Electrical cable assemblies can be used to electrically connect one electrical component to another electrical component. For instance, as illustrated in
Still referring to
In accordance with the illustrated example, the contact pads 22 are supported by the lower surface 20b of the substrate 12. Each of the contact pads 22 can be spaced from each other along the lateral direction A and can be disposed proximate to the front end 20d. The contact pads 22 may include a plurality of signal contact pads 22a and a plurality of ground contact pads 22b. Signal contact pads 22a and ground contact pads 22b can be arranged in a row R1. Within row R1, signal contact pads 22a and ground contact pads 22b may be in a repeating signal-signal-ground pattern, a ground-signal-signal pattern, or a signal-ground-signal pattern. Signal contact pads 22a and ground contact pads 22b can also be arranged in a repeating signal-signal-ground-ground pattern, a ground-signal-signal-ground pattern (
With continuing reference to
Referring to
The cables 18 may further include at least one ground conductor, such as drain wires 28b, in addition to signal conductors 28a. The drain wires 28b can be used in combination with the ground jacket 30 or by themselves. The drain wires 28b can be surrounded by the outer layer 34. A drain wire 28b may also be surrounded by the ground jacket 32, when a ground jacket is present.
The cables 18 can be configured to mount to the contact pads 22, for instance at their respective proximal ends 24. Thus, the cables 18 can be in electrical communication with the respective complementary contact pads 22. Each of the cables 18 can be mounted to the substrate 12 in a variety of ways. For instance, a portion of the insulative layers 30 and 34 and the ground jacket 32 of each cable 18 can be removed from the respective conductor 28 at the proximal end 24 so as to expose the conductors 28. Alternatively, the cable 18 can be manufactured such that the conductors 28 extend longitudinally out from the insulating layers 30 and 34 and the ground jacket 32 so as to expose the conductors 28. The exposed conductors 28 can be mounted to respective contact pads 22 at the proximal end 24, for instance by soldering the conductors 28 to the contact pad 22. For instance, signal carrying conductors 28a can define signal mounting portions 36a that are exposed such that the mounting portions 36a extend from an insulative layer along the longitudinal direction L and terminate at the proximal end 24. The signal mounting portions 36a can be mounted to signal contact pads 22a. Similarly, drain wires 28b can define drain mounting portions 36b that are exposed such that the mounting portions 36b extend from an insulative layer along the longitudinal direction L and terminate at the respective proximal end 24. The mounting portions 36b of the drain wires 28b can be mounted to ground contact pads 22b.
Referring to
In connecting high speed signal cables to a substrate, insulating layers of the cable may be removed thereby exposing signal conducts. These exposed signal conductors may result in electromagnetic interference, such as cross talk. Mitigating such electromagnetic interference is desirable.
In accordance with one embodiment, an electrical cable can be configured to electrically connect to contact pads that are carried by a substrate. The electrical cable can include an electrical insulator and first and second electrical signal conductors, and respective portions of each of the first and second electrical signal conductors can be disposed within the insulator. The electrical cable can further include first and second drain wires having respective portions disposed within the insulator and spaced apart from each other along a first direction such that the first and second electrical signal conductors are disposed between the first and second drain wires along the first direction. Each of the first and second drain wires can be elongate along a second direction that is substantially perpendicular to the first direction, and each of the first and second drain wires can define an outer perimeter having first and second opposed surfaces that are spaced from each other along the first direction. The electrical cable can further include an electrically conductive auxiliary wire that defines an outer perimeter that is attached to the outer perimeter of at least a select one of the first and second drain wires. For instance, the auxiliary wire can be attached to the drain wire such that both of the wires can abut the substrate when the electrical cable is electrically connected to the contact pads that are carried by the substrate.
The foregoing summary, as well as the following detailed description of an example embodiment of the application, will be better understood when read in conjunction with the appended drawings, in which there is shown in the drawings example embodiments for the purposes of illustration. It should be understood, however, that the application is not limited to the precise arrangements and instrumentalities shown. In the drawings:
Applicants have recognized that varying the size and/or shape of the drain wires in various configurations reduces cross-talk in high speed signal cables. In particular, applicants have recognized that increasing the width of a drain wire can reduce cross-talk in cable assemblies and/or can increase the density of electrical cable assemblies. While various configurations are described herein with reference to preferred embodiments and/or preferred methods, it should be understood that the words which have been used herein are words of description and illustration, rather than words of limitation, and that the scope of the instant disclosure is not intended to be limited to those particulars, but rather is meant to extend to all structures, methods, and/or uses of the herein described cables. Those skilled in the relevant art, having the benefit of the teachings of this specification, may effect numerous modifications to the electrical cables as described herein, and changes may be made without departing from the scope and spirit of the instant disclosure, for instance as recited in the appended claims.
