442942 | Kopko | Sep 2002 | B1 |
6477852 | Dodo | Nov 2002 | B2 |
6484490 | Olsen | Nov 2002 | B1 |
6491098 | Dallas | Dec 2002 | B1 |
6510695 | Fisher | Jan 2003 | B1 |
6529135 | Bowers et al. | Mar 2003 | B1 |
6585455 | Petersen et al. | Jul 2003 | B1 |
6626646 | Rajewski | Sep 2003 | B2 |
6719900 | Hawkins | Apr 2004 | B2 |
6765304 | Baten et al. | Jul 2004 | B2 |
6776227 | Beida | Aug 2004 | B2 |
6788022 | Sopko | Sep 2004 | B2 |
6802690 | Han | Oct 2004 | B2 |
6808303 | Fisher | Oct 2004 | B2 |
6837910 | Yoshikawa | Jan 2005 | B1 |
6931310 | Shimizu et al. | Aug 2005 | B2 |
6936947 | Leijon | Aug 2005 | B1 |
6985750 | Vicknair et al. | Jan 2006 | B1 |
7082993 | Ayoub | Aug 2006 | B2 |
7104233 | Ryczek et al. | Sep 2006 | B2 |
7170262 | Pettigrew | Jan 2007 | B2 |
7173399 | Sihler | Feb 2007 | B2 |
7279655 | Blutke | Oct 2007 | B2 |
7308933 | Mayfield | Dec 2007 | B1 |
7309835 | Morrison | Dec 2007 | B2 |
7312593 | Streicher et al. | Dec 2007 | B1 |
7336514 | Amarillas | Feb 2008 | B2 |
7341287 | Gibb | Mar 2008 | B2 |
7445041 | O'Brien | Nov 2008 | B2 |
7494263 | Dykstra | Feb 2009 | B2 |
7500642 | Cunningham | Mar 2009 | B2 |
7525264 | Dodge | Apr 2009 | B2 |
7563076 | Brunet | Jul 2009 | B2 |
7581379 | Koshida | Sep 2009 | B2 |
7675189 | Grenier | Mar 2010 | B2 |
7683499 | Saucier | Mar 2010 | B2 |
7717193 | Egilsson | May 2010 | B2 |
7755310 | West et al. | Jul 2010 | B2 |
7770396 | Roby | Aug 2010 | B2 |
7795830 | Johnson | Sep 2010 | B2 |
7807048 | Collette | Oct 2010 | B2 |
7835140 | Mori | Nov 2010 | B2 |
7845413 | Shampine | Dec 2010 | B2 |
7900893 | Teurlay | Mar 2011 | B2 |
7926562 | Poitzsch | Apr 2011 | B2 |
7940039 | de Buda | May 2011 | B2 |
7894757 | Keast | Jul 2011 | B2 |
7977824 | Halen et al. | Jul 2011 | B2 |
8037936 | Rath | Oct 2011 | B2 |
8054084 | Schulz et al. | Nov 2011 | B2 |
8083504 | Williams | Dec 2011 | B2 |
8091928 | Carrier | Jan 2012 | B2 |
8096354 | Poitzsch | Jan 2012 | B2 |
8096891 | Lochtefeld | Jan 2012 | B2 |
8139383 | Efraimsson | Mar 2012 | B2 |
8146665 | Neal | Apr 2012 | B2 |
8154419 | Daussin et al. | Apr 2012 | B2 |
8221513 | Ariyapadi | Jul 2012 | B2 |
8232892 | Overholt et al. | Jul 2012 | B2 |
8261528 | Chillar | Sep 2012 | B2 |
8272439 | Strickland | Sep 2012 | B2 |
8310272 | Quarto | Nov 2012 | B2 |
8354817 | Yeh et al. | Jan 2013 | B2 |
8474521 | Kajaria | Jul 2013 | B2 |
RE44444 | Dole | Aug 2013 | E |
8506267 | Gambier et al. | Aug 2013 | B2 |
8534235 | Chandler | Sep 2013 | B2 |
8556302 | Dole | Oct 2013 | B2 |
8573303 | Kerfoot | Nov 2013 | B2 |
8596056 | Woodmansee | Dec 2013 | B2 |
8616005 | Cousino | Dec 2013 | B1 |
8616274 | Belcher | Dec 2013 | B2 |
8646521 | Bowen | Feb 2014 | B2 |
8692408 | Zhang et al. | Apr 2014 | B2 |
8727068 | Bruin | May 2014 | B2 |
8760657 | Pope | Jun 2014 | B2 |
8763387 | Schmidt | Jul 2014 | B2 |
8774972 | Rusnak et al. | Jul 2014 | B2 |
8789601 | Broussard | Jul 2014 | B2 |
8795525 | McGinnis et al. | Aug 2014 | B2 |
8800652 | Bartko | Aug 2014 | B2 |
8807960 | Stephenson | Aug 2014 | B2 |
8838341 | Kumano | Sep 2014 | B2 |
8851860 | Oct 2014 | B1 | |
8857506 | Stone, Jr. | Oct 2014 | B2 |
8899940 | Laugemors | Dec 2014 | B2 |
8905056 | Kendrick | Dec 2014 | B2 |
8905138 | Lundstedt et al. | Dec 2014 | B2 |
8997904 | Cryer | Apr 2015 | B2 |
9018881 | Mao et al. | Apr 2015 | B2 |
9051822 | Ayan | Jun 2015 | B2 |
9051923 | Kuo | Jun 2015 | B2 |
9061223 | Winborn | Jun 2015 | B2 |
9062545 | Roberts | Jun 2015 | B2 |
9067182 | Nichols | Jun 2015 | B2 |
9103193 | Coli | Aug 2015 | B2 |
9119326 | McDonnell | Aug 2015 | B2 |
9121257 | Coli et al. | Sep 2015 | B2 |
9140105 | Pattillo | Sep 2015 | B2 |
9140110 | Coli et al. | Sep 2015 | B2 |
9160168 | Chapel | Oct 2015 | B2 |
9260253 | Naizer | Feb 2016 | B2 |
9322239 | Angeles Boza et al. | Apr 2016 | B2 |
9324049 | Thomeer | Apr 2016 | B2 |
9340353 | Oren | May 2016 | B2 |
9353593 | Lu et al. | May 2016 | B1 |
9366114 | Coli et al. | Jun 2016 | B2 |
9410410 | Broussard | Aug 2016 | B2 |
9450385 | Kristensen | Sep 2016 | B2 |
9475020 | Coli et al. | Oct 2016 | B2 |
9475021 | Coli et al. | Oct 2016 | B2 |
9482086 | Richardson et al. | Nov 2016 | B2 |
9499335 | McIver | Nov 2016 | B2 |
9506333 | Castillo | Nov 2016 | B2 |
9513055 | Seal | Dec 2016 | B1 |
9534473 | Morris | Jan 2017 | B2 |
9562420 | Morris et al. | Feb 2017 | B2 |
9587649 | Oehring | Mar 2017 | B2 |
9611728 | Oehring | Apr 2017 | B2 |
9650871 | Oehring et al. | May 2017 | B2 |
9650879 | Broussard et al. | May 2017 | B2 |
9706185 | Ellis | Jul 2017 | B2 |
9728354 | Skolozdra | Aug 2017 | B2 |
9738461 | DeGaray | Aug 2017 | B2 |
9739546 | Bertilsson et al. | Aug 2017 | B2 |
9745840 | Oehring | Aug 2017 | B2 |
9790858 | Kanebako | Oct 2017 | B2 |
9840901 | Oehring | Dec 2017 | B2 |
9863228 | Shampine et al. | Jan 2018 | B2 |
9893500 | Oehring | Feb 2018 | B2 |
9903190 | Conrad | Feb 2018 | B2 |
9909398 | Pham | Mar 2018 | B2 |
9915128 | Hunter | Mar 2018 | B2 |
9932799 | Symchuk | Apr 2018 | B2 |
9945365 | Hernandez et al. | Apr 2018 | B2 |
9963961 | Hardin | May 2018 | B2 |
9970278 | Broussard | May 2018 | B2 |
9976351 | Randall | May 2018 | B2 |
9995218 | Oehring | Jun 2018 | B2 |
10008880 | Vicknair | Jun 2018 | B2 |
10020711 | Oehring | Jul 2018 | B2 |
10036238 | Oehring | Jul 2018 | B2 |
10107086 | Oehring | Oct 2018 | B2 |
10119381 | Oehring | Nov 2018 | B2 |
10184465 | Enis et al. | Jan 2019 | B2 |
10196878 | Hunter | Feb 2019 | B2 |
10221639 | Romer | Mar 2019 | B2 |
10227854 | Glass | Mar 2019 | B2 |
10232332 | Oehring | Mar 2019 | B2 |
10246984 | Payne | Apr 2019 | B2 |
10254732 | Oehring | Apr 2019 | B2 |
10260327 | Kajaria | Apr 2019 | B2 |
10280724 | Hinderliter | May 2019 | B2 |
10287873 | Filas | May 2019 | B2 |
10302079 | Kendrick | May 2019 | B2 |
10309205 | Randall | Jun 2019 | B2 |
10337308 | Broussard | Jul 2019 | B2 |
10371012 | Davis | Aug 2019 | B2 |
10378326 | Morris | Aug 2019 | B2 |
10393108 | Chong | Aug 2019 | B2 |
10407990 | Oehring | Sep 2019 | B2 |
10408030 | Oehring | Sep 2019 | B2 |
10408031 | Oehring | Sep 2019 | B2 |
10415332 | Morris et al. | Sep 2019 | B2 |
10436026 | Ounadjela | Oct 2019 | B2 |
10526882 | Oehring | Jan 2020 | B2 |
10627003 | Dale et al. | Apr 2020 | B2 |
10648270 | Brunty et al. | May 2020 | B2 |
10648311 | Oehring | May 2020 | B2 |
10669471 | Schmidt et al. | Jun 2020 | B2 |
10669804 | Kotrla | Jun 2020 | B2 |
10686301 | Oehring et al. | Jun 2020 | B2 |
10690131 | Rashid | Jun 2020 | B2 |
10695950 | Igo et al. | Jun 2020 | B2 |
10711576 | Bishop | Jul 2020 | B2 |
10731561 | Oehring et al. | Aug 2020 | B2 |
10740730 | Altamirano et al. | Aug 2020 | B2 |
10767561 | Brady | Sep 2020 | B2 |
10781752 | Kikkawa et al. | Sep 2020 | B2 |
10794165 | Fischer et al. | Oct 2020 | B2 |
10934824 | Oehring | Mar 2021 | B2 |
10988998 | Fischer et al. | Apr 2021 | B2 |
11091992 | Broussard | Aug 2021 | B2 |
20010000996 | Grimland et al. | May 2001 | A1 |
20020169523 | Ross et al. | Nov 2002 | A1 |
20030079875 | Weng | Jan 2003 | A1 |
20030056514 | Lohn | Mar 2003 | A1 |
20030057704 | Baten | Mar 2003 | A1 |
20030138327 | Jones et al. | Jul 2003 | A1 |
20040040746 | Niedermayr et al. | Mar 2004 | A1 |
20040045703 | Hooper et al. | Mar 2004 | A1 |
20040102109 | Cratty et al. | May 2004 | A1 |
20040167738 | Miller | Aug 2004 | A1 |
20050061548 | Hooper | Mar 2005 | A1 |
20050116541 | Seiver | Jun 2005 | A1 |
20050201197 | Duell et al. | Sep 2005 | A1 |
20050274508 | Folk | Dec 2005 | A1 |
20060052903 | Bassett | Mar 2006 | A1 |
20060065319 | Csitari | Mar 2006 | A1 |
