The subject matter disclosed herein relates to means and methods to drive electro-optic displays. Specifically, the subject matter is related to backplane designs for electro-optic displays and methods for driving and/or discharging such displays.
Electrophoretic displays or EPDs are commonly driven by so-called DC-balanced waveforms. DC-balanced waveforms have been proven to improve long-term usage of EPDs by reducing severe hardware degradations and eliminating other reliability issues. However, the DC-balance waveform constraint limits the set of possible waveforms that are available to drive the EPD display, making it difficult or sometimes impossible to implement advantageous features via a waveform mode. For example, when implementing a “flash-less” white-on-black display mode, excessive white edge accumulation may become visible when gray-tones that have transitioned to black are next to a non-flashing black background. To clear such edges, a DC-imbalanced drive scheme may have worked well, but such drive scheme requires breaking the DC-balance constraint. However, DC-imbalanced drive schemes or waveforms can cause hardware degradations over time which shortens display devices' lifetime. As such, there exists a need to design electro-optic displays capable of operating with DC-imbalanced waveforms or drive schemes without suffering hardware degradations.
According to one embodiment of the subject matter presented herein, an electrophoretic display having a plurality of display pixels, each of the plurality of display pixels may include a pixel electrode for driving the display pixel, a single thin film transistor (TFT) coupled to the pixel electrode for transmitting waveforms to the pixel electrode, a front plane laminate (FPL) coupled to the single thin film transistor, and a storage capacitor coupled to the pixel electrode and placed in parallel with the FPL, where the storage capacitor is configured to be sufficiently ohmically conductive to allow the discharge of remnant voltages from the FPL through the storage capacitor.
In some embodiments, the storage capacitor's resistance is approximately the same as the FPL resistance.
In some other embodiments, the storage capacitor's resistance value is between one third and three times the FPL resistance.
In yet another embodiment, the electrophoretic display may further comprising a discharge capacitor in parallel to the storage capacitor.
The subject matter disclosed herein relates to improving electro-optic display durabilities. Specifically, it is related to improving optical performance shifts such as mitigating gray-tone shifts and ghosting shifts caused by component stresses.
The term “electro-optic”, as applied to a material or a display, is used herein in its conventional meaning in the imaging art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material. Although the optical property is typically color perceptible to the human eye, it may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.
The terms “bistable” and “bistability” are used herein in their conventional meaning in the art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element. It is shown in U.S. Pat. No. 7,170,670 that some particle-based electrophoretic displays capable of gray scale are stable not only in their extreme black and white states but also in their intermediate gray states, and the same is true of some other types of electro-optic displays. This type of display is properly called “multi-stable” rather than bistable, although for convenience the term “bistable” may be used herein to cover both bistable and multi-stable displays.
The term “gray state” is used herein in its conventional meaning in the imaging art to refer to a state intermediate two extreme optical states of a pixel, and does not necessarily imply a black-white transition between these two extreme states. For example, several of the E Ink patents and published applications referred to below describe electrophoretic displays in which the extreme states are white and deep blue, so that an intermediate “gray state” would actually be pale blue. Indeed, as already mentioned, the change in optical state may not be a color change at all. The terms “black” and “white” may be used hereinafter to refer to the two extreme optical states of a display, and should be understood as normally including extreme optical states which are not strictly black and white, for example, the aforementioned white and dark blue states. The term “monochrome” may be used hereinafter to denote a display or drive scheme which only drives pixels to their two extreme optical states with no intervening gray states.
The term “pixel” is used herein in its conventional meaning in the display art to mean the smallest unit of a display capable of generating all the colors which the display itself can show. In a full color display, typically each pixel is composed of a plurality of sub-pixels each of which can display less than all the colors which the display itself can show. For example, in most conventional full color displays, each pixel is composed of a red sub-pixel, a green sub-pixel, a blue sub-pixel, and optionally a white sub-pixel, with each of the sub-pixels being capable of displaying a range of colors from black to the brightest version of its specified color.
Several types of electro-optic displays are known. One type of electro-optic display is a rotating bichromal member type as described, for example, in U.S. Pat. Nos. 5,808,783; 5,777,782; 5,760,761; 6,054,0716,055,091; 6,097,531; 6,128,124; 6,137,467; and 6,147,791 (although this type of display is often referred to as a “rotating bichromal ball” display, the term “rotating bichromal member” is preferred as more accurate since in some of the patents mentioned above the rotating members are not spherical). Such a display uses a large number of small bodies (typically spherical or cylindrical) which have two or more sections with differing optical characteristics, and an internal dipole. These bodies are suspended within liquid-filled vacuoles within a matrix, the vacuoles being filled with liquid so that the bodies are free to rotate. The appearance of the display is changed by applying an electric field thereto, thus rotating the bodies to various positions and varying which of the sections of the bodies is seen through a viewing surface. This type of electro-optic medium is typically bistable.
Another type of electro-optic display uses an electrochromic medium, for example an electrochromic medium in the form of a nanochromic film comprising an electrode formed at least in part from a semi-conducting metal oxide and a plurality of dye molecules capable of reversible color change attached to the electrode; see, for example O'Regan, B., et al., Nature 1991, 353, 737; and Wood, D., Information Display, 18(3), 24 (March 2002). See also Bach, U., et al., Adv. Mater., 2002, 14(11), 845. Nanochromic films of this type are also described, for example, in U.S. Pat. Nos. 6,301,038; 6,870,657; and 6,950,220. This type of medium is also typically bistable.
