The disclosed concept relates generally to electrical switching apparatus and, more particularly, to electrical switching apparatus, such as circuit breakers. The disclosed concept also relates to shunt tab assemblies for electrical switching apparatus.
Electrical switching apparatus, such as circuit breakers, provide protection for electrical systems from electrical fault conditions such as, for example, current overloads, short circuits, abnormal voltage and other fault conditions. Typically, circuit breakers include an operating mechanism, which opens electrical contact assemblies to interrupt the flow of current through the conductors of an electrical system in response to such fault conditions as detected, for example, by a trip unit. The electrical contact assemblies include stationary electrical contacts and corresponding movable electrical contacts disposed on movable contact arms that pivot to move the movable electrical contacts into and out of electrical contact with the stationary electrical contacts.
Some circuit breaker designs employ a trip unit that is mechanically coupled (e.g., bolted) and electrically connected in parallel to the base of the circuit breaker. For example, each movable contact arm may be electrically connected to a block of copper or shunt tab by a number of flexible conductors, commonly referred to as shunts. Terminals of the trip unit may be bolted to the blocks of copper or shunt tabs. Additional fasteners (e.g., mounting screws) may be used to fasten the blocks of copper or shunt tabs to the base of the circuit breaker to maintain the shunt tabs in the desired position with respect to the circuit breaker housing. Dielectric issues can result due to limited available space and close proximity of electrically conductive components, such as the aforementioned mounting screws and bolts. Additionally, machining (e.g., threading or tapping) the blocks of copper or shunt tabs to receive the mounting screws and/or bolts can be expensive, and the tapped threads can be susceptible to damage and may lack the desired mechanical connection strength.
There is, therefore, room for improvement in electrical switching apparatus, and in shunt tab assemblies therefor.
These needs and others are met by embodiments of the disclosed concept, which are directed to a shunt tab assembly for an electrical switching apparatus such as, for example, a circuit breaker, which among other benefits satisfies dielectric testing criteria and provides a strong trip unit connection joint.
In accordance with an aspect of the disclosed concept, a shunt tab assembly is provided for an electrical switching apparatus. The electrical switching apparatus includes a housing, separable contacts enclosed by the housing, an operating mechanism for opening and closing the separable contacts, and a number of shunts. The operating mechanism includes a trip unit. The shunt tab assembly comprises: a shunt tab structured to be electrically connected to the shunts; a biasing element structured to bias the shunt tab toward a predetermined position with respect to the housing; and a fastener structured to mechanically couple and electrically connect the trip unit to the shunt tab.
The biasing element may be a leaf spring. The leaf spring may be structured to cooperate with the housing of the electrical switching apparatus to bias the shunt tab toward the predetermined position.
The shunt tab may be a single piece electrically conductive member comprising an exterior, an interior, and a cavity extending from the exterior to the interior.
The fastener may comprise a mounting bolt and a corresponding nut, and the nut may be retained within the cavity. The mounting bolt may extend from the exterior of the shunt tab to the interior of the shunt tab to engage the nut.
An electrical switching apparatus employing at least one of the aforementioned shunt tab assemblies is also disclosed.
A full understanding of the disclosed concept can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:
The disclosed concept may take form in various components and arrangements of components, and in various techniques, methods, or procedures and arrangements of steps. The referenced drawings are only for the purpose of illustrated embodiments, and are not to be construed as limiting the present invention. Various inventive features are described below that can each be used independently of one another or in combination with other features.
Directional phrases used herein, such as, for example, front, back, top, bottom, upward, downward, and derivatives thereof, relate to the orientation of the elements shown in the drawings and are not limiting upon the claims unless expressly recited therein.
As employed herein, the singular form of “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Still further, as used herein, the term “number” shall mean one or an integer greater than one (e.g., a plurality).
As employed herein, the term “coupled” shall mean that two or more parts are joined together directly or joined through one or more intermediate parts. Furthermore, as employed herein, the phrases “directly connected” shall mean that two or more parts are joined together directly, without any intermediate parts being disposed therebetween at the point or location of the connection.
As employed herein, the phrase “electrically connected” shall mean that two or more parts or components are joined together either directly or joined through one or more intermediate parts such that electricity, current, voltage, and/or energy is operable to flow from one part or component to the other part or component, and vice versa.
As employed herein, the term “fastener” refers to any suitable connecting or tightening mechanism expressly including, but not limited to, screws, bolts and the combinations of bolts and nuts (e.g., without limitation, lock nuts) and bolts, washers and nuts.
Continuing to refer to
More specifically, as shown in
As best shown in
Referring again to
As best shown in
Among other advantages, this unique design, wherein the nut 184 is disposed within the cavity 118 of the shunt tab 102 overcomes known dielectric issues with prior art shunt tab assembly designs (not shown). That is, by using the nut 184 retained within the cavity 118 of the shunt tab 102, the necessity to tap (e.g., without limitation, thread) a conductive member (e.g., without limitation copper block) in accordance with the prior art, is eliminated. This not only makes for a stronger bolted joint (see, for example,
The single piece electrically conducted piece 102 of the non-limiting example shunt tab assembly 100 further includes pivot points 122,124 (both shown in
Accordingly, it will be appreciated, that the disclosed shunt tab assembly 100 provides a unique leaf spring 140 and shunt tab 102 design whereby the leaf spring 140 biases the shunt tab 102 to a predetermined desired orientation with respect to the circuit breaker housing 4, thereby eliminating the requirement for separate mounting screws to be inserted through the circuit breaker housing 4 to secure the shunt tab 102. This, in turn, offers a number of benefits, including avoiding undesirable dielectric issues caused by closely spaced electrically conductive components. Additionally, the unique fastener 180 in accordance with the disclosed concept, whereby the nut 184 is retained within the cavity 118 of the shunt tab 102 and serves as a stable fastening point for the corresponding mounting bolt 182, advantageously establishes a stronger bolted joint between the trip unit 50 and shunt tab assembly 100 compared to prior art threaded (e.g., without limitation, tapped) copper block designs.
While specific embodiments of the disclosed concept have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the disclosed concept which is to be given the full breadth of the claims appended and any and all equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4080582 | Link | Mar 1978 | A |
4527027 | Link et al. | Jul 1985 | A |
5223681 | Buehler | Jun 1993 | A |
20030222739 | Kolberg et al. | Dec 2003 | A1 |
Number | Date | Country |
---|---|---|
2014204604 | Dec 2014 | WO |
Entry |
---|
European Patent Office, “Extended European Search Report” (corresp. to EP 17205301.9), dated May 2, 2018, 6 pp. |
Number | Date | Country | |
---|---|---|---|
20180166241 A1 | Jun 2018 | US |