The present invention relates generally to a device that transports and conditions air. More specifically, an embodiment of the present invention provides such a device with the enhanced ability to reduce the number of microorganisms within the air, which microorganisms can include germs, bacteria, and viruses.
U.S. Pat. No. 4,789,801 issued to Lee, and incorporated herein by reference, describes various devices to generate a stream of ionized air using an electro-kinetic technique. In overview, electro-kinetic techniques use high electric fields to ionize air molecules, a process that produces ozone (O3) as a byproduct. Ozone is an unstable molecule of oxygen that is commonly produced as a byproduct of high voltage arcing. In appropriate concentrations, ozone can be a desirable and useful substance. But ozone by itself may not be effective to kill microorganisms such as germs, bacteria, and viruses in the environment surrounding the device.
Preferably particulate matter “x” in the ambient air can be electrostatically attracted to the second electrode array 80, with the result that the outflow (OUT) of air from device 10 not only contains ozone and ionized air, but can be cleaner than the ambient air. In such devices, it can become necessary to occasionally clean the second electrode array electrodes 80 to remove particulate matter and other debris from the surface of electrodes 90. Accordingly, the outflow of air (OUT) is conditioned in that particulate matter is removed and the outflow includes appropriate amounts of ozone, and some ions.
An outflow of air containing ions and ozone may not, however, destroy or significantly reduce microorganisms such as germs, bacteria, fungi, viruses, and the like, collectively hereinafter “microorganisms.” It is known in the art to destroy such microorganisms with, by way of example only, germicidal lamps. Such lamps can emit ultra-violet radiation having a wavelength of about 254 nm. For example, devices to condition air using mechanical fans, HEPA filters, and germicidal lamps are sold commercially by companies such as Austin Air, C.A.R.E. 2000, Amaircare, and others. Often these devices are somewhat cumbersome, and have the size and bulk of a small filing cabinet. Although such fan-powered devices can reduce or destroy microorganisms, the devices tend to be bulky, and are not necessarily silent in operation.
U.S. Pat. Nos. 5,879,435, 6,019,815, and 6,149,717, issued to Satyapal et al., and incorporated herein by reference, discloses an electronic air cleaner that contains an electrostatic precipitator cell and a germicidal lamp for use, among other uses, with a forced air furnace system. The electrostatic precipitator cell includes multiple collector plates for collecting particulate material from the airstream. The germicidal lamp is disposed within the air cleaner to irradiate the collector plates and to destroy microbial growth that might occur on the particulate material deposited on the collector plates. Particles that pass through the air cleaner due to the action of the fan of the forced air furnace, and that are not deposited on the collector plates, generally are not subjected to the germicidal radiation for a period of time long enough for the light to substantially reduce microorganisms within the airflow.
What is needed is a device to condition air in a room that can operate relatively silently to remove particulate matter in the air, that can preferably output appropriate amounts of ozone or no ozone, and that can kill or reduce microorganisms such as germs, fungi, bacteria, viruses, and the like contained within the airflow.
Embodiments of the present invention provide devices that fulfill the above described needs. It is an aspect of the present invention to reduce the amount of microorganisms within the airflow. An embodiment of the present invention has an ion generator to create an airflow and collect particulates, and a germicidal lamp to kill microorganisms. The housing is shaped to slow the airflow rate as the airflow passes the germicidal lamp, allowing a longer dwell time of the air in front of the germicidal lamp.
An aspect of the invention includes the germicidal lamp located upstream of the ion generator. An embodiment of the invention locates the germicidal lamp within the housing to maximize the amount of air irradiated, and to minimize the disturbance the lamp housing will cause to the airflow rate of the device. Another embodiment maximizes the amount of germicidal light that will directly shine on the airflow, without having to be reflected.
Another aspect of the present invention ensures that there is no direct line-of-sight through the air inlet or the air outlet of the housing to the germicidal lamp. An embodiment of the present invention has vertical fins covering the air inlet and air outlet to prohibit an individual from directly staring at the germicidal radiation emitted by the lamp. Another embodiment includes a shell or lamp housing that substantially surrounds the germicidal lamp to direct the radiation away from the air inlet, and the air outlet.
Another feature of an embodiment of the invention includes the ease of removeability of electrodes from the ion generator and ease of replacement of the germicidal lamp. An embodiment of the invention includes a rear panel that can be removed to expose the germicidal lamp for replacing. Another embodiment of the invention has second electrodes and a germicidal lamp that can be removed through the top of the housing for cleaning and/or replacement.
Other features and advantages of the invention will appear from the following description in which the preferred embodiments have been set forth in detail, in conjunction with the accompanying drawings and claims.
The upper surface 103 of the housing 102 includes a user-liftable handle member 112 to which is affixed a second array 240 of collector electrodes 242. The housing 102 also encloses a first array of emitter electrodes 230, or a single first emitter electrode shown here as a single wire or wire-shaped electrode 232. (The terms “wire” and “wire-shaped” shall be used interchangeably herein to mean an electrode either made from a wire or, if thicker or stiffer than a wire, having the appearance of a wire.) In the embodiment shown, handle member 112 lifts second array electrodes 240 upward causing the second electrode to telescope out of the top of the housing and, if desired, out of unit 100 for cleaning, while the first electrode array 230 remains within unit 100. As is evident from the figure, the second array of electrodes 240 can be lifted vertically out from the top 103 of unit 100 along the longitudinal axis or direction of the elongated housing 102. This arrangement with the second electrodes removable from the top 103 of the unit 100, makes it easy for the user to pull the second electrodes 242 out for cleaning. In
The general shape of the embodiment of the invention shown in
As will be described, when unit 100 is energized by depressing switch S1, high voltage or high potential output by an ion generator 160 produces ions at the first electrode 232, which ions are attracted to the second electrodes 242. The movement of the ions in an “IN” to “OUT” direction carries with the ions air molecules, thus electro-kinetically producing an outflow of ionized air. The “IN” rotation in
In a preferred embodiment, the housing 210 is aerodynamically oval, elliptical, teardrop-shaped or egg-shaped. The housing 210 includes at least one air intake 250, and at least one air outlet 260. As used herein, it will be understood that the intake 250 is “upstream” relative to the outlet 260, and that the outlet 260 is “downstream” from the intake 250. “Upstream” and “downstream” describe the general flow of air into, through, and out of device 200, as indicated by the large hollow arrows.
