BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electrical connector, particularly, to an electrical connector having terminals staggered from each other so as to control the impedance and the inductance in electrical connector.
2. Description of the Related Art
Systems facilitating high-speed data transfer require electrical connectors in which the electrical impedance can be controlled in order to reach the required data transfer rate of the electrical system. It is mandatory that within a high-speed data transfer system, the connector has to be kept with a controlled impedance such that the data transfer rate can be kept within the nominal ranges. The impedance of a connector may be controlled by spacing of the terminals (i.e. exposing partially of the contact terminal into the air), the dimension of the terminals and the thickness within the connector housing.
An improved electrical connector is highly desired to overcome the aforementioned problem.
SUMMARY OF THE INVENTION
Accordingly, an object of the present invention is to provide method and structure for controlling the impedance of an electrical connector.
In order to achieve the object set forth, an electrical connector includes an insulative housing defining a plurality of terminal grooves therein and a plurality of terminals received in said terminal grooves. The terminals comprise a plurality of first terminal groups and second terminal groups which are configured as a same structure and alternatively arranged. Each of said first and second terminal groups comprises at least a base portion and an opening portion thereon. The base portion of the first terminal group faces to the opening portion of the neighboring second terminal group, while the opening portion of the first terminal group faces to the base portion of the neighboring second terminal group.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of the present embodiment when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of an electrical connector made in accordance with the present invention;
FIG. 2 is an exploded perspective view of the electrical connector shown in FIG. 1;
FIG. 3 is another exploded perspective view of the electrical connector shown in FIG. 1;
FIG. 4 is a perspective view of terminals of the electrical connector shown in FIG. 1;
FIG. 5 is a cut-away view of the electrical connector shown in FIG. 1, which shows a first terminal and a third terminal mounted in an insulative housing of the electrical connector;
FIG. 6 is a cut-away view of the electrical connector shown in FIG. 1, which shows a second terminal and a fourth terminal mounted in the insulative housing of the electrical connector;
FIG. 7 is a side view of a second embodiment of the terminals of the electrical connector shown in FIG. 1; and
FIG. 8 is a side view of a third embodiment of the terminals of the electrical connector shown in FIG. 1.
DETAILED DESCRIPTION OF THE INVENTION
Reference will now be made to the drawing figures to describe a preferred embodiment of the present invention in detail. Referring to FIGS. 1 and 2, an electrical connector 100 made according to the preferred embodiment of the present invention is disclosed and comprises an insulative housing 20, a plurality of terminals 30 and a pair of metallic plates 40 received in the insulative housing 20.
Referring to FIGS. 2 and 3, the insulative housing 20 comprises a first housing 21 for mounting onto a printed circuit board and a second housing 22 interconnected to the first housing 21. Both of the first and second housings 21, 22 define a plurality of first terminal grooves 23 and second terminal grooves 24 located at opposite sides thereof and running through the first and second housings 21, 22 along a mating direction X. The first and the second terminal grooves 23, 24 are juxtaposed along a transverse direction perpendicular to the mating direction X, therefore every adjacent first terminal grooves 23 are separated by the second terminal groove 24. Both of the first and second housings 21, 22 define a receiving space 25 therein for receiving said metallic plate 40. Each receiving space 25 is divided into two sub-spaces by a partition portion 27. The second housing 22 defines a pair of posts 221 on a rear portion and secured in apertures 212 defined on a front portion of the first housing 21 so as to organize the first and second housings 21, 22 together. A pair of posts 211 are also formed on a rear portion of the first housing 21 for securing the electrical connector 100 on the printed circuit board. A pair of tongue plates 26 are formed in the front portion of the second housing 22 for cooperating with a complementary mating connector (not shown).
Referring to FIGS. 2 and 4, the terminals 30 are arranged into two rows and respectively received in the terminals grooves 23, 24. The terminals 30 in the first row comprise first terminals 31 and second terminals 32 alternatively arranged, and the terminals 30 in the second row comprise third terminals 33 and fourth terminals 34 alternatively arranged. When the terminals 30 are manufactured, the first terminals 31 and the third terminals 33 are connected to a same first tie 35, the second terminals 32 and the fourth terminals 34 are connected to a same second tie 36. The structure of the first terminal 31 is same as the structure of the fourth terminal 34, and the structure of the second terminal 32 is same as the structure of the third terminal 33. The first, second, third and fourth terminals 31, 32, 33, 34 respectively comprise a first, second, third and fourth body portions 311, 321, 331, 341, a first, second, third and fourth contacting portions 312, 322, 332, 342 extending from the body portion, and a first, second, third and fourth solder portions 313, 323, 333, 343 extending out of the second housing 20.
