Electrified bird deterrent device with cavity

Information

  • Patent Grant
  • 9717230
  • Patent Number
    9,717,230
  • Date Filed
    Friday, October 7, 2016
    8 years ago
  • Date Issued
    Tuesday, August 1, 2017
    7 years ago
Abstract
An animal deterrent device includes an elongated carrier having an internal cavity. A conductive trace can be coupled to the carrier by a first fastener that extends from the conductive trace to the cavity, which prevents water from contacting the fastener and shorting the conductive trace.
Description
FIELD OF THE INVENTION

The field of the invention is bird deterrent devices.


BACKGROUND

There are numerous animal deterring devices known in the art, and many of those use electric current to deter, and in some case even kill birds and other relatively small animals. For example, where a relatively large structure is to be protected, a blanket can be configured to include a plurality of vertically arranged and spaced apart electrodes as described in U.S. Pat. No. 6,925,748. While such devices may protect a relatively large area, numerous disadvantages remain. Among other things, pooling of water must be avoided at all times to allow for continuous operation. Moreover, as such devices are typically flexible, inadvertent short circuiting may occur by folding or bending a portion of the blanket.


This and all other extrinsic materials discussed herein are incorporated by reference in their entirety. Where a definition or use of a term in an incorporated reference is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply.


Other known electrified devices include those described in U.S. Pat. No. 4,015,176 and European Patent No. 1314355 in which a string-shaped carrier includes conductive traces embedded or attached to the carrier. Similarly, string-shaped structures may be formed from braided wire that further includes insulator disks as described in U.S. Pat. No. 5,031,353. While such devices are generally simple to manufacture and operate, various difficulties remain. Among other problems, such devices often fail to operate properly when moisture or rain runs along the wire, or where droppings are deposited on the wire. Similar disadvantages are observed in devices that have a rail with partially embedded conductive traces from which raised conductive tabs protrude as shown in U.S. Pat. No. 6,006,698, or in devices having a rail with two elevated conductive traces as described in U.S. Patent Application Publication No. 2005/0132635. Such devices are particularly sensitive to puddling or fecal contamination.


In still further known electrified deterring devices, conductive traces are mounted to an elevated carrier portion that includes spaces to allow for drainage and flexible installation as shown in U.S. Pat. Nos. 6,283,064 and 6,928,768. While such devices are often more reliable than known devices when exposed to moisture or droppings, other disadvantages arise. For example, due to the raised position of the wires, installation is frequently esthetically less pleasing than relatively flat rail-type structures. Moreover, positioning of the wires is at a fixed distance and in a manner that will allow at least some birds to perch in a position in which the bird will not receive the electrical impulse or current.


U.S. Pat. No. 7,481,021 discusses that the conductors can be sewn to the base to facilitate bending of the conductor and base. However, this is problematic because the stitches disposed on the bottom surface of the base can come into contact with water, which can seep up the thread and cause the conductors to short. While this problem can be eliminated by disposing the stitches in glue troughs that are filled with adhesive, e.g., U.S. Pat. Nos. 8,015,747 and 8,020,340, there may be situations where glue troughs are not desirable.


Thus, while there are numerous devices and methods for deterring animals, and especially birds are known in the art, all or almost all of them suffer from various disadvantages. Thus, there is still a need for new configurations and methods for bird deterrents.


SUMMARY OF THE INVENTION

The inventive subject matter provides apparatus, systems and methods for animal deterrent devices having at least one electrically conductive trace coupled to an elongated carrier that includes an internal cavity.


Unless the context dictates the contrary, all ranges set forth herein should be interpreted as being inclusive of their endpoints, and open-ended ranges should be interpreted to include commercially practical values. Similarly, all lists of values should be considered as inclusive of intermediate values unless the context indicates the contrary.


