Bushnor, "An experiment in Learning", Electronics, Jul. 1960, pp. 56-59. |
J. W. Thackeray et al, "Poly(3,methylthiophene)-Coated Electrodes: Optical and Electrical Properties as a Function of Redox Potential and Amplification of Electrical and Chemical Signals Using Poly(3-methylthiophene)-Based Microelectrochemical Transistors," J. Phys. Chem., 89 pp. 5133-5140 (1985). |
E. T. T. Jones et al, "Preparation and Characterization of Molecule-Based Transistors with a 50-nm Source-Drain Separation with Use of Shadow Deposition Techniques: Toward Faster, More Sensitive Molecule-Based Devices," J. Am. Chem. Soc., 109, pp. 5226-5228 (1987). |
E. P. Lofton et al, "Amplification of Electrical Signals with Molecule-Based Transistors: Power Amplification Up to Ailohertz Frequency and Factors limiting Higher Frequency Operation," J. Phys. Chem. 90, pp. 6080-6083 (1986). |
E. W. Paul et al, "Resistance of Polyaniline Films as a Function of Electrochemical Potential and the Fabrication of Polyaniline-Based Microelectronic Devices," J. Phys., Che4m., 89, pp. 1441-1447 (1985). |
G. P. Kittlesen et al, "Chemical Derivatization of Microelectrode Arrays by Oxidation of Pyrrole and N-Methylpyrrole": Fabrication of Molecule-Based Elecronic Devices, J. Am. Chem. Soc., 106, pp. 7389-7396 (1984). |
J. C. Jernigan et al, "A Benzimidazobenzophenanthroline Polymer Molecular Transistor Fabricated Using Club Sandwich Electrodes," J. Electroanal, Chem., 22, pp. 193-200 (1987). |
R. A. Reed et al, "Solid State Voltammetry of Electroactive Solutes in Polyethylene Oxide Polymer Films on Microelectrodes," J. Electroanal. Chem., 208, pp. 185-193 (1986). |
J. J. Hopfield, "Neural Networds and Physical Systems with Emergent Collective Computational Abilities," Proc. National Acad. Sci., 79, pp. 2554-2558 (1982). |
L. D. Jacket et al, "Artificial Neural Networks for Computing," J. Vac. Sci. technol., B. vol. 4, No. 1, Jan./Feb. 1986, pp. 61-63. |
J. J. Hopfield et al, "Computing with Neutral Circuits: A model," Science, 233, pp. 625-633 (1986). |
Paper by T. J. Sejnowski et al titled "Boltzmann Machines: Constraint Satisfaction Networks That Learn," published by the Department of Computer Science, Carnegie Mellow University, as Technical report CMU-CS-84-119 (1984). |