The invention relates to an electrical service device having an arc prechamber area, prechamber plates and a current-limiting arc-quenching device in accordance with the precharacterizing clause of Claim 1. The invention can be used, for example, in line circuit breakers and motor circuit breakers.
Line circuit breakers and motor circuit breakers serve the purpose of isolating electrical lines, which are subjected to excess currents having a high current level, from the power supply system in the event of a fault. For this purpose, a fixed and a movable contact piece are generally provided in an arc prechamber area and are connected to the respective connection terminals. When the switching contact is opened, i.e. when the movable contact piece is lifted off from the fixed contact piece, a switching arc is produced which is quenched in a quenching device provided for this purpose. The arc drawn commutates from the open contact pieces onto arc guide rails in order to then be split in an arc splitter stack (Deion quenching chamber). A high arc voltage is produced there for current limiting purposes such that the arc is extinguished.
DE 102 42 310 A1 has disclosed an arc-quenching arrangement for an electrical switching device which comprises a quenching chamber (in which an arc is produced between a fixed and a movable contact piece in the event of a switching operation) and an arc splitter stack which has two or more arc splitter plates and into which the arc is guided via guide rails.
EP 0 251 160 B1 has disclosed a quenching device for an electrical switch having contact pieces arranged in a prechamber area and an arc splitter stack, the prechamber area being delimited laterally by prechamber plates. There is a gap between the outsides of the prechamber plates and the inner housing wall, and this gap allows the excess pressure to be guided back from the arc splitter stack without the development of the arc being disrupted. The wave of pressure flowing back is used for compensating for the low pressure and for deionization purposes in the contact region.
DE 195 18 049 A1 has disclosed an arc-quenching device of a switching device, in which an insulating-material arc splitter chamber is used in place of conventional arc splitter chambers, said insulating-material arc splitter chamber containing insulating-material webs which form gaps and into which an arc is pressed and thus extended. The quenching action is assisted by a magnetic blowing field which is produced with the aid of an iron plate. Such an iron plate can be arranged on one side of the entire chamber region (prechamber area/expansion region/quenching chamber region).
DE 199 24 414 A1 has disclosed an electrical service switching device, in the case of which a loop is provided on one side of the arc production region and has current flowing through it. One insulating-material plate is located on each side of the arc production region, and in each case one iron plate is arranged outside the insulating-material plates, one iron plate being at least partially surrounded on its outer circumference by the blowing loop. Owing to this arrangement, the blowing field produced by the loop is intensified and concentrated, as a result of which the arc is accelerated such that it enters an arc splitter stack more rapidly.
The invention is based on the object of specifying an electrical service device having an arc prechamber area, prechamber plates and a current-limiting arc-quenching device which has a simple design and optimum functionality.
This object is achieved according to the invention by the features specified in the characterizing clause of Claim 1 in conjunction with the features of the precharacterizing clause.
The advantages which can be achieved by the invention consist in particular in the fact that, as a result of the proposed measure, it is not necessary to decide as early as in the preliminary stages whether a standard switching device or a heavy-duty switching device with increased switching capacity is to be created. The housing has the same design for both types of switching devices; only additional iron plates or permanent magnet plates need to be latched onto the housing from the outside in the case of a heavy-duty switching device. As a result, economic and cost-saving manufacture is also possible for heavy-duty switching devices. In particular, no additional design measures are required in order to electrically insulate the iron plates or permanent magnet plates in order to thus prevent an arc from forming base points on these plates. It is advantageously possible in an extremely simple manner to retrospectively convert a standard switching device to a heavy-duty switching device. In particular, it is not necessary to open the switching device for this purpose.
Further advantages are described in the description below.
Advantageous refinements of the invention are characterized in the dependent claims.
The invention will be explained below with reference to the exemplary embodiments illustrated in the drawing, in which:
The switching device 1—a line circuit breaker or a motor circuit breaker—has a housing made from an insulating plastic material which generally comprises two halves. A connecting area 3, a connecting area/area for (electromagnetic and thermal) releases 4 and an arc prechamber area 5 having an adjoining current-limiting arc-quenching device 7 (Deion chamber) are located within the interior surrounded by the housing wall 2—two narrow end sides and two broad sides can be seen.
Prechamber plates 9 and 12 made from an insulating material (such as a ceramic or a plastic) are arranged on both broad sides of the arc prechamber area 5 such that in each case one return-flow channel 10 and 13, respectively, is formed between the housing wall 2 and the prechamber plate 9 and 12, respectively. Deflections 11 and 14 guide the gases flowing through the return-flow channels 10 and 13, respectively, back to the arc prechamber area 5. The prechamber plates 9, 12 are arranged geometrically such that a return flow behind these prechamber plates is only made possible in the expansion region of the arc, as a result of which the arc is accelerated in the direction of the arc-quenching device 7.
An arc 6 occurring within the arc prechamber area 5 migrates to the arc-quenching device 7, which is generally provided with inner cutouts 8. Two gas flows (illustrated using dotted lines) result on the basis of the circulation principle:
In addition, a force acts on the arc 6 in the direction of a weaker magnetic field, in this case, as a result of a corresponding design of the arc splitter plates of the arc-quenching device 7, in the direction towards the arc-quenching device 7. This force effect is intensified by the fact that iron plates 16 and 18, respectively, in the case of AC heavy-duty switching devices, and permanent magnet plates 16 and 18, respectively, in the case of DC heavy-duty switching devices, are in each case arranged outside the prechamber plates 9 and 12, respectively. In order to fix these plates 16 and 18, respectively, the housing wall 2 is provided in each case with a cutout 15 and 17, respectively, which is accessible from the outside, in the region of the prechamber plates 9 and 12, respectively. Without any additional measures, the housing wall 2 advantageously provides sufficient electrical insulation between the arc prechamber area 5 and the iron plates or permanent magnet plates 16, 18.
In each case one iron plate or permanent magnet plate 16 or 18 is inserted into the cutout 15 or 17 and latched or adhesively bonded there so as to create a heavy-duty switching device having an increased switching capacity compared to a standard switching device. If a more cost-effective standard switching device is intended to be created, these iron plates or permanent magnet plates are dispensed with.
Number | Name | Date | Kind |
---|---|---|---|
4585912 | Fischer et al. | Apr 1986 | A |
6717090 | Kling et al. | Apr 2004 | B2 |
7145422 | Imanishi et al. | Dec 2006 | B2 |
Number | Date | Country |
---|---|---|
19518049 | Nov 1996 | DE |
10242310 | Jul 2003 | DE |
251160 | Jan 1988 | EP |
1056105 | Nov 2000 | EP |
Number | Date | Country | |
---|---|---|---|
20060180576 A1 | Aug 2006 | US |