20060109141 | Huang | May 2006 | A1 |
20070125544 | Robinson | Jun 2007 | A1 |
20070131410 | Hill | Jun 2007 | A1 |
20070187163 | Cone | Aug 2007 | A1 |
20070201305 | Heilman | Aug 2007 | A1 |
20070226089 | DeGaray et al. | Sep 2007 | A1 |
20070277982 | Shampine | Dec 2007 | A1 |
20070278140 | Mallet et al. | Dec 2007 | A1 |
20080017369 | Sarada | Jan 2008 | A1 |
20080041596 | Blount | Feb 2008 | A1 |
20080095644 | Mantei et al. | Apr 2008 | A1 |
20080112802 | Orlando | May 2008 | A1 |
20080137266 | Jensen | Jun 2008 | A1 |
20080164023 | Dykstra et al. | Jul 2008 | A1 |
20080208478 | Ella et al. | Aug 2008 | A1 |
20080217024 | Moore | Sep 2008 | A1 |
20080236818 | Dykstra | Oct 2008 | A1 |
20080257449 | Weinstein et al. | Oct 2008 | A1 |
20080264625 | Ochoa | Oct 2008 | A1 |
20080264649 | Crawford | Oct 2008 | A1 |
20080277120 | Hickie | Nov 2008 | A1 |
20080288115 | Rusnak | Nov 2008 | A1 |
20090045782 | Datta | Feb 2009 | A1 |
20090065299 | Vito | Mar 2009 | A1 |
20090068031 | Gambier | Mar 2009 | A1 |
20090068301 | Gambier | Mar 2009 | A1 |
20090072645 | Quere | Mar 2009 | A1 |
20090078410 | Krenek | Mar 2009 | A1 |
20090093317 | Kajiwara et al. | Apr 2009 | A1 |
20090095482 | Suijaatmadja | Apr 2009 | A1 |
20090114392 | Tolman | May 2009 | A1 |
20090145611 | Pallini, Jr. | Jun 2009 | A1 |
20090153354 | Daussin | Jun 2009 | A1 |
20090188181 | Forbis | Jul 2009 | A1 |
20090200035 | Bjerkreim et al. | Aug 2009 | A1 |
20090260826 | Sherwood | Oct 2009 | A1 |
20090308602 | Bruins | Dec 2009 | A1 |
20090315297 | Nadeau | Dec 2009 | A1 |
20100000508 | Chandler | Jan 2010 | A1 |
20100019574 | Baldassarre et al. | Jan 2010 | A1 |
20100038907 | Hunt | Feb 2010 | A1 |
20100045109 | Arnold | Feb 2010 | A1 |
20100051272 | Loree et al. | Mar 2010 | A1 |
20100132949 | DeFosse et al. | Jun 2010 | A1 |
20100146981 | Motakef | Jun 2010 | A1 |
20100172202 | Borgstadt | Jul 2010 | A1 |
20100193057 | Garner | Aug 2010 | A1 |
20100250139 | Hobbs | Sep 2010 | A1 |
20100281876 | Khan | Nov 2010 | A1 |
20100293973 | Erickson | Nov 2010 | A1 |
20100303655 | Scekic | Dec 2010 | A1 |
20100322802 | Kugelev | Dec 2010 | A1 |
20110005757 | Hebert | Jan 2011 | A1 |
20110017468 | Birch et al. | Jan 2011 | A1 |
20110052423 | Gambier et al. | Mar 2011 | A1 |
20110061855 | Case | Mar 2011 | A1 |
20110081268 | Ochoa et al. | Apr 2011 | A1 |
20110085924 | Shampine | Apr 2011 | A1 |
20110110793 | Leugemores et al. | May 2011 | A1 |
20110166046 | Weaver | Jul 2011 | A1 |
20110175397 | Amrine | Jul 2011 | A1 |
20110197988 | Van Vliet | Aug 2011 | A1 |
20110241590 | Horikoshi | Oct 2011 | A1 |
20110247878 | Rasheed | Oct 2011 | A1 |
20110272158 | Neal | Nov 2011 | A1 |
20120018016 | Gibson | Jan 2012 | A1 |
20120049625 | Hopwood | Mar 2012 | A1 |
20120063936 | Baxter et al. | Mar 2012 | A1 |
20120085541 | Love et al. | Apr 2012 | A1 |
20120112757 | Vrankovic | May 2012 | A1 |
20120127635 | Grindeland | May 2012 | A1 |
20120150455 | Franklin et al. | Jun 2012 | A1 |
20120152716 | Kikukawa et al. | Jun 2012 | A1 |
20120205301 | McGuire et al. | Aug 2012 | A1 |
20120205400 | DeGaray et al. | Aug 2012 | A1 |
20120222865 | Larson | Sep 2012 | A1 |
20120232728 | Karimi et al. | Sep 2012 | A1 |
20120247783 | Berner, Jr. | Oct 2012 | A1 |
20120255734 | Coli | Oct 2012 | A1 |
20130009469 | Gillett | Jan 2013 | A1 |
20130025706 | DeGaray et al. | Jan 2013 | A1 |
20130051971 | Wyse et al. | Feb 2013 | A1 |
20130078114 | Van Rijswick | Mar 2013 | A1 |
20130138254 | Seals | May 2013 | A1 |
20130175038 | Conrad | Jul 2013 | A1 |
20130175039 | Guidry | Jul 2013 | A1 |
20130180722 | Olarte Caro et al. | Jul 2013 | A1 |
20130189629 | Chandler | Jul 2013 | A1 |
20130199617 | DeGaray et al. | Aug 2013 | A1 |
20130233542 | Shampine | Sep 2013 | A1 |
20130255271 | Yu et al. | Oct 2013 | A1 |
20130284278 | Winborn | Oct 2013 | A1 |
20130284455 | Kajaria et al. | Oct 2013 | A1 |
20130299167 | Fordyce et al. | Nov 2013 | A1 |
20130306322 | Sanborn | Nov 2013 | A1 |
20130317750 | Hunter | Nov 2013 | A1 |
20130341029 | Roberts et al. | Dec 2013 | A1 |
20130343858 | Flusche | Dec 2013 | A1 |
20140000899 | Nevison | Jan 2014 | A1 |
20140010671 | Cryer et al. | Jan 2014 | A1 |
20140054965 | Jain | Feb 2014 | A1 |
20140060658 | Hains | Mar 2014 | A1 |
20140077607 | Clarke | Mar 2014 | A1 |
20140095114 | Thomeer | Apr 2014 | A1 |
20140096974 | Coli | Apr 2014 | A1 |
20140124162 | Leavitt | May 2014 | A1 |
20140138079 | Broussard | May 2014 | A1 |
20140174717 | Broussard | Jun 2014 | A1 |
20140219824 | Burnette | Aug 2014 | A1 |
20140238683 | Korach | Aug 2014 | A1 |
20140246211 | Guidry et al. | Sep 2014 | A1 |
20140251623 | Lestz et al. | Sep 2014 | A1 |
20140255214 | Burnette | Sep 2014 | A1 |
20140277772 | Lopez | Sep 2014 | A1 |
20140290768 | Randle | Oct 2014 | A1 |
20140294603 | Best | Oct 2014 | A1 |
20140379300 | Devine | Dec 2014 | A1 |
20150027712 | Vicknair | Jan 2015 | A1 |
20150053426 | Smith | Feb 2015 | A1 |
20150068724 | Coli et al. | Mar 2015 | A1 |
20150068754 | Coli et al. | Mar 2015 | A1 |
20150075778 | Walters | Mar 2015 | A1 |
20150083426 | Lesko | Mar 2015 | A1 |
20150097504 | Lamascus | Apr 2015 | A1 |
20150114652 | Lestz | Apr 2015 | A1 |
20150136043 | Shaaban | May 2015 | A1 |
20150144336 | Hardin | May 2015 | A1 |
20150147194 | Foote | May 2015 | A1 |
20150159911 | Holt | Jun 2015 | A1 |
20150175013 | Cryer et al. | Jun 2015 | A1 |
20150176386 | Castillo et al. | Jun 2015 | A1 |
20150211512 | Wiegman | Jul 2015 | A1 |
20150211524 | Broussard | Jul 2015 | A1 |
20150217672 | Shampine | Aug 2015 | A1 |
20150225113 | Lungu | Aug 2015 | A1 |
20150233530 | Sandidge | Aug 2015 | A1 |
20150252661 | Glass | Sep 2015 | A1 |
20150300145 | Coli et al. | Oct 2015 | A1 |
20150300336 | Hernandez | Oct 2015 | A1 |
20150314225 | Coli et al. | Nov 2015 | A1 |
20150330172 | Allmaras | Nov 2015 | A1 |
20150354322 | Vicknair | Dec 2015 | A1 |
20160006311 | Li | Jan 2016 | A1 |
20160032703 | Broussard et al. | Feb 2016 | A1 |
20160102537 | Lopez | Apr 2016 | A1 |
20160105022 | Oehring | Apr 2016 | A1 |
20160208592 | Oehring | Apr 2016 | A1 |
20160160889 | Hoffman et al. | Jun 2016 | A1 |
20160177675 | Morris et al. | Jun 2016 | A1 |
20160177678 | Morris | Jun 2016 | A1 |
20160186531 | Harkless et al. | Jun 2016 | A1 |
20160208593 | Coli et al. | Jul 2016 | A1 |
20160208594 | Coli et al. | Jul 2016 | A1 |
20160208595 | Tang | Jul 2016 | A1 |
20160221220 | Paige | Aug 2016 | A1 |
20160230524 | Dumoit | Aug 2016 | A1 |
20160230525 | Lestz et al. | Aug 2016 | A1 |
20160230660 | Zeitoun et al. | Aug 2016 | A1 |
20160258267 | Payne | Sep 2016 | A1 |
20160265457 | Stephenson | Sep 2016 | A1 |
20160273328 | Oehring | Sep 2016 | A1 |
20160273456 | Zhang et al. | Sep 2016 | A1 |
20160281484 | Lestz | Sep 2016 | A1 |
20160290114 | Oehring | Oct 2016 | A1 |
20160290563 | Diggins | Oct 2016 | A1 |
20160312108 | Lestz et al. | Oct 2016 | A1 |
20160319650 | Oehring | Nov 2016 | A1 |
20160326853 | Fredd | Nov 2016 | A1 |
20160326854 | Broussard | Nov 2016 | A1 |
20160326855 | Coli et al. | Nov 2016 | A1 |
20160341281 | Brunvold et al. | Nov 2016 | A1 |
20160348479 | Oehring | Dec 2016 | A1 |
20160349728 | Oehring | Dec 2016 | A1 |
20160369609 | Morris et al. | Dec 2016 | A1 |
20170016433 | Chong | Jan 2017 | A1 |
20170021318 | McIver et al. | Jan 2017 | A1 |
20170022788 | Oehring et al. | Jan 2017 | A1 |
20170022807 | Dursun | Jan 2017 | A1 |
20170028368 | Oehring et al. | Feb 2017 | A1 |
20170030177 | Oehring et al. | Feb 2017 | A1 |
20170030178 | Oehring et al. | Feb 2017 | A1 |