Another type of electro-optic display is an electro-wetting display developed by Philips and described in Hayes, R. A., et al., “Video-Speed Electronic Paper Based on Electrowetting”, Nature, 425, 383-385 (2003). It is shown in U.S. Pat. No. 7,420,549 that such electro-wetting displays can be made bistable.
One type of electro-optic display, which has been the subject of intense research and development for a number of years, is the particle-based electrophoretic display, in which a plurality of charged particles move through a fluid under the influence of an electric field. Electrophoretic displays can have attributes of good brightness and contrast, wide viewing angles, state bistability, and low power consumption when compared with liquid crystal displays.
As noted above, electrophoretic media require the presence of a fluid. In most prior art electrophoretic media, this fluid is a liquid, but electrophoretic media can be produced using gaseous fluids; see, for example, Kitamura, T., et al., “Electrical toner movement for electronic paper-like display”, IDW Japan, 2001, Paper HCS1-1, and Yamaguchi, Y., et al., “Toner display using insulative particles charged triboelectrically”, IDW Japan, 2001, Paper AMD4-4). See also U.S. Pat. Nos. 7,321,459 and 7,236,291. Such gas-based electrophoretic media appear to be susceptible to the same types of problems due to particle settling as liquid-based electrophoretic media, when the media are used in an orientation which permits such settling, for example in a sign where the medium is disposed in a vertical plane. Indeed, particle settling appears to be a more serious problem in gas-based electrophoretic media than in liquid-based ones, since the lower viscosity of gaseous suspending fluids as compared with liquid ones allows more rapid settling of the electrophoretic particles.
Numerous patents and applications assigned to or in the names of the Massachusetts Institute of Technology (MIT) and E Ink Corporation describe various technologies used in encapsulated electrophoretic and other electro-optic media. Such encapsulated media comprise numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles in a fluid medium, and a capsule wall surrounding the internal phase. Typically, the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes. The technologies described in these patents and applications include:
This application is further related to U.S. Pat. Nos. D485,294; 6,124,851; 6,130,773; 6,177,921; 6,232,950; 6,252,564; 6,312,304; 6,312,971; 6,376,828; 6,392,786; 6,413,790; 6,422,687; 6,445,374; 6,480,182; 6,498,114; 6,506,438; 6,518,949; 6,521,489; 6,535,197; 6,545,291; 6,639,578; 6,657,772; 6,664,944; 6,680,725; 6,683,333; 6,724,519; 6,750,473; 6,816,147; 6,819,471; 6,825,068; 6,831,769; 6,842,167; 6,842,279; 6,842,657; 6,865,010; 6,873,452; 6,909,532; 6,967,640; 6,980,196; 7,012,735; 7,030,412; 7,075,703; 7,106,296; 7,110,163; 7,116,318; 7,148,128; 7,167,155; 7,173,752; 7,176,880; 7,190,008; 7,206,119; 7,223,672; 7,230,751; 7,256,766; 7,259,744; 7,280,094; 7,301,693; 7,304,780; 7,327,511; 7,347,957; 7,349,148; 7,352,353; 7,365,394; 7,365,733; 7,382,363; 7,388,572; 7,401,758; 7,442,587; 7,492,497; 7,535,624; 7,551,346; 7,554,712; 7,583,427; 7,598,173; 7,605,799; 7,636,191; 7,649,674; 7,667,886; 7,672,040; 7,688,497; 7,733,335; 7,785,988; 7,830,592; 7,843,626; 7,859,637; 7,880,958; 7,893,435; 7,898,717; 7,905,977; 7,957,053; 7,986,450; 8,009,344; 8,027,081; 8,049,947; 8,072,675; 8,077,141; 8,089,453; 8,120,836; 8,159,636; 8,208,193; 8,237,892; 8,238,021; 8,362,488; 8,373,211; 8,389,381; 8,395,836; 8,437,069; 8,441,414; 8,456,589; 8,498,042; 8,514,168; 8,547,628; 8,576,162; 8,610,988; 8,714,780; 8,728,266; 8,743,077; 8,754,859; 8,797,258; 8,797,633; 8,797,636; 8,830,560; 8,891,155; 8,969,886; 9,147,364; 9,025,234; 9,025,238; 9,030,374; 9,140,952; 9,152,003; 9,152,004; 9,201,279; 9,223,164; 9,285,648; and 9,310,661; and U.S. Patent Applications Publication Nos. 2002/0060321; 2004/0008179; 2004/0085619; 2004/0105036; 2004/0112525; 2005/0122306; 2005/0122563; 2006/0215106; 2006/0255322; 2007/0052757; 2007/0097489; 2007/0109219; 2008/0061300; 2008/0149271; 2009/0122389; 2009/0315044; 2010/0177396; 2011/0140744; 2011/0187683; 2011/0187689; 2011/0292319; 2013/0250397; 2013/0278900; 2014/0078024; 2014/0139501; 2014/0192000; 2014/0210701; 2014/0300837; 2014/0368753; 2014/0376164; 2015/0171112; 2015/0205178; 2015/0226986; 2015/0227018; 2015/0228666; 2015/0261057; 2015/0356927; 2015/0378235; 2016/077375; 2016/0103380; and 2016/0187759; and International Application Publication No. WO 00/38000; European Patents Nos. 1,099,207 B1 and 1,145,072 B1; all of the above-listed applications are incorporated by reference in their entireties.
