1. Field of the Invention
The invention relates to an electrical contact with elastic return and to an electrical connection element provided with at least one such contact.
2. Discussion of Background Information
Electrical contacts with elastic return, in particular for end-on contact pressure, are well known.
In one embodiment, they comprise a contact head which comes into elastic engagement with an opposing contact under the action of a helical spring that surrounds a deformable conductor such as a braid, which conductor is connected to a cable, optionally via a connection terminal or lug.
In addition to the problems inherent to repeatedly deforming the deformable conductor, those known contacts are of significant length, and they lead to additional resistance due to the crimping zones between the various parts.
For certain applications, proposals have been made to hold a contact head stationary at the end of a cable by means of a spring-forming blade, e.g. as disclosed in document EP-0 643 444 in the name of the same Applicant.
Nevertheless, under those circumstances, the elastic movement cannot be performed along the general longitudinal axis of the conductor.
The invention provides a simple electrical contact with elastic return making it possible in particular to establish a connection with end-on contact pressure for a variety of applications as described below. In addition, the invention makes it possible in particular to reduce the size of the contact and to eliminate and reduce certain amounts of electrical resistance.
To this end, the invention provides an electrical contact with elastic return that is remarkable in particular in that it includes at least one flexible blade constituted by a portion of the front surface of a conductive part that is provided with at least one cut formed at its end. The blade is thus capable of flexing under the action of the pressure exerted by an opposing electrical contact.
In an embodiment, the conductive part is cylindrical, and the flexible blade is in the form of a circular or elliptical segment or zone, in which case, for a contact including a single blade and a single cut, the depth of the cut is greater than the radius of the cylindrical part. By way of optional example, the cut in the conductive part lies in a plane perpendicular to the longitudinal axis of said part. Preferably, the width of the cut is no greater than the maximum acceptable deflection for the flexible blade prior to reaching its elastic limit, which maximum deflection is a function of the nature of the materials used and the depth of the cut, so that the blade cannot exceed its elastic limit.
In an embodiment, a compression spring is arranged behind the blade bearing against the end of a housing provided for this purpose in the conductive part so as to contribute to returning the blade into an initial position.
Preferably, the flexible blade is also provided over at least a portion of its surface with a pellet of silver for improving the passage of electric current between said contact and the opposing electrical contact.
The contact of the invention is for fitting to numerous appliances which also form part of the invention, such as, for example, a single-pole electrical connection element in the form of a socket-outlet or a connector, provided with an electrical contact of the invention including at least one flexible blade, designed to establish an electrical connection with an opposing electrical contact to be coupled thereto, and in the form of a pin of a plug or of an appliance inlet, said pin exerting pressure on the blade in a direction parallel to the axis of the conductive part.
In which case, for example, the conductor part of the electrical contact is provided with a thread which terminates in the vicinity of its cut and which is designed to co-operate with a screw ring formed on the plug or the appliance inlet in order to secure it to said connection element in the coupled position.
The present invention is directed to an electrical contact with elastic return. The electrical contact includes at least one flexible blade formed by a portion of a front surface of a conductive part provided at its end with at least one cut. The at least one blade is structured and arranged to flex under pressure exerted by an opposing electrical contact.
In accordance with a feature of the invention, the conductive part can be cylindrical, and the at least one flexible blade may include one of a circular or elliptical segment.
According to another feature, the at least one blade can include a single blade and the at least one cut may be a single cut having a depth greater than a radius of the cylindrical part.
According to still another feature of the instant invention, the at least one cut may lie in a plane perpendicular to a longitudinal axis of the conductive part.
Further, a width of the at least one cut can be no greater than a maximum acceptable deflection for the flexible blade prior to it reaching its elastic limit. The maximum deflection can be a function of materials used and depth of the at least one cut.
In accordance with a further feature of the present invention, a compression spring may be arranged behind the at least one blade and may be positioned to bear against an end of a housing located in the conductive part. The compression spring can be positioned to contribute to returning the at least one blade to an initial position.
According to a still further feature of the invention, a pellet of silver may be provided over at least a portion of the at least one flexible blade.
Moreover, a material can be provided over at least a portion of the at least one flexible blade to improve passage of electric current between the contact and the opposing electrical contact.
The instant invention is directed to a single-pole electrical connection element having an electrical contact, as discussed above, and an opposing electrical contact structured and arranged to exert pressure on the at least one flexible blade in a direction parallel to an axis of the conductive part.
According to the present invention, the opposing electrical contact can be composed of a pin, and the pin may be located in one of a plug or an appliance inlet. Further, the single-pole electrical connection element can include one of a socket-outlet or a connector.
In accordance with another feature, the conductor part can have a threaded portion and the one of a plug or an appliance inlet may include a screw ring structured and arranged to secure to the threaded portion of the conductor part. The threaded portion can terminate in a vicinity of the at least one cut.
The present invention is directed to an electrical contact with elastic return including a conductive part having a front surface structured and arranged to face an open end. The conductive part has a cut arranged to form at least one flexible blade from the front surface of a conductive part.
According to a feature of the invention, an insulating layer can be arranged between the front surface and the open end, such that the insulating layer has an opening open to the front surface.
In accordance with another feature, a may be housing formed in the conductive part, and a compression spring can be located within the housing arranged to contact a surface of the front surface adjacent the cut.
