The present invention relates to electrical power systems in electric vehicles. More specifically, the present invention relates to apparatus for and methods of determining and reacting to an electric vehicle rollover.
For a multitude of reasons, it is advantageous to use electric vehicles having rechargeable batteries rather than vehicles using internal combustion engines. Electric vehicles (EVs) are inherently more efficient, meaning more energy is used in locomotion than lost to heat than in conventional engines. Also, EVs do not exhaust any byproducts. However, the use of EVs presents technical challenges. For example, the batteries in an EV must be monitored with respect to rollover conditions. A rollover condition occurs when the battery becomes dislodged from its mounting point and freely moves about the cabin or other storage area or when the entire EV rolls over. In an EV having modular batteries, such as the EV and system described in U.S. patent application Ser. No. 12/779,877 to Zhou et. al., multiple batteries or battery packs must be monitored for a rollover condition. For safety reasons, a rollover condition must be detected, signaled and reacted to. Otherwise, first responders such as firefighters or paramedics may be injured by live batteries that have become damaged or are freely conducting current, or a host of other failure states that can be associated with a rollover. Also, in a rollover condition, a battery may cause a spark leading to fire. Signaling and reacting can include disconnecting the battery, emitting a rollover signal such as a sound, a light, or the like. Rollover monitoring and reaction systems in current vehicles are generally computer systems. Current solutions employ microprocessors executing an operating system. Such systems are inherently complex and require dedicated software systems that must be made sufficiently robust since a failure of the battery management system may cause the rollover monitoring and reaction system to fail.
Cost effective, simple and modular methods and apparatus for detecting and reacting to an EV rollover are presented herein. As discussed above, operating systems and other software add cost that increase the retail prices of EVs to a point of commercial infeasibility. To that end, the methods and apparatus disclosed in this application are primarily hardware driven with off-the-shelf components that are widely available and do not depend on software. In operation, when there is a rollover event of the entire EV or the battery modules, a rollover detection device will detect the rollover condition and react to it accordingly. For example, when a rollover is detected, a rollover condition is signaled to a controller that disconnects the batteries from an overall power delivery system in an EV. Advantageously, any circuitry relating to the operation of the devices, modules and means described herein can be powered by the batteries that they are coupled to rather than a power bus that powers the remaining electrical system in an EV. As a result, the systems described herein can operate independently to electrically or physically de-couple batteries from a power delivery system in an EV even if a catastrophic event, such as a collision causing a tilt or rollover condition, has completely severed or destroyed the power delivery system.
In one aspect of the invention, an apparatus for detecting a change in orientation comprises a first and a second position sensor, outputting a first and a second tilt state respectively. The tilt state of each position sensor represents a tilt orientation that the apparatus is in. The apparatus also has a circuit for filtering a change in the tilt states should they occur, so that instantaneous changes in tilt orientation do not trigger a false rollover condition. Preferably, each of the position sensor are oriented opposite each other. Alternatively, the position sensors can be in other orientations other than directly opposite each other. When the apparatus is tilted, both position sensors will register the tilt. A controller registers the change in both tilt sensors after the filter. Preferably, the controller will output a tilt condition in response to a rollover. The controller is able to trigger a reaction to the rollover, such as disconnecting the batteries from the power delivery system of the EV.
In another aspect of the invention, a battery rollover detection system in an EV comprises at least one battery module coupled to a power delivery system, the battery module having a housing that encases a plurality of individual battery cells and a rollover detection circuit coupled to the housing, the rollover detection circuit. The rollover detection circuit comprises a first position sensor outputting a first state, a second position sensor outputting a second state, a circuit for filtering the first state and the second state, and a circuit for determining a difference between the first state and the second state. Furthermore, the first tilt sensor is in a first orientation, the second tilt sensor is in a second orientation, wherein the first orientation and second orientation are opposite one another. Alternatively, the orientations can be askew from each other rather than directly opposite. Preferably, the rollover detection circuit is coupled to the housing along a plane parallel to gravity and parallel to a top surface of the battery. Such a plane would be parallel to an approximate plane defined by the road that the EV is traveling on. Alternatively, the rollover detection circuit is coupled to the housing along a plane not parallel to the ground. In some embodiments, the rollover detection circuit further comprises a filter module for filtering a change of state from at least one of the first position sensor and the second position sensor and a circuit for determining a rollover condition based on a change of the first state and the second state relative to each other. Furthermore, the rollover detection circuit comprises a circuit for transmitting a rollover condition to an external controller and a circuit for disconnecting the at least one battery module from the power delivery system.
In another aspect of the invention, a method of detecting a rollover condition in a battery of a power delivery system of an EV comprises providing a first tilt sensor in a first orientation, providing a second position sensor in a second orientation, measuring a first state of the position sensor, measuring a second state of the second tilt sensor, and comparing the first state to the second state. In some embodiments, the method further comprises filtering at least one of the first state and the second state and signaling a rollover condition in response to the step of comparing the first state to the second state. Preferably, the method also comprises disconnecting the battery from the power delivery system in response to the step of signaling a rollover condition.
In the following description, numerous details are set forth for purposes of explanation. However, one of ordinary skill in the art will realize that the invention can be practiced without the use of these specific details. Thus, the present invention is not intended to be limited to the embodiments shown but is to be accorded the widest scope consistent with the principles and features described herein or with equivalent alternatives. Reference will now be made in detail to implementations of the present invention as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts.