This application is also related to U.S. Pat. Nos. 5,930,026; 6,445,489; 6,504,524; 6,512,354; 6,531,997; 6,753,999; 6,825,970; 6,900,851; 6,995,550; 7,012,600; 7,023,420; 7,034,783; 7,061,166; 7,061,662; 7,116,466; 7,119,772; 7,177,066; 7,193,625; 7,202,847; 7,242,514; 7,259,744; 7,304,787; 7,312,794; 7,327,511; 7,408,699; 7,453,445; 7,492,339; 7,528,822; 7,545,358; 7,583,251; 7,602,374; 7,612,760; 7,679,599; 7,679,813; 7,683,606; 7,688,297; 7,729,039; 7,733,311; 7,733,335; 7,787,169; 7,859,742; 7,952,557; 7,956,841; 7,982,479; 7,999,787; 8,077,141; 8,125,501; 8,139,050; 8,174,490; 8,243,013; 8,274,472; 8,289,250; 8,300,006; 8,305,341; 8,314,784; 8,373,649; 8,384,658; 8,456,414; 8,462,102; 8,537,105; 8,558,783; 8,558,785; 8,558,786; 8,558,855; 8,576,164; 8,576,259; 8,593,396; 8,605,032; 8,643,595; 8,665,206; 8,681,191; 8,730,153; 8,810,525; 8,928,562; 8,928,641; 8,976,444; 9,013,394; 9,019,197; 9,019,198; 9,019,318; 9,082,352; 9,171,508; 9,218,773; 9,224,338; 9,224,342; 9,224,344; 9,230,492; 9,251,736; 9,262,973; 9,269,311; 9,299,294; 9,373,289; 9,390,066; 9,390,661; and 9,412,314; and U.S. Patent Applications Publication Nos. 2003/0102858; 2004/0246562; 2005/0253777; 2007/0070032; 2007/0076289; 2007/0091418; 2007/0103427; 2007/0176912; 2007/0296452; 2008/0024429; 2008/0024482; 2008/0136774; 2008/0169821; 2008/0218471; 2008/0291129; 2008/0303780; 2009/0174651; 2009/0195568; 2009/0322721; 2010/0194733; 2010/0194789; 2010/0220121; 2010/0265561; 2010/0283804; 2011/0063314; 2011/0175875; 2011/0193840; 2011/0193841; 2011/0199671; 2011/0221740; 2012/0001957; 2012/0098740; 2013/0063333; 2013/0194250; 2013/0249782; 2013/0321278; 2014/0009817; 2014/0085355; 2014/0204012; 2014/0218277; 2014/0240210; 2014/0240373; 2014/0253425; 2014/0292830; 2014/0293398; 2014/0333685; 2014/0340734; 2015/0070744; 2015/0097877; 2015/0109283; 2015/0213749; 2015/0213765; 2015/0221257; 2015/0262255; 2016/0071465; 2016/0078820; 2016/0093253; 2016/0140910; and 2016/0180777; all of the above-listed applications are incorporated by reference in their entireties.
Many of the aforementioned patents and applications recognize that the walls surrounding the discrete microcapsules in an encapsulated electrophoretic medium could be replaced by a continuous phase, thus producing a so-called polymer-dispersed electrophoretic display, in which the electrophoretic medium comprises a plurality of discrete droplets of an electrophoretic fluid and a continuous phase of a polymeric material, and that the discrete droplets of electrophoretic fluid within such a polymer-dispersed electrophoretic display may be regarded as capsules or microcapsules even though no discrete capsule membrane is associated with each individual droplet; see for example, the aforementioned U.S. Pat. No. 6,866,760. Accordingly, for purposes of the present application, such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media.
A related type of electrophoretic display is a so-called “microcell electrophoretic display”. In a microcell electrophoretic display, the charged particles and the fluid are not encapsulated within microcapsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film. See, for example, U.S. Pat. Nos. 6,672,921 and 6,788,449, both assigned to Sipix Imaging, Inc.
Although electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode, many electrophoretic displays can be made to operate in a so-called “shutter mode” in which one display state is substantially opaque and one is light-transmissive. See, for example, U.S. Pat. Nos. 5,872,552; 6,130,774; 6,144,361; 6,172,798; 6,271,823; 6,225,971; and 6,184,856. Dielectrophoretic displays, which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Pat. No. 4,418,346. Other types of electro-optic displays may also be capable of operating in shutter mode. Electro-optic media operating in shutter mode may be useful in multi-layer structures for full color displays; in such structures, at least one layer adjacent the viewing surface of the display operates in shutter mode to expose or conceal a second layer more distant from the viewing surface.
An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates. (Use of the word “printing” is intended to include all forms of printing and coating, including, but without limitation: pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; ink jet printing processes; electrophoretic deposition (See U.S. Pat. No. 7,339,715); and other similar techniques.) Thus, the resulting display can be flexible. Further, because the display medium can be printed, using a variety of methods, the display itself can be made inexpensively.
Other types of electro-optic materials may also be used in the present invention.
An electrophoretic display normally comprises a layer of electrophoretic material and at least two other layers disposed on opposed sides of the electrophoretic material, one of these two layers being an electrode layer. In most such displays both the layers are electrode layers, and one or both of the electrode layers are patterned to define the pixels of the display. For example, one electrode layer may be patterned into elongate row electrodes and the other into elongate column electrodes running at right angles to the row electrodes, the pixels being defined by the intersections of the row and column electrodes. Alternatively, and more commonly, one electrode layer has the form of a single continuous electrode and the other electrode layer is patterned into a matrix of pixel electrodes, each of which defines one pixel of the display. In another type of electrophoretic display, which is intended for use with a stylus, print head or similar movable electrode separate from the display, only one of the layers adjacent the electrophoretic layer comprises an electrode, the layer on the opposed side of the electrophoretic layer typically being a protective layer intended to prevent the movable electrode damaging the electrophoretic layer.
