The subject matter described and/or illustrated herein relates generally to electrical connectors, and more specifically, to electrical connectors for electronic modules.
Competition and market demands have continued the trend toward smaller and higher performance (e.g., faster) electrical systems. The resulting higher density electrical systems have led to the development of surface mount technology. Surface mount technology allows an electronic module to be electrically connected to contact pads on the surface of an electrical component, such as a printed circuit (sometimes referred to as a “circuit board” or a “printed circuit board”). The electronic module is connected to the electrical component either directly or through an intervening electrical connector, rather than using conductive vias that extend within the electrical component. Surface mount technology allows for an increased component density on the electrical component, which enables the development of smaller and higher performance systems.
Examples of electrical connectors for such smaller and higher performance electrical systems include land-grid array (LGA) sockets and ball-grid array (BGA) sockets. LGA sockets include an array of electrical contacts that are electrically connected to the electrical component and engage an array of contact pads on the electronic module. BGA sockets also include an array of electrical contacts that are electrically connected to the electrical component, but instead of contact pads the electrical contacts of BGA sockets engage an array of solder balls on the electronic module. The electrical contacts of both LGA sockets and BGA sockets may engage contact pads on the electrical component or may be electrically connected to the electrical component via an array of solder balls.
The electrical contacts of electrical connectors used to electrically connect an electronic module to an electrical component are typically fabricated from the same sheet or reel of material, for example by stamping or cutting the contacts out of the sheet or reel. Adjacent electrical contacts are connected together by a strip of material that remains after the contacts have been fabricated from the sheet or reel. For example, a row of the electrical contacts may be fabricated from the same sheet or reel, with each adjacent pair of contacts within the row being connected together by the strip. However, the trend toward higher density electrical systems results in a relatively small pitch between the electrical contacts. It may be difficult to separate adjacent electrical contacts from each other because of the relatively small pitch between the contacts. Specifically, because of the limited space between adjacent electrical contacts, it is difficult to break the strip that holds adjacent electrical contacts together. Traditionally, the strip connecting adjacent electrical contacts is broken before the contacts are mounted on an insulator of the electrical connector. Each electrical contact is then individually aligned and mounted on the insulator, which may increase the difficulty, expense, and/or time it takes to assemble the electrical connector.
In one embodiment, an electrical connector is provided for electrically connecting an electronic module to an electrical component. The electrical connector includes electrical contacts having mounting bases that are initially mechanically connected together by a connection strip. The connection strip extends along a connection path from the mounting base of one of the electrical contacts to the mounting base of the other electrical contact. The connection strip is broken along the connection path such that the electrical contacts are separated from each other. The electrical connector also includes a insulator having a module side and an opposite component side. The mounting bases of the electrical contacts are mechanically connected to the insulator on the module side of the insulator. The insulator includes a punch opening that extends into the module side of the insulator. The punch opening is aligned with the connection path of the connection strip and is configured to receive a punch tool for breaking the connection strip.
In another embodiment, an electrical connector for electrically connecting an electronic module to an electrical component includes electrical contacts having mounting bases that are mechanically connected together by a connection strip. The connection strip extends along a connection path from the mounting base of one of the electrical contacts to the mounting base of the other electrical contact. The electrical connector also includes a insulator having a module side and an opposite component side. The mounting bases of the electrical contacts are mechanically connected to the insulator on the module side of the insulator. The insulator includes a punch opening extending into the module side of the insulator. The punch opening is configured to receive a punch tool. The punch opening is aligned with the connection strip such that when the punch tool is received within the punch opening the punch tool is positioned to break the connection strip.
In another embodiment, a method is provided for fabricating an electrical connector. The method includes providing electrical contacts having mounting bases that are mechanically connected together via a connection strip, soldering the mounting bases of the electrical contacts to corresponding solder pads of a insulator, and separating the electrical contacts from each other by breaking the connection strip after soldering the mounting bases of the electrical contacts to the solder pads of the insulator.
The electrical connector 12 includes a dielectric alignment frame 18 that is mounted on the printed circuit 14. The alignment frame 18 holds an interconnect member 20 that includes an array of electrical contacts 22. The electronic module 16 has a mating side 24 along which the electronic module 16 mates with the interconnect member 20. The interconnect member 20 is interposed between contact pads (not shown) on the mating side 24 of the electronic module 16 and corresponding contact pads (not shown) on the printed circuit 14 to electrically connect the electronic module 16 to the printed circuit 14.
