This application claims the benefit under 35 U.S.C. § 119(a) of patent application Ser. No. 17/205,935.4 filed in the European Patent Office on Dec. 7, 2017, the entire disclosure of which is hereby incorporated by reference.
The invention relates to an electrical connecting cable for producing an electrical connection between two electrical devices, more particularly for connecting electrical devices in vehicles, as well as to a method for producing an electrical connecting cable.
The present invention will now be described, by way of example with reference to the accompanying drawings, in which:
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the various described embodiments. However, it will be apparent to one of ordinary skill in the art that the various described embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.
An electrical connecting cable includes a plug housing, an electric cable, a ring element, an elastic sealing element and a cap. The plug housing has a tubular lead-in region for introducing the electric cable into the plug housing. The lead-in region is aligned along a longitudinal axis of the electric cable and has a constriction. The cap is fastened on the plug housing by retaining means. The cap has an opening for passing through the electrical lead. The ring element surrounds the electrical lead at least in part and the sealing element surrounds the electrical lead. The ring element and the sealing element are arranged between the constriction and the cap.
With the electrical connecting cable of the invention, the play which the electrical lead has inside the plug housing is eliminated through the ring element, at least in the region where the ring element contacts both the plug housing and the electrical lead. Vibrations which act on the electrical lead outside of the plug housing and likewise cause this to vibrate can be continued less severely from this region in the direction of the contact element. This structure prevents or reduces at least the vibrations of the contact element inside the plug housing caused by the electrical lead. Increased wear of the contact element is thereby avoided and the service life and reliability of the electrical connection is improved. The electrical connecting cable may be manufactured economically since it is to be produced with standard production equipment. The terms electrical lead and electric cable or cable used here all mean an electrical lead which is known from the prior art, in which these electrical leads have a conductive metal core (solid material or stranded) and a non-conductive insulation surrounding the core.
A method for manufacturing an electrical connecting cable comprises the steps:
The constriction preferably has at least one first guide face inclined in relation to the longitudinal axis and opposite the cap, and the ring element has a second guide face which is inclined at a second guide angle in relation to the longitudinal axis and is opposite the first guide face. The opposing guide faces form the contact surface between the plug housing and the ring element.
It is particularly preferred if the first guide face extends from an inner surface of the tubular lead-in region at a first guide angle to the longitudinal axis into the tubular lead-in region and then forms a funnel-shaped structure. The first guide face is inclined towards the contact element so that a force which acts on the ring element along the longitudinal axis in the direction of the contact element forces the ring element in the direction of the electrical lead. A force results from this which attempts to reduce the diameter of the ring element.
The first guiding angle and the second guiding angle preferably have the same value in relation to the longitudinal axis. If the two guide faces have the same angle in relation to the longitudinal axis then they lie flat against one another in the contact regions and can easily be displaced relative to one another.
It is particularly preferred if the first guiding angle and the second guiding angle have a value of 45° in relation to the longitudinal axis. A value of 45° enables a moderate reduction in the diameter of the ring element with a moderate amount of force.
The first guide face is preferably formed by a plurality of first part-faces, wherein the first part-faces are arranged on ribs which project into the tubular lead-in region. Dividing the first guide face up into first part-faces makes it possible to save material and weight in the plug housing, wherein the functional capacity remains.
The second guide face of the ring element is preferably pressed along the longitudinal axis by the elastic sealing element elastically against the first guide face of the constriction. The sealing element presses the ring element elastically in the direction of the contact element throughout the entire service life of the electrical connecting cable. Signs of ageing which can occur in the case of rigid structures are thereby avoided.
It is particularly preferred if the ring element consists of a ring-shaped body which has a separating point. A ring element where a separating point was inserted is substantially more flexible when it is radially deformed. The ring element can be radially deformed with little force and automatically returns to shape when the force is removed. The size of the change in diameter is substantially dependent on the size of the separating point. The separating point should in any case be selected so as to be small in relation to the overall periphery. In practice, the separating point should be no more than 10 percent of the overall periphery. The ring element can be made from metal or plastic, wherein the separating point can be introduced in the case of metal ring elements by sawing or milling. In the case of ring elements made from plastic, the separating point can be already provided in the injection moulding tool.