In preferred embodiments, the conductive trace can be coupled to the elongated carrier by a first fastener that extends from the conductive trace to the cavity. In this manner, the first fastener can extend back and forth from the carrier to the cavity resulting in the conductive trace and cavity each having a plurality of stitches. By disposing the stitches within the cavity rather than on a bottom surface of the carrier, shorting of the conductive trace can advantageously be prevented because the cavity insulates the stitches from contact with water that may pool at the carrier's bottom surface. Water can thus be prevented from wicking or seeping up the fastener and contacting the conductive trace.


Various objects, features, aspects and advantages of the inventive subject matter will become more apparent from the following detailed description of preferred embodiments, along with the accompanying drawing figures in which like numerals represent like components.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1A is a perspective view of one embodiment of a bird deterrent device.



FIG. 1B is a horizontal cross-section view of the bird deterrent device of FIG. 1A.



FIGS. 2-5 are horizontal cross-section views of various embodiments of bird deterrent devices.





DETAILED DESCRIPTION

One should appreciate that the disclosed techniques provide many advantageous technical effects including reducing the likelihood of the conductive trace being shorted as a result of water pooling beneath the deterrent device.


The following discussion provides many example embodiments of the inventive subject matter. Although each embodiment represents a single combination of inventive elements, the inventive subject matter is considered to include all possible combinations of the disclosed elements. Thus if one embodiment comprises elements A, B, and C, and a second embodiment comprises elements B and D, then the inventive subject matter is also considered to include other remaining combinations of A, B, C, or D, even if not explicitly disclosed.


In FIGS. 1A-1B, an animal deterrent device 100 is shown having an elongated carrier 102, to which conductive traces 120 and 122 can be coupled using any commercially suitable fastener(s) including, for example, glues and other adhesives, metal and plastic staples, cotton, synthetic or other types of thread, and other mechanical fasteners, and any combination(s) thereof. Carrier 102 preferably includes at least one internal cavity 104. Preferably, the cavity 104 is hermetically sealed within carrier 102, although the cavity 104 can alternatively include one or more outlets (not shown). Cavity 104 is preferably hollow, but in alternative embodiments at least a portion of the cavity 104 can include a low-density material including, for example, foam and aerogel. Such material can advantageously assist in maintaining a structure of the cavity 104.


In other contemplated embodiments, cavity 104 can include struts or other means of support such that cavity 104 can maintain its size and dimension. It is contemplated that cavity 104 can be of any commercially size and dimension, and preferably is sized and dimensioned such that conductive traces 120 and 122 can be sewn to the carrier 102 using one or more threads that extends from conductive trace 120 or 122 to cavity 104. Carrier 102 can alternatively include multiple cavities. In preferred embodiments, cavity 104 extends substantially the length of the carrier 102, but alternatively could extend along only a portion thereof. In other embodiments, the carrier could include a plurality of cavities or pockets disposed about a length of the carrier 102.


The conductive traces 120 and 122 can be knitted, braided or otherwise configured from a conductive material such that the traces 120 and 122 can conduct current. An exemplary embodiment of knitted conductors is described in U.S. patent application having Ser. No. 12/689,406 filed on Jan. 19, 2010. In other contemplated embodiment, the conductive traces could be formed from an extruded, conductive polymer(s).


It is contemplated that the elongated carrier 102 can be manufactured from a thermoplastic elastomer or rubber-containing compound, or other commercially suitable materials or combinations thereof. For example, the carrier could be fabricated from numerous materials, including natural and synthetic materials, wood, glass, metals and metal alloys, and any commercially suitable material(s) and combination(s) thereof. Especially preferred materials include those that provide sufficient flexibility to the carrier 102 to allow the carrier 102 to conform to uneven surfaces. Most preferably, carrier 102 is soft enough to be manually deformed. It is also noted that where the carrier is especially pliable, a desired form may be retained by inclusion of a more resilient element within or coupled to the carrier 102. For example, contemplated carriers may include a metal wire or other deformable element that assists the carrier to maintain a desired configuration. Furthermore, it is generally preferred that the carrier material is non-conductive. However, in alternative aspects, carrier 102 may also be made from, or include a conductive material. In such devices, it is then contemplated that only one conductive trace may be needed, and that such trace is typically coupled to the carrier via an insulator.