In the exemplary embodiment, the electrical connector 12 is a land grid array (LGA) connector. However, it is to be understood that the subject matter described and/or illustrated herein is also applicable to other connectors, connector assemblies, and/or the like, such as, but not limited to, ball grid array (BGA) connectors and/or the like. Moreover, while the electrical connector 12 is described and illustrated herein as interconnecting the electronic module 16 with a printed circuit 14, it should be understood that other electrical components may be interconnected with the electronic module 16 via the electrical connector 12, such as, but not limited to, a chip, a package, a central processing unit (CPU), a processor, a memory, a microprocessor, an integrated circuit, an application specific integrated circuit (ASIC), and/or the like. Furthermore, the electrical connector 12 is not limited to the number or type of parts shown in
The electrical contacts 22 include mounting bases 36. After being fabricated from the sheet or reel, adjacent electrical contacts 22 within the row 34 are mechanically and electrically connected together via the connection strips 26. Each connection strip 26 extends along a connection path 38 that extends from the mounting base 36 of one of the corresponding electrical contacts 22 to the mounting base 36 of the other corresponding electrical contact 22. As will be described below, the connection strips 26 are configured to be broken along the connection paths 38 to mechanically and electrically separate the electrical contacts 22 from each other. Punch openings 40 are provided within the module side 30 of the insulator 28 to enable the connection strips 26 to be broken using a punch 42 (
Although
In an alternative embodiment, one or more of the electrical contacts 622 within the row 623a is not initially connected to one or more adjacent electrical contacts 622 within the row 623a via a connection strip 626, and/or one or more of the electrical contacts 622 within the row 623b is not initially connected to one or more adjacent electrical contacts 622 within the row 623b via a connection strip 626. Similarly, in an alternative embodiment, one or more of the electrical contacts 622 within the column 625a, 625b, 625c, and/or 625d is not initially connected to one or more adjacent electrical contacts 622 within the same column 625a, 625b, 625c, and/or 625d via a connection strip 626.
Referring again to
The exemplary position of the punch openings 40 between the mounting bases 36 is a result of the exemplary connection paths 38 that extend entirely between the corresponding mounting bases 36. As used herein, “between” the mounting bases 36 is intended to mean an area 44 that is bounded by the dashed lines in
For example,
The electrical contacts 22 are illustrated in
In the exemplary embodiment, the punch 42 is used to break the connection strips 26. The punch 42 includes a punch tool 46 having an end 48 that is configured to engage a connection strip 26. The end 48 of the punch tool 46 is configured to sever, or break, the connection strip 26 when sufficient force is applied to the punch 42. Although shown as including an approximately planar surface, the end 48 of the punch tool 46 may additionally or alternatively include any other shape (e.g., a point, a round, a tip, a cutting edge, and/or the like) that enables the punch tool 46 to break the connection strip 26. In the exemplary embodiment, the approximately planar surface of the end 48 of the punch tool 46 enables the punch tool 46 to break the connection strip 26. Optionally, the punch 42 includes more than one punch tool 46 for simultaneously breaking more than one connection strip 26. The punch 42 may include any number of the punch tools 46 for simultaneously breaking any number of connection strips 26.
After the mounting bases 36 of the electrical contacts 22 have been mounted 56 on the insulator 28, the electrical contacts 22 are separated 58 from each other by breaking the connection strips 26. In the exemplary embodiment, the electrical contacts 22 are separated 58 from each other after the mounting bases 36 have been soldered to the solder pads 64 of the insulator 28. Separating 58 the electrical contacts 22 from each other includes inserting 60 the punch tool 46 into the punch openings 40. The end 48 of the punch tool 46 is engaged with the corresponding connection strip 26. Force is applied to the punch 42 in the direction of the arrow A until the connection strip 26 is broken 62 by the end 48 of the punch tool 46, as shown in
The connection strips 26 may alternatively be broken from the module side 30 of the insulator 28. Specifically, the punch 42 is positioned along the module side 30 of the insulator 28 and the end 48 of the punch tool 46 is engaged with the connection strip 26. Force is applied to the punch 42 in the direction of the arrow B until the connection strip 26 is broken 62 by the end 48 of the punch tool 46. After breaking the connection strip 26, the end 48 of the punch tools 46 is received into the corresponding punch opening 40. The punch openings 40 therefore provide accommodation for the end 48 of the punch tool 46, which would otherwise be forced into engagement with the insulator 28 and thereby possibly damage the insulator 28 and/or the punch 42. In another alternative embodiment, one or more of the connection strips 26 is broken using a punch from the component side 32, while one or more other connection strips 26 is broken using another punch (or the same punch at a different time) from the module side 30.
In an alternative embodiment, the connection strips 26 are broken after the electrical contacts 22 are mechanically connected to the insulator 28 using any other process. For example, the connection strips 26 may alternatively be broken by cutting the connection strips 26 with a laser and/or other cutting tool (not shown), by chemically etching the connection strips 26, and/or the like.