Covering the inlet 250 and the outlet 260 are fins, louvers, or baffles 212. The fins 212 are preferably elongated and upstanding, and thus in the preferred embodiment, vertically oriented to minimize resistance to the airflow entering and exiting the device 200. Preferably the fins 212 are vertical and parallel to at least the second collector electrode array 240 (see FIG. 5A). The fins 212 can also be parallel to the first emitter electrode array 230. This configuration assists in the flow of air through the device 200 and also assists in preventing UV radiation from the UV or germicidal lamp 290 (described hereinafter), or other germicidal source, from exiting the housing 210. By way of example only, if the long width of the body from the inlet 250 to the outlet 260 is 8 inches, the collector electrode 242 (see
From the above it is evident that preferably the cross-section of the housing 210 is oval, elliptical, teardrop-shaped or egg shaped with the inlet 250 and outlet 260 narrower than the middle (see line A—A in
The LOW, MED, and HIGH settings generate a different predetermined voltage difference between the first and second arrays. For example, the LOW setting will create the smallest voltage difference, while the HIGH setting will create the largest voltage difference. Thus, the LOW setting will cause the device 200 to generate the slowest airflow rate, while the HIGH setting will cause the device 200 to generate the fastest airflow rate. These airflow rates are created by the electronic circuit disclosed in
The function dial 218 enables a user to select “ON,” “ON/GP,” or “OFF.” The unit 200 functions as an electrostatic air transporter-conditioner, creating an airflow from the inlet 250 to the outlet 260, and removing the particles within the airflow when the function dial 218 is set to the “ON” setting. The germicidal lamp 290 does not operate, or emit UV light, when the function dial 218 is set to “ON.” The device 200 also functions as an electrostatic air transporter-conditioner, creating an airflow from the inlet 250 to the outlet 260, and removing particles within the airflow when the function dial 218 is set to the “ON/GP” setting. In addition, the “ON/GP” setting activates the germicidal lamp 290 to emit UV light to remove or kill bacteria within the airflow. The device 200 will not operate when the function dial 218 is set to the “OFF” setting.
As previously mentioned, the device 200 preferably generates small amounts of ozone to reduce odors within the room. If there is an extremely pungent odor within the room, or a user would like to temporarily accelerate the rate of cleaning, the device 200 has a boost button 216. When the boost button 216 is depressed, the device 200 will temporarily increase the airflow rate to a predetermined maximum rate, and generate an increased amount of ozone. The increased amount of ozone will reduce the odor in the room faster than if the device 200 was set to HIGH. The maximum airflow rate will also increase the particle capture rate of the device 200. In a preferred embodiment, pressing the boost button 216 will increase the airflow rate and ozone production continuously for 5 minutes. This time period maybe longer or shorter. At the end of the preset time period (e.g., 5 minutes), the device 200 will return to the airflow rate previously selected by the control dial 214.
The overload/cleaning light 219 indicates if the second electrodes 242 require cleaning, or if arcing occurs between the first and second electrode arrays. The overload/cleaning light 219 may illuminate either amber or red in color. The light 219 will turn amber if the device 200 has been operating continuously for more than two weeks and the second array 240 has not been removed for cleaning within the two week period. The amber light is controlled by the below described 2-week time circuit 130 (see
The light 219 will turn red to indicate that arcing has occurred between the first array 230 and the second array 240, as sensed by a sensing circuit 132, which is connected between the IGBT switch 126 and the connector oscillator 124 of
One of the various safety features can be seen with the second electrodes 242 partially removed. As shown in
The panel 224 also has a safety mechanism to shut the device 200 off when the panel 224 is removed. The panel 224 has a rear projecting tab (not shown) that engages the safety interlock recess 227 when the panel 224 is secured to the housing 210. By way of example only, the rear tab depresses a safety switch located within the recess 227 when the rear panel 224 is secured to the housing 210. The device 200 will operate only when the rear tab in the panel 224 is fully inserted into the safety interlock recess 227. When the panel 224 is removed from the housing 210, the rear projecting tab is removed from the recess 227 and the power is cut-off to the entire device 200. For example if a user removes the rear panel 224 while the device 200 is running, and the germicidal lamp 290 is emitting UV radiation, the device 200 will turn off as soon as the rear projecting tab disengages from the recess 227. Preferably, the device 200 will turn off when the rear panel 224 is removed only a very short distance (e.g., ¼″) from the housing 210. This safety switch operates very similar to the interlocking post 204, as shown in FIG. 3C.
The lamp 290 is situated within the housing 210 in a similar manner as the second array of electrodes 240. That is to say, that when the lamp 290 is pulled vertically out of the top 217 of the housing 210, the electrical circuit that provides power to the lamp 290 is disconnected. The lamp 290 is mounted in a lamp fixture that has circuit contacts which engages the circuit in FIG. 7A. As the lamp 290 and fixture are pulled out, the circuit contacts are disengaged. Further, as the handle 275 is lifted from the housing 210, a cutoff switch will shut the entire device 200 off. This safety mechanism ensures that the device 200 will not operate without the lamp 290 placed securely in the housing 210, preventing an individual from directly viewing the radiation emitted from the lamp 290. Reinserting the lamp 290 into the housing 210 causes the lamp fixture to re-engage the circuit contacts as is known in the art. In similar, but less convenient fashion, the lamp 290 may be designed to be removed from the bottom of the housing 210.
The germicidal lamp 290 is a preferably UV-C lamp that preferably emits viewable light and radiation (in combination referred to as radiation or light 280) having wavelength of about 254 nm. This wavelength is effective in diminishing or destroying bacteria, germs, and viruses to which it is exposed. Lamps 290 are commercially available. For example, the lamp 290 maybe a Phillips model TUV 15W/G15T8, a 15 W tubular lamp measuring about 25 mm in diameter by about 43 cm in length. Another suitable lamp is the Phillips TUV 8WG8 T6, an 8 W lamp measuring about 15 mm in diameter by about 29 cm in length. Other lamps that emit the desired wavelength can instead be used.
As previously mentioned, one role of the housing 210 is to prevent an individual from viewing, by way of example, ultraviolet (UV) radiation generated by a germicidal lamp 290 disposed within the housing 210.