According to the invention, an electrical plug is structured for coupling to the above-discussed electrical contact, in which the electrical plug includes an electrical contact structured and arranged to pass through the opening and to contact the front surface. Moreover, a screw ring is couplable to the conductive part, such that the electrical contact is structured and arranged to exert pressure on front face when the screw ring is secured to the conductive part.
The present invention is directed to a process of forming an electrical contact with elastic return. The process includes cutting an end of a conductive part to form at least one flexible blade from a front surface of the conductive.
In accordance with still yet another feature of the present invention, the process can further include forming a housing in the conductive part adjacent the cut and positioning a compression spring in the housing to bias the at least one flexible blade away from the housing. The process can also include placing insulation over the at least one flexible blade, such that the insulation includes an opening open to the at least one flexible blade.
The invention will be better understood and other features will appear on reading the following description which refers to the accompanying drawings, in which:
In the drawings, there can be seen by way of example a single-pole cable coupler made up of a connector 1 and a plug 2 (FIGS. 1 to 5).
Plug 2 is designed to couple with connector 1 by taking up the connection position shown in section in
Plug 2 comprises an insulating case 3 in which there is arranged a contact pin 4 (
In the embodiment shown, pin 4 is off-center, but it could be less off-center or not off-center at all depending on its nature and/or the disposition of the contact of the connector described below.
In this case, cable 6 is also held by a cable clamp 8, while a clamping ring 9 is provided to turn a partially-tapped screw ring 10, described in greater detail below, and serving, when actuated, to lock the coupling between plug 2 and connector 1, screw ring 10 being advantageously made out of metal, and clamping ring 9 out of insulating material.
In similar manner to plug 2, connector 1 includes an insulating case 11 in which there is provided a contact in the form of a flexible blade 12 secured to a metal part 13, in this case a cylindrical part, which is connected to a cable 14 by screw fastening, crimping, or other engagement. By way of example, part 13 is held in case 11 by a dowel 15.
In the example shown, cables 6 and 14 are connected to the corresponding metal parts 5 and 13 respectively by screw fastening, but another known and advantageous method of fastening consists in crimping them by tubes, thus making it easy to obtain a plurality of sizes using the same parts.
Cable 14 is also held in this case by a cable clamp 16, and part 13 is provided at its end with a thread 17 for co-operating with screw ring 10 of plug 2.
As shown clearly in the figures, the end of metal part 13 of connector 1 is protected at its front end by insulation 18 secured to part 13, e.g. by a central screw 19 (
A circular opening 21 (
In this case, screw ring 10 is shown engaged with thread 17 on metal part 13 of connector 1.
As mentioned above, and for greater clarity in
These figures are intended more particularly to show the contact of the connector in the form of a flexible blade 12.
As shown in said
It will thus be understood that the contact of the connector in the form of a flexible blade 12 can thus flex under the action of pressure exerted by contact pin 4 of plug 2 in a direction parallel to the axis of part 13. In
As shown in particular in
In addition, it will be understood that the width of cut 22 is preferably selected to be no greater than the maximum deflection that is acceptable for the blade before it reaches its elastic limit, with it naturally being understood that under such conditions the blade cannot exceed said limit since, when maximally flexed, it comes into contact with the solid portion of part 13.
In addition, a compression spring 23 is provided in this example, being received in a housing 24 in part 13 against which it bears in order to press against blade 12 in such a manner as to contribute, if necessary, to blade 12 returning into position.
Because of spring 23, blade 12 can naturally return to an initial neutral position in which it is held by insulation 18 of the connector, but the insulation could be disposed in such a manner as to allow for possible flexing of blade 12 in an outward direction in order to increase the amplitude of the flexing stroke of blade 12.
Such a contact makes it possible to provide a connection element that is compact and inexpensive, while the all-metal one-piece design of part 13 including blade 12 makes it possible to ensure that the connection provides good reliability and little resistance to passing current.
Other elements that are not described more particularly are also provided, such as O-rings for the plug, or indeed and advantageously, pellets of silver which are provided at the end of pin 4 as shown at 25 in
Nevertheless, as mentioned above, pin 4 of the plug may be of some other shape, circular or otherwise, and blade 12 may be offset in the connection element to couple with a centrally-located plug pin, or indeed the contact could include a plurality of blades made up of a plurality of circular or other segments with cuts that are optionally perpendicular to the axis of the conducive part.
Because of the contact as described and the elements used for fastening the coupling, the cable coupler also presents a major advantage against any risk of disconnection due to untimely traction on the cables, which could sometimes be a problem in the past when the cabled element was acted on directly by a spring.
The embodiment described is naturally given as an example of one possible application.
The invention relates to a particular electrical contact with elastic return, and also to connection elements fitted with at least one such contact.
Instead of relating to a connector for constituting a cable coupler for co-operating with a plug, the invention could naturally relate to a connector for constituting an appliance coupler for co-operating with an appliance inlet, or indeed a socket-inlet for co-operating with a plug.
In addition, although the invention is particularly well adapted to a single-pole connection, it is not restricted thereto.
Number | Date | Country | Kind |
---|---|---|---|
02/15435 | Dec 2002 | FR | national |
The present application is a Continuation of International Patent Application No. PCT/FR2003/003582 filed Dec. 4, 2003, and claims priority of French Patent Application No. 02/15435 filed Dec. 6, 2002. Moreover, the disclosure of International Patent Application No. PCT/FR2003/003582 is expressly incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/FR03/03582 | Dec 2003 | US |
Child | 11036982 | Jan 2005 | US |