Electrical current distribution in light emitting devices

Information

  • Patent Grant
  • 8124994
  • Patent Number
    8,124,994
  • Date Filed
    Tuesday, September 4, 2007
    16 years ago
  • Date Issued
    Tuesday, February 28, 2012
    12 years ago
Abstract
A light emitting device is disclosed that has a plurality of epitaxial layers including an active layer, at least one of a reflective layer and an ohmic contact on a first side of the epitaxial layers; and a layer of a conductive metal on a second side of the epitaxial layers and having a light emitting surface. A terminal is on the light emitting surface, the terminal comprising an array for diffusing electrical current and minimizing its effect on light output. The array may have a bonding pad, an outer portion, and a joining portion connecting the bonding pad and the outer portion; the outer portion and the joining portion being for current dissipation.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application is a U.S. National Phase application under 35 U.S.C. §371 of International Application No. PCT/SG2007/000288, filed on Sep. 4, 2007, entitled ELECTRICAL CURRENT DISTRIBUTION IN LIGHT EMITTING DEVICES, which claims priority to Singapore patent application number 200606050-3, filed Sep. 4, 2006.


FIELD OF THE INVENTION

This invention relates to electrical current distribution in light emitting devices and refers particularly, through not exclusively, to apparatus for spreading the electrical current so as to maximize light output.


REFERENCE TO RELATED APPLICATION

Reference is made to earlier Singapore patent application 200506301-1 filed 29 Sep. 2005, the contents of which are incorporated herein by reference as if disclosed herein in their entirely.


BACKGROUD OF THE INVENTION

In most light emitting devices such as for example, light emitting diodes and laser diodes, bonding pads occupy about 15% of the surface area of the light emitting surface. Where the bonding pad is located, light cannot be emitted.


Also, as the electrical current flows from the bonding pad to the active region and will follow the path of least resistance (normally the shortest path, in uniform materials) the maximum current flow, and thus maximum light output, is beneath the bonding pad. This results in a significant reduction in the light output.


SUMMARY OF THE INVENTION

In accordance with a first preferred aspect there is provided a light emitting device comprising a plurality of epitaxial layers including an active layer; at least one of a reflective layer and an ohmic contact on a first side of the epitaxial layers; and a layer of a conductive metal on a second side of the epitaxial layers and having a light emitting surface. A terminal is on the light emitting surface. The terminal has an array for diffusing electrical current and minimizing its effect on light output.


The array may comprise a bonding pad, an outer portion, and a joining portion connecting the bonding pad and the outer portion; the outer portion and the joining portion being for current dissipation. The outer portion may be at or adjacent a periphery of the light emitting surface. The joining portion may comprise a plurality of spokes joining the bonding pad and the outer portion.


There may be a second reflective layer between the array and the light emitting surface. Alternatively, the second reflective layer may be at a bottom of a trench in the light emitting surface.


In accordance with a second preferred aspect there is provided a method of fabricating a light emitting device. The light emitting device has a plurality of epitaxial layers including an active layer, a reflective layer on a first side of the epitaxial layers, and a conductive metal on a second side of the epitaxial layers. The method includes forming a terminal on a light emitting surface of the conductive metal, the terminal having an array for diffusing electrical current and minimizing its effect on light output.


The forming of the array may be by forming a bonding pad, an outer portion, and a joining portion electrically connecting the bonding pad and the outer portion; the outer portion and the joining portion being for current dissipation. The outer portion may be at or adjacent a periphery of the light emitting surface. The joining portion may comprise a plurality of spokes joining the bonding pad and the outer portion.


The method may further comprise forming second reflective layer on the light emitting surface before forming the array on the second reflective layer.


Alternatively, the method may further comprise forming trench in the tight emitting surface, forming a second reflective layer at a bottom of the trench, the array being formed on the second reflective layer.





BRIEF DESCRIPTION OF THE DRAWINGS

In order that the present invention may be fully understood and readily put into practical effect, there shall now be described by way of non-limitative example only preferred embodiments of the present invention, the description being with reference to the accompanying illustrative drawings.