Referring to
The electrical cable 100 can include at least one electrically conductive signal conductor 102, for instance a pair of signal conductors 102, that defines a cylindrical body such as to define a substantially circular cross section in a plane defined by the lateral and transverse directions A and T, respectively. A diameter d can define the diameter of the substantially circular cross section of the signal conductor 102. The diameter d can be least 0.12 millimeters (mm) and less than 1.0 mm. For instance, and without limitation, the electrical cable 100 can have an American Wire Gauge (AWG) of 36, 30, 26, or 22, and the diameter d can be about 0.13 mm, 0.25 mm, 0.4 mm, or 0.64 mm, respectively. The electrical cable 100 can further include at least one electrically conductive drain wire 104, for instance a pair of drain wires 104 in accordance with the illustrated embodiment, that is disposed adjacent to at least one signal conductor 102. At least a portion of at least one drain wire 104 can define a first or inner side surface 104a that is configured to face at least one electrically conductive signal conductor 102, such as a first and second signal conductor 102. At least a portion of the at least one drain wire 104 can further define a second or outer side surface 104b that is opposite the inner side surface 104a. At least one drain wire 104, such as a first and second drain wire 104 in accordance with the illustrated embodiment, can define a drain distance DD measured from the respective inner side surface 104a to the respective outer side surface 104b along a straight line. The drain wire 104 can further define an outer perimeter 116. Thus, each of the first and second drain wires 104 can define the outer perimeter 116 having the inner and outer side surfaces 104a and 104b, which can be referred to as first and second opposed surfaces 104a and 104b, respectively, that are spaced from each other along the lateral direction A.
The electrical cable 100 can include a first electrical insulator, such as the outer layer 34 shown in
The drain wires 104 can include respective mounting portions that can be defined by the portions of the drain wires 104 that extend out from an insulative layer along the longitudinal direction L so as to expose the drain wires 104. The mounting portions can thus be mounted to respective electrical contacts on the substrate 106. The drain wires 104 can be exposed when they are not surrounded by an insulative layer of the electrical cable 100. The mounting portion, and thus the drain wire 104, can define a mounting length ML that can span the mounting portion along the longitudinal direction L. With reference to
With continuing reference to the illustrated embodiment in
In accordance with the illustrated embodiment shown in
In accordance with illustrated embodiment, the select one of the first and second drain wires 104 and the auxiliary wire 108 can define a width W, which can also be referred to as a maximum width W, that extends from the outer surface 104b of the select one of the first and second drain wires 104 to the inner surface 108a of the auxiliary wire 108 that is attached to the select one drain wire 104. Alternatively, the select one of the first and second drain wires 104 and the auxiliary wire 108 can define the width W that extends from the inner surface 104a of the select one of the first and second drain wires 104 to the outer surface 108b of the auxiliary wire 108 that is attached to the select one drain wire 104. Thus, it can be said that the select one of the first and second drain wires 104 and the auxiliary wire 108 can define the maximum width W along the lateral direction A that is equal to the sum of the drain distance DD and the auxiliary distance AD, and the maximum width can be greater than the diameter d. The width W can be at least equal to the diameter d, in accordance with the illustrated embodiment. The width can be greater than 0.12 mm and less than 1.5 mm, for instance 0.15 mm or 1.3 mm.
Referring to the illustrated embodiment shown in
Still referring to
Referring also to
The width W can be greater than 0.12 mm and less than 1.5 mm, for instance greater than 0.2 mm and less than 1.3 mm, for instance 0.5 mm or 1.0 mm. For instance, and without limitation, the width W can be approximately 0.4 mm. Such a width can be achieved by two 0.2 mm drain wires, for instance the drain wire 104 and the auxiliary wire 108, side-by-side along the lateral direction A. Side-by-side drain wires can define the width W that is greater than 0.12 mm, for instance if an intermediate conductive member is placed between the drain wires. Alternatively, with reference to
Referring still to
It will be appreciated that a method for reducing crosstalk can include fabricating electrical cables as described above. Further, it will be appreciated that a method for increasing the density of an electrical cable can include defining drain wires and/or auxiliary wires as described herein. For instance, drain wires and signal conductors can be spaced closer together in the electrical cables described herein than they are spaced from each other in conventional cables while achieving no more crosstalk, for instance less crosstalk, than the crosstalk that is present in conventional cables.
Although the electrical cable assembly has been described herein with reference to preferred embodiments and/or preferred methods, it should be understood that the words which have been used herein are words of description and illustration, rather than words of limitation, and that the scope of the instant disclosure is not intended to be limited to those particulars, but rather is meant to extend to all structures, methods, and/or uses of the herein described cable retention housing. Those skilled in the relevant art, having the benefit of the teachings of this specification, may effect numerous modifications to the electrical cable assembly as described herein, and changes may be made without departing from the scope and spirit of the instant disclosure, for instance as recited in the appended claims.
