BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an assembled perspective view of the electrical connector in accordance with the present invention;
FIG. 2 is an exploded perspective view of the electrical connector shown in FIG. 1;
FIG. 3 is another view of the electrical connector shown in FIG. 1;
FIG. 4 is a cross-sectional view of the electrical connector shown in FIG. 1 taken along line 4-4;
FIG. 5 is a similar view of FIG. 4 with a second housing and a shell removed;
FIG. 6 is a cross-sectional view of the electrical connector shown in FIG. 4 taken along line 6-6, which discloses the combination of a first housing and the second housing;
FIG. 7 is a perspective view of the second housing;
FIG. 8 is a perspective view of a conventional electrical connector; and
FIG. 9 is a cross-sectional view of the electrical connector shown in FIG. 8 taken along line 9-9, which discloses an inner structure of a first insulative housing.
DETAILED DESCRIPTION OF THE INVENTION
Reference will now be made to the drawing figures to describe the preferred embodiment of the present invention in detail.
Referring to FIGS. 1 and 2, an electrical connector 100 comprises a first insulative housing 10, a second insulative housing 20, a plurality of terminals 30 and a shell 40 surrounding the first and the second insulative housing.
As shown in FIG. 2, the first insulative housing 10 comprises a base section 110 extending along a first direction (“X” direction). The base section 110 defines a front end and a rear end in a second direction (“Y” direction) vertical to the X direction. A mating section 120 extends forward from the base section. The mating section 120 defines a mating cavity 121 in the front portion thereof for receiving a mating connector (not shown). See FIGS. 5 and 6, a plurality of terminal grooves 130 runs through the insulative housing in the Y direction, which is arranged parallel and spaced along the X direction with predetermined distance, and a rib 131 is formed between every two adjacent grooves (best shown in FIG. 6). A receiving chamber 140 is recessed from the rear end of the base section 110 for receiving the second insulative housing 20, which will be described hereafter. The receiving chamber 140 is surrounding by an upper wall, a lower wall, an inner wall 141 and two side walls.
As shown in FIG. 7, the second insulative housing 20 is a rectangular frame body with a front surface 201. At each ends of the front surface 201, two spaced protrusions 220 are formed, and in the middle of the front surface 201, a protrusion 220 is also formed vertical to said protrusion. The protrusions 220 are engaging with an inner wall 141 to ensure the coplanarity of the interface of the first and the second insulative housing, see FIG. 4. A plurality of passageways 210 runs through the second housing in the Y direction, which is set at a fixed interval and aligned and communicating with the terminal grooves 130 of the first insulative housing 10, see FIG. 6. See FIG. 4, each passageway 210 defines a front opening 211 and a back opening 212 in the Y direction, and the size of the back opening in a third direction vertical to the first and second direction (“Z” direction) is wider than the front opening, which is convenient for the terminal 30 to be inserted into.
Referring to FIG. 4, the terminals 30 are inserted into the passageways 210 and the terminal grooves 130 along the Y direction. The terminal 30 is made by stamping a single piece of metal plate and each comprises a retaining portion 320 engaged with the passageways 210 and grooves 130. A contacting portion 310 of the terminal extends forward from the retaining portion and is exposed in the mating cavity 121 to contact with the mating connector. A stopper portion 340 of the terminal projects upward from a rear end of retaining portion 320 to prevent the terminal from forward moving while assembly. A soldering portion 330 projects downward out of the housing. A plurality of tips 321 are formed on the retaining portion 320 to engage with the terminal groove 130 to fix the terminal in the groove.
Referring to FIGS. 1 and 2, the shell 40 is made from a piece of metal sheet and comprises a rear portion 410 covering the upper surface of the base section 110 and a front portion 420 surrounding the mating section 120. The rear portion defines a pair of side walls 411 bending from a top wall thereof. A locking portion 412 bents inward at each side wall to engage with a locking groove 111 defined at each end of the first insulative housing 10 and a soldering leg 413 bends outward at each side wall to connect with a printed circuit board (see FIG. 3). The front portion 420 is configured with an upper and a lower wall with an opening 440 corresponding to the mating cavity of the housing. A locking opening 430 is formed in the lower wall to buckle with a protrusion 112 formed on a lower wall of the base section 110.
Referring to FIG. 4, the second insulative housing 20 is received in the first insulative housing 10 and the terminal 30 is then retained in said two housings. The height of the second insulative housing 20 in the Z direction is larger than that of the receiving chamber 140, so that the second insulative housing 20 is fixedly retain in the receiving chamber with friction force after being pushed into the chamber. The terminal 30 is first inserted into the passageway 210 and then into the terminal groove 130 until the stopper portion 340 abuts against the back end of the second insulative housing. The passageways 210 are aligned with the terminal grooves 130 and the passageways are higher than the terminal grooves in the Z direction so that the insertion operation is simple.
In the present invention, the rib between every two adjacent terminal grooves is divided into two parts, which can availably avoid broken down of the ribs during modeling the housing. Furthermore, the structure of the electrical connector is more compact via the cooperation of the first and second insulative housing.
Another embodiment of the present invention is introduced hereafter. The terminals 30 are modeled in the second insulative housing 20 forming a terminal module, and then the terminal modular is inserted into the receiving chamber 140 to engage with the first insulative housing 10 with the terminals 30 extending along the terminal grooves 130.
The present invention is not limited to the electrical connector mentioned above. This disclosure is illustrative only, changes may be made in detail, especially in matter of shapes, size, and arrangement of parts within the principles of the invention.