In the drawings:



FIG. 1 is a schematic side view of a light emitting device;



FIG. 2 is a schematic side view of a preferred embodiment of a light emitting device;



FIG. 3 is a stop pan view of the device of FIG. 2;



FIG. 4 is a vertical cross-section along the lines and in the direction of arrows 4-4 on FIG. 3; and



FIG. 5 is an enlarged view of the trench of FIG. 4;



FIG. 6 is an alternative to the arrangement of FIG. 5;



FIGS. 7 to 13 are series of views corresponding to FIG. 4 showing the fabrication of the device of FIGS. 2 to 4.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

To first refer to FIG. 1 there is shown a light emitting device 101 such as, for example, a light emitting diode or a laser diode, and having a reflective layer and/or ohmic contact 103 on a first side of a plurality of epitaxial layers including an active region 102. A conductive metal layer 104 is on a second side of the epitaxial layers. The reflective layer 103 may be on the epitaxial layers and the ohmic contact on the reflective layer, or vice versa. There may be only one of them. A bonding pad 105 is provided on the light output surface 107. The electrical current flows in the metal layer 104 to the active layer 102 by the paths as shown with the dotted lines on FIG. 1. As can be seen, the maximum electrical current is concentrated under the bond pad 105. That means the maximum light emitted by the active layer 102 (as shown by the sold lines) will also be concentrated under the bonding pad 105. Such light will be reflected back into layer 104 by the bonding pad 105. This significantly reduces the light output.



FIGS. 2 to 4 show a preferred embodiment where like reference numerals are used for like components but the prefix number “1” is changed to “2”. Here, the bonding pad 105 is replaced by a terminal layer 215.


The terminal layer 215 comprises an array 214 of electrically conductive material, preferably the same material as the bonding pad 205, and which is electrically connected to both the bonding pad 205 and the light output surface 207. The array 214 is distributed over the surface 207 so that electrical current will flow from the terminal layer 215 to the active region 202 in a diffused or distributed manner.


The array 214 preferably has the bonding pad 205 as its center so the distribution of the array 214 is relatively uniform over the surface 207. Also, it is preferred for the array 214 to be of reduced height when compared with the bonding pad 205.


As shown, the array 214 comprises an outer portion 206 that is at or adjacent the periphery of surface 207. This is to provide for light emission from at, and adjacent to, the periphery of active region 202. Electrically and physically connecting the outer portion 206 and the bonding pad 205 is a joining portion 208 that is, in this case, four equally-spaced radial “spokes” extending from the bonding pad 205 to the outer portion 206. All spokes 208 are preferably identical, and are more preferably of the same height and width as the outer portion 206. Although four spokes 208 are shown in a cruciform shape, there may be any suitable number of spokes such as, for example, one, two, three, four, five, six, and so forth.


Between the spokes 208 and the outer portion 206 are light-emitting openings 209 for emission of light from light output surface 207.


The outer portion 206 and/or each spoke 208 or array 214 may be located in a trench 211 formed in the light output surface 207. The trench 211 may have a reflective layer 212 at its bottom 213 so that light propagated by active region 202 under the array 214 will be more efficiently reflected by reflective layer 212. The reflective layer 212 may have a diffusing surface so that light will be reflected from it an angle other than perpendicular. The reflective layer 212 is electrically conductive to enable electric current to pass from array 214 to the active region 202. The reflecting layer 212 is preferably of the same shape and dimensions on surface 207 as the array 214.


As shown in FIG. 6, the trench 211 may not be used and the reflective layer 212 may be applied directly to the light output surface 207 beneath array 214.



FIGS. 7 to 13 show the process. These are FIGS. 11 to 17 of the related application, and are the process step after the original sapphire substrate 4 is removed.


As shown in FIG. 8, after removal of the sapphire substrate 4, the devices are isolated from each other by trench etching from the newly exposed surface 13 along the edges of the mesa, as shown in FIGS. 8 to 10, with a photoresist layer 6(d) protecting the regions of the n-type GaN layer 3 during the etching process.


