The present invention relates to an electrical connector, and in particular, to an electrical connector in which a high-frequency signal may be transmitted and a terminal has multiple conductive paths.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
Chinese Patent Application No. CN200920311973.1 discloses an electrical connector, including an insulating body and conductive terminals accommodated in the insulating body. The conductive terminal includes a base portion, retaining portions extending upward from two sides of the base portion, and an elastic arm bending upward and extending from the base portion. An end of the elastic arm is provided with a contact portion abutting a chip module.
However, currently, a chip module has an increasingly large quantity of conductive pads, and the conductive pads are arranged increasingly densely. Therefore, the terminals in the electrical connector are also arranged increasingly densely. Consequently, a self-inductance effect is easily generated in the terminals during signal transmission, and particularly high-frequency signal transmission, and then crosstalk is generated between neighboring terminals due to a self-inductance effect of the terminals. As a result, the electrical connector has a poor high-frequency signal transmission capability, and actual requirements cannot be satisfied.
Therefore, a heretofore unaddressed need to design improved electrical connector exists in the art to address the aforementioned deficiencies and inadequacies.
In view of the problem addressed in the background technology, an objective of the present invention is to provide an electrical connector, which has a preferable high-frequency signal transmission capability by a slot which is formed on a contact portion and an elastic arm of a terminal to reduce self-inductance and crosstalk.
To achieve the foregoing objective, the present invention adopts the following technical solutions. An electrical connector for electrically connecting with a chip module includes: an insulating body; and a plurality of terminals, respectively and correspondingly accommodated in the insulating body, each of the terminals having: a base portion having a vertical plane; a first arm, bending and extending upward from the base portion toward a direction away from the vertical plane; a second arm, bending and extending reversely from the first arm and crossing the vertical plane, wherein the second arm is configured to abut the chip module; and a through-slot, running through the second arm vertically, wherein the through-slot at least extends to a bending location between the second arm and the first arm, so that the second arm forms two branches at two opposite sides of the through-slot, and the second arm has a beam connecting the two branches.
In certain embodiments, the terminals are formed by punching a metal plate, and a width of the through-slot is greater than a thickness of each of the terminals and less than a width of each of the branches.
In certain embodiments, the beam is disposed at an end of the second arm.
In certain embodiments, the second arm comprises an extending arm connected to the first arm and a contact portion bending and extending upward from the extending arm and configured to abut the chip module, the through-slot extends to the contact portion, and a width of the through-slot in the contact portion is less than a width of the through-slot in the extending arm.
In certain embodiments, the width of the through-slot in the contact portion is a constant width.
In certain embodiments, the second arm is provided with two protruding portions protruding upward symmetrically located at the two opposite sides of the through-slot, and the two protruding portions simultaneously abut a same pad of the chip module.
In certain embodiments, the beam abuts the chip module.
In certain embodiments, the beam is provided with a protruding portion protruding upward and configured to abut the chip module.
In certain embodiments, the through-slot extends to a connecting location between the first arm and the base portion.
In certain embodiments, the through-slot extends downward only to the bending location between the second arm and the first arm.
In certain embodiments, a width of the through-slot in the second arm is a constant width.
In certain embodiments, the second arm comprises an extending arm and a contact portion bending and extending from the extending arm, the beam is disposed at a connecting location between the extending arm and the contact portion, and the through-slot runs through a free end of the contact portion, so that the contact portion forms two free ends.
In certain embodiments, the second arm has a contact portion configured to abut the chip module, and an upper surface of the contact portion slants downward to form a chamfering surface, so that a contact area between the contact portion and the chip module is reduced.
In certain embodiments, the base portion bends and extends downward to form a bending portion, the bending portion bends and extends to form a conducting portion configured to be conductively connected to a circuit board, and a through-hole runs through the base portion and the bending portion and does not run through the conducting portion.
Compared with the related art, the embodiments of the present invention have the following beneficial effects.
The through-slot runs through the second arm vertically, and the through-slot at least extends to a bending location between the second arm and the first arm, so as to reduce the self-inductance effect of the terminals during signal transmission, avoid crosstalk between adjacent terminals, and improve the high-frequency signal transmission capability of the terminals.
In another technical solution, an electrical connector for electrically connecting with a chip module includes: an insulating body; and a plurality of terminals, respectively and correspondingly accommodated in the insulating body, each of the terminals having: a base portion; an elastic arm, bending and extending upward from one end of the base portion, and configured to abut the chip module; a through-slot, running through the elastic arm, wherein in an extending direction of the elastic arm, a length of the through-slot is greater than sixty percent of a length of the elastic arm, the elastic arm forms two branches at two opposite sides of the through-slot, and the elastic arm has a beam connecting the two branches; a bending portion, formed by bending and extending downward from an opposite end of the base portion; a through-hole, extending from the base portion to the bending portion; and a conducting portion, formed by bending and extending from the bending portion, and configured to be conductively connected to the circuit board, wherein the through-hole does not run through the conducting portion.