20170036178 | Coli et al. | Feb 2017 | A1 |
20170036872 | Wallace | Feb 2017 | A1 |
20170037717 | Oehring | Feb 2017 | A1 |
20170037718 | Coli et al. | Feb 2017 | A1 |
20170043280 | Vankouwenberg | Feb 2017 | A1 |
20170051732 | Hemandez et al. | Feb 2017 | A1 |
20170074076 | Joseph et al. | Mar 2017 | A1 |
20170082033 | Wu et al. | Mar 2017 | A1 |
20170096885 | Oehring | Apr 2017 | A1 |
20170096889 | Blanckaert et al. | Apr 2017 | A1 |
20170104389 | Morris et al. | Apr 2017 | A1 |
20170114625 | Norris | Apr 2017 | A1 |
20170130743 | Anderson | May 2017 | A1 |
20170138171 | Richards et al. | May 2017 | A1 |
20170145918 | Oehring | May 2017 | A1 |
20170146189 | Herman | May 2017 | A1 |
20170159570 | Bickert | Jun 2017 | A1 |
20170159654 | Kendrick | Jun 2017 | A1 |
20170175516 | Eslinger | Jun 2017 | A1 |
20170204852 | Barnett | Jul 2017 | A1 |
20170212535 | Shelman et al. | Jul 2017 | A1 |
20170218727 | Oehring | Aug 2017 | A1 |
20170218843 | Oehring | Aug 2017 | A1 |
20170222409 | Oehring | Aug 2017 | A1 |
20170226838 | Ceizobka et al. | Aug 2017 | A1 |
20170226839 | Broussard | Aug 2017 | A1 |
20170226842 | Omont | Aug 2017 | A1 |
20170234250 | Janik | Aug 2017 | A1 |
20170241221 | Seshadri | Aug 2017 | A1 |
20170259227 | Morris et al. | Sep 2017 | A1 |
20170292513 | Haddad | Oct 2017 | A1 |
20170313499 | Hughes et al. | Nov 2017 | A1 |
20170314380 | Oehring | Nov 2017 | A1 |
20170314979 | Ye | Nov 2017 | A1 |
20170328179 | Dykstra | Nov 2017 | A1 |
20170369258 | DeGaray | Dec 2017 | A1 |
20170370639 | Barden et al. | Dec 2017 | A1 |
20180028992 | Stegemoeller | Feb 2018 | A1 |
20180038216 | Zhang | Feb 2018 | A1 |
20180045331 | Lopez | Feb 2018 | A1 |
20180090914 | Johnson et al. | Mar 2018 | A1 |
20180156210 | Oehring | Jun 2018 | A1 |
20180181830 | Luharuka et al. | Jun 2018 | A1 |
20180183219 | Oehring | Jun 2018 | A1 |
20180216455 | Andreychuk | Aug 2018 | A1 |
20180238147 | Shahri | Aug 2018 | A1 |
20180245428 | Richards | Aug 2018 | A1 |
20180258746 | Broussard | Sep 2018 | A1 |
20180259080 | Dale et al. | Sep 2018 | A1 |
20180266217 | Funkhauser et al. | Sep 2018 | A1 |
20180266412 | Stokkevag | Sep 2018 | A1 |
20180274446 | Oehring | Sep 2018 | A1 |
20180284817 | Cook et al. | Oct 2018 | A1 |
20180291713 | Jeanson | Oct 2018 | A1 |
20180298731 | Bishop | Oct 2018 | A1 |
20180312738 | Rutsch et al. | Nov 2018 | A1 |
20180313677 | Warren et al. | Nov 2018 | A1 |
20180320483 | Zhang | Nov 2018 | A1 |
20180343125 | Clish | Nov 2018 | A1 |
20180363437 | Coli | Dec 2018 | A1 |
20180363640 | Kajita et al. | Dec 2018 | A1 |
20180366950 | Pedersen et al. | Dec 2018 | A1 |
20190003329 | Morris | Jan 2019 | A1 |
20190010793 | Hinderliter | Jan 2019 | A1 |
20190040727 | Oehring et al. | Feb 2019 | A1 |
20190063309 | Davis | Feb 2019 | A1 |
20190100989 | Stewart | Apr 2019 | A1 |
20190112910 | Oehring | Apr 2019 | A1 |
20190119096 | Haile | Apr 2019 | A1 |
20190120024 | Oehring | Apr 2019 | A1 |
20190128080 | Ross | May 2019 | A1 |
20190128104 | Graham et al. | May 2019 | A1 |
20190145251 | Johnson | May 2019 | A1 |
20190154020 | Glass | May 2019 | A1 |
20190162061 | Stephenson | May 2019 | A1 |
20190169971 | Oehring | Jun 2019 | A1 |
20190178057 | Hunter | Jun 2019 | A1 |
20190178235 | Coskrey | Jun 2019 | A1 |
20190203567 | Ross | Jul 2019 | A1 |
20190203572 | Morris | Jul 2019 | A1 |
20190211661 | Reckels | Jul 2019 | A1 |
20190226317 | Payne | Jul 2019 | A1 |
20190245348 | Hinderliter | Aug 2019 | A1 |
20190249527 | Kraynek | Aug 2019 | A1 |
20190257462 | Rogers | Aug 2019 | A1 |
20190292866 | Ross | Sep 2019 | A1 |
20190292891 | Kajaria | Sep 2019 | A1 |
20190316447 | Oehring | Oct 2019 | A1 |
20200040878 | Morris | Feb 2020 | A1 |
20200047141 | Oehring et al. | Feb 2020 | A1 |
20200088152 | Alloin et al. | Mar 2020 | A1 |
20200232454 | Chretien | Jul 2020 | A1 |
20200325760 | Markham | Oct 2020 | A1 |
20200350790 | Luft et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
2406801 | Nov 2001 | CA |
2707269 | Dec 2010 | CA |
2482943 | May 2011 | CA |
3050131 | Nov 2011 | CA |
2955706 | Oct 2012 | CA |
2966672 | Oct 2012 | CA |
3000322 | Apr 2013 | CA |
2787814 | Feb 2014 | CA |
2833711 | May 2014 | CA |
2978706 | Sep 2016 | CA |
2944980 | Feb 2017 | CA |
3006422 | Jun 2017 | CA |
3018485 | Aug 2017 | CA |
2964593 | Oct 2017 | CA |
2849825 | Jul 2018 | CA |
3067854 | Jan 2019 | CA |
2919649 | Feb 2019 | CA |
2919666 | Jul 2019 | CA |
2797081 | Sep 2019 | CA |
2945579 | Oct 2019 | CA |
101977016 | Feb 2011 | CN |
104117308 | Oct 2014 | CN |
104196613 | Dec 2014 | CN |
205986303 | Feb 2017 | CN |
108049999 | May 2018 | CN |
112196508 | Jan 2021 | CN |
2004264589 | Sep 2004 | JP |
0047893 | Aug 2000 | WO |
2009046280 | Apr 2009 | WO |
2012051705 | Apr 2012 | WO |
2014116761 | Jul 2014 | WO |
2014177346 | Nov 2014 | WO |
2014177346 | Nov 2014 | WO |
2016144939 | Sep 2016 | WO |
2016160458 | Oct 2016 | WO |
2018044307 | Mar 2018 | WO |
2018213925 | Nov 2018 | WO |
2019210417 | Nov 2019 | WO |
Entry |
---|
UK Power Networks—Transformers to Supply Heat to Tate Modern—from Press Releases May 16, 2013. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/293,681 dated Feb. 16, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Mar. 14, 2017. |
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Jan. 20, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,443 dated Feb. 7, 2017. |
Notice of Allowance issued in corresponding U.S. Appl. No. 15/217,040 dated Mar. 28, 2017. |
Notice of Allowance issued in corresponding U.S. Appl. No. 14/622,532 dated Mar. 27, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/291,842 dated Jan. 6, 2017. |
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 7, 2016. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated May 17, 2016. |
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 21, 2015. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Aug. 5, 2015. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 12, 2016. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/217,040 dated Nov. 29, 2016. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/235,788 dated Dec. 14, 2016. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated May 15, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/486,970 dated Jun. 22, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,656 dated Jun. 23, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,694 dated Jun. 26, 2017. |
Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Jul. 6, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/884,363 dated Sep. 5, 2017. |
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 6, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/881,535 dated Oct. 6, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,414 dated Nov. 29, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/644,487 dated Nov. 13, 2017. |
Canadian Office Action dated Mar. 2, 2018 in related Canadian Patent Application No. 2,833,711. |
Office Action dated Apr. 10, 2018 in related U.S. Appl. No. 15/294,349. |
Office Action dated Apr. 2, 2018 in related U.S. Appl. No. 15/183,387. |
Office Action dated May 29, 2018 in related U.S. Appl. No. 15/235,716. |
Candian Office Action dated Apr. 18, 2018 in related Canadian Patent Application No. 2,928,711. |
Canadian Office Action dated Jun. 22, 2018 in related Canadian Patent Application No. 2,886,697. |
Office Action dated Jul. 25, 2018 in related U.S. Appl. No. 15/644,487. |
Office Action dated Oct. 4, 2018 in related U.S. Appl. No. 15/217,081. |