Alternatively, the lowermost surface 13 of the n-type layer 3 may be cleaved at locations in alignment with the photoresists 12 and the dies separated. This is of advantage for laser diodes as the exposed side surfaces of the n-type layer 3 are substantially parallel, thus causing a large amount of total internal reflection. This acts as a light amplification system for improved, and directed light, output.


Pad etching takes place after applying a fifth resist layer 6(e) over the exposed surfaces of SiO2 layer 8, the sides of the n-type GaN layer 3, and the center of the n-type GaN layer 3 [FIGS. 9(a) and (b)] thus forming projecting portions 14 and recess portions 15 of n-type GaN layer 3.


The resist 6(e) is the removed and a further resist 6(f) applied over the exposed surfaces of the n-type GaN layer 3 and the outer periphery of the SiO2 layer 8 to thus leave a gap 16 for die isolation. Etching takes place (FIG. 10) through the gap 16 and the SiO2 layer 8, and seed layer 11 until the ends of the thick photoresists 12 are exposed. The resist 6(f) is removed.


A final resist layer 6(g) is applied over all exposed lower-surfaces from the edge of the SiO2 layer 8 through to adjacent the center of the n-type GaN layer 3, where a central gap 17 remains (FIG. 11).


An array 214 of layer or layers 18 of n-type metals are then applied over the resist 6(g) with the layer 18 at the gap 17 at the center of the n-type GaN layer 3 being applied directly to the GaN layer 3 (FIG. 12). The resist layer 6(g) with the layer 18 attached, is removed leaving the layer 18 attached to the center 17 of the n-type GaN layer 3 where gap 17 was previously located.


In this way the seed layers 11, 10, 9 and the copper layer 9(a) act as reflectors to increase light output, with copper layer 9(a) being one terminal, thus not interfering with light output. The second terminal is layer 18 in array 214 on the n-type layer 3 of GaN and this is an array at and/or around the center of that layer 3, thus minimizing its effect on light output, and increasing the diffusion of current.


Whilst there has been described in the foregoing description preferred embodiments of the present invention, it will be understood by those skilled in the technology concerned that many variations or modifications in details of design or construction may be made without departing from the present invention.