In preferred embodiments, the carrier 102 is relatively flat (i.e., has a width and length that is larger than the height) such that the device 100 can be bent, or even provided in a rolled-up configuration. However, the particular width and height will typically be determined by the size of bird or other animal that is to be deterred. Thus, and most commonly, carrier 102 will be configured such that entire device 100 has a height to width ratio between 1:5 and 1:2, and more typically between 1:4 and 1:3. For example, suitable carriers may have a width between 1 cm and 10 cm, more typically between 2 cm and 7 cm, and most typically between 3 cm and 5 cm. The length of such devices is generally determined by the desired overall length of the device or device segment and may therefore vary between several centimeters to several meters and even longer. The height of contemplated devices will generally be between 1 mm and 3 cm, and more typically between 3 mm and 1 cm. In further contemplated embodiments, carrier 102 may include one or more cutouts (not shown) sized and configured to allow for side-to-side flexing of the carrier 102. For example, such cutouts may be formed to allow positioning the carrier in a 90 degree angle with a radius of less than 20 cm, more preferably less than 15 cm, and most preferably less than 10 cm.


In preferred embodiments, each of the conductive traces 120 and 122 can be coupled to carrier 102 by threads 130 and 132, respectively. The conductive traces 120 and 122 may be coupled to the carrier 102 on a horizontal surface or an angled surface 106, and are preferably at least partially disposed over cavity 104. In especially preferred embodiments, the first conductive trace 120 is coupled to the carrier 102 by a thread 130 that extends from the first conductive trace 120 to the cavity 104, such that each of the first conductive trace 120 and the cavity 104 has a plurality of stitches 150A and 150B, respectively. In a similar fashion, the second conductive trace 122 can be coupled to the carrier 102 by a second thread 132 that extends from the second conductive trace 122 to the cavity 104, such that each of the second conductive trace 122 and the cavity 104 has a plurality of stitches 152A and 152B, respectively. It is contemplated that one or both of threads 130 and 132 may extend through only a portion of conductive traces 120 and 122, respectively, or alternatively, extend from a first end to a second end of conductive traces 120 and 122. It is further contemplated that the fastener may extend only to an edge (e.g., roof) of the cavity rather than extend into the cavity.


Sewing conductive traces 120 and 122 to the carrier 102 advantageously allows the conductive traces 120 and 122 to flex as the carrier 102 flexes. Furthermore, sewing the conductive traces 120 and 122 to the cavity 104 rather than a bottom surface 108 of the carrier 102 advantageously insulates the plurality of stitches 150B and 152B from coming into contact with water that could pool at the bottom surface 108. In this manner, the water is prevented from seeping up the threads 130 and 132 and shorting the conductive traces 120 and 122.


The first and second conductive traces 120 and 122 are typically spaced apart at a distance that allows formation of an electric circuit when a foot of a bird (e.g., an adult pigeon, an adult seagull) rests on the device 100. Therefore, and depending on the particular bird or other animal or pest to be deterred, suitable distances between the first and second conductive traces 120 and 122 will be between 5 mm and 2 cm, and more typically between 7 mm and 1.5 cm.


In still further preferred aspects, the first and second conductive traces 120 and 122 are parallel to an arc suppressor 112, and/or at least one of the first and second conductive traces 120 and 122 are continuous along substantially (+/−5%) the entire length of the carrier 102. Where desirable, at one part of the carrier 102 is angled to a degree such that when the device 100 is installed on a horizontal surface, water runs off the angled surface 106. Depending on the particular configuration, the angled surface 106 may include the portion of the carrier 102 to which the trace is coupled, and/or a portion between a conductive trace and the arc suppressor 112 or the outer edge of the carrier 102.