International Search Report and Written Opinion dated Sep. 19, 2018 in related PCT Patent Application No. PCT/US2018/040683. |
Canadian Office Action dated Sep. 28, 2018 in related Canadian Patent Application No. 2,945,281. |
Office Action dated Dec. 12, 2018 in related U.S. Appl. No. 16/160,708. |
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54542. |
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54548. |
International Search Report and Written Opinion dated Dec. 31, 2018 in related PCT Patent Application No. PCT/US18/55913. |
International Search Report and Written Opinion dated Jan. 4, 2019 in related PCT Patent Application No. PCT/US18/57539. |
Non-Final Office Action dated Feb. 12, 2019 in related U.S. Appl. No. 16/170,695. |
International Search Report and Written Opinion dated Feb. 15, 2019 in related PCT Patent Application No. PCT/US18/63977. |
International Search Report and Written Opinion dated Mar. 5, 2019 in related PCT Patent Application No. PCT/US18/63970. |
Non-Final Office Action dated Feb. 25, 2019 in related U.S. Appl. No. 16/210,749. |
Non-Final Office Action dated Mar. 6, 2019 in related U.S. Appl. No. 15/183,387. |
Office Action dated Jan. 30, 2019 in related Canadian Patent Application No. 2,936,997. |
Office Action dated Mar. 1, 2019 in related Canadian Patent Application No. 2,943,275. |
International Search Report and Written Opinion dated Apr. 10, 2019 in corresponding PCT Application No. PCT/US2019/016635. |
Notice of Allowance dated Apr. 23, 2019 in corresponding U.S. Appl. No. 15/635,028. |
International Search Report and Written Opinion dated Jul. 9, 2019 in corresponding PCT Application No. PCT/US2019/027584. |
Non-Final Office Action issued in U.S. Appl. No. 14/881,535 dated May 20, 2020. |
Non-Final Office Action issued in U.S. Appl. No. 15/145,443 dated May 8, 2020. |
Non-Final Office Action issued in U.S. Appl. No. 16/458,696 dated May 22, 2020. |
International Search Report and Written Opinion issued in PCT/US2020/023809 dated Jun. 2, 2020. |
Karin, “Duel Fuel Diesel Engines,” (2015), Taylor & Francis, pp. 62-63, Retrieved from https://app.knovel.com/hotlink/toc/id:kpDFDE0001/dual-fueal-diesel-engines/duel-fuel-diesel-engines (Year 2015). |
Goodwin, “High-voltage auxilliary switchgear for power stations,” Power Engineering Journal, 1989, 10 pg. (Year 1989). |
Non-Final Office dated Oct. 26, 2020 in U.S. Appl. No. 15/356,436. |
Non-Final Office dated Oct. 5, 2020 in U.S. Appl. No. 16/443,273. |
Non-Final Office Action dated Sep. 29, 2020 in U.S. Appl. No. 16/943,727. |
Non-Final Office Action dated Sep. 2, 2020 in U.S. Appl. No. 16/356,263. |
Non-Final Office Action dated Aug. 31, 2020 in U.S. Appl. No. 16/167,083. |
Albone, “Mobile Compressor Stations for Natural Gas Transmission Service,” ASME 67-GT-33, Turbo Expo, Power for Land, Sea and Air, vol. 79887, p. 1-10, 1967. |
Canadian Office Action dated Sep. 22, 2020 in Canadian Application No. 2,982,974. |
International Search Report and Written Opinion dated Sep. 3, 2020 in PCT/US2020/36932. |
“Process Burner” (https://www.cebasrt.com/productsloii-gaslprocess-burner) 06 Sep. 6, 2018 (Sep. 6, 2018), entire document, especially para (Burners for refinery Heaters]. |
Water and Glycol Heating Systems (https://www.heat-inc.com/wg-series-water-glycol-systems/) Jun. 18, 2018 (Jun. 18, 2018), entire document, especially WG Series Water Glycol Systems. |
“Heat Exchanger” (https://en.wikIpedia.org/w/index.php?title=Heat_exchanger&oldid=89300146) Apr. 12-18-19, 2019 (Apr. 18, 2019), entire document, especially para (0001]. |
Canadian Office Action dated Sep. 8, 2020 in Canadian Patent Application No. 2,928,707. |
Canadian Office Action dated Aug. 31, 2020 in Canadian Patent Application No. 2,944,980. |
International Search Report and Written Opinion dated Aug. 28, 2020 in PCT/US20/23821. |
Office Action dated Jun. 11, 2019 in corresponding U.S. Appl. No. 16/210,749. |
Office Action dated May 10, 2019 in corresponding U.S. Appl. No. 16/268,030. |
Canadian Office Action dated May 30, 2019 in corresponding CA Application No. 2,833,711. |
Canadian Office Action dated Jun. 20, 2019 in corresponding CA Application No. 2,964,597. |
Office Action dated Jun. 7, 2019 in corresponding U.S. Appl. No. 16/268,030. |
International Search Report and Written Opinion dated Sep. 11, 2019 in related PCT Application No. PCT/US2019/037493. |
Office Action dated Aug. 19, 2019 in related U.S. Appl. No. 15/356,436. |
Office Action dated Oct. 2, 2019 in related U.S. Appl. No. 16/152,732. |
Office Action dated Sep. 11, 2019 in related U.S. Appl. No. 16/268,030. |
Office Action dated Oct. 11, 2019 in related U.S. Appl. No. 16/385,070. |
Office Action dated Sep. 3, 2019 in related U.S. Appl. No. 15/994,772. |
Office Action dated Sep. 20, 2019 in related U.S. Appl. No. 16/443,273. |
Canadian Office Action dated Oct. 1, 2019 in related Canadian Patent Application No. 2,936,997. |
International Search Report and Written Opinion dated Jan. 2, 2020 in related PCT Application No. PCT/US19/55325. |
Notice of Allowance dated Jan. 9, 2020 in related U.S. Appl. No. 16/570,331. |
Non-Final Office Action dated Dec. 23, 2019 in related U.S. Appl. No. 16/597,008. |
Non-Final Office Action dated Jan. 10, 2020 in related U.S. Appl. No. 16/597,014. |
Non-Final Office Action mailed Dec. 6, 2019 in related U.S. Appl. No. 16/564,186. |
International Search Report and Written Opinion dated Nov. 26, 2019 in related PCT Application No. PCT/US19/51018. |
International Search Report and Written Opinion dated Feb. 11, 2020 in related PCT Application No. PCT/US2019/055323. |
Final Office Action dated Mar. 31, 2020 in related U.S. Appl. No. 15/356,436. |
Non-Final Office Action dated Mar. 3, 2020 in related U.S. Appl. No. 16/152,695. |
Canadian Office Action dated Aug. 17, 2020 in related CA Patent Application No. 2,944,968. |
International Search Report and Written Opinion dated Jun. 23, 2020 in corresponding PCT Application No. PCT/US20/23912. |
International Search Report and Written Opinion dated Jul. 22, 2020 in corresponding PCT Application No. PCT/US20/00017. |
Office Action dated Aug. 4, 2020 in related U.S. Appl. No. 16/385,070. |
Office Action dated Jun. 29, 2020 in related U.S. Appl. No. 16/404,283. |
Office Action dated Jun. 29, 2020 in related U.S. Appl. No. 16/728,359. |
Office Action dated Jun. 22, 2020 in related U.S. Appl. No. 16/377,861. |
Canadian Office Action dated Aug. 18, 2020 in related CA Patent Application No. 2,933,444. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/170,695 dated Jun. 7, 2019. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/268,030 dated May 10, 2019. |
Final Office Action issued in corresponding U.S. Appl. No. 16/210,749 dated Jun. 11, 2019. |
International Search Report and Written Opinion mailed in PCT/US20/67526 dated May 6, 2021. |
International Search Report and Written Opinion mailed in PCT/US20/67608 dated Mar. 30, 2021. |
International Search Report and Written Opinion mailed in PCT/US20/67528 dated Mar. 19, 2021. |
International Search Report and Written Opinion mailed in PCT/US20/67146 dated Mar. 29, 2021. |
International Search Report and Written Opinion mailed in PCT/US20/67523 dated Mar. 22, 2021. |
International Search Report and Written Opinion mailed in PCT/US2020/066543 dated May 11, 2021. |
Morris et al., U.S. Appl. No. 62/526,869; Hydration-Blender Transport and Electric Power Distribution for Fracturing Operation; filed Jun. 28, 2018; USPTO; see entire document. |
Final Office Action dated Feb. 4, 2021 in U.S. Appl. No. 16/597,014. |