Claims
  • 1. A light emitting device comprising: a plurality of epitaxial layers including an active layer;a reflective layer on a first side of the epitaxial layers;a layer of a conductive metal on a second side of the epitaxial layers and having a light emitting surface;a terminal comprising an array on the light emitting surface, the array being for diffusing electrical current and minimizing its effect on light output; anda second reflective layer of a same shape and dimensions as the array, the second reflective layer being beneath the array on the light emitting surface or at a bottom of a trench in the light emitting surface, the second reflective layer being for reflecting light propagated by the active layer under the array and being electrically conductive to enable electric current to pass from the array to the active layer, the second reflective layer including a diffusing surface to reflect the light propagated by the active layer at an angle other than perpendicular to the reflective layer.
  • 2. The light emitting device as claimed in claim 1, wherein the array comprises a bonding pad, an outer portion, and a joining portion connecting the bonding pad and the outer portion; the outer portion and the joining portion being for current dissipation.
  • 3. The light emitting device as claimed in claim 2, wherein the outer portion is at or adjacent a periphery of the light emitting surface.
  • 4. The light emitting device as claimed in claim 2, wherein the joining portion comprises a plurality of spokes joining the bonding pad and the outer portion.
  • 5. A method of fabricating a light emitting device comprising a plurality of epitaxial layers including an active layer, a reflective layer on a first side of the epitaxial layers and a conductive metal on a second side of the epitaxial layer, the conductive metal having a light emitting surface; the method comprising: forming a second reflective layer on the light emitting surface or at a bottom of a trench in the light emitting surface; andforming a terminal comprising an array on the second reflective layer, the array being for diffusing electrical current and minimizing its effect on light output;the second reflective layer being of a same shape and dimensions as the array, the second reflective layer also for reflecting light propagated by the active layer under the array and being electrically conductive to enable electric current to pass from the array to the active layer, and the second reflective layer including a diffusing surface to reflect light propagated by the active layer at an angle other than perpendicular to the reflective layer.
  • 6. The method in claim 5, wherein the forming of the array is by forming a bonding pad, an outer portion, and a joining portion electrically connecting the bonding pad and the outer portion; the outer portion and the joining portion being for current dissipation.
  • 7. The method as claimed in claim 6, wherein the outer portion is at or adjacent a periphery of the light emitting surface.
  • 8. The method as claimed in claim 6, wherein the joining portion comprises a plurality of spokes joining the bonding pad and the outer portion.
Priority Claims (1)
Number Date Country Kind
200606050-3 Sep 2006 SG national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/SG2007/000288 9/4/2007 WO 00 1/12/2010
Publishing Document Publishing Date Country Kind
WO2008/030188 3/13/2008 WO A
US Referenced Citations (89)
Number Name Date Kind
3897627 Klatskin Aug 1975 A
4107720 Pucel et al. Aug 1978 A
5192987 Khan et al. Mar 1993 A
5405804 Yabe Apr 1995 A
5654228 Shieh et al. Aug 1997 A
5719433 Delage et al. Feb 1998 A
5811927 Anderson et al. Sep 1998 A
5879862 Roh Mar 1999 A
6020261 Weisman Feb 2000 A
6091085 Lester Jul 2000 A
6169297 Jang et al. Jan 2001 B1
6210479 Bojarczuk et al. Apr 2001 B1
6259156 Kohno et al. Jul 2001 B1
6303405 Yoshida et al. Oct 2001 B1
6307218 Steigerwald et al. Oct 2001 B1
6319778 Chen et al. Nov 2001 B1
6365429 Kneissl et al. Apr 2002 B1
6380564 Chen et al. Apr 2002 B1
6420242 Cheung et al. Jul 2002 B1
6420732 Kung et al. Jul 2002 B1
6426512 Ito et al. Jul 2002 B1