In certain embodiments, the through-slot extends downward to a connecting location between the elastic arm and the base portion.
In certain embodiments, the elastic arm has a contact portion configured to abut the chip module, and the through-slot runs through the contact portion to a free end of the contact portion, so that the contact portion forms two free ends and two contact areas simultaneously abutting a same pad of the chip module.
In certain embodiments, the conducting portion comprises a connecting portion bending downward and extending from the bending portion, and two clamping portions bending and extending from two opposite sides of the connecting portion and jointly clamping a solder, the bending portion and the connecting portion are located at a same side of the base portion, and along a downward direction, a width of the bending portion is gradually reduced.
In certain embodiments, the through-hole comprises a first through-hole disposed in the base portion, the first through-hole has a top edge and a side edge extending obliquely downward from the top edge, and the top edge and the side edge form an obtuse angle.
In certain embodiments, the through-hole comprises a second through-hole disposed in the bending portion, and along a downward direction, a width of the second through-hole is gradually reduced.
Compared with the related art, the embodiments of the present invention have the following beneficial effects.
In an extending direction of the elastic arm, the length of the through-slot is greater than sixty percent of the length of the elastic arm, so as to reduce the self-inductance effect of the terminals during signal transmission, and avoid crosstalk between neighboring terminals. Moreover, the through-hole runs through the base portion and the bending portion and does not run through the conducting portion, so that each of the terminals form four conductive paths, including two conductive paths that are parallel to each other from top to bottom and are from two opposite sides of the through-slot and the through-hole, and two crossed conductive paths that are from the left side of the through-slot to the right side of the through-hole and from the right side of the through-slot to the left side of the through-hole. By means of these four conductive paths, the high-frequency signal transmission capability of the terminals may be improved.
These and other aspects of the present invention will become apparent from the following description of the preferred embodiment taken in conjunction with the following drawings, although variations and modifications therein may be effected without departing from the spirit and scope of the novel concepts of the disclosure.
The accompanying drawings illustrate one or more embodiments of the disclosure and together with the written description, serve to explain the principles of the disclosure. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like elements of an embodiment, and wherein:
The present invention is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Various embodiments of the invention are now described in detail. Referring to the drawings, like numbers indicate like components throughout the views. As used in the description herein and throughout the claims that follow, the meaning of “a”, “an”, and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. Moreover, titles or subtitles may be used in the specification for the convenience of a reader, which shall have no influence on the scope of the present invention.
It will be understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower”, can therefore, encompasses both an orientation of “lower” and “upper,” depending of the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
As used herein, “around”, “about” or “approximately” shall generally mean within 20 percent, preferably within 10 percent, and more preferably within 5 percent of a given value or range. Numerical quantities given herein are approximate, meaning that the term “around”, “about” or “approximately” can be inferred if not expressly stated.
As used herein, the terms “comprising”, “including”, “carrying”, “having”, “containing”, “involving”, and the like are to be understood to be open-ended, i.e., to mean including but not limited to.
The description will be made as to the embodiments of the present invention in conjunction with the accompanying drawings in
As shown in
As shown in
Preferably, in an extending direction of the elastic arm 22, a width of the through-slot 25 is first kept constant, then gradually reduced, and then kept constant again, so that the width of the through-slot 25 in the contact portion 242 is a constant width, and the width of the through-slot 25 in the contact portion 242 is less than the width of the through-slot 25 in the extending arm 241, so as to facilitate the elastic structure requirement of all of the terminals 2.
As shown in
As shown in
A through-hole 27 runs through the base portion 21 and extends from the base portion 21 to the bending portion 26 but does not extend to the conducting portion 28. That is, the through-slot 25 runs through the base portion 21 and the bending portion 26 and does not run through the conducting portion 28. In this way, the self-inductance effect of the terminal 2 may be further reduced, and it is ensured that the conducting portion 28 has sufficient strength. Further, the through-hole 27 includes a first through-hole 271 disposed in the base portion 21 and a second through-hole 272 disposed in the bending portion 26. The first through-hole 271 has a top edge 2711 and a side edge 2712 extending obliquely downward from the top edge 2711. The top edge 2711 and the side edge 2712 form an obtuse angle, and along a downward direction, the width of the second through-hole 272 is gradually reduced.
As shown in
To sum up, the electrical connector 100 according to certain embodiments of the present invention has the following beneficial effects.
(1) The through-slot 25 runs through the second arm 24 vertically, and the through-slot 25 at least extends to a bending location between the second arm 24 and the first arm 23, so as to reduce the self-inductance effect of the terminals 2 during signal transmission, avoid crosstalk between neighboring terminals 2, and improve the high-frequency signal transmission capability of the terminals 2. The second arm 24 forms two branches 202 at two opposite sides of the through-slot 25. Moreover, the second arm 24 has a beam 243, and the beam 243 connects the two branches 202, so as to prevent the two branches 202 from excessively moving toward a direction away from each other and causing undesired contact between the contact portion 242 and the chip module 3.