For instance, it should be appreciated that a means for using one or more drain wires for reducing the crosstalk between signal conductors in, for example, an electrical cable assembly may include a means for increasing the width of a drain wire as described above. Similarly, it should be appreciated that a means for increasing the density of an electrical cable may include increasing the width of a drain wire as described above. The electrical cable, and thus an electrical cable assembly, may include means for widening a drain wire. For instance, an electrical cable may include means for disposing respective portions of a first electrical signal conductor and a second electrical signal conductor within an insulator; a means for disposing respective portions of first and second drain wires within the insulator; and a means for spacing the first and second drain wires apart from each other along a first direction such that the first and second electrical signal conductors are disposed between the first and second drain wires along the first direction. The first and second drain wires can be elongate along a second direction that is substantially perpendicular to the first direction, and each of the first and second drain wires can define an outer perimeter that has first and second opposed surfaces that are spaced from each other along the first direction. The electrical cable, and thus the electrical cable assembly, can include a means for electrically attaching an auxiliary wire to at least a select one of the first and second drain wires. For instance, the auxiliary wire can define an outer perimeter that can attach to the outer perimeter of at least the select one of the first and second drain wires.
Additionally, an electrical cable, and thus an electrical cable assembly, may include means for defining a first surface of a drain wire of the electrical cable and a second surface of the drain wire that is opposite the first surface. The electrical cable can include means for configuring the first surface to face at least one electrically conductive signal conductor of the electrical cable. The electrical cable can further include means for attaching an electrically conductive auxiliary wire to the second surface of the drain wire so as to define a width that is measured from the first surface to a surface of the auxiliary wire along a straight line, the width being greater than 0.15 millimeters.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/747,424 filed Dec. 31, 2012, the disclosure of which is hereby incorporated by reference as if set forth in its entirety herein. This application is related to co-pending U.S. application Ser. No. 14/089,163, filed on Nov. 25, 2013, entitled “ELECTRICAL CABLE ASSEMBLY.”
Number | Name | Date | Kind |
---|---|---|---|
4488125 | Gentry et al. | Dec 1984 | A |
5091610 | Strauss | Feb 1992 | A |
5867896 | Watanabe | Feb 1999 | A |
6288372 | Sandberg et al. | Sep 2001 | B1 |
6444902 | Tsao et al. | Sep 2002 | B1 |
6448500 | Hosaka et al. | Sep 2002 | B1 |
6540559 | Kemmick et al. | Apr 2003 | B1 |
6674007 | Ide et al. | Jan 2004 | B2 |
6677518 | Hirakawa et al. | Jan 2004 | B2 |
6689958 | McKenney | Feb 2004 | B1 |
6740808 | Chang | May 2004 | B1 |
6781061 | Tanaka | Aug 2004 | B2 |
6977344 | Tanaka | Dec 2005 | B2 |
7358443 | Shatkin et al. | Apr 2008 | B2 |
7999185 | Cases et al. | Aug 2011 | B2 |
8039746 | Ashida et al. | Oct 2011 | B2 |
8267718 | Straka et al. | Sep 2012 | B2 |
8407977 | Cheng et al. | Apr 2013 | B2 |
8866017 | Tanabe | Oct 2014 | B2 |
20030111255 | Buck et al. | Jun 2003 | A1 |
20040154826 | Tanaka | Aug 2004 | A1 |
20050272303 | Wu | Dec 2005 | A1 |
20090314511 | Hagi et al. | Dec 2009 | A1 |
20130168149 | Gundel | Jul 2013 | A1 |
20140182885 | Gross et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
2002184540 | Jun 2002 | JP |
2002-334615 | Nov 2002 | JP |
2003297155 | Oct 2003 | JP |
2004079439 | Mar 2004 | JP |
2005135839 | May 2005 | JP |
2010218741 | Sep 2010 | JP |
WO 2012120993 | Sep 2012 | WO |
Entry |
---|
Partial Supplementary European Search Report for European Application No. 13867907.1 dated Aug. 31, 2016. |
Partial Supplementary European Search Report for European Application No. 13869479.9 dated May 6, 2016. |
Extended European Search Report for European Application No. 13869479.9 dated Aug. 24, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2013/076883 dated Apr. 15, 2014. |
International Preliminary Report on Patentability for International Application No. PCT/US2013/076883 dated Jun. 30, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2013/074985 dated Apr. 8, 2014. |
International Preliminary Report on Patentability for International Application No. PCT/US2013/074985 dated Jul. 9, 2015. |
Number | Date | Country | |
---|---|---|---|
20140182890 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61747424 | Dec 2012 | US |