International Search Report and Written Opinion dated Feb. 4, 2021 in PCT/US20/59834. |
International Search Report and Written Opinion dated Feb. 2, 2021 in PCT/US20/58906. |
International Search Report and Written Opinion dated Feb. 3, 2021 in PCT/US20/58899. |
Non-Final Office Action dated Jan. 29, 2021 in U.S. Appl. No. 16/564,185. |
Final Office Action dated Jan. 21, 2021 in U.S. Appl. No. 16/458,696. |
Final Office Action dated Jan. 11, 2021 in U.S. Appl. No. 16/404,283. |
Non-Final Office Action dated Jan. 4, 2021 in U.S. Appl. No. 16/522,043. |
International Search Report and Written Opinion dated Dec. 14, 2020 in PCT/US2020/53980. |
Non-Final Office Action issued in U.S. Appl. No. 16/871,928 dated Aug. 25, 2021. |
Non-Final Office Action issued in U.S. Appl. No. 16/943,727 dated Aug. 3, 2021. |
Non-Final Office Action issued in U.S. Appl. No. 14/881,525 dated Jul. 21, 2021. |
Non-Final Office Action issued in U.S. Appl. No. 16/404,283 dated Jul. 21, 2021. |
Notice of Allowance and Notice of Allowability issued in U.S. Appl. No. 15/829,419 dated Jul. 26, 2021. |
Woodbury et al., “Electrical Design Considerations for Drilling Rigs,” IEEE Transactions on Industry Applications, vol. 1A-12, No. 4, Jul./Aug. 1976, pp. 421-431. |
Kroposki et al., Making Microgrids Work, 6 IEEE Power and Energy Mag. 40, 41 (2008). |
Dan T. Ton & Merrill A. Smith, The U.S Department of Energy's Microgrid Initiative, 25 The Electricity J 84 (2012), pp. 84-94. |
Non-Final Office Action issued in U.S. Appl. No. 16/871,328 dated Dec. 9, 2021. |
Non-Final Office Action issued in U.S. Appl. No. 16/943,935 dated Oct. 21, 2021. |
Non-Final Office Action issued in U.S. Appl. No. 16/564,186, dated Oct. 15, 2021. |
Final Office Action issued in U.S. Appl. No. 16/356,263 dated Oct. 7, 2021. |
Non-Final Office Action issued in U.S. Appl. No. 17/060,647 dated Sep. 20, 2021. |
Non-Final Office Action issued in U.S. Appl. No. 16/901,774 dated Sep. 14, 2021. |
Canadian Office Action issued in Canadian Application No. 3,094,768 dated Oct. 28, 2021. |
The American Heritage Dictionary of the English Language, Fifth Edition, Fiftieth Anniversary, p. 911. |
Collins English Dictionary, Twelfth Edition, 2014, p. 1005. |
Declaration of Robert Schaaf, IPR2021-01539, Jan. 25, 2022, 37 pages. |
Department of Transportation, Federal Motor Carrier Safety Administration, 49 CFR Parts 390, 392 and 393—Parts and Accessories Necessary for Safe Operation; General Amendments; Final Rule, Federal Register, Aug. 15, 2005, vol. 70, No. 156, 49 pages. |
D. Nedelcut et al., “On-line and Off-line Monitoring-Diagnosis System (MDS) for Power Transformers,” IEEE, 2008 International Conference on Condition Monitoring and Diagnosis, Beijing, China, Apr. 21-24, 2008, 7 pages. |
Random House Webster's Unabridged Dictionary, Second Edition, 2001, p. 990. |
A. B. Lobo Ribeiro et al., “Multipoint Fiber-Optic Hot-Spot Sensing Network Integrated Into High Power Transformer for Continuous Monitoring,” IEEE Sensors Journal, Jul. 2008, vol. 8, No. 7, pp. 1264-1267. |
Society of Automotive Engineers, Sae J1292: Automobile, Truck, Truck-Tractor, Trailer, and Motor Coach Wiring, 49 CFR 393.28, Oct. 1981, 6 pages. |
“StarTech NETRS2321E 1 Port RS-232/422/485 Serial over IP Ethernet Device Server,” StarTech, http://www.amazon.com/StarTech-NETRS2321E-RS-232-Serial-Ethernet/dp/B000YN0N0S, May 31, 2014, 4 pages. |
“StarTech.com 1 Port RS232 Serial to IP Ethernet Converter (NETRS2321P),” StarTech, http://www.amazon.com/StarTech-com-Serial-Ethernet-Converter-NETRS232IP/dp/B00FJEHNSO, Oct. 9, 2014, 4 pages. |
“TCP/IP Ethernet to Serial RS232 RS485 RS422 Converter,” Atc, http://www.amazon.com/Ethernet-Serial-RS232-RS485-Converter/dp/B00ATV2DX2, Feb. 1, 2014, 2 pages. |
“SainSmart TCP/IP Ethernet to Serial RS232 RS485 Intelligent Communication Converter,” SainSmart, http://www.amazon.com/SainSmart-Ethernet-Intelligent-Communication-Converter/dp/B008BGLUHW, Aug. 17, 2014, 4 pages. |
“Global Cache iTach, IP to Serial with PoE (IP2SL-P),” Global Cache, https://www.amazon.com/Global-Cache-iTach-Serial-IP2SL-P/dp/B003BFVNS4/, Oct. 30, 2014, 3 pages. |
Declaration of Robert Durham, IPR2022-00074, Nov. 8, 2021, 177 pages. |
Declaration of Robert Schaaf, IPR2022-00074, Feb. 17, 2022, 36 pages. |
U.S. Appl. No. 62/204,331. |
Eugene A. Avallone, Marks' Standard Handbook for Mechanical Engineers: 11th Edition, 2007, p. 16-4 and 16-22. |
Moxa 802.11 Ethernet to Serial, Moxastore, http://www.moxastore.com/Moxa_802_11_Wi_Fi_Ethernet_to_Serial_s/587.html, May 24, 2016, 1 page. |
Project Registration, Moxastore, http://www.moxastore.com, Feb. 15, 2015, 2 pages. |
About Us, Moxastore, http://www.moxastore.com/aboutus.asp, Mar. 8, 2015, 1 page. |
NPORTIA5250, Moxastore, http://www.moxastore.com/NPORTIA5250_p/nportia5250.htm. |
Declaration of Duncan Hall, Internet Archive, Oct. 26, 2021, https://web.archive.org/web/20140531134153/http://www.amazon.com/StarTech-NETRS2321E-RS-232-Serial-Ethernet/dp/B000YB0NOS, 43 pages. |
Michael Quentin Morton, Unlocking the Earth: A Short History of Hydraulic Fracturing (2013), GeoExpro, vol. 10, No. 5, 5 pages. |
Accommodating Seismic Movement, Victaulic Company, 2015, https://web.archive.org/web/20150412042941/http://www.victaulic.com:80/en/businesses-solutions/solutions/accommoda . . . , 2 pages. |
Style W77 AGS Flexible Coupling, Victaulic Company 2015, https://web.archive.org/web/20150423052817/http://www.victaulic.com:80/en/products-services/products/style-w77-ags-f . . . , 1 page. |
AGS Large Diameter Solutions, Victaulic Company, 2015, https://web.archive.org/web/20150419063052/http://www.victaulic.com:80/en/businesses-solutions/solutions/advanced-gr . . . , 2 pages. |
Chiksan Original Swivel Joints, FMC, 1997, 16 pages. |
CoorsTek Flowguard Products, 2012, 8 pages. |
Declaration of Sylvia D. Hall-Ellis, IPR2022-00610, Feb. 28, 2022, 98 pages. |
Excerpt of U.S. Pat. No. 10,119,381. |
Excerpt of U.S. Pat. No. 10,934,824. |
Flowline Products and Services, FMC Technologies, http://www.fmctechnologies.com, 80 pages. |
Gardner Denver, Well Servicing Pump Model GD-2500Q, GD-2500Q-HD, Quintuplex Pumps, Sep. 2011, 45 pages. |
Eugene A. Avallone, Marks' Standard Handbook for Mechanical Engineers: 11th Edition, 2007, Section 14, 18 pages. |
Mohinder L. Nayyar, Piping Handbook Seventh Edition, McGraw-Hill Handbook, 2000, 77 pages. |
Pulsation Dampers, Coorstek, 2014, https://web.archive.org/web/20140919005733/http://coorstek.com/markets/energy_equip . . . , 2 pages. |
M. E. Rahman et al., “Wire rope isolators for vibration isolation of equipment and structures—A review,” IOP Conference Series Materials Science and Engineering, Apr. 2015, 12 pages. |
Victaulic Couplings Vibration Attenuation Characteristics, Victaulic, Publication 26.04, Oct. 2014, 5 pages. |
Thorndike Saville, The Victaulic Pipe Joint, Journal of American Water Works Association, Nov. 1922, vol. 9, No. 3, pp. 921-927. |
J. C. Wachel et al., “Analysis of Vibration and Failure Problems in Reciprocating Triplex Pumps for Oil Pipelines,” The American Society of Mechanical Engineers, Presented at the Energy-Sources and Technology Conference and Exhibition, Dallas, Texas, Feb. 17-21, 1985, 8 pages. |
Declaration of Nathaniel E. Frank-White, Internet Archive, Feb. 17, 2022, http://web.archive.org/web/20140329090440/http://www.enidline.com/pdffiles/WR_Catalog_2012.pdf, 82 pages. |
Wire Rope Isolator Technologies, Enidine, Dec. 2011, 78 pages. |
World's Best Swivel Joints, Flowvalve, 2013, https://web.archive.org/web/20150117041757/http://www.flowvalve.com:80/swivels, 10 pages. |