Carrier 102 can further include an arc suppressor 112 that separates the traces 120 and 122 from one another. It is generally preferred that the arc suppressor 112 is continuous along the length of the carrier. While there are numerous configurations are contemplated for the arc suppressor 112, it is generally preferred that the arc suppressor increases the creep distance between the conductive traces 120 and 122 at least 1.5 times, more typically at least 1.7 times, even more typically at least 2.0 times, and most typically at least 2.2 times, thereby preventing all or almost all circumstances where moisture, dew, or rain may cause short-circuiting.


As used herein, the term “creep distance” refers to a distance that is measured between two points on a body when following the shortest path between those points along the surface of that body. As also used herein, the term “umbrelloid shape” refers to any shape of an element that is coupled to the device where that element has a downward facing surface portion when the device is installed on a horizontal surface. Most typically, the downward facing portion is contiguous with an upward facing portion, and the element will therefore have a sharp angled or rounded edge from which water or other fluids can drip off. Viewed from a different perspective, elements with umbrelloid shape will generally have a downward facing portion and an upward facing portion that are either substantially parallel (+/−15 degrees), or form an angle between 15 and less than 90 degrees. Exemplary umbrelloid shapes include a T-shape, a stemmed inverted U-shape, and a stemmed inverted V-shape.


In especially preferred aspects, the arc suppressor 112 has an umbrelloid shape and a height to width ratio between 1:10 and 1:1, and more typically between 1:6 and 1:1. For example, contemplated arc suppressors generally include stemmed structures in which a first generally vertical element carries a horizontal or curved element to form a T-shape, a stemmed inverted V-shape, a stemmed inverted U-shape, or an otherwise stemmed structure that has at least one generally horizontally extending protrusion. Depending on the particular shape, it should be appreciated that a vertical gap will be formed between at least part of the arc suppressor 112 and the portion of the carrier 102 to which the conductive traces 120 and 122 are coupled, and that such gap will assist in breaking a layer of conductive material that extends across the device 100.


It should be noted that the shape of the arc suppressor 112 can generate a space that is protected from contact with conductive material falling vertically (and even from falling at an angle of up to 45 degrees, and more) onto the device 100. Still further, it should be noted that the shape of the arc suppressor 112 can also provide for a vertical clearance (i.e., empty space between the shortest vertical distance between at least one of the conductive traces 120 and 122 and the top surface of the device 100 or the arc suppressor 112) that is effective in disrupting a conductive film, flow, and/or layer between the conductive traces 120 and 122.



FIG. 2 illustrates another embodiment of a bird deterrent device 200 having a cavity 204 with a square-shaped horizontal cross-section. With respect to the remaining numerals in FIG. 2, the same considerations for like components with like numerals of FIG. 1 apply.


In FIG. 3, yet another embodiment of a bird deterrent device 300 is shown having first and second cavities 304 and 305, which are at least partially disposed beneath the first and second conductive traces 320 and 322, respectively. Although two cavities are shown, it is contemplated that the device 300 can include a single cavity or three or more cavities depending upon the specific application.


In preferred embodiments, each of the conductive traces 320 and 322 can be coupled to carrier 302 by threads 330 and 332, respectively. In especially preferred embodiments, the first trace 320 is coupled to the carrier 302 by a thread 330 that extends from the first trace 320 to the first cavity 304, such that each of the first trace 320 and the first cavity 304 has a plurality of stitches 350A and 350B, respectively. In a similar fashion, the second trace 322 can be coupled to the carrier 302 by a second thread 332 that extends from the second trace 322 to the second cavity 305, such that each of the second trace 320 and the second cavity 305 has a plurality of stitches 352A and 352B, respectively. With respect to the remaining numerals in FIG. 3, the same considerations for like components with like numerals of FIG. 1 apply.