Each electrical contact 22 includes a mating segment 66 that extends outwardly from the mounting base 36. The mating segments 66 include mating interfaces 68 that are configured to engage the corresponding contact pads (not shown) on the mating side 24 (
Alignment holes 70 extend into the module side 30 of the insulator 28. The alignment holes 70 are positioned proximate corresponding ones of the solder pads 64. The electrical contacts 22 include alignment tails 72 that extend outwardly from the mounting bases 36. Each alignment tail 72 is received within the corresponding alignment hole 70. Reception of the alignment tails 72 within the alignment holes 70 positions (i.e., locates and orients) the mounting bases 36 relative to the solder pads 64. In other words, the alignment holes 70 and the alignment tails 72 cooperate to provide the electrical contacts 22 with the proper location and orientation on the module side 30 of the insulator 28.
The alignment tails 72 extend outwardly from the mounting bases 36 to tips 74. Each alignment tail 70 includes a module side segment 76 that extends outwardly from the mounting base 36 and a hole segment 78 that extends from the module side segment 76 and includes the tip 74. The module side segment 76 extends along the module side 30 of the insulator 28. The hole segment 78 extends outwardly from the module side segment 76 and into the corresponding alignment hole 70. The tip 74 of each alignment tail 72 is engaged with a corresponding solder ball 80 (not visible in
Optionally, the alignment tails 72 are engaged with the insulator 28 within the alignment holes 70. For example, the hole segments 78 of the alignment tails 72 may be received within the alignment holes 70 with an interference fit. Additionally or alternatively, the hole segments 78 may include barbs (not shown) that engage the insulator 28 within the alignment holes 70. The alignment holes 70 are optionally tapered inwardly as they extend into the insulator 28 toward the component side 32 to facilitate engagement between the alignment tails 72 and the insulator 28 within the alignment holes 70.
In an alternative embodiment, the tips 74 of the alignment tails 72 do not engage the solder balls 80. Rather, the alignment holes 70 are electrically conductive vias. The alignment tails 72 and the solder balls 80 are engaged with the conductive materials of the alignment holes 70 such that the conductive materials of the alignment holes 70 electrically connect the alignment tails 72 to the solder balls 80. In yet another alternative embodiment, electrically conductive vias (not shown) extend through the insulator 28 from the solder pads 64 to the component side 32 of the insulator 28. The solder balls 80 are engaged with the conductive vias. The conductive vias electrically connect the solder pads 64, and thus the mounting bases 36, on the module side 30 of the insulator 28 to the solder balls 80 on the component side 32. It should be appreciated that in alternative embodiments wherein the alignment holes 70 are not used to electrically connect the electrical contacts 22 to the solder balls 80, the alignment holes 70 may not extend completely through the insulator 28.
The electrical contacts 222 and 322 include respective mounting bases 236 and 336. The mounting bases 236 and 336 are mechanically and electrically connected to respective solder pads 264 and 364 on the module and component sides 230 and 232, respectively, of the insulator 228. Electrically conductive vias 300 extend through the insulator 228 from the solder pads 264 to the solder pads 364. The vias 300 electrically connect each solder pad 264 on the module side 230 of the insulator 228 to a corresponding solder pad 364 on the component side 232 of the insulator 228. Accordingly, each conductive via 300 electrically connects a corresponding electrical contact 222 on the module side 230 with a corresponding electrical contact 322 on the component side 232 of the insulator 228.
Similar to the electrical contacts 22 (
In addition or alternative to being mechanically connected to the solder pads 464 using solder and/or adhesive, the mounting bases 464 include retention barbs 502 that extend into the conductive vias 500. The retention barbs 502 engage the conductive vias 500 with an interference fit to mechanically connect the electrical contacts 422 to the insulator 428. Electrical connection of the electrical contacts 422 to the conductive vias 500 may be provided by engagement of the mounting bases 436 with the solder pads 464, a solder and/or adhesive connection between the mounting bases 436 and the solder pads 464, and/or engagement of the retention barbs 502 with the conductive vias 500. Reception of the retention barbs 502 within the conductive vias 500 positions the mounting bases 436 relative to the solder pads 464.
The embodiments described and/or illustrated herein may provide an electrical connector that is easier to assemble, less expensive to assemble, and/or takes less time to assemble than at least some known electrical connectors.
As used herein, the term “printed circuit” is intended to mean any electric circuit in which the conducting connections have been printed or otherwise deposited in predetermined patterns on an electrically insulating substrate. A substrate of the printed circuit 14 may be a flexible substrate or a rigid substrate. The substrate may be fabricated from and/or include any material(s), such as, but not limited to, ceramic, epoxy-glass, polyimide (such as, but not limited to, Kapton® and/or the like), organic material, plastic, polymer, and/or the like. In some embodiments, the substrate is a rigid substrate fabricated from epoxy-glass, such that the printed circuit 14 is what is sometimes referred to as a “circuit board” or a “printed circuit board”.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the subject matter described and/or illustrated herein should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means—plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.