In yet another embodiment, such as described in U.S. Pat. No. 6,704,133, electrophoretic displays may be constructed with two continuous electrodes and an electrophoretic layer and a photoelectrophoretic layer between the electrodes. Because the photoelectrophoretic material changes resistivity with the absorption of photons, incident light can be used to alter the state of the electrophoretic medium. Such a device is illustrated in
The aforementioned U.S. Pat. No. 6,982,178 describes a method of assembling a solid electro-optic display (including an encapsulated electrophoretic display) which is well adapted for mass production. Essentially, this patent describes a so-called “front plane laminate” (“FPL”) which comprises, in order, a light-transmissive electrically-conductive layer; a layer of a solid electro-optic medium in electrical contact with the electrically-conductive layer; an adhesive layer; and a release sheet. Typically, the light-transmissive electrically-conductive layer will be carried on a light-transmissive substrate, which is preferably flexible, in the sense that the substrate can be manually wrapped around a drum (say) 10 inches (254 mm) in diameter without permanent deformation. The term “light-transmissive” is used in this patent and herein to mean that the layer thus designated transmits sufficient light to enable an observer, looking through that layer, to observe the change in display states of the electro-optic medium, which will normally be viewed through the electrically-conductive layer and adjacent substrate (if present); in cases where the electro-optic medium displays a change in reflectivity at non-visible wavelengths, the term “light-transmissive” should of course be interpreted to refer to transmission of the relevant non-visible wavelengths. The substrate will typically be a polymeric film, and will normally have a thickness in the range of about 1 to about 25 mil (25 to 634 μm), preferably about 2 to about 10 mil (51 to 254 μm). The electrically-conductive layer is conveniently a thin metal or metal oxide layer of, for example, aluminum or ITO, or may be a conductive polymer. Poly (ethylene terephthalate) (PET) films coated with aluminum or ITO are available commercially, for example as “aluminized Mylar” (“Mylar” is a Registered Trade Mark) from E.I. du Pont de Nemours & Company, Wilmington Del., and such commercial materials may be used with good results in the front plane laminate. A processes for forming electro-optic displays using the front plane laminates may include the use of a thermal lamination process to attach the FPL or double release film to the backplane. The backplane may be of the direct drive segmented variety with one or more patterned conductive traces, or may be of the non-linear circuit variety (e.g. active matrix).
The aforementioned U.S. Pat. No. 6,982,178 also describes a method for testing the electro-optic medium in a front plane laminate prior to incorporation of the front plane laminate into a display. In this testing method, the release sheet is provided with an electrically conductive layer, and a voltage sufficient to change the optical state of the electro-optic medium is applied between this electrically conductive layer and the electrically conductive layer on the opposed side of the electro-optic medium. Observation of the electro-optic medium will then reveal any faults in the medium, thus avoiding laminating faulty electro-optic medium into a display, with the resultant cost of scrapping the entire display, not merely the faulty front plane laminate.
The aforementioned U.S. Pat. No. 6,982,178 also describes a second method for testing the electro-optic medium in a front plane laminate by placing an electrostatic charge on the release sheet, thus forming an image on the electro-optic medium. This image is then observed in the same way as before to detect any faults in the electro-optic medium.
Assembly of an electro-optic display using such a front plane laminate may be effected by removing the release sheet from the front plane laminate and contacting the adhesive layer with the backplane under conditions effective to cause the adhesive layer to adhere to the backplane, thereby securing the adhesive layer, layer of electro-optic medium and electrically-conductive layer to the backplane. This process is well-adapted to mass production since the front plane laminate may be mass produced, typically using roll-to-roll coating techniques, and then cut into pieces of any size needed for use with specific backplanes.
U.S. Pat. No. 7,561,324 describes a so-called “double release sheet” which is essentially a simplified version of the front plane laminate of the aforementioned U.S. Pat. No. 6,982,178. One form of the double release sheet comprises a layer of a solid electro-optic medium sandwiched between two adhesive layers, one or both of the adhesive layers being covered by a release sheet. Another form of the double release sheet comprises a layer of a solid electro-optic medium sandwiched between two release sheets. Both forms of the double release film are intended for use in a process generally similar to the process for assembling an electro-optic display from a front plane laminate already described, but involving two separate laminations; typically, in a first lamination the double release sheet is laminated to a front electrode to form a front sub-assembly, and then in a second lamination the front sub-assembly is laminated to a backplane to form the final display, although the order of these two laminations could be reversed if desired.
U.S. Pat. No. 7,839,564 describes a so-called “inverted front plane laminate”, which is a variant of the front plane laminate described in the aforementioned U.S. Pat. No. 6,982,178. This inverted front plane laminate comprises, in order, at least one of a light-transmissive protective layer and a light-transmissive electrically-conductive layer; an adhesive layer; a layer of a solid electro-optic medium; and a release sheet. This inverted front plane laminate is used to form an electro-optic display having a layer of lamination adhesive between the electro-optic layer and the front electrode or front substrate; a second, typically thin layer of adhesive may or may not be present between the electro-optic layer and a backplane. Such electro-optic displays can combine good resolution with good low temperature performance.
The photoelectrophoretic properties of certain pigments were recognized some time ago. For example U.S. Pat. No. 3,383,993 discloses a photoelectrophoretic imaging apparatus that could be used to reproduce projected images on a medium, typically a transparent electrode, such as ITO. The photoelectrophoretic process described in the '993 patent, and other related patents by Xerox Corporation, was not reversible, however, because the photoelectrophoretic process involved the photoelectrophoretic particles migrating to an “injecting electrode” where they would become attached to the electrode. Because of the lack of reversibility, as well as the cost and complication of the setup, this phenomenon was not commercialized widely.