In a preferred embodiment, the inner surface 211 of the housing 210 diffuses or absorbs the UV light emitted from the lamp 290.
As discussed above, the fins 212 covering the inlet 250 and the outlet 260 also limit any line of sight of the user into the housing 210. The fins 212 are vertically oriented within the inlet 250 and the outlet 260. The depth D of each fin 212 is preferably deep enough to prevent an individual from directly viewing the interior wall 211. In a preferred embodiment, an individual cannot directly view the inner surface 211 by moving from side-to-side, while looking into the outlet 260 or the inlet 250. Looking between the fins 212 and into the housing 210 allows an individual to “see through” the device 200. That is, a user can look into the inlet vent 250 or the outlet vent 260 and see out of the other vent. It is to be understood that it is acceptable to see light or a glow coming from within housing 210, if the light has a non-UV wavelength that is acceptable for viewing. In general, an user viewing into the inlet 250 or the outlet 260 may be able to notice a light or glow emitted from within the housing 210. This light is acceptable to view. In general, when the radiation 280 strikes the interior surface 211 of the housing 210, the radiation 280 is shifted from its UV spectrum. The wavelength of the radiation changes from the UV spectrum into an appropriate viewable spectrum. Thus, any light emitted from within the housing 210 is appropriate to view.
As also discussed above, the housing 210 is designed to optimize the reduction of microorganisms within the airflow. The efficacy of radiation 280 upon microorganisms depends upon the length of time such organisms are subjected to the radiation 280. Thus, the lamp 290 is preferably located within the housing 210 where the airflow is the slowest. In preferred embodiments, the lamp 290 is disposed within the housing 210 along line A—A (see FIGS. 5A-7). Line A—A designates the largest width and cross-sectional area of the housing 210, perpendicular to the airflow. The housing 210 creates a fixed volume for the air to pass through. In operation, air enters the inlet 250, which has a smaller width, and cross-sectional area, than along line A—A. Since the width and cross-sectional area of the housing 210 along line A—A are larger than the width and cross-sectional area of the inlet 250, the airflow will decelerate from the inlet 250 to the line A—A. By placing the lamp 290 substantially along line A—A, the air will have the longest dwell time as it passes through the radiation 280 emitted by the lamp 290. In other words, the microorganisms within the air will be subjected to the radiation 280 for the longest period possible by placing the lamp 290 along line A—A. It is, however, within the scope of the present invention to locate the lamp 290 anywhere within the housing 210, preferably upstream of the electrode assembly 220.
A shell or housing 270 substantially surrounds the lamp 290. The shell 270 prevents the light 280 from shining directly towards the inlet 250 or the outlet 260. In a preferred embodiment, the interior surface of the shell 270 that faces the lamp 290 is a non-reflective surface. By way of example only, the interior surface of the shell 270 may be a rough surface, or painted a dark, non-gloss color such as black. The lamp 290, as shown in
In the embodiment shown in
In a preferred embodiment, as shown in
The wall 274b, as shown in
The shell 270 may also have fins 272. The fins 272 are spaced apart and preferably substantially perpendicular to the passing airflow. In general, the fins 272 further prevent the light 280 from shining directly towards the inlet 250 and the outlet 260. The fins have a black or non-reflective surface. Alternatively, the fins 272 may have a reflective surface. Fins 272 with a reflective surface may shine more light 280 onto the passing airflow because the light 280 will be repeatedly reflected and not absorbed by a black surface. The shell 270 directs the radiation towards the fins 272, maximizing the light emitted from the lamp 290 for irradiating the passing airflow. The shell 270 and fins 272 direct the radiation 280 emitted from the lamp 290 in a substantially perpendicular orientation to the crossing airflow traveling through the housing 210. This prevents the radiation 280 from being emitted directly towards the inlet 250 or the outlet 260.
As seen in
The converter oscillator 124 receives electrical signals from the airflow modulating circuit 120, the powersetting circuit 122, and the boost timer 128. The airflow rate of the device 200 is primarily controlled by the airflow modulating circuit 120 and the powersetting circuit 122. The airflow modulating circuit 120 is a “micro-timing” gating circuit. The airflow modulating circuit 120 outputs an electrical signal that modulates between a “low” airflow signal and a “high” airflow signal. The airflow modulating circuit 120 continuously modulates between these two signals, preferably outputting the “high” airflow signal for 2.5 seconds, and then the “low” airflow signal for 5 seconds. By way of example only, the “high” airflow signal causes the voltage doubler 118 to provide 9 KV to the first array 230, while 18 KV is provided to the second array 240, and the “low” airflow signal causes the voltage doubler 118 to provide 6 KV to the first array 230, while 12 KV is provided to the second array 240. As will be described later, the voltage difference between the first and second array is proportional to the airflow rate of the device 200. In general, a greater voltage differential is created between the first and second array by the “high” airflow signal. It is within the scope of the present invention for the airflow modulating circuit 120 to produce different voltage differentials between the first and second arrays. The various circuits and components comprising the high voltage pulse generator 170 can be fabricated on a printed circuit board mounted within housing 210.
The powersetting circuit 122 is a “macro-timing” circuit that can be set, by a control dial 214 (described hereinafter), to a LOW, MED, or HIGH setting. The three settings determine how long the signal generated by the airflow modulating circuit 120 will drive the oscillator 124. When the control dial 214 is set to HIGH, the electrical signal output from the airflow modulating circuit 120, modulating between the high and low airflow signals, will continuously drive the connector oscillator 124. When the control dial 214 is set to MED, the electrical signal output from the airflow modulating circuit 120 will cyclically drive the oscillator 124 for 25 seconds, and then drop to a zero or a lower voltage for 25 seconds. Thus, the airflow rate through the device 200 is slower when the dial 214 is set to MED than when the control dial 214 is set to HIGH. When the control dial 214 is set to LOW, the signal from the airflow modulating circuit 120 will cyclically drive the oscillator 124 for 25 seconds, and then drop to a zero or a lower voltage for 75 seconds. It is within the scope and spirit of the present invention for the HIGH, MED, and LOW settings to drive the oscillator 124 for longer or shorter periods of time.