Gardner Denver, 3″ 1502 Male Hammer Union Discharge Flange, 2005, 13 pages. |
“Services—U.S. Well Services,” http://uswellservices.com/services/, accessed Nov. 13, 2021, 10 pages. |
Donald G. Fink, “Standard Handbook for Electrical Engineers—Thirteenth Edition,” 1993, McGraw-Hill Inc., pp. 10-13, 20-21, 20-22, 20-85, 20-20, 20-89, 20-90, 20-91, 22-12, 22-13, 22-14, 22-15 and 22-16. |
Email from Michael See on Jun. 10, 2021 regarding API-541 Fourth Edition: Public Availability, 2 pages. |
Halliburton, Halliburtion All-Electric Fracturing Reducing Emissions and Cost Brochure, 2021, 6 pages. |
EEE Power Engineering Society, 112 IEEE Standard Test Procedure for Polyphase Induction Motors and Generators, 2004, 87 pages. |
U.S. Well Services, LLC v Tops Well Services, LLC, Case No. 3:19-cv-237, Document 135, Order, Sep. 22, 2021, 2 pages. |
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Document 56, Defendants' Opening Claim Construction Brief, Oct. 27, 2021, 46 pages. |
“Screenshot of USWS Clean Fleet System Video,” 1 page. |
John Daniel, “8.30 DEP Industry Observations: New Flac Fleet; New Fleet Designs Forthcoming,” Daniel Energy Partners, Aug. 30, 2020, 13 pages. |
Declaration of Joel N. Broussard, IPR2021-01034, IPR2021-01035, IPR2021-01036, and IPR2021-01037, Oct. 20, 2021, 11 pages. |
Declaration of Robert Schaaf, IPR2021-01034, Oct. 20, 2021, 47 pages. |
Declaration of Dr. Mark Ehsani, IPR2021-01035, Jun. 18, 2021, 188 pages. |
Stan Gibilisco, The Illustrated Dictionary of Electronics: Audio/Video Consumer Electronics Wireless Technology—Eighth Edition, 2001, p. 667. |
Declaration of Robert Schaaf, IPR2021-01035, Oct. 20, 2021, 51 pages. |
Declaration of Dr. L. Brun Hilbert, P.E., IPR2021-01037 and IPR2021-01038, Jun. 21, 2021, 124 pages. |
U.S. Appl. No. 62/242,173. |
Declaration of Robert Schaaf, IPR2021-01037, Oct. 20, 2021, 52 pages. |
Zeus Electric Pumping Unit, Halliburton, http://www.halliburton.com/en/products/zeus-electric-pumping-unit, 2021, 4 pages. |
Declaration of Joel N. Broussard, IPR2021-01038, Oct. 20, 2021, 11 pages. |
LedComm LLC v Signify North America Corporation, Case No. 6:20-cv-01056-ADA, Civil Docket, accessed Dec. 8, 2021, 11 pages. |
U.S. Well Services, Inc. v Halliburton Company, Case No. 6:21-cv-00367-ADA, Civil Docket, accessed Dec. 13, 2021, 14 pages. |
Declaration of Robert Schaaf, IPR2021-01038, Nov. 10, 2021, 40 pages. |
Transcend Shipping Systems LLC v Mediterranean Shipping Company S.A., Case No. 6:21-cv-00040, Document 27, Order of Dismissal with Prejudice, Dec. 7, 2021, 1 page. |
Centers for Disease Control and Prevention, NIOSH Numbered Publications, https://web.archive.org/web/20120721180008/http://www.cdc.org/niosh/pubs/all_date_desc_nopubnumbers.html, 2012, 57 pages. |
America Invents Act, H.R. Rep. No. 112-98, Jun. 1, 2011, 165 pages. |
Declaration of Joel N. Broussard, IPR2021-01065, Oct. 20, 2021, 11 pages. |
Declaration of Dr. Robert Durham, IPR2021-01065, Jun. 18, 2021, 138 pages. |
Declaration of Robert Schaaf, IPR2021-01065, Nov. 10, 2021, 33 pages. |
U.S. Pat. No. 9,410,410, Excerpt—Response to Non-Final Office Action filed Feb. 3, 2016, 57 pages. |
U.S. Appl. No. 62/242,566. |
Ndustrial Safety & Hygiene News, OSHA issues hazard alert for fracking and drilling, Jan. 6, 2015, 1 page. |
Portfolio Media Inc., A Shift to Sand: Spotlight on Silica Use in Fracking, Law360, https://www.law360.com/articles/366057/print?section=energy, accessed Jun. 10, 2021, 5 pages. |
Henry Chajet, “OSHA Issues Alert on Non-Silica Fracking Hazards,” Jan. 30, 2015, National Law Review Newsroom, 2 pages. |
U.S. Well Services, LLC, v Voltagrid LLC, Nathan Ough, Certarus (USA) Ltd., and Jared Oehring, Case No. 4:21-cv-3441-LHR, Document 13, Plaintiff U.S. Well Services, LLC's Motion for Preliminary Injunction and Request for Hearing, Nov. 4, 2021, 311 pages. |
U.S. Department of Labor—Occupational Safety and Health Administration, Hydraulic Fracturing and Flowback Hazards Other than Respirable Silica, 27 pages. |
U.S. Department of Labor—Occupational Safety and Health Administration, Hazard Alert - Worker Exposure to Silica Turing Hydraulic Fracturing, 2012, 7 pages. |
U.S. Department of Labor—Occupational Safety and Health Administration, OSHA and NIOSH issued hazard alert on ensuring workers in hydraulic fracturing operations have appropriate protections from silica exposure, Jun. 21, 2012, 4 pages. |
Occupational Safety and Health Administration—Home, United States Department of Labor, https://web.archive.org/web/20120722160756/http://www.osha.gov/, accessed Jun. 13, 2021, 2 pages. |
Industry/Hazard Alerts, United States Department of Labor, https://web.archive.org/web/20120801064838/http://www.osha.gov:80/hazardindex.html, accessed Jun. 13, 2021, 1 page. |
Hazard Alert—Worker Exposure to Silica during Hydraulic Fracturing, United States Department of Labor, https://web.archive.org/web/20120808200919/http://www.osha.gov/dts/hazardalerts/hydraulic_frac_hazard_alert.html, accessed Jun. 13, 2021, 5 pages. |
A. Abbott, Crippling the Innovation Economy: Regulatory Overreach at the Patent Office, Regulatory Transparency Project, Aug. 14, 2017, 35 pages. |
D. Heidel, Safety and Health Management Aspects for Handling Silica-based Products and Engineered Nanoparticles n Sequences of Shale Reservoir Stimulations Operations, Society of Petroleum Engineers, 2004, 4 pages. |
Testimony of Judge Paul R. Michel (Ret.) United States Court of Appeals for the Federal Circuit Before the Subcommittee on Intellectual Property, U.S Senate Committee on the Judiciary, Jun. 4, 2019, 8 pages. |
Bernard D. Goldstein, The Role of Toxicological Science in Meeting the Challenges and Opportunities of Hydraulic Fracturing, 2014, Toxicological Sciences, vol. 139, No. 2, pp. 271-283. |
Mike Soraghan, OSHA issues hazard alert for fracking and drilling, E&E, Dec. 10, 2014, 1 page. |
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 72-9, Declaration of Dr. Robert Schaaf, Apr. 24, 2020, 52 pages. |
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237 Document 72-9, Declaration of Dr. Robert Schaaf—part 2, Apr. 24, 2020, 128 pages. |
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 72-9, Declaration of Dr. Robert Schaaf—part 3, Apr. 24, 2020, 47 pages. |
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 72, Plaintiff's Opening Claim Construction Brief, Apr. 24, 2020, 37 pages. |
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 1, Plaintiff's Original Complaint, 63 pages. |
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 90, Plaintiff's Opposition to Defendants' Motion for Summary Judgment of Invalidity under 35 USC 112, 30 pages. |
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 116, Hearing on Markman and Summary Judgment via Video Conference before the Honorable Andrew M. Edison Day 1 of 1 Day—Transcript, Jun. 15, 2020, 308 pages. |
Kirsch Research and Development, LLC v Tarco Specialty Products, Inc., Case No. 6:20-cv-00318-ADA, Document 32, Memorandum Opinion and Order Granting Defendant's Opposed Motion to Stay Pending Inter Partes Review of the '482 Patent [ECF No. 57], Oct. 4, 2021, 6 pages. |
Ledcomm LLC v Signfiy North America Corp., Signify Holding B.V., and Signify N.V., Case No. 6:20-cv-01056-ADA, Document 24, Scheduling Order, Aug. 13, 2021, 4 pages. |
Transcend Shipping Systems, LLC and Hapag-Lloyd AG and Hapag-Lloyd (America) LLC, CMA CGM (America) LLC and CMA CGM S.A., Mediterranean Shipping Company S.A., Case Nos. 6:20-cv-1195-ADA, 6:21-cv-0018-ADA, and 6:21-cv-0040-ADA, Document 19, Proposed Amended Scheduling Order, Aug. 13, 2021, 6 pages. |