To that end, a simple tilt sensor 200 is shown in
The first position sensor 210 and the second position sensor 215 are coupled to logic circuitry 230. The logic circuitry 230 is configured to sense a change in both output states of the first position sensor 210 and the second position sensor 215. The logic circuitry 230 is further configured to determine a tilt condition when both the first position sensor 210 and the second position sensor 215 change states simultaneously. Since the tilt sensor 200 is mounted onto an object, such as a battery, when that object tilts, the tilt sensor 200 tilts along with it. As a result, both the first position sensor 210 and the second position sensor 215 changes orientation according to the tilt. The use of two oppositely oriented position sensors adds a layer of fault tolerance. Because the cost effective position sensors are generally mechanical devices, they are non-latching, meaning that once there is a change in their output state, that change to a new state is not latched and the output state can again change without being reset by an external control. Any errors caused as a result will not cause a faulty tilt or rollover condition because the logic circuitry 230 is configured to signal a tilt or rollover condition only upon a change in the output states of both position sensors; meaning that a faulty output from one position sensor will not be sufficient to cause a faulty tilt or rollover signal. Advantageously, the logic circuitry 230, which can be very simple and cost effective, will quickly be able to determine when output states of both position sensors change simultaneously. The logic circuitry 230 is coupled to an output port 235 for communicating a tilt condition to an external processor (not shown) that can then react to the tilt condition. In the example where the tilt sensor 200 is affixed to a modular battery in an EV, the external processor can shut down the battery, order a physical separation of the battery, or any other countermeasure for ensuring that passengers or safety personnel do not come into contact with live batteries in the event that an EV has rolled over during a collision. The logic circuitry 230 is preferably comprised of off the shelf integrated circuits. For example, a microprocessor, FPGA, ASIC or the like can be programmed to determine the difference in output states of the first and second position sensors. The person of ordinary skill having the benefit of this disclosure will readily identify several means and methods to realize the logic circuitry 230. In other embodiments, discrete analog components such as comparators and amplifiers can be used.
In some embodiments, it is advantageous to take into account momentary, insignificant changes in orientation to a battery in an EV. It is undesirable to determine a tilt condition when the condition is momentary. Doing so can cause the EV to stop receiving power and become stalled in traffic. To that end, a filter circuit 220 is included between the position sensors 210, 215 and the logic circuitry 230. The filter circuit 220 will smooth out the output signal of the position sensors 210 and 215, thereby filtering out momentary or instantaneous shifts in orientation that will naturally occur during driving, such as hitting potholes or going over driveways. Preferably, the filter circuit 220 comprises an active analog filter, generally available off the shelf, or a passive filter comprising at least two among a resistor, an inductor and a capacitor (e.g., an RC filter). The time constant of an RC filter can be set accordingly to filter out non events (known non-rollover conditions) of varying lengths. For example, an RC time constant can be tuned to filter out non events lasting under a second. Furthermore, non events, such as potholes or steep driveways, will cause small outputs from the position sensors 210 and 215, relative to a true rollover even which will cause the position sensors 210 and 215 to emit large outputs. Alternatively, digital filters or digital processing can be utilized, or any other known or convenient method of filtering a signal can be used. For example, the outputs of the position sensors 210 and 220 can be coupled to an analog to digital converter, and thereby the outputs can be filtered or otherwise manipulated digitally. In general, most off the shelf digital processors comprise analog to digital converters on board and thus digital implementations can be cost effective and simple. The person of ordinary skill having the benefit of this disclosure will readily identify several means and methods to realize the filter circuit 220. Furthermore, the time filter circuit 220 can be included in a single integrated circuit with the logic circuitry 230.
A person of ordinary skill having the benefit of this disclosure will readily appreciate the benefits. What is provided is a cost effective, easily deployable system for detecting and reacting to a tilt or rollover condition in an EV without the use of operating systems, software, or firmware. As a result, the systems and methods described above can operate independent of any computer system or other network that is employed within an EV. Advantageously, should those other systems fail during a collision or other traffic accident or any other rollover or tilt condition, the tilt or rollover condition will still operate and as a result the batteries of the EV will be physically and/or electrically de-coupled from the rest of a power delivery system. Used herein, the term “position sensor” is not meant to be limiting but rather encompasses a broad spectrum of modules, assemblies and components that sense an orientation and output a state based on that orientation, including but not limited to various accelerometers, capacitive devices, piezoelectric devices, MEMS devices, spring mass base devices, electromechanical devices, quartz devices, shear mode devices, thermal devices, or any other known, convenient or application specific modules that sense and output an orientation.
While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit and scope of the invention as defined by the appended claims. Thus, one of ordinary skill in the art will understand that the invention is not to be limited by the foregoing illustrative details.
This application claims priority to co-pending U.S. Provisional Patent Application Ser. No. 61/364,313, filed Jul. 14, 2010 and entitled “BATTERY MONITOR SYSTEM FOR AN ELECTRIC VEHICLE,” which is hereby incorporated by reference in its entirety as if set forth herein.
Number | Date | Country | |
---|---|---|---|
61364313 | Jul 2010 | US |