6448102 Kneissl et al. Sep 2002 B1
6455870 Wang et al. Sep 2002 B1
6492661 Chien et al. Dec 2002 B1
6509270 Held Jan 2003 B1
6562648 Wong et al. May 2003 B1
6573537 Steigerwald et al. Jun 2003 B1
6586875 Chen et al. Jul 2003 B1
6589857 Ogawa et al. Jul 2003 B2
6627921 Wong et al. Sep 2003 B2
6627989 Kohno et al. Sep 2003 B2
6649437 Yang et al. Nov 2003 B1
6677173 Ota Jan 2004 B2
6821804 Thibeault et al. Nov 2004 B2
7338822 Wu et al. Mar 2008 B2
7348212 Schiaffino et al. Mar 2008 B2
20010055324 Ota Dec 2001 A1
20020022286 Nikolaev et al. Feb 2002 A1
20020034835 Chen et al. Mar 2002 A1
20020093023 Camras et al. Jul 2002 A1
20020113279 Hanamaki et al. Aug 2002 A1
20020117681 Weeks et al. Aug 2002 A1
20020134985 Chen et al. Sep 2002 A1
20020137243 Chen et al. Sep 2002 A1
20020179910 Slater, Jr. Dec 2002 A1
20030038284 Kurahashi et al. Feb 2003 A1
20030064535 Kub et al. Apr 2003 A1
20030111667 Schubert Jun 2003 A1
20030151357 Uemura Aug 2003 A1
20030178626 Sugiyama et al. Sep 2003 A1
20030189212 Yoo Oct 2003 A1
20030189215 Lee et al. Oct 2003 A1
20030218179 Koide et al. Nov 2003 A1
20040026709 Bader et al. Feb 2004 A1
20040031967 Fudeta et al. Feb 2004 A1
20040033638 Bader et al. Feb 2004 A1
20040065889 Ueda et al. Apr 2004 A1
20040104395 Hagimoto et al. Jun 2004 A1
20040110395 Ueda et al. Jun 2004 A1
20040130037 Mishra et al. Jul 2004 A1
20040144991 Kikkawa Jul 2004 A1
20040217362 Slater, Jr. et al. Nov 2004 A1
20040235210 Tamura et al. Nov 2004 A1
20050014303 Tsai et al. Jan 2005 A1
20050026399 Chien et al. Feb 2005 A1
20050035354 Lin et al. Feb 2005 A1
20050082555 Chien et al. Apr 2005 A1
20050087884 Stokes et al. Apr 2005 A1
20050093002 Tsai et al. May 2005 A1
20050098792 Lee et al. May 2005 A1
20050127397 Borges et al. Jun 2005 A1
20050142875 Yoo Jun 2005 A1
20050164482 Saxlar Jul 2005 A1
20050173692 Park et al. Aug 2005 A1
20060006554 Yoo et al. Jan 2006 A1
20060099730 Lee et al. May 2006 A1
20060124939 Lee et al. Jun 2006 A1
20060151801 Doan et al. Jul 2006 A1
20060154390 Tran et al. Jul 2006 A1
20060154391 Tran et al. Jul 2006 A1
20060154392 Tran et al. Jul 2006 A1
20060154393 Doan et al. Jul 2006 A1
20060157721 Tran et al. Jul 2006 A1
20060163586 Denbaars et al. Jul 2006 A1
20060186418 Edmond et al. Aug 2006 A1
20070029541 Xin et al. Feb 2007 A1
20080164480 Kang et al. Jul 2008 A1
20080210970 Kang et al. Sep 2008 A1
20080265366 Guo et al. Oct 2008 A1
Foreign Referenced Citations (68)
Number Date Country
1373522 Oct 2002 CN
1 061 590 Dec 2000 EP
1 139 409 Oct 2001 EP
1 326 290 Jul 2003 EP
1 502 284 Feb 2005 EP
1 693 891 Aug 2006 EP
50-074876 Jun 1975 JP
52-055480 May 1977 JP
59-112667 Jun 1984 JP
63-095661 Apr 1988 JP
04-078186 Mar 1992 JP
05-291621 Nov 1993 JP
07-326628 Dec 1995 JP
10-117016 May 1998 JP
2000-164928 Jun 2000 JP
2000-183400 Jun 2000 JP
2000-277804 Oct 2000 JP
2000-294837 Oct 2000 JP
2001-035974 Feb 2001 JP
2001-036129 Feb 2001 JP
2001-049491 Feb 2001 JP
2001-168094 Jun 2001 JP
2001-168387 Jun 2001 JP
2001-237461 Aug 2001 JP
2001-274507 Oct 2001 JP
2001-313422 Nov 2001 JP
2003-152138 May 2003 JP
2003-218383 Jul 2003 JP
2003-303743 Oct 2003 JP
2003-309286 Oct 2003 JP
2003-318443 Nov 2003 JP
2003-347590 Dec 2003 JP
2004-072052 Mar 2004 JP
2004-088083 Mar 2004 JP
2004-319552 Nov 2004 JP
2005-012188 Jan 2005 JP
2005-236048 Sep 2005 JP
2005-260255 Sep 2005 JP
2005-286187 Oct 2005 JP
2006-253647 Sep 2006 JP
20010088931 Sep 2001 KR
10-0338180 May 2002 KR
10-2002-079659 Oct 2002 KR
20040058479 Jul 2004 KR
20040104232 Dec 2004 KR
200401424-7 Mar 2004 SG
200401964-2 Apr 2004 SG
200506301-1 Sep 2005 SG
200506897-8 Oct 2005 SG
200508210-2 Dec 2005 SG
200605500-8 Aug 2006 SG
419836 Jan 2001 TW
475276 Feb 2002 TW
540171 Jul 2003 TW
WO 0147039 Jun 2001 WO
WO 2004102686 Nov 2004 WO
WO 2005029572 Mar 2005 WO
WO 2005029573 Mar 2005 WO
WO 2005062745 Jul 2005 WO
WO 2005064666 Jul 2005 WO
WO 2005088743 Sep 2005 WO
WO 2005096365 Oct 2005 WO
WO 2005098974 Oct 2005 WO
WO 2005104780 Nov 2005 WO
WO 2007046773 Apr 2007 WO
WO 2007037762 May 2007 WO
WO 2007073354 Jun 2007 WO
WO 2008020819 Feb 2008 WO
Related Publications (1)
Number Date Country
20100117107 A1 May 2010 US