While displays of the invention are intended to display images for long periods of time with little to no energy input, the looped displays, described above, can be used to refresh content on the same time scale as emissive displays, e.g., large format LED displays. Displays of the invention can display two different images in less than one hour, e.g., in less than 10 minutes, e.g., in less than five minutes, e.g., in less than two minutes. Furthermore, the refresh periods can be staggered, depending upon the use of the display. For example, a transportation schedule may be refreshed every five minutes with an advertisement that lasts for 30 seconds, whereupon the transportation schedule is returned for another five minute period.
In some cases, one way of enabling the use of DC-imbalanced waveforms is discharging the display module after an active update. Where discharging involves short-circuiting the display's imaging film to drain away residual charges that builds-up on the imaging film (e.g., a layer of electrophoretic material) due to the DC imbalance drive. The use of update Post Drive Discharging (uPDD or UPD to be referred to herein) has successfully demonstrated the reduction in the build-up of residual charges (as measured by the remnant voltage) and the corresponding module polarization that would have resulted in permanent degradation of the imaging film due to electrochemistry.
It has now been found that remnant voltage is a more general phenomenon in electrophoretic and other impulse-driven electro-optic displays, both in cause(s) and effect(s). It has also been found that DC imbalances may cause long-term lifetime degradation of some electrophoretic displays.
There are multiple potential sources of remnant voltage. It is believed (although some embodiments are in no way limited by this belief), that a primary cause of remnant voltage is ionic polarization within the materials of the various layers forming the display.
Such polarization occurs in various ways. In a first (for convenience, denoted “Type I”) polarization, an ionic double layer is created across or adjacent a material interface. For example, a positive potential at an indium-tin-oxide (“ITO”) electrode may produce a corresponding polarized layer of negative ions in an adjacent laminating adhesive. The decay rate of such a polarization layer is associated with the recombination of separated ions in the lamination adhesive layer. The geometry of such a polarization layer is determined by the shape of the interface, but may be planar in nature.
In a second (“Type II”) type of polarization, nodules, crystals or other kinds of material heterogeneity within a single material can result in regions in which ions can move or less quickly than the surrounding material. The differing rate of ionic migration can result in differing degrees of charge polarization within the bulk of the medium, and polarization may thus occur within a single display component. Such a polarization may be substantially localized in nature or dispersed throughout the layer.
In a third (“Type III”) type of polarization, polarization may occur at any interface that represents a barrier to charge transport of any particular type of ion. One example of such an interface in a microcavity electrophoretic display is the boundary between the electrophoretic suspension including the suspending medium and particles (the “internal phase”) and the surrounding medium including walls, adhesives and binders (the “external phase”). In many electrophoretic displays, the internal phase is a hydrophobic liquid whereas the external phase is a polymer, such as gelatin. Ions that are present in the internal phase may be insoluble and non-diffusible in the external phase and vice versa. On the application of an electric field perpendicular to such an interface, polarization layers of opposite sign will accumulate on either side of the interface. When the applied electric field is removed, the resulting non-equilibrium charge distribution will result in a measurable remnant voltage potential that decays with a relaxation time determined by the mobility of the ions in the two phases on either side of the interface.
Polarization may occur during a drive pulse. Each image update is an event that may affect remnant voltage. A positive waveform voltage can create a remnant voltage across an electro-optic medium that is of the same or opposite polarity (or nearly zero) depending on the specific electro-optic display.
It will be evident from the foregoing discussion that polarization may occur at multiple locations within the electrophoretic or other electro-optic display, each location having its own characteristic spectrum of decay times, principally at interfaces and at material heterogeneities. Depending on the placement of the sources of these voltages (in other words, the polarized charge distribution) relative to the electro-active parts (for example, the electrophoretic suspension), and the degree of electrical coupling between each kind of charge distribution and the motion of the particles through the suspension, or other electro-optic activity, various kinds of polarization will produce more or less deleterious effects. Since an electrophoretic display operates by motion of charged particles, which inherently causes a polarization of the electro-optic layer, in a sense a preferred electrophoretic display is not one in which no remnant voltages are always present in the display, but rather one in which the remnant voltages do not cause objectionable electro-optic behavior. Ideally, the remnant impulse will be minimized and the remnant voltage will decrease below 1 V, and preferably below 0.2 V, within 1 second, and preferably within 50 ms, so that that by introducing a minimal pause between image updates, the electrophoretic display may affect all transitions between optical states without concern for remnant voltage effects. For electrophoretic displays operating at video rates or at voltages below +/−15 V these ideal values should be correspondingly reduced. Similar considerations apply to other types of electro-optic display.
To summarize, remnant voltage as a phenomenon is at least substantially a result of ionic polarization occurring within the display material components, either at interfaces or within the materials themselves. Such polarizations are especially problematic when they persist on a meso time scale of roughly 50 ms to about an hour or longer. Remnant voltage can present itself as image ghosting or visual artifacts in a variety of ways, with a degree of severity that can vary with the elapsed times between image updates. Remnant voltage can also create a DC imbalance and reduce ultimate display lifetime. The effects of remnant voltage therefore may be deleterious to the quality of the electrophoretic or other electro-optic device and it is desirable to minimize both the remnant voltage itself, and the sensitivity of the optical states of the device to the influence of the remnant voltage.