The boost timer 128 sends an electrical signal to the airflow modulating circuit 120 and the powersetting circuit 122 when the boost button 216 is depressed. The boost timer 128 when activated, instructs the airflow modulating circuit 120 to continuously drive the converter oscillator 124 as if the device 200 was set to the HIGH setting. The boost timer 128 also sends a signal to the power setting circuit 122 that shuts the powersetting circuit 122 temporarily off. In effect, the boost timer 128 overrides the setting that the device 200 is set to by the dial 214. Therefore, the device 200 will run at a maximum airflow rate for a 5 minute period.
The positive output terminal of unit 170 is coupled to first electrode array 230, and the negative output terminal is coupled to second electrode array 240. It is believed that with this arrangement the net polarity of the emitted ions is positive, e.g., more positive ions than negative ions are emitted. This coupling polarity has been found to work well, including minimizing unwanted audible electrode vibration or hum. However, while generation of positive ions is conducive to a relatively silent airflow, from a health standpoint, it is desired that the output airflow be richer in negative ions, not positive ions. It is noted that in some embodiments, one port (preferably the negative port) of the high voltage pulse generator 170 need not be connected to the second array of electrodes 240. Nonetheless, there will be an “effective connection” between the second array electrodes 242 and one output port of the high voltage pulse generator 170, in this instance, via ambient air. Alternatively the negative output terminal of unit 170 can be connected to the first electrode array 230 and the positive output terminal can be connected to the second electrode array 240.
With this arrangement an electrostatic flow of air is created, going from the first electrode array 230 towards the second electrode array 240. (This flow is denoted “OUT” in the figures.) Accordingly electrode assembly 220 is mounted within transporter system 100 such that second electrode array 240 is closer to the OUT vents and first electrode array 230 is closer to the IN vents.
When voltage or pulses from high voltage pulse generator 170 are coupled across first and second electrode arrays 230 and 240, a plasma-like field is created surrounding electrodes 232 in first array 230. This electric field ionizes the ambient air between the first and second electrode arrays and establishes an “OUT” airflow that moves towards the second array 240. It is understood that the “IN” flow enters via vent(s) 104 or 250, and that the “OUT” flow exits via vent(s) 106 or 260.
Ozone and ions are generated simultaneously by the first array electrodes 232, essentially as a function of the potential from generator 170 coupled to the first array of electrodes or conductive surfaces. Ozone generation can be increased or decreased by increasing or decreasing the potential at the first array 230. Coupling an opposite polarity potential to the second array electrodes 242 essentially accelerates the motion of ions generated at the first array 230, producing the airflow denoted as “OUT” in the figures. As the ions and ionized particles move toward the second array 240, the ions and ionized particles push or move air molecules toward the second array 240. The relative velocity of this motion may be increased, by way of example, by decreasing the potential at the second array 240 relative to the potential at the first array 230.
For example, if +10 KV were applied to the first array electrode(s) 232, and no potential were applied to the second array electrode(s) 242, a cloud of ions (whose net charge is positive) would form adjacent the first electrode array 230. Further, the relatively high 10 KV potential would generate substantial ozone. By coupling a relatively negative potential to the second array electrode(s) 242, the velocity of the air mass moved by the net emitted ions increases.
On the other hand, if it were desired to maintain the same effective outflow (OUT) velocity, but to generate less ozone, the exemplary 10 KV potential could be divided between the electrode arrays. For example, generator 170 could provide +4 KV (or some other fraction) to the first array electrodes 232 and −6 KV (or some other fraction) to the second array electrodes 242. In this example, it is understood that the +4 KV and the −6 KV are measured relative to ground. Understandably it is desired that the unit 100 operates to output appropriate amounts of ozone. Accordingly, the high voltage is preferably fractionalized with about +4 KV applied to the first array electrodes 232 and about −6 KV applied to the second array electrodes 242.
In the embodiments of
As previously indicated, first or emitter electrodes 232 are preferably lengths of tungsten wire, whereas electrodes 242 are formed from sheet metal, preferably stainless steel, although brass or other sheet metal could be used. The sheet metal is readily configured to define side regions 244 and a bulbous nose region 246, forming the hollow, elongated “U”-shaped electrodes 242. While
In the embodiment of
Electrodes 232 in first array 230 are electrically connected to a first (preferably positive) output port of high voltage pulse generator 170 by a conductor 234. Electrodes 242 in second array 240 are electrically connected to a second (preferably negative) output port of high voltage generator 170 by a conductor 249. The first and second electrodes maybe electrically connected to the high voltage generator 170 at various locations. By way of example only,
In this and the other embodiments to be described herein, ionization appears to occur at the electrodes 232 in the first electrode array 230, with ozone production occurring as a function of high voltage arcing. For example, increasing the peak-to-peak voltage amplitude and/or duty cycle of the pulses from the high voltage pulse generator 170 can increase ozone content in the output flow of ionized air. If desired, user-control S2 or the dial 214 can be used to somewhat vary ozone content by varying amplitude and/or duty cycle. Specific circuitry for achieving such control is known in the art and need not be described in detail herein.
Note the inclusion in
In the embodiments of
In FIG. 8C and the figures to follow, the particulate matter is omitted for ease of illustration. However, from what was shown in
As discussed above and as depicted by
It is noted that the embodiments of
In the embodiment of
The embodiments illustrated in
As shown in
The third focus electrode 224 illustrated in
In a preferred embodiment, each third focus electrode 224a, 224b, 224c are electrically connected with the first array 230 and the high voltage generator 170 by the conductor 234. As shown in
The particles within the airflow are positively charged by the ions generated by the first electrode 232. As previously mentioned, the positively charged particles are collected by the negatively charged second electrodes 242. The third focus electrode 224 also directs the airflow towards the trailing sides 244 of each second electrode 242. For example, it is believed that the airflow will travel around the third focus electrode 224, partially guiding the airflow towards the trailing sides 244, improving the collection rate of the electrode assembly 220.