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-ov-00367-ADA, Document 51, Agreed Scheduling Order, Sep. 16, 2021, 5 pages. |
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Plaintiff's Disclosure of Asserted Claims and Preliminary Infringement Contentions, Jul. 12, 2021, 9 pages. |
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-ov-00367-ADA, Plaintiff U.S. Well Services, LLC's Disclosure of Extrinsic Evidence, Oct. 19, 2021, 10 pages. |
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-ov-00367-ADA, Defendants' Preliminary Invalidity Contentions, Sep. 10, 2021, 193 pages. |
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Document 1-8, Exhibit H, Halliburton—All Electric Fracturing Reducing Emissions and Cost, Apr. 15, 2021, 6 pages. |
Bill Lockley and Barry Wood, “What do the API Motor/Generator Features Cost and What Do They Buy You?” 2010 IEEE, Paper No. PCIC-2010-22, 10 pages. |
American Petroleum Institute, “Form-wound Squirrel-Cage Induction Motors—500 Horsepower and Larger,” Jun. 2004, Fourth Edition, ANSI/API Standard 541-2003, 88 pages. |
Assignment record of U.S. Pat. No. 9,366,114, accessed Aug. 19, 2021, 2 pages. |
ASTM International, “Standard Specification for Steel Bars, Carbon and Alloy, Hot-Wrought, General Requirements” Oct. 13, 2006, 16 pages. |
“U.S. Well Services Issues $125.5 Million Convertible Senior Secured PIK Notes, Executes License Agreement with ProFrac Manufacturing, LLC and Finalizes Amendment to Senior Secured Term Loan,” Jun. 28, 2021, https://finance.yahoo.com/news/u-well-services-issues-125-203000637.html?guccounter=1, 6 pages. |
Declaration of Joel N. Broussard, Case Nos. IPR2021-01032 & IPR2021-01033, Oct. 13, 2021, 9 pages. |
Declaration of Dr. Robert Durham, Case Nos. IPR2021-01033, IPR2021-01032 and IPR2021-01034, Jun. 18, 2021, 179 pages. |
Declaration of Robert Schaaf, Case Nos. IPR2021-01032 and IPR2021-01033, Oct. 12, 2021, 45 pages. |
Declaration of Sylvia D. Hall-Ellis, Ph D., Case Nos. IPR2021-01032, IPR2021-01033, and IPR2021-01034, Jun. 18, 2021, 173 pages. |
Stephen Cary et al, “Electric Rotating Machine Standards Part II: Magnetic Wedge Design & Monitoring Methods,” 2011 IEEE, Paper No. PCIC-2011-41, 8 pages. |
Janice Hoppe-Spiers, “Deploying Change,” Energy & Mining International, Spring 2017, http://www.emi-magazine.com, 5 pages. |
Jim Harris, “U.S. Well Services LLC—Energy and Mining Magazine,” Energy & Mining International, Oct. 12, 2021, https://www.emi-magazine.com/sections/profiles/1221-us-well-services-llc, 3 pages. |
“Clean Fleet Reduces Emissions by 99% at Hydraulic Fracturing Sites,” Fluid Power Journal, https://fluidpowerjournal.com/clean-fleet-reduces-emissions/, accessed Sep. 22, 2021, 5 pages. |
Gardner Denver, Well Servicing Pump Model GD-2500Q Quintuplex—Operating and Service Manual, Aug. 2005, 46 pages. |
“Halliburton Delivers Successful Grid-Powered Frac Operation,” https://www.halliburton.com/en/about-us/press-release/halliburton-delivers-first-successful-grid-powered-fracturing-operation, accessed Sep. 27, 2021, 4 pages. |
Hart Energy, Hydraulic Fracturing Techbook, 2015, 99 pages. |
R. Mistry et al., “Induction Motor Vibrations in view of the API 541—4th Edition,” IEEE, accessed Jun. 10, 2021, 10 pages. |
“Game-changing hydraulic fracturing technology, reduces emissions by 99%,” Intrado Globe News Wire, Oct. 1, 2014, https://www.globenewswire.com/fr/news-release-2014/10/01/670029/10100696/en/Game-changing-hydraulic-fracturing-technology-reduces-emissions-by-99.html, 4 pages. |
M. Hodowanec et al., “Introduction to API Standard 541,4th Edition—Form-Wound Squirrel Cage Induction Motors—Larger than 500 Horsepower,” 2003, IEEE, Paper No. PCIC-2003-33, 9 pages. |
D. Bogh et al., “A User's Guide to Factory Testing of Large Motors: What Should Your Witness Expect,” IEEE, accessed Jun. 10, 2021, 8 pages. |
Ryan Davis, “Albright Says He'll Very Rarely Put Cases on Hold For PTAB,” Law 360, https://www.law360.com/articles/1381597/print?section=ip, 2 pages. |
Dani Kass, “Fintiv Fails: PTAB Uses ‘Remarkably Inaccurate’ Trial Dates,” Nov. 2, 2021, Law 360, 1 page. |
Eugene A. Avallone et al., “Marks' Standard Handbook for Mechanical Engineers, 11th Edition,” 2007, pp. 3-65, 14-2, 14-3, 14-13, 14-14, 20-91, 22-12, 22-13, 22-14, 22-15, 22-16, 10-3, 20-21, 20-22, 20-85, 20-86, 20-89, and 20-90. |
T. W. Pascall et al., “Navigating the Test Requirements of API 541 4th Edition,” 2007, IEEE, Paper No. PCIC-2007-11, 12 pages. |
“Kerr Pumps & FlowVale Awards for Excellence in Well Completion, Northeast 2017—Awarded to: U.S. Well Services,” https://www.oilandgasawards.com/winner/northeast-2017-kerr-pumps-flowvale-awards . . . , accessed Oct. 5, 2021, 4 pages. |
“New Technology Development Award—General/Products, Northeast 2015—Awarded to: U.S. Well Services, LLC,” https://www.oilandgasawards.com/winner/northeast-2015-new-technology-development-award-generalproducts/#, accessed Aug. 23, 2021, 4 pages. |
U.S. Well Services, Inc. v. Halliburton Company, Civil Docket for Case # 6:21-cv-00367-ADA, https://ecf.txwd.uscourts.gov/cgi-bin/DktRpt.pl?190912742001885-L_1_0-1, Accessed Nov. 29, 2021, 13 pages. |
A. T. Dufresne, “How reliable are trial dates relied on by the PTAB in the Fintiv analysis?” Perkins Coie, 2021, 3 pages. |
J. Malinowski et al., “Petrochemical Standards A Comparison Between IEEE 841-2001, API 541, and API 547,” 2004, EEE, Paper No. PCIC-2004-22, 8 pages. |
“Petroleum Alumnus and Team Develop Mobile Fracturing Unit that Alleviates Environmental Impact,” 2015, LSU, https://www.lsu.edu/eng/news/2015/07/20150713-mobile-fracturing-unit.php, accessed Sep. 22, 2021, 2 pages. |
Liz Hampton, “Low-cost fracking offers boon to oil producers, headaches for suppliers,” Reuters, Sep. 12, 2019, https://www.reuters.com/article/us-usa-oil-electric-fracturing-focus/low-cost-fracking-offers-boon-to-oil-producers-headaches-for-supplies, 11 pages. |
Liz Hampton, “U.S. Well Services files e-frac patent lawsuit against Halliburton, Cimarex Energy,” Reuters, Apr. 15, 2021, https://www.reuters.com/business/energy/us-well-services-files-e-frac-patent-lawsuit-against-halliburton-cimarex-energy, 10 pages. |
U.S. Well Services, Inc. files suit against Halliburton Company and Cimarex Energy Co. for patent infringement, Apr. 15, 2021, PR Newswire, https://www.prnewswire.com/news-releases/us-well-services-inc-files-suit-against-halliburton-company-and-cimarex-energy-co-for-patent-infringement-301270118.html, 2 pages. |
Publications, U.S. Depailment of Labor—Occupational Safety and Health Administration, https://web.archive.org/web/20150626140537/https://www.osha.gov/pls/publications/publication.html, 47 pages. |
OSHA Publications, U.S. Department of Labor—Occupational Safety and Health Administration, https://web.archive.org/web/20150406054914/https://www.osha.gov/pls/publications/publication.AthruZ?pType=Industry, Jun. 13, 2021, 3 pages. |
U.S. Department of Labor—Occupational Safety and Health Administration, https://web.archive.org/web/20150406152927/https://www.osha.gov/, 4 pages. |
Steven C. Carlson, Weaponizing IPRs, Landslide, Sep. 22, 2019, 10 pages. |
Declaration of Dr. Mark Ehsani, IPR2021-01066, Jul. 2, 2021, 213 pages. |
Declaration of Robert Schaaf, IPR2021-01066, Nov. 17, 2021, 43 pages. |
U.S. Appl. No. 62/323,303. |