FIG. 4 illustrates still another embodiment of a bird deterrent device 400 having a carrier 402 with a cavity 404 that is filled with a low-density material 409. Although preferred low-density materials include foam or aerogel, any commercially suitable material(s) could be used having a low density, such that the fasteners 430 and 432 can be inserted through at least a portion of the low-density material 409. With respect to the remaining numerals in FIG. 4, the same considerations for like components with like numerals of FIG. 1 apply.


In FIG. 5, another embodiment of a bird deterrent device 500 having a carrier 502 that includes a cavity 504 and a glue trough 550 disposed on a bottom surface 508 of the carrier 502. The glue trough 550 preferably extends along a length of the carrier 502, and is configured to receive glue or other adhesive(s) to adhere the device 500 to a surface. Although device 500 is shown having a single glue trough 550, it is contemplated that device 500 could include two or more glue troughs, or a pattern of grooves defining treads, such as that described in U.S. provisional application having Ser. No. 61/543,253 filed on Oct. 4, 2011. With respect to the remaining numerals in FIG. 5, the same considerations for like components with like numerals of FIG. 1 apply.


As used herein, and unless the context dictates otherwise, the term “coupled to” is intended to include both direct coupling (in which two elements that are coupled to each other contact each other) and indirect coupling (in which at least one additional element is located between the two elements). Therefore, the terms “coupled to” and “coupled with” are used synonymously.


It should be apparent to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the scope of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms “comprises” and “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced. Where the specification claims refers to at least one of something selected from the group consisting of A, B, C . . . and N, the text should be interpreted as requiring only one element from the group, not A plus N, or B plus N, etc.

Claims
  • 1. An animal deterrent device, comprising: an elongated base having a cross section including an upper portion with a top and bottom surface, and a lower portion disposed underneath the bottom surface, wherein the cross section further comprises a center support connecting the upper and lower portions;first and second internal cavities disposed between the upper and lower portions on opposite sides of the center support, wherein the bottom surface of the upper portion comprises an upper surface of each of the internal cavities, and wherein the lower surface of each of the internal cavities is above the lower portion of the base;first and second conductive traces disposed along the top surface of the upper portion;first and second fasteners that couple the first and second conductive traces to the top surface at first and second points on the top surface, respectively, and wherein the first fastener extends from the first conductive trace through the upper portion to a third point on the bottom surface of the upper portion, and wherein the second fastener extends from the second conductive trace through the upper portion to a fourth point on the bottom surface of the upper portionwherein the third and fourth points are at opposite sides of the center support; andwherein the lower portion is disposed underneath the second point on the bottom surface such that the lower portion insulates the first fastener at the second point.
  • 2. The device of claim 1, wherein the third and fourth points are on an upper surface of first and second internal cavities, respectively.
  • 3. The device of claim 1, wherein the first internal cavity is at least partially disposed beneath the first conductive trace.
  • 4. The device of claim 1, wherein the first internal cavity is at least partially disposed beneath the first conductive trace.
  • 5. The device of claim 4, wherein the second internal cavity is at least partially disposed beneath the second conductive trace.
  • 6. The device of claim 1, wherein the first internal cavity comprises a low-density material.
  • 7. The device of claim 1, wherein the base comprises an elevated arc suppressor disposed between the first and second conductive traces.
  • 8. The device of claim 1, wherein each of the first and second conductive traces comprises a braided wire.
  • 9. The device of claim 8, wherein the braided wire comprises some strands of a conductive material and other strands of a non-conductive material.
  • 10. The device of claim 1, wherein each of the first and second conductive traces comprises a knitted wire.
  • 11. The device of claim 1, wherein the first conductive trace is sewn to the base using the first fastener and the second conductive trace is sewn to the base using the second fastener, such that each of the first conductive trace, the second conductive trace, the first internal cavity, and the second internal cavity comprises a plurality of stitches.
  • 12. The device of claim 1, wherein the plurality of stitches of the first internal cavity are disposed within the first internal cavity, and the plurality of stitches of the second internal cavity are disposed within the second internal cavity.
  • 13. The device of claim 1, wherein the first conductive trace and the second conductive trace are attachable respectively to positive and negative terminals of a power source.
  • 14. The device of claim 1, wherein the elongated base has sufficient flexibility to allow the carrier to be deformed.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 14/520,038, filed Oct. 21, 2014, which is a continuation of U.S. patent application Ser. No. 13/365,535, filed Feb. 3, 2012, now issued U.S. Pat. No. 8,863,434, which claims the benefit of priority to U.S. Provisional Application No. 61/543,221, filed Oct. 4, 2011. This and all other extrinsic materials discussed herein are incorporated by reference in their entirety. Where a definition or use of a term in an incorporated reference is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply.