The third focus electrode 224 maybe located at various positions upstream of each first electrode 232. By way of example only, a third focus electrode 224b is located directly upstream of the first electrode 232-2 so that the center of the third focus electrode 224b is in-line and symmetrically aligned with the first electrode 232-2, as shown by extension line B. Extension line B is located midway between the second electrode 242-2 and the second electrode 242-3. Alternatively, a third focus electrode 224 may also be located at an angle relative to the first electrode 232. For example, a third focus electrode 224a may be located upstream of the first electrode 232-1 along a line extending from the middle of the nose 246 of the second electrode 242-2 through the center of the first electrode 232-1, as shown by extension line A. The third focus electrode 224a is in-line and symmetrically aligned with the first electrode 232-1 along extension line A. Similarly, the third electrode 224c is located upstream to the first electrode 232-3 along a line extending from the middle of the nose 246 of the second electrode 242-3 through the first electrode 232-3, as shown by extension line C. The third focus electrode 224c is in-line and symmetrically aligned with the first electrode 232-3 along extension line C. It is within the scope of the present invention for the electrode assembly 220 to include third focus electrodes 224 that are both directly upstream and at an angle to the first electrodes 232, as depicted in FIG. 9A. Thus, the focus electrodes 224 fan out relative to the first electrodes 232.
In a preferred embodiment, the protective end 241 is created by shaping, or rolling, the trailing sides or side walls 244 inward and pressing them together, forming a rounded trailing end with no gap between the trailing sides or side walls of each second electrode 242. Accordingly, the side walls 244 have outer surfaces, and the end of the side walls 244 are bent back inward and towards the nose 246 so that the outer surface of the side walls 244 are adjacent to, or face, or touch each other to form a smooth trailing edge on the second electrode 242. If desired, it is within the scope of the invention to spot weld the rounded ends together along the length of the second electrode 242. It is also within the scope of the present invention to form the protective end 241 by other methods such as, but not limited to, placing a strap of plastic across each end of the trailing sides 244 for the full length of the second electrode 242. The rounded or capped end is an improvement over the previous electrodes 242 without a protective end 241. Eliminating the gap between the trailing sides 244 also reduces or eliminates the eddy currents typically generated by the second electrode 242. The rounded protective end also provides a smooth surface for purpose of cleaning the second electrode. In a preferred embodiment, the second or collector electrode 242 is a one-piece, integrally formed, electrode with a protective end.
The second electrode 242 in
A third leading or focus electrode 224 is located upstream of each first electrode 232. The innermost third focus electrode 224b is located directly upstream of the first electrode 232-2, as shown by extension line B. Extension line B is located midway between the second electrodes 242-2, 242-3. The third focus electrodes 224a, 224c are at an angle with respect to the first electrodes 232-1, 232-3. For example, the third focus electrode 224a is upstream to the first electrode 232-1 along a line extending from the middle of the nose 246 of the second electrode 242-2 extending through the center of the first electrode 232-1, as shown by extension line A. The third electrode 224c is located upstream of the first electrode 232-3 along a line extending from the center of the nose 246 of the second electrode 242-3 through the center of the first electrode 232-3, as shown by extension line C. Preferably, the focus electrodes 224 fan out relative to the first electrodes 232 as an aid for directing the flow of ions and charged particles.
The previously described embodiments of the electrode assembly 220 disclose a rod-shaped third focus electrode 224 upstream of the first array of electrodes 230.
In a preferred embodiment, the third focus electrode 224 is electrically connected to the high voltage generator 170 by conductor 234. The third focus electrode 224 in
Referring now to
When the trailing electrodes 245 are electrically connected to the high voltage generator 170, the positively charged particles within the airflow are also attracted to, and collect on, the trailing electrodes 245. In an electrode assembly 220 with no trailing electrode 245, most of the particles will collect on the surface area of the second electrodes 242. However, some particles will pass through the unit 200 without being collected by the second electrodes 242. Thus, the trailing electrodes 245 serve as a second surface area to collect the positively charged particles. The trailing electrodes 245, having the same polarity as the second electrodes 242, also deflect charged particles toward the second electrodes 242.
The trailing electrodes 245 preferably also emit a small amount of negative ions into the airflow. The negative ions emitted by the trailing electrode 245 attempt to neutralize the positive ions emitted by the first electrodes 232. If the positive ions emitted by the first electrodes 232 are not neutralized before the airflow reaches the outlet 260, the outlet fins 212 may become electrically charged, and particles within the airflow may tend to stick to the fins 212. If this occurs, the particles collected by the fins 212 will eventually block or minimize the airflow exiting the unit 200.
Another aspect of the trailing electrode 245 is to direct the air trailing off the second electrode 242 to provide a more laminar flow of air exiting the outlet 260. Yet another aspect of the trailing electrode 245, as previously mentioned above, is to neutralize the positive ions generated by the first array 230 and collect particles within the airflow. As shown in
It is to be understood that interstitial electrodes 246a, 246b may also be closer to one second collector electrode than to the other. Also, the interstitial electrodes 246a, 246b are preferably located substantially near or at the protective end 241 or ends of the trailing sides 244, as depicted in FIG. 14E. Still further the interstitial electrode can be substantially located along a line between the two trailing portions or ends of the second electrodes. These rear positions are preferred as the interstitial electrodes can cause the positively charged particle to deflect towards the trailing sides 244 along the entire length of the negatively charged second collector electrode 242, in order for the second collector electrode 242 to collect more particles from the airflow.
Still further, the interstitial electrodes 246a, 246b can be located upstream along the trailing side 244 of the second collector electrodes 244. However, the closer the interstitial electrodes 246a, 246b get to the nose 246 of the second electrode 242, generally the less effective interstitial electrodes 246a, 246b are in urging positively charged particles toward the entire length the second electrodes 242. Preferably, the interstitial electrodes 246a, 246b are wire-shaped and smaller or substantially smaller in diameter than the width “W” of the second collector electrodes 242. For example, the interstitial electrodes can have a diameter of, the same as, or on the order, of the diameter of the first electrodes. For example, the interstitial electrodes can have a diameter of one-sixteenth of an inch. Also, the diameter of the interstitial electrodes 246a, 246b is substantially less than the distance between second collector electrodes, as indicated by Y2. Further the interstitial electrode can have a length or diameter in the downstream direction that is substantially less than the length of the second electrode in the downstream direction. The reason for this size of the interstitial electrodes 246a, 246b is so that the interstitial electrodes 246a, 246b have a minimal effect on the airflow rate exiting the device 100 or 200.