In practice, charges built up within an electrophoretic material due to polarization effect described above may be discharged or drained to mitigate the remnant voltage effect. In some embodiment, such discharge may be performed after an update or drive sequence.
In some embodiments, a post-drive or post-update discharging may be performed using a readily available thin-film-transistor (TFT) backplane 100 for an EPD and the EPD's controller circuitry, as illustrated in
With using only a single TFT such as the TFT(upd) 102 illustrated in
One exemplary embodiment in accordance with the concept described above is illustrated in
In the description above, the TFT(upd) and TFT(dis) are both N-type TFTs. These transistors could also be both P-type TFT or N-type and P-type each. One of the example based on the circuit in
Alternatively, instead of an active component such as a TFT, passive components can also be adopted to discharge the EPD.
In practice, the resistance value of the resistor Rd or the dielectric resistance value of the capacitor may be chosen to be between ⅓ and 3 times the resistance of the FPL 904 layer or
RFPL/3<Rd<RFPL*3
Where RFPL is the FPL 904 layer resistance.
The resulting measured FPL voltages are presented in
It can be observed from the experimentation data that a smaller Rd resistance value may yield faster decay of FPL voltages during the floating phase, resulting in a smaller remnant voltage build up. However, it is also desirable to have a Rd that is not too small such that it will cause degradation of ink switching speed during the driving phase due to the storage capacitor Cs being discharged too rapidly, which can cause more optical kickback during the floating phase. As such, since the storage capacitor capacitance is usually chosen such that it is sufficient to maintain the FPL voltage during frame time (Cs*RFPL>>frame time), and the resistance value of Rd is preferably not too small compared to the FPL resistance value RFPL to prevent a rapid discharge of the FPL voltage during frame time, which can cause loss of ink speed during the driving phase. And of course, the resistance value of Rd cannot be too large compared to that of RFPL neither, otherwise the benefit of having this passive discharging pathway is diminished.
In some embodiments, the resistance value of Rd or the storage capacitor's ohmic resistance may be chosen to be
RFPL/3<Rd<RFPL*3
to achieve remnant voltage reduction while maintaining optical performance. In some other embodiments, the Rd or the storage capacitor's ohmic resistance value may be set to be approximately the same as the RFPL value. For example, the storage capacitor's ohmic resistance may be configured to be between 90% to 110% of the RFPL value; or the storage capacitor's ohmic resistance may be configured to be between 80% to 120% of the RFPL value; or the storage capacitor's ohmic resistance may be configured to be between 70% to 130% of the RFPL value; or the storage capacitor's ohmic resistance may be configured to be between 50% to 150% of the RFPL value; or the storage capacitor's ohmic resistance may be configured to be approximately between one third to three times of the RFPL value. Furthermore, as illustrated in
In some embodiments, the Rd discharge pathway described herein may be achieved by making the pixel storage capacitor “leaky”, where the dielectric resistance of the storage capacitor has decreased to the point where the capacitor can ohmically conduct sufficient current to allow the remnant charges to be drained or discharged. Referring now to
Alternatively, an additional capacitor may be added to a display pixel and configured to be leaky to create a pathway for discharging remnant voltages. Referring now to
It will be apparent to those skilled in the art that numerous changes and modifications can be made to the specific embodiments of the invention described above without departing from the scope of the invention. Accordingly, the whole of the foregoing description is to be interpreted in an illustrative and not in a limitative sense.