Amazon.com purchase page for Electrical Engineering Reference Manual for the Electrical and Computer PE Exam, Sixth Edition, https://web.archive.org/web/20070103124447/https:/www.amazon.com/Electrical-Engineering-Reference-Manual-Computer/dp/1888577568/, accessed Jul. 23, 2021, 7 pages. |
Public Catalog of the U.S. Copyright Office for search result: electrical engineering reference manual, https://cocatalog.loc.gov/cgi-bin/Pwebrecon.cgi?v1=6&ti=1, 6&Search_Arg=electrical engineering reference manual&Search_Code=TALL&CNT=25&Pl . . . , accessed Jul. 21, 2021, 2 pages. |
Declaration of Robert Schaaf, IPR2021-01238, Nov. 17, 2021, 38 pages. |
John A. Camera, PE, Electrical Engineering Reference Manual for the Electrical and Computer PE Exam, Sixth Edition, 2002, 102 pages. |
U.S. Appl. No. 62/180,289. |
IEEE 100 The Authoritative Dictionary of IEEE Standards Terms Seventh Edition, 2000, 7 pages. |
National Electrical Manufacturers Association, NEMA ICS 61800-4 Adjustable Speed Electrical Power Drive Systems, Part 4: General Requirements—Rating Specifications for A.C. Power Drive Systems above 1000 V a.c. and Not Exceeding 35 kV, 2004 22 pages. |
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, About PPI, https://web.archive.org/web/20031219231426/http://ppi2pass.com:80/catalog/servlet/MyPpi_pg_aboutppi.html, accessed Jul. 22, 2021, 1 page. |
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, What PPI Customers Say, https://web.archive.org/web/20031226130924/http://ppi2pass.com:80/catalog/5ervlet/MyPpi_pg_comments-EEcomments.html, accessed Jul. 22, 2021, 2 pages. |
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, Homepage, https://web.archive.org/web/20040209054901/http://ppi2pass.com:80/catalog/servlet/MyPpi, accessed Jul. 19, 2021, 1 page. |
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, The PPI Online Catalog, https://web.archive.org/web/20040215142016/http://ppi2pass.com:80/catalog/servlet/MyPpi_ct_MAIN, accessed Jul. 19, 2021, 2 pages. |
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, Electrical PE Exam Review Products, https://web.archive.org/web/20040214233851/http://ppi2pass.com:80/catalog/servlet/MyPpi_ct_ELECTRICAL, accessed Jul. 19, 2021, 7 pages. |
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, Instructor's Corner, https://web.archive.org/web/20031219232547/http://ppi2pass.com:80/catalog/servlet/MyPpi_pg_corner-corner.html, accessed Jul. 19, 2021, 2 pages. |
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, Teaching an Electrical and Computer Engineering PE Exam Review Course, https://web.archive.org/web/20031223100101/http://ppi2pass.com:80/catalog/servlet/MyPpi_pg_corner-teachee.html, accessed Jul. 19, 2021, 2 pages. |
Professional Publications, Inc., Electrical Engineering Reference Manual, 12 pages. |
Professional Publications, Inc., Books for the Fe, Pe, FLS and PLS Exams, Spring 2004, http://www.ppi2pass.com/corner/catalog.pdf, 16 pages. |
Lionel B. Roe, Practices and Procedures of Industrial Electrical Design, 1972, McGraw-Hill, Inc., Chapter 2: The Basic Electric System, 11 pages. |
Declaration of Duncan Hall, Jul. 23, 2021, https://web.archive.org/web/20031219231426/http://ppi2pass.com:80/catalog/servlet/MyPpi_pg_aboutppi.html, 12 pages. |
Declaration of Robert Durham, IPR2021-01315, Aug. 12, 2021, 209 pages. |
Declaration of Robert Schaaf, IPR2021-01315, Nov. 19, 2021, 39 pages. |
Excerpt of U.S. Pat. No. 9,893,500. |
U.S. Appl. No. 62/323,168. |
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Document 63, Defendants' Claim Construction Brief in Reply to U.S. Well Services, LLC's Responsive Brief, Dec. 2, 2021, 30 pages. |
U.S. Well Services, Inc. v Halliburton Company, Case No. 6:21-cv-00367-ADA, Civil Docket, accessed Dec. 17, 2021, 14 pages. |
U.S. Well Services, Inc. v Halliburton Company, Case No. 6:21-cv-00367-ADA, Document 64, Order Resetting Markman Hearing, Dec. 8, 2021, 1 page. |
Approved American National Standard, ANSI/NEMA MG 1-2011, American National Standard Motors and Generators, Dec. 9, 2021, 636 pages. |
Comprehensive Power: Power it Up, Feb. 27, 2013, 28 pages. |
Comprehensive Power: Power it Up, Brochure, 26 pages. |
Declaration of Robert Schaaf, IPR2021-01316, Nov. 19, 2021, 33 pages. |
Declaration of Robert Durham, IPR2021-01316, Aug. 13, 2021, 75 pages. |
Declaration of Robert Schaaf, IPR2021-01538, Dec. 28, 2021, 40 pages. |
Declaration of Dr. L. Brun Hilbert, Jr., P.E., IPR2021-01538, Sep. 22, 2021, 99 pages. |
Maxwell James Clerk 1868, On Governors, Proc. R. Soc. Lond., pp. 16270-16283. |
Katsuhiko Ogata, Modern Control Engineering: Third Edition, 1997, 2 pages. |
49 C.F.R. Part 393 (Oct. 1, 2006), 36 pages. |
“VZ Environmental Award of Excellence in Environmental Stewardship, Rocky Mountain 2016—Awarded to: U.S. Well Services, LLC,” Oil & Gas Awards, 2016, https://www.oilandgasawards.com/winner/rocky-mountain-2016-vz-environmental-award-for-excellence-in-environmental-stewardship, accessed Aug. 23, 2021, 4 pages. |
Austin H. Bonnett, “Root Cause Failure Analysis for AC Induction Motors in the Petroleum and Chemical Industry,” 2010, IEEE, Paper No. PCIC-2010-43, 13 pages. |
Carolyn Davis, “Natural Gas Finding Niche in E-Fracking, but Diesel Still Rules,” Sep. 6, 2019, Natural Gas Intel, https://www.naturalgasintel.com/natural-gas-finding-niche-in-e-fracking-but-diesel-still-rules, 9 pages. |
Tim Rahill and Michael C. Fousha, “Sorting Out the Overlap,” Jan./Feb. 2009, IEEE Industry Applications Magazine, 12 pages. |
Jodi Shafto, “Growth in electric-fracking fleets stunted by tight producer budgets,” Aug. 6, 2019, S&P Global Market Intelligence, https://wwww.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/growth-in-electric-fracking-fleets-stunted-by-tight-producer-budgets, accessed Sep. 16, 2021, 4 pages. |
A. H. Bonnett et al., “Squirrel Cage Rotor Options for A.C. Induction Motors,” IEEE, accessed May 18, 2021, 4 pages. |
U.S. Well Services Investor and Analyst Update: Second Quarter 2021 in Review, 2021, 7 pages. |
Standing Order Governing Proceedings—Patent Cases, in the United States District Court for the Western District of Texas, Waco Division, filed Nov. 17, 2021, 11 pages. |
U.S. Well Services—Services, http://uswellservices.com/services/, accessed Nov. 13, 2021, 10 pages. |
Elsevier, “Variable Speed Pumping—A Guide to Successful Applications,” 2019, 186 pages. |
U.S. Well Services, Inc., and U.S. Well Services, LLC v Halliburton Company, Cimarex Energy Co., Halliburton Energy Services, Inc., and Halliburton US Techologies, Inc., Case No. WA:21-CV-00367-ADA, Document 61, Order Setting Markman Hearing, Nov. 29, 2021, 1 page. |
U.S. Well Services, Inc., and U.S. Well Services, LLC v Halliburton Company, Cimarex Energy Co., Halliburton Energy Services, Inc., and Halliburton US Techologies, Inc., Case No. WA:21-CV-00367-ADA, Document 61, Order Resetting Markman Hearing, Dec. 8, 2021, 1 page. |
Affidavit of Duncan Hall, Internet Archives on Jun. 7, 2021, https://web.archive.org/web/20120917102614/http:/www.quincieoilfield.com/pdf/3.0%20Gardner%20Denver/2500/GD2500Q%200p%20&%20Service%20Manual.pdf, 76 pages. |
Number | Date | Country | |
---|---|---|---|
20190345804 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62242173 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15653028 | Jul 2017 | US |
Child | 16522043 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15291842 | Oct 2016 | US |
Child | 15653028 | US | |
Parent | 13679689 | Nov 2012 | US |
Child | 15202085 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15202085 | Jul 2016 | US |
Child | 15291842 | US |