The previously described embodiments of the electrode assembly 220 include a first array of electrodes 230 having at least one wire or rod shaped electrode 232. It is within the scope of the present invention for the first array of electrodes 230 to contain electrodes consisting of other shapes and configurations.
As shown in
The electrodes 252, 254 and 256 shown in
The foregoing description of the preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. Modifications and variations may be made to the disclosed embodiments without departing from the subject and spirit of the invention as defined by the following claims. Embodiments were chosen and described in order to best describe the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention, the various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
This application claims priority from provisional application entitled “ELECTRO-KINETIC AIR TRANSPORTER AND CONDITIONER DEVICE WITH ENHANCED HOUSING CONFIGURATION AND ENHANCED ANTI-MICROORGANISM CAPABILITY,” application Ser. No. 60/340,702, filed Dec. 13, 2001 under 35 U.S.C. 119(e), which application is incorporated herein by reference. This application claims priority from provisional application entitled “FOCUS ELECTRODE, ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES,” application Ser. No. 60/306,479, filed Jul. 18, 2001 under 35 U.S.C. 119(e), which application is incorporated herein by reference. This application claims priority from and is a continuation-in-part of patent application “ELECTRO-KINETIC DEVICE WITH ENHANCED ANTI-MICROORGANISM CAPABILITY”, application Ser. No. 09/774,198, filed Jan. 29, 2001 now U.S. Pat. No. 6,544,485, and incorporated herein by reference. This application claims priority from and is a continuation-in-part of U.S. patent application Ser. No. 09/924,624 filed Aug. 8, 2001 which is a continuation of U.S. patent application Ser. No. 09/564,960 filed May 4, 2000, now U.S. Pat. No. 6,350,417, which is a continuation-in-part of U.S. patent application Ser. No. 09/186,471 filed Nov. 5, 1998, now U.S. Pat. No. 6,176,977. This application claims priority from and is a Continuation-in-Part of U.S. patent application Ser. No. 09/730,499, filed Dec. 5, 2000 now U.S. Pat. No. 6,713,026 which is a continuation of U.S. patent application Ser. No. 09/186,471, filed Nov. 5, 1998, now U.S. Pat. No. 6,176,977. All of the above are incorporated herein by reference. 1. U.S. patent application Ser. No. 60/341,518, filed Dec. 13, 2001, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES WITH AN UPSTREAM FOCUS ELECTRODE”; 2. U.S. patent application Ser. No. 60/34,090, filed Dec. 13, 2001, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES WITH TRAILING ELECTRODE”; 3. U.S. patent application Ser. No. 60/341,433, filed Dec. 13, 2001, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES WITH INTERSTITIAL ELECTRODE”; 4. U.S. patent application Ser. No. 60/341,592, filed Dec. 13, 2001, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES WITH ENHANCED COLLECTOR ELECTRODE”; 5. U.S. patent application Ser. No. 60/341,320, filed Dec. 13, 2001, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES WITH ENHANCED EMITTER ELECTRODE”; 6. U.S. patent application Ser. No. 60/341,179, filed Dec. 13, 2001, entitled “ELECTRO-KINETIC AIR TRANSPORTER AND CONDITIONER DEVICE WITH ENHANCED ANTI-MICROORGANISM CAPABILITY”; 7. U.S. patent application Ser. No. 60/341,377, filed Dec. 13, 2001, entitled “ELECTRO-KINETIC AIR TRANSPORTER AND CONDITIONER DEVICE WITH ENHANCED MAINTENANCE FEATURES AND ENHANCED ANTI-MICROORGANISM CAPABILITY”; 8. U.S. patent application Ser. No. 10/023,197, filed Dec. 13, 2001, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER WITH ENHANCED CLEANING FEATURES”; 9. U.S. patent application Ser. No. 10/023,460, filed Dec. 13, 2001, entitled “ELECTRO-KINETIC AIR TRANSPORTER CONDITIONER WITH PIN-RING CONFIGURATION”; 10. U.S. patent application Ser. No. 60341,176, filed Dec. 13, 2001, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER WITH NON-EQUIDISTANT COLLECTOR ELECTRODES”; 11. U.S. patent application Ser. No. 60/340,288, filed Dec. 13, 2001, entitled “DUAL INPUT AND OUTLET ELECTROSTATIC AIR TRANSPORTER-CONDITIONER”; 12. U.S. patent application Ser. No. 60/340,462, filed Dec. 13, 2001, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES WITH A ENHANCED COLLECTOR ELECTRODE FOR COLLECTION OF MORE PARTICULATE MATTER”; 13. U.S. patent application Ser. No. 10/074,082, filed herewith on Feb. 12, 2002, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES WITH AN UPSTREAM FOCUS ELECTRODE”; 14. U.S. patent application Ser. No. 10/074,209, filed herewith on Feb. 12, 2002, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES WITH TRAILING ELECTRODE”; 15. U.S. patent application Ser. No. 10/074,207, filed herewith on Feb. 12, 2002, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES WITH INTERSTITIAL ELECTRODE”; 16. U.S. patent application Ser. No. 10/074,208, filed herewith on Feb. 12, 2002, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES WITH ENHANCED COLLECTOR ELECTRODE”; 17. U.S. patent application Ser. No. 10/074,339, filed herewith on Feb. 12, 2002, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES WITH ENHANCED EMITTER ELECTRODE”; 18. U.S. patent application Ser. No. 10/074,096, filed herewith on Feb. 12, 2002, entitled “ELECTRO-KINETIC AIR TRANSPORTER AND CONDITIONER DEVICE WITH ENHANCED ANTI-MICROORGANISM CAPABILITY”; 19. U.S. patent application Ser. No. 10/074,379, filed herewith on Feb. 12, 2002, entitled “ELECTRO-KINETIC AIR TRANSPORTER AND CONDITIONER DEVICE WITH ENHANCED MAINTENANCE FEATURES AND ENHANCED ANTI-MICROORGANISM CAPABILITY”; 20. U.S. patent application Ser. No. 10/074,827, filed herewith on Feb. 12, 2002, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER WITH NON-EQUIDISTANT COLLECTOR ELECTRODES ”; 21. U.S. patent application Ser. No. 10/074,549, filed herewith on Feb. 12, 2002, entitled “DUAL INPUT AND OUTLET ELECTROSTATIC AIR TRANSPORTER-CONDITIONER”; 22. U.S. patent application Ser. No. 10/074,103, filed herewith on Feb. 12, 2002, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES WITH A ENHANCED COLLECTOR ELECTRODE FOR COLLECTION OF MORE PARTICULATE MATTER”; All of the above are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
653421 | Lorey | Jul 1900 | A |
995958 | Goldberg | Jun 1911 | A |
1791338 | Wintermute | Feb 1931 | A |
1869335 | Day | Jul 1932 | A |
2327588 | Bennett | Aug 1943 | A |
2359057 | Skinner | Sep 1944 | A |
2509548 | White | May 1950 | A |
2949550 | Brown | Aug 1960 | A |
3018394 | Brown | Jan 1962 | A |
3026964 | Penney | Mar 1962 | A |
3374941 | Okress | Mar 1968 | A |
3540191 | Herman | Nov 1970 | A |
3581470 | Aitkenhead et al. | Jun 1971 | A |
3638058 | Fritzius | Jan 1972 | A |
3744216 | Halloran | Jul 1973 | A |
3981695 | Fuchs | Sep 1976 | A |
3984215 | Zucker | Oct 1976 | A |
4052177 | Kide | Oct 1977 | A |
4092134 | Kikuchi | May 1978 | A |
4102654 | Pellin | Jul 1978 | A |
4138233 | Masuda | Feb 1979 | A |
4209306 | Feldman et al. | Jun 1980 | A |
4227894 | Proynoff | Oct 1980 | A |
4231766 | Spurgin | Nov 1980 | A |
4232355 | Finger et al. | Nov 1980 | A |
4244710 | Burger | Jan 1981 | A |
4244712 | Tongret | Jan 1981 | A |
4253852 | Adams | Mar 1981 | A |
4259452 | Yukuta et al. | Mar 1981 | A |
4266948 | Teague et al. | May 1981 | A |
4282014 | Winkler et al. | Aug 1981 | A |
4284420 | Borysiak | Aug 1981 | A |
4318718 | Utsumi et al. | Mar 1982 | A |
4342571 | Hayashi | Aug 1982 | A |
4357150 | Masuda et al. | Nov 1982 | A |
4386395 | Francis, Jr. | May 1983 | A |
4413225 | Donig et al. | Nov 1983 | A |
4445911 | Lind | May 1984 | A |
4477263 | Shaver et al. | Oct 1984 | A |
4496375 | Le Vantine | Jan 1985 | A |
4502002 | Ando | Feb 1985 | A |
4509958 | Masuda et al. | Apr 1985 | A |
4516991 | Kawashima | May 1985 | A |
4536698 | Shevalenko et al. | Aug 1985 | A |
4587475 | Finney, Jr. et al. | May 1986 | A |
4600411 | Santamaria | Jul 1986 | A |
4601733 | Ordines et al. | Jul 1986 | A |
4626261 | Jorgensen | Dec 1986 | A |
4643745 | Sakakibara et al. | Feb 1987 | A |
4659342 | Lind | Apr 1987 | A |
4674003 | Zylka | Jun 1987 | A |
4686370 | Blach | Aug 1987 | A |
4689056 | Noguchi et al. | Aug 1987 | A |
4694376 | Gesslauer | Sep 1987 | A |
4713093 | Hansson | Dec 1987 | A |
4713724 | Voelkel | Dec 1987 | A |
4726812 | Hirth | Feb 1988 | A |
4779182 | Mickal et al. | Oct 1988 | A |
4781736 | Cheney et al. | Nov 1988 | A |
4786844 | Farrell et al. | Nov 1988 | A |
4789801 | Lee | Dec 1988 | A |
4808200 | Dallhammer et al. | Feb 1989 | A |
4811159 | Foster, Jr. | Mar 1989 | A |
4940470 | Jaisinghani et al. | Jul 1990 | A |
4941068 | Hofmann | Jul 1990 | A |
4955991 | Torok et al. | Sep 1990 | A |
4967119 | Torok et al. | Oct 1990 | A |
4976752 | Torok et al. | Dec 1990 | A |
D315598 | Yamamoto et al. | Mar 1991 | S |
5006761 | Torok et al. | Apr 1991 | A |
5010869 | Lee | Apr 1991 | A |
5012093 | Shimizu | Apr 1991 | A |
5012159 | Torok et al. | Apr 1991 | A |
5024685 | Torok et al. | Jun 1991 | A |
5053912 | Loreth et al. | Oct 1991 | A |
5077500 | Torok et al. | Dec 1991 | A |
RE33927 | Fuzimura | May 1992 | E |
5141529 | Oakley et al. | Aug 1992 | A |
D329284 | Patton | Sep 1992 | S |
D332655 | Lytle et al. | Jan 1993 | S |
5180404 | Loreth et al. | Jan 1993 | A |
5183480 | Raterman et al. | Feb 1993 | A |
5196171 | Peltier | Mar 1993 | A |
5215558 | Moon | Jun 1993 | A |
5217504 | Johansson | Jun 1993 | A |
5248324 | Hara | Sep 1993 | A |
5266004 | Tsumurai et al. | Nov 1993 | A |
5290343 | Morita et al. | Mar 1994 | A |
5296019 | Oakley et al. | Mar 1994 | A |
5302190 | Williams | Apr 1994 | A |
5315838 | Thompson | May 1994 | A |
5316741 | Sewell et al. | May 1994 | A |