This application claims priority to U.S. patent application Ser. No. 17/032,189 (Publication No. 2021/0012721) filed on Sep. 25, 2020 and claiming priority to U.S. patent application Ser. No. 16/745,473 (now U.S. Pat. No. 10,825,405) filed on Jan. 17, 2020 and claiming priority to U.S. patent application Ser. No. 15/992,363 (now U.S. Pat. No. 10,573,257) filed on May 30, 2018 and claiming priority to U.S. Patent Application No. 62/512,212 filed on May 30, 2017. This application is also related to U.S. patent application Ser. No. 15/015,822 filed on Feb. 4, 2016 (Publication No. 2016/0225322); U.S. patent application Ser. No. 15/014,236 filed on Feb. 3, 2016 (Publication No. 2016/0225321); and U.S. patent application Ser. No. 15/266,554 filed on Sep. 15, 2016 (Publication No. 2017/0076672). All of the above-listed applications are incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3383993 | Yeh | May 1968 | A |
4418346 | Batchelder | Nov 1983 | A |
5760761 | Sheridon | Jun 1998 | A |
5777782 | Sheridon | Jul 1998 | A |
5808783 | Crowley | Sep 1998 | A |
5872552 | Gordon, II et al. | Feb 1999 | A |
5930026 | Jacobson | Jul 1999 | A |
6017584 | Albert et al. | Jan 2000 | A |
6054071 | Mikkelsen, Jr. | Apr 2000 | A |
6055091 | Sheridon | Apr 2000 | A |
6097531 | Sheridon | Aug 2000 | A |
6124851 | Jacobson | Sep 2000 | A |
6128124 | Silverman | Oct 2000 | A |
6130773 | Jacobson et al. | Oct 2000 | A |
6130774 | Albert et al. | Oct 2000 | A |
6137467 | Sheridon | Oct 2000 | A |
6144361 | Gordon, II | Nov 2000 | A |
6147791 | Sheridon | Nov 2000 | A |
6177921 | Comiskey et al. | Jan 2001 | B1 |
6184856 | Gordon, II | Feb 2001 | B1 |
6225971 | Gordon, II | May 2001 | B1 |
6232950 | Albert et al. | May 2001 | B1 |
6241921 | Jacobson et al. | Jun 2001 | B1 |
6249271 | Albert et al. | Jun 2001 | B1 |
6252564 | Albert et al. | Jun 2001 | B1 |
6271823 | Gordon, II | Aug 2001 | B1 |
6301038 | Fitzmaurice | Oct 2001 | B1 |
6312304 | Duthaler et al. | Nov 2001 | B1 |
6312971 | Amundson et al. | Nov 2001 | B1 |
6376828 | Comiskey | Apr 2002 | B1 |
6392786 | Albert | May 2002 | B1 |
6413790 | Duthaler et al. | Jul 2002 | B1 |
6422687 | Jacobson | Jul 2002 | B1 |
6445489 | Jacobson et al. | Sep 2002 | B1 |
6480182 | Turner et al. | Nov 2002 | B2 |
6493396 | Nguyen | Dec 2002 | B1 |
6498114 | Amundson et al. | Dec 2002 | B1 |
6504524 | Gates et al. | Jan 2003 | B1 |
6506438 | Duthaler et al. | Jan 2003 | B2 |
6512354 | Jacobson et al. | Jan 2003 | B2 |
6518949 | Drzaic | Feb 2003 | B2 |
6531997 | Gates et al. | Mar 2003 | B1 |
6545291 | Amundson et al. | Apr 2003 | B1 |
6639578 | Comiskey et al. | Oct 2003 | B1 |
6657772 | Loxley | Dec 2003 | B2 |
6664944 | Albert et al. | Dec 2003 | B1 |
D485294 | Albert | Jan 2004 | S |
6672921 | Liang et al. | Jan 2004 | B1 |
6683333 | Kazlas et al. | Jan 2004 | B2 |
6693301 | Takemura | Feb 2004 | B2 |
6704133 | Gates et al. | Mar 2004 | B2 |
6724519 | Comiskey et al. | Apr 2004 | B1 |
6753999 | Zehner et al. | Jun 2004 | B2 |
6788449 | Liang et al. | Sep 2004 | B2 |
6816147 | Albert | Nov 2004 | B2 |
6819471 | Amundson et al. | Nov 2004 | B2 |
6825068 | Denis et al. | Nov 2004 | B2 |
6825970 | Goenaga et al. | Nov 2004 | B2 |
6831769 | Holman et al. | Dec 2004 | B2 |
6842279 | Amundson | Jan 2005 | B2 |
6842657 | Drzaic et al. | Jan 2005 | B1 |
6865010 | Duthaler et al. | Mar 2005 | B2 |
6866760 | Paolini, Jr. et al. | Mar 2005 | B2 |
6870657 | Fitzmaurice | Mar 2005 | B1 |
6873452 | Tseng et al. | Mar 2005 | B2 |
6900851 | Morrison et al. | May 2005 | B2 |
6909532 | Chung et al. | Jun 2005 | B2 |
6922276 | Zhang et al. | Jul 2005 | B2 |
6950220 | Abramson et al. | Sep 2005 | B2 |
6967640 | Albert et al. | Nov 2005 | B2 |
6980196 | Turner et al. | Dec 2005 | B1 |
6982178 | LeCain et al. | Jan 2006 | B2 |
6995550 | Jacobson et al. | Feb 2006 | B2 |
7002728 | Pullen et al. | Feb 2006 | B2 |
7012600 | Zehner et al. | Mar 2006 | B2 |
7012735 | Honeyman | Mar 2006 | B2 |
7023420 | Comiskey et al. | Apr 2006 | B2 |
7030412 | Drzaic et al. | Apr 2006 | B1 |
7034783 | Gates et al. | Apr 2006 | B2 |
7061166 | Kuniyasu | Jun 2006 | B2 |
7061662 | Chung et al. | Jun 2006 | B2 |
7072095 | Liang et al. | Jul 2006 | B2 |
7075502 | Drzaic et al. | Jul 2006 | B1 |
7075703 | O'Neil et al. | Jul 2006 | B2 |
7106296 | Jacobson | Sep 2006 | B1 |
7110163 | Webber et al. | Sep 2006 | B2 |
7116318 | Amundson et al. | Oct 2006 | B2 |
7116466 | Whitesides et al. | Oct 2006 | B2 |
7119772 | Amundson et al. | Oct 2006 | B2 |
7144942 | Zang et al. | Dec 2006 | B2 |
7148128 | Jacobson | Dec 2006 | B2 |