US Referenced Citations (104)
Number Name Date Kind
1976721 Gengler Oct 1934 A
2647228 Just Jul 1953 A
3294893 Shaffer Dec 1966 A
3320354 Marley et al. May 1967 A
3366854 Robinson Jan 1968 A
3622685 Crowl Nov 1971 A
3717802 Plevy et al. Feb 1973 A
4015176 Shanahan et al. Mar 1977 A
4111400 Enoksson Sep 1978 A
4186512 Berg Feb 1980 A
4274123 Rogers, Jr. Jun 1981 A
4299048 Bayes Nov 1981 A
4352007 Baker et al. Sep 1982 A
4471561 Lapierre Sep 1984 A
4475141 Antonevich Oct 1984 A
4494733 Olsson Jan 1985 A
4706941 Sherdan Nov 1987 A
4839984 Saunders et al. Jun 1989 A
4861645 Standing Aug 1989 A
4862637 Dressel Sep 1989 A
4949216 Djukastein Aug 1990 A
5007196 Saunders et al. Apr 1991 A
5031353 Gardiner Jul 1991 A
5036166 Monopoli Jul 1991 A
5049704 Matouschek Sep 1991 A
5095646 Bunkers Mar 1992 A
5096162 Cleveland Mar 1992 A
5107620 Mahan Apr 1992 A
5151319 Schoutteten Sep 1992 A
5158039 Clark Oct 1992 A
5253444 Donoho et al. Oct 1993 A
5433029 Donoho et al. Jul 1995 A
5570537 Black et al. Nov 1996 A
5850808 Burdick Dec 1998 A
6006698 Negre Dec 1999 A
6145236 King Nov 2000 A
6250023 Donoho Jun 2001 B1
6283064 Djukastein et al. Sep 2001 B1
6314914 Betzen Nov 2001 B1
6332262 Sakamoto Dec 2001 B1
6341444 Cina et al. Jan 2002 B1
6371054 Celata et al. Apr 2002 B1
6472602 Pokrandt Oct 2002 B1
6718701 Riddell Apr 2004 B2
6775950 Donoho Aug 2004 B2
6834846 Robbins, III Dec 2004 B2
6878883 Rauckman Apr 2005 B1
6925748 McGill et al. Aug 2005 B2
6928768 Snow Aug 2005 B1
6933446 Waldorf et al. Aug 2005 B1
7020995 Snow Apr 2006 B1
7036278 Donoho May 2006 B1
7075015 Rauckman Jul 2006 B1
7243465 Donoho Jul 2007 B2
7249436 Ravenelle et al. Jul 2007 B2
7276665 Rauckman Oct 2007 B1
7299586 Lawson, Jr. Nov 2007 B2
7351913 Waldorf et al. Apr 2008 B2
7481021 Riddell Jan 2009 B2
7596910 Donoho Oct 2009 B1
7679000 Rauckman Mar 2010 B2
7772499 Rauckman Aug 2010 B2
7802396 Donoho Sep 2010 B2
7802405 Donoho et al. Sep 2010 B1
7937885 Donoho May 2011 B2
7941977 Donoho May 2011 B2
8015747 Donoho Sep 2011 B2
8020340 Donoho Sep 2011 B2
8065842 Donoho et al. Nov 2011 B2
8191303 Donoho Jun 2012 B2
8196340 Donoho Jun 2012 B2
8196341 Donoho Jun 2012 B2
8720106 Donoho May 2014 B2
8863434 Donoho Oct 2014 B2
20010048053 Donoho Dec 2001 A1
20020092481 Spooner Jul 2002 A1
20030208967 Riddell Nov 2003 A1