The first, second, third and fourth body portions 311, 321, 331, 341 respectively define a first edge 3111, 3211, 3311, 3411 facing a first direction A and a second edge 3112, 3212, 3312, 3412 facing a second direction B which is opposite to the first direction A. The first, second, third and fourth body portions 311, 321, 331, 341 respectively define a first, second, third and fourth base sections 314, 324, 334, 344 and a first, second, third and fourth opening sections 315, 325, 335, 345. The base sections 314, 324, 334, 344 are respectively formed in continuous configurations. The first and third base sections 314, 334 are respectively formed on the second edges 3112, 3312 of the first and third body portions 311, 331, while the first and third opening sections 315,335 are respectively formed on the first edges 3111, 3311 of the first and third body portions 311, 331. The second and fourth base sections 324, 344 are respectively formed on the first edges 3211, 3411 of the second and fourth body portions 321, 341, while the second and fourth opening sections 325, 345 are respectively formed on the second edges 3212, 3412 of the second and fourth body portions 321, 341. The first, second, third and fourth opening sections 315, 325, 335, 345 respectively define a first, second, third and fourth openings 316, 326, 336, 346.
The first opening 316 on the first terminal 31 is distant away from the first base section 314 and opened toward the first direction A, while the second opening 326 on the second terminal 32 is distant away from the second base section 324 and opened toward the second direction B, therefore the first opening 316 and the second opening 326 are arranged in an offset manner. The first terminal 31 and second terminal 32 are arranged in a same row in the electrical connector 100, therefore the first opening 316 of the first terminal 31 faces to the second base section 324 of the second terminal 32, and the second opening 326 of the second terminal 32 faces to the first base section 314 of the first terminal 31, which will reduce the dimension of the opposite faces of the first terminal 31 and second terminal 32. The impedance and the inductance in electrical connector is controlled by changing the dimension of the opposite faces between adjacent terminals, therefore the structure of the first and second terminals in the present invention is preferable to reduce the impedance and the inductance of the electrical connector.
Referring to FIG. 4, the third and fourth terminals are alternatively arranged in the other row of the electrical connector 100. The third opening 336 of the third terminal 33 is spaced away from the third base section 334 and opened toward the first direction A, while the fourth opening 346 of the fourth terminal 34 is spaced away from the fourth base section 344 and opened toward the second direction B, that is to say, the third and fourth openings 336, 346 of the third and fourth terminals 33, 34 are arranged in an offset manner, therefore the dimension of the opposite face between the third and fourth terminals can be reduced due to the special terminal arrangement.
The first terminal 31, the third terminal 33 together with the first tie 35 form a first terminal group 37, while the second terminal 32, the fourth terminal 34 together with the second tie 36 form a second terminal group 38. In fact, the first terminal group 37 is same as the second terminal group 38, the second terminal group 38 can turn around 180 degrees to form the first terminal group 37, therefore the first terminal group 37 and the second terminal group 38 can be made by a same die, which is advantageous for reducing the manufacturing cost.
Referring to FIG. 2, the metallic plates 40 are inserted into the receiving space 25 and separate the first and second rows of terminals 30 from each other so as to reduce the crosstalk occurred therebetween.
Referring to FIGS. 2, 5, 6, the electrical connector 100 is assembled by a following method: firstly, providing an insulative housing 20 and a plurality of first terminal groups 37 and second terminal groups 38; then, inserting the first terminal groups 37 into the first terminal grooves 23 along the mating direction X and making sure the first and third openings 316, 336 facing toward the first direction A; and then, inserting the second terminal groups 38 into the second terminal groove 24 along the mating direction X and making sure the second and fourth openings 326, 346 facing toward the second direction B; further, cutting off the first and second carriers 35, 36; finally, inserting the metallic plates 40 into the receiving space 25. The total assembling process is simple and advantageous for reducing the manufacturing cost.
FIG. 7 shows a second embodiment of the terminals 30′ of the present invention. The basic structure of the terminal 30′ is same as the first terminal 31 and the only modification is the solder tail 33′. The solder tail 33′ is designed as a symmetrical type which is suitable for providing dual mounting surfaces, therefore the neighboring terminals can be arranged as a terminal 30′ in a normal type closer to a terminal 30′ in a reversal type. In this embodiment, all of the terminals 30′ can be made in a same configuration, which sufficiently reduces the manufacturing cost.
FIG. 8 shows a third embodiment of the terminals 30″, the openings 313″ are configured as an elongated slot and enclosed within the terminals 30″, which is different from the open sided openings 313 in the first embodiment. Other characteristics of the terminal 30″ is same as the terminal 30 in the first embodiment, therefore, detailed description will be omitted hereby.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.