5378978 | Gallo et al. | Jan 1995 | A |
5435817 | Davis et al. | Jul 1995 | A |
5437713 | Chang | Aug 1995 | A |
5484472 | Weinberg | Jan 1996 | A |
5535089 | Ford et al. | Jul 1996 | A |
D375546 | Lee | Nov 1996 | S |
5578112 | Krause | Nov 1996 | A |
D377523 | Marvin et al. | Jan 1997 | S |
5601636 | Glucksman | Feb 1997 | A |
5641342 | Smith et al. | Jun 1997 | A |
5656063 | Hsu | Aug 1997 | A |
5667564 | Weinberg | Sep 1997 | A |
5669963 | Horton et al. | Sep 1997 | A |
5698164 | Kishioka et al. | Dec 1997 | A |
5702507 | Wang | Dec 1997 | A |
D389567 | Gudefin | Jan 1998 | S |
5766318 | Loreth et al. | Jun 1998 | A |
5779769 | Jiang | Jul 1998 | A |
5814135 | Weinberg | Sep 1998 | A |
5879435 | Satyapal et al. | Mar 1999 | A |
5893977 | Pucci | Apr 1999 | A |
5972076 | Nichols et al. | Oct 1999 | A |
5975090 | Taylor et al. | Nov 1999 | A |
5980614 | Loreth et al. | Nov 1999 | A |
5993521 | Loreth et al. | Nov 1999 | A |
5997619 | Knuth et al. | Dec 1999 | A |
6019815 | Satyapal et al. | Feb 2000 | A |
6042637 | Weinberg | Mar 2000 | A |
6063168 | Nichols et al. | May 2000 | A |
6086657 | Freije | Jul 2000 | A |
6117216 | Snyder et al. | Sep 2000 | A |
6118645 | Partridge | Sep 2000 | A |
6126722 | Mitchell et al. | Oct 2000 | A |
6126727 | Lo | Oct 2000 | A |
6149717 | Satyapal et al. | Nov 2000 | A |
6149815 | Sauter | Nov 2000 | A |
6152146 | Taylor et al. | Nov 2000 | A |
6163098 | Taylor et al. | Dec 2000 | A |
6176977 | Taylor et al. | Jan 2001 | B1 |
6182461 | Washburn et al. | Feb 2001 | B1 |
6182671 | Taylor et al. | Feb 2001 | B1 |
6193852 | Caracciolo et al. | Feb 2001 | B1 |
6203600 | Loreth | Mar 2001 | B1 |
6212883 | Kang | Apr 2001 | B1 |
6228149 | Alenichev et al. | May 2001 | B1 |
6252012 | Egitto et al. | Jun 2001 | B1 |
6270733 | Rodden | Aug 2001 | B1 |
6277248 | Ishioka et al. | Aug 2001 | B1 |
6282106 | Grass | Aug 2001 | B2 |
D449097 | Smith et al. | Oct 2001 | S |
D449679 | Smith et al. | Oct 2001 | S |
6302944 | Hoenig | Oct 2001 | B1 |
6309514 | Conrad et al. | Oct 2001 | B1 |
6312507 | Taylor et al. | Nov 2001 | B1 |
6315821 | Pillion et al. | Nov 2001 | B1 |
6328791 | Pillion et al. | Dec 2001 | B1 |
6348103 | Ahlborn et al. | Feb 2002 | B1 |
6350417 | Lau et al. | Feb 2002 | B1 |
6362604 | Cravey | Mar 2002 | B1 |
6372097 | Chen | Apr 2002 | B1 |
6373723 | Wallgren et al. | Apr 2002 | B1 |
6379427 | Siess | Apr 2002 | B1 |
6391259 | Malkin et al. | May 2002 | B1 |
6398852 | Loreth | Jun 2002 | B1 |
6447587 | Pillion et al. | Sep 2002 | B1 |
6464754 | Ford | Oct 2002 | B1 |
6471753 | Ahn et al. | Oct 2002 | B1 |
6494940 | Hak | Dec 2002 | B1 |
6504308 | Krichtafovitch et al. | Jan 2003 | B1 |
6508982 | Shoji | Jan 2003 | B1 |
6544485 | Taylor | Apr 2003 | B1 |
6603268 | Lee | Aug 2003 | B2 |
6613277 | Monagan | Sep 2003 | B1 |
6635105 | Ahlborn et al. | Oct 2003 | B2 |
6713026 | Taylor et al. | Mar 2004 | B2 |
6749667 | Reeves et al. | Jun 2004 | B2 |
20020069760 | Pruette et al. | Jun 2002 | A1 |
20020144601 | Palestro et al. | Oct 2002 | A1 |
20020152890 | Leiser | Oct 2002 | A1 |
20020170435 | Joannou | Nov 2002 | A1 |
20020190658 | Lee | Dec 2002 | A1 |
20020195951 | Lee | Dec 2002 | A1 |
20030005824 | Katou et al. | Jan 2003 | A1 |
20040052700 | Kotlyar et al. | Mar 2004 | A1 |
20040065202 | Gatchell et al. | Apr 2004 | A1 |
20040136863 | Yates et al. | Jul 2004 | A1 |
20040166037 | Youdell et al. | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
2111112 | Jul 1972 | CN |
87210843 | Jul 1988 | CN |
2138764 | Jun 1993 | CN |
2153231 | Dec 1993 | CN |
2206057 | Aug 1973 | DE |
0332624 | Jan 1992 | EP |
0433152 | Oct 1992 | EP |
2690509 | Oct 1993 | FR |
643363 | Sep 1950 | GB |
S51-90077 | Aug 1976 | JP |
S62-20653 | Feb 1987 | JP |
10137007 | May 1998 | JP |
11104223 | Apr 1999 | JP |
2000236914 | Sep 2000 | JP |
WO9205875 | Apr 1992 | WO |
WO9604703 | Feb 1996 | WO |
WO9907474 | Feb 1999 | WO |
WO0010713 | Mar 2000 | WO |
WO 0147803 | Jul 2001 | WO |
WO 0148781 | Jul 2001 | WO |
WO0164349 | Sep 2001 | WO |
WO0185348 | Nov 2001 | WO |
WO0220162 | Mar 2002 | WO |
WO0220163 | Mar 2002 | WO |
WO0230574 | Apr 2002 | WO |
WO0232578 | Apr 2002 | WO |
WO0242003 | May 2002 | WO |
WO02066167 | Aug 2002 | WO |
WO03009944 | Feb 2003 | WO |
WO03013620 | Feb 2003 | WO |
WO03013734 | Feb 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20030206840 A1 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
60340702 | Dec 2001 | US | |
60306479 | Jul 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09564960 | May 2000 | US |
Child | 09924624 | US | |
Parent | 09186471 | US | |
Child | 09730499 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09774198 | Jan 2001 | US |
Child | 10074347 | US | |
Parent | 09924624 | Aug 2001 | US |
Child | 09774198 | US | |
Parent | 09186471 | Nov 1998 | US |
Child | 09564960 | US | |
Parent | 09730499 | Dec 2000 | US |
Child | 09186471 | US |