20040173786 Robbins Sep 2004 A1
20040255837 Donoho Dec 2004 A1
20050132635 Riddell Jun 2005 A1
20050150469 Wolfgram Jul 2005 A1
20060032111 Willard et al. Feb 2006 A1
20060207195 Donoho Sep 2006 A1
20060281382 Karayianni et al. Dec 2006 A1
20070180781 Donoho Aug 2007 A1
20070214710 Donoho Sep 2007 A1
20070220802 Donoho Sep 2007 A1
20080172817 Riddell Jul 2008 A1
20090126651 Riddell May 2009 A1
20090165281 Larsen Jul 2009 A1
20090249710 Donoho Oct 2009 A1
20090260272 Donoho Oct 2009 A1
20090261180 Donoho et al. Oct 2009 A1
20100180490 Donoho Jul 2010 A1
20110030621 Donoho Feb 2011 A1
20110067646 Donoho Mar 2011 A1
20110146589 Donoho Jun 2011 A1
20110214339 Donoho Sep 2011 A1
20110314724 Donoho Dec 2011 A1
20120030989 Donoho Feb 2012 A1
20120031016 Donoho Feb 2012 A1
20120151823 Donoho et al. Jun 2012 A1
20120224294 Donoho Sep 2012 A1
20120241214 Donoho Sep 2012 A1
Foreign Referenced Citations (23)
Number Date Country
2004296785 Jun 2005 AU
2548474 Jun 2005 CA
102356699 Feb 2012 CN
3930012 Mar 1991 DE
202010017470 Feb 2012 DE
0592054 Apr 1994 EP
1314355 May 2003 EP
1207496 Oct 1971 GB
08-256666 Oct 1996 JP
11-346634 Dec 1999 JP
2006-340691 Dec 2006 JP
2007-000142 Jan 2007 JP
8404022 Oct 1984 WO
9320689 Oct 1993 WO
9508915 Apr 1995 WO
9608140 Mar 1996 WO
0021363 Apr 2000 WO
2004021780 Mar 2004 WO
2005055865 Jun 2005 WO
2005055865 Jun 2005 WO
2009129412 Oct 2009 WO
2010083516 Jul 2010 WO
2012040009 Mar 2012 WO
Non-Patent Literature Citations (3)
Entry
Flye-Bye Bird Control Products—www.flybye.com catalog product info.pdf, Shock Strip, last visited Nov. 6, 2012,http://www.flybye.com/catalog/product—info.php?cPath=2&products—id=203&osCsid=ajd88q0883dsg228ieeip67fq5.
Flye-Bye Bird Control Products—www.flybye.com catalog product info.pdf, Shock Strip, enlarged picture last visited Nov. 6, 2012,, http://www.flybye.com/catalog/popup—image.php?pID=203.
Shock Strips(TM) D&S Specialty Products, Inc., Kirkland, WA, ShockStrip product description—last visited Nov. 6, 2012, http://www.flyebye.com/shockstrip.pdf.
Related Publications (1)
Number Date Country
20170020124 A1 Jan 2017 US
Provisional Applications (1)
Number Date Country
61543221 Oct 2011 US
Continuations (2)
Number Date Country
Parent 14520038 Oct 2014 US
Child 15287989 US
Parent 13365535 Feb 2012 US
Child 14520038 US