(2) The through-slot 25 runs through the elastic arm 22, and the through-hole 27 runs through the base portion 21 and the connecting portion 281, so that each of the terminals 2 form four conductive paths, including two conductive paths that are parallel to each other from top to bottom and are from two opposite sides of the through-slot 25 and the through-hole 27, and two crossed conductive paths that are from the left side of the through-slot 25 to the right side of the through-hole 27 and from the right side of the through-slot 25 to the left side of the through-hole 27. By means of these four conductive paths, the high-frequency signal transmission capability of the terminals 2 may be improved.
(3) An upper surface of the contact portion 242 slants downward to form a chamfering surface 2421, so that the contact area between the contact portion 242 and the pad of the chip module 3 is reduced, so as to reduce a risk of the contact portion 242 slipping off from the pad of the chip module 3.
The foregoing description of the exemplary embodiments of the invention has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to explain the principles of the invention and their practical application so as to activate others skilled in the art to utilize the invention and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its spirit and scope. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description and the exemplary embodiments described therein.
Number | Date | Country | Kind |
---|---|---|---|
2017 1 0678778 | Aug 2017 | CN | national |
This application claims priority to and the benefit of, pursuant to 35 U.S.C. § 119(e), U.S. provisional patent application Ser. No. 62/505,206 filed May 12, 2017. This application also claims priority to and benefit of, under 35 U.S.C. § 119(a), Patent Application No. 201710678778.1 filed in P.R. China on Aug. 10, 2017. The entire contents of the above-identified applications are incorporated herein in their entireties by reference. Some references, which may include patents, patent applications and various publications, are cited and discussed in the description of this disclosure. The citation and/or discussion of such references is provided merely to clarify the description of the present disclosure and is not an admission that any such reference is “prior art” to the disclosure described herein. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference were individually incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5312261 | Burke | May 1994 | A |
5920252 | Nakagawa | Jul 1999 | A |
6113440 | Fijten | Sep 2000 | A |
6227870 | Tanaka | May 2001 | B1 |
6293833 | Kamath | Sep 2001 | B1 |
6315621 | Natori | Nov 2001 | B1 |
6454607 | Bricaud | Sep 2002 | B2 |
6471534 | Lee | Oct 2002 | B1 |
6695628 | Yeh | Feb 2004 | B2 |
6824414 | Whyne | Nov 2004 | B2 |
6984130 | Richter | Jan 2006 | B2 |
7014477 | Tsai | Mar 2006 | B2 |
7070465 | Masaki | Jul 2006 | B2 |
7112102 | Masaki | Sep 2006 | B2 |
7207821 | Ju | Apr 2007 | B1 |
7278892 | Chien | Oct 2007 | B1 |
7297010 | Tsai | Nov 2007 | B2 |
7341485 | Polnyi | Mar 2008 | B2 |
7377789 | Liu | May 2008 | B1 |
7387541 | Lai | Jun 2008 | B1 |
7390229 | Huang | Jun 2008 | B2 |
7445518 | Schneider nee Hild | Nov 2008 | B2 |
7503770 | Fan | Mar 2009 | B2 |
7559811 | Polnyi | Jul 2009 | B1 |
7575469 | Hung | Aug 2009 | B1 |
7588441 | Chang | Sep 2009 | B2 |
7654862 | Liao | Feb 2010 | B2 |
7867043 | Yuan | Jan 2011 | B2 |
7914314 | Szu | Mar 2011 | B2 |
8147256 | Jin | Apr 2012 | B2 |
8221172 | Ju | Jul 2012 | B2 |
8235734 | Ju | Aug 2012 | B2 |
8267725 | Zhu | Sep 2012 | B2 |
8298021 | Huang | Oct 2012 | B2 |
8414311 | Ju | Apr 2013 | B2 |
8556667 | Koyama | Oct 2013 | B2 |
8903459 | Choi | Dec 2014 | B2 |
9033750 | Miller | May 2015 | B2 |
9437948 | Ju | Sep 2016 | B2 |
9590345 | Wollitzer | Mar 2017 | B2 |
9843119 | Chen | Dec 2017 | B1 |
9887480 | Tanaka | Feb 2018 | B2 |
9941614 | Sato | Apr 2018 | B2 |
9985368 | Deng | May 2018 | B2 |
20040132319 | Richter | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
2840357 | Nov 2006 | CN |
1972018 | May 2007 | CN |
201097405 | Aug 2008 | CN |
201097410 | Aug 2008 | CN |
201122684 | Sep 2008 | CN |
201549675 | Aug 2010 | CN |
201708302 | Jan 2011 | CN |
202067919 | Dec 2011 | CN |
Number | Date | Country | |
---|---|---|---|
20180331441 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62505206 | May 2017 | US |