The separating point preferably runs diagonally to the axis of rotation of the ring-shaped body. Properties of the ring element can be positively changed through the position of the separating point or the arrangement of the cut through the ring element.
The ring element preferably has a base from which a plurality of fingers extend. The base adjoins the sealing element. The fingers are divided parallel to the longitudinal axis along the periphery of the ring element. The second guide face is formed by a plurality of second part-faces which are arranged at the finger ends. The fingers of the ring element are flexible so that they can be deformed. Each individual finger has a short distance from the adjoining finger. If all the fingers are deformed inwards they each move up to the adjoining finger and thereby form a smaller opening than in the unformed state. The electrical lead can be held without play in position in this smaller opening.
The ring element has, in a particularly preferred manner, a reduced diameter so long as the second guide face of the ring element is pressed along the longitudinal axis against the first guide face of the constriction. The ring element is pressed with its inner periphery against the outer periphery of the electrical lead, so long as the first guide face is pressed against the second guide face. A mechanical connection thereby remains between the electrical lead and the plug housing.
The elastic sealing element is preferably deformed elastically between the cap and the ring element. The elastic sealing element is deformed elastically between the cap and the ring element and thereby generates the required force to press the ring element in the direction of the contact element.
The retaining means for fastening the cap on the plug housing preferably comprise detent hooks which interact with protrusions on the plug housing in order to hold the cap on the plug housing. This structure has proved particularly sturdy and commercially viable in the prior art. However other fastening possibilities are also conceivable.
The electrical connecting cable is preferably designed for use in vehicles. Problems are known particularly in the case of vehicles with regard to vibrations. The inventive electrical connecting cable is particularly suitable for this use.
Preferred configurations of the invention will now be described in further detail. Similar or corresponding details of the object according to the invention are provided with the same reference numerals.
While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to configure a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely prototypical embodiments.
Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the following claims, along with the full scope of equivalents to which such claims are entitled.
As used herein, ‘one or more’ includes a function being performed by one element, a function being performed by more than one element, e.g., in a distributed fashion, several functions being performed by one element, several functions being performed by several elements, or any combination of the above.
It will also be understood that, although the terms first, second, etc. are, in some instances, used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, without departing from the scope of the various described embodiments. The first contact and the second contact are both contacts, but they are not the same contact.
The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
Additionally, while terms of ordinance or orientation may be used herein these elements should not be limited by these terms. All terms of ordinance or orientation, unless stated otherwise, are used for purposes distinguishing one element from another, and do not denote any particular order, order of operations, direction or orientation unless stated otherwise.
Number | Date | Country | Kind |
---|---|---|---|
17205935 | Dec 2017 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3010747 | Bondon | Nov 1961 | A |
4030741 | Fidrych | Jun 1977 | A |
4549755 | Kot | Oct 1985 | A |
4640568 | Magourou | Feb 1987 | A |
4810832 | Spinner | Mar 1989 | A |
5059747 | Bawa | Oct 1991 | A |
5567174 | Ericson, Jr. | Oct 1996 | A |
5824962 | Katsuma | Oct 1998 | A |
5951327 | Marik | Sep 1999 | A |
6913486 | Nagayasu | Jul 2005 | B2 |
20030135999 | Khemakhem | Jul 2003 | A1 |
20110130035 | Ebihara | Jun 2011 | A1 |
20120159740 | Strelow | Jun 2012 | A1 |
20130029541 | Chiarelli | Jan 2013 | A1 |
20130330952 | Mori | Dec 2013 | A1 |
20140273540 | Brown | Sep 2014 | A1 |
20190013626 | Grimm | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
3249757 | Nov 2017 | EP |
Number | Date | Country | |
---|---|---|---|
20190181583 A1 | Jun 2019 | US |