1. Field of the Invention
The present invention relates to an electrical connector and more particularly, to an electrical connector mounted on a printed circuit board or the like.
2. Description of the Prior Art
Electrical connectors are usually mounted on a printed circuit board as a component of a contact device, as disclosed in U.S. Pat. No. 5,727,954 issued to Kato on Mar. 17, 1998. In this patent, the Kato connector is of a two-part construction vertically defining a plurality of through holes. A plurality of terminals received in the through holes and each include an upper terminal normally upwardly projecting beyond a corresponding through hole, a lower terminal apart from the upper terminal and normally downwardly projecting beyond the through hole and a middle spring compressed between the upper terminal and the lower terminal. The upper terminal and the lower terminal have opposite wedge-shaped ends. The ends are inserted into opposite upper and lower coiled hollows of the spring respectively. The assembled terminal is held in the through hole such that the terminal as a whole can be axially movable relative to the assembled housing. In use, a mating electrical device (battery, memory card or printed circuit board etc.) depresses and electrically connects the upper terminal. The upper terminal electrically connects with the lower terminal via the spring positioned therebetween. The lower terminal is electrically contacted under pressure with a wiring substrate, thereby the mating device electrically connects with the wiring substrate via the electrical connector.
However, the spring may be invalidated such as distortion and resilient less after a period of use. Furthermore, the opposite wedge-shaped ends of the upper terminal and the lower terminal are inclined to get away from the coiled hollows of the invalid spring, resulting in an unreliable connection between the upper and the lower terminals. As a result, the electrical connector cannot reliably interconnect the mating device with the wiring substrate.
Hence, an improved electrical connector is needed to overcome the foregoing shortcomings.
An object, therefore, of the present invention is to provide an improved electrical connector which can be obtain favorable interconnection, while having a relative long life-span.
In order to attain the above object, an electrical connector according to the present invention includes a dielectric housing, a contact terminal, a coiled spring and a retaining terminal. The contact terminal has a body portion and a contact portion extending from an upper end of the body portion. A first wing and a second wing perpendicular bend from opposite edges of the body portion. The retaining terminal includes a solder portion projecting beyond the housing for electrically connecting a printed circuit board and a pair of feelers extending from the solder portion for directly and electrically connecting with the first wing and the second wing of the contact terminal. The spring terminal is compressed between the retaining contact and the contact terminal. An upper end of the spring engages with the contact terminal and a lower end of the spring engages with the retaining terminal.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The features of this invention are believed to be novel are set forth with particularly in the appended claims. The invention, together with its objects and the advantages thereof, may be best understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements in the figures and in which:
Referring to
Referring to
Referring to
Referring to
The retaining terminal 5 has a substantially dome-shaped portion (not labeled). The dome-shaped portion comprises an upwardly exposed retaining cavity 51 for receiving a lower end of the spring 4 and a soldering portion 510 on a lower surface thereof for soldering to a printed circuit board (PCB, not shown). A pair of mounting flanges 52 horizontally and symmetrically extend from the dome-shaped portion. A pair of S-shaped arms 53 upwardly and symmetrically extend from the dome-shaped portion. Each arm 53 has an inwardly projecting engaging portion 531 at a distal end thereof for directly and electrically connecting with the first and second wings 301, 302 of the contact terminal 3.
The springs 4 are coiled springs in the present invention and positioned between the contact terminals 3 and the retaining terminals 5. Each spring 4 comprises the upper end received in the receiving room 32 of the contact terminal 3 and the lower end engaging with the retaining cavity 51 of the retaining terminal 5.
Referring to
It is important to note that in this embodiment the arms 53 of the retaining terminal 5 directly contacts with the first wing 301 and the second wing 302 of the contact terminal 3 to create an electrical path when the mating electrical connector is coupled to the subject connector 100. Owing to the structural arrangement, the electrical connector 100 as a contact device insures electrically interconnection between the mating device and the PCB even the spring terminals 4 disabled. Understandably, it is an option to have the arm 53 disengaged from the wing 301, 302 when the mating electrical connector is decoupled from the subject electrical connector, as long as the arm 53 is engaged with wing 301, 302 when the mating electrical connector is coupled to the subject connector.
It will be understood that the invention may be embodied in other specific forms without departing from the spirit or central characteristics thereof. The present examples and embodiments, therefore, are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein.
Number | Date | Country | Kind |
---|---|---|---|
03 2 78772 | Sep 2003 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4904213 | Hock et al. | Feb 1990 | A |
5145384 | Asakawa et al. | Sep 1992 | A |
5509813 | Lu | Apr 1996 | A |
5641315 | Swart et al. | Jun 1997 | A |
5727954 | Kato et al. | Mar 1998 | A |
6340320 | Ogawa | Jan 2002 | B1 |
6350155 | Mullinger-Bausch et al. | Feb 2002 | B1 |
6558177 | Havener et al. | May 2003 | B1 |
6716043 | Ishizuka | Apr 2004 | B1 |
6814626 | Wen-Yao | Nov 2004 | B1 |
20020160637 | Ishizuka | Oct 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050064738 A1 | Mar 2005 | US |