7167155 | Albert et al. | Jan 2007 | B1 |
7170670 | Webber | Jan 2007 | B2 |
7173752 | Doshi et al. | Feb 2007 | B2 |
7176880 | Amundson et al. | Feb 2007 | B2 |
7177066 | Chung et al. | Feb 2007 | B2 |
7190008 | Amundson et al. | Mar 2007 | B2 |
7193625 | Danner et al. | Mar 2007 | B2 |
7202847 | Gates | Apr 2007 | B2 |
7206119 | Honeyman et al. | Apr 2007 | B2 |
7223672 | Kazlas et al. | May 2007 | B2 |
7230751 | Whitesides et al. | Jun 2007 | B2 |
7236291 | Kaga et al. | Jun 2007 | B2 |
7248395 | Komatsu | Jul 2007 | B2 |
7256766 | Albert et al. | Aug 2007 | B2 |
7259744 | Arango et al. | Aug 2007 | B2 |
7301693 | Chaug et al. | Nov 2007 | B2 |
7304780 | Liu et al. | Dec 2007 | B2 |
7312784 | Baucom et al. | Dec 2007 | B2 |
7321459 | Masuda | Jan 2008 | B2 |
7327346 | Chung et al. | Feb 2008 | B2 |
7327511 | Whitesides et al. | Feb 2008 | B2 |
7339715 | Webber et al. | Mar 2008 | B2 |
7347957 | Wu et al. | Mar 2008 | B2 |
7365733 | Duthaler et al. | Apr 2008 | B2 |
7388572 | Duthaler et al. | Jun 2008 | B2 |
7401758 | Liang et al. | Jul 2008 | B2 |
7408699 | Wang et al. | Aug 2008 | B2 |
7411719 | Paolini, Jr. et al. | Aug 2008 | B2 |
7420549 | Jacobson et al. | Sep 2008 | B2 |
7442587 | Amundson et al. | Oct 2008 | B2 |
7453445 | Amundson | Nov 2008 | B2 |
7492339 | Amundson | Feb 2009 | B2 |
7492497 | Paolini, Jr. et al. | Feb 2009 | B2 |
7528822 | Amundson et al. | May 2009 | B2 |
7535624 | Amundson et al. | May 2009 | B2 |
7551346 | Fazel et al. | Jun 2009 | B2 |
7554712 | Patry et al. | Jun 2009 | B2 |
7560004 | Pereira et al. | Jul 2009 | B2 |
7561324 | Duthaler et al. | Jul 2009 | B2 |
7583251 | Arango et al. | Sep 2009 | B2 |
7583427 | Danner et al. | Sep 2009 | B2 |
7598173 | Ritenour et al. | Oct 2009 | B2 |
7602374 | Zehner et al. | Oct 2009 | B2 |
7612760 | Kawai | Nov 2009 | B2 |
7636191 | Duthaler et al. | Dec 2009 | B2 |
7649674 | Danner et al. | Jan 2010 | B2 |
7667684 | Jacobson et al. | Feb 2010 | B2 |
7667886 | Danner et al. | Feb 2010 | B2 |
7672040 | Sohn et al. | Mar 2010 | B2 |
7679599 | Kawai | Mar 2010 | B2 |
7679813 | Liang et al. | Mar 2010 | B2 |
7679814 | Paolini, Jr. et al. | Mar 2010 | B2 |
7683606 | Kang et al. | Mar 2010 | B2 |
7688497 | Danner et al. | Mar 2010 | B2 |
7715088 | Liang et al. | May 2010 | B2 |
7830592 | Sprague et al. | Nov 2010 | B1 |
7839564 | Whitesides et al. | Nov 2010 | B2 |
7859742 | Chiu et al. | Dec 2010 | B1 |
7880958 | Zang et al. | Feb 2011 | B2 |
7893435 | Kazlas et al. | Feb 2011 | B2 |
7905977 | Qi et al. | Mar 2011 | B2 |
7910175 | Webber | Mar 2011 | B2 |
7952557 | Amundson | May 2011 | B2 |
7952790 | Honeyman | May 2011 | B2 |
7982479 | Wang et al. | Jul 2011 | B2 |
7986450 | Cao et al. | Jul 2011 | B2 |
7999787 | Amundson et al. | Aug 2011 | B2 |
8009348 | Zehner et al. | Aug 2011 | B2 |
8040594 | Paolini, Jr. et al. | Oct 2011 | B2 |
8049947 | Danner et al. | Nov 2011 | B2 |
8054526 | Bouchard | Nov 2011 | B2 |
8072675 | Lin et al. | Dec 2011 | B2 |
8089452 | Kawai | Jan 2012 | B2 |
8098418 | Paolini, Jr. et al. | Jan 2012 | B2 |
8120836 | Lin et al. | Feb 2012 | B2 |
8125501 | Amundson et al. | Feb 2012 | B2 |
8139050 | Jacobson et al. | Mar 2012 | B2 |
8159636 | Sun et al. | Apr 2012 | B2 |
8174490 | Whitesides et al. | May 2012 | B2 |
8237892 | Sprague et al. | Aug 2012 | B1 |
8243013 | Sprague et al. | Aug 2012 | B1 |
8274472 | Wang et al. | Sep 2012 | B1 |
8289250 | Zehner et al. | Oct 2012 | B2 |
8300006 | Zhou et al. | Oct 2012 | B2 |
8300008 | Miyamoto | Oct 2012 | B2 |
8314784 | Ohkami et al. | Nov 2012 | B2 |
8319759 | Jacobson et al. | Nov 2012 | B2 |
8362488 | Chaug et al. | Jan 2013 | B2 |
8363299 | Paolini, Jr. et al. | Jan 2013 | B2 |
8373649 | Low et al. | Feb 2013 | B2 |
8395836 | Lin | Mar 2013 | B2 |
8431941 | Aoki et al. | Apr 2013 | B2 |
8437069 | Lin | May 2013 | B2 |
8441414 | Lin | May 2013 | B2 |
8456414 | Lin et al. | Jun 2013 | B2 |
8456589 | Sprague et al. | Jun 2013 | B1 |
8462102 | Wong et al. | Jun 2013 | B2 |
8487923 | Kimura | Jul 2013 | B2 |
8514168 | Chung et al. | Aug 2013 | B2 |
8537105 | Chiu et al. | Sep 2013 | B2 |
8547628 | Wu et al. | Oct 2013 | B2 |
8558783 | Wilcox et al. | Oct 2013 | B2 |
8558786 | Lin | Oct 2013 | B2 |
8558855 | Sprague et al. | Oct 2013 | B2 |
8576162 | Kang | Nov 2013 | B2 |
8576164 | Sprague et al. | Nov 2013 | B2 |
8576259 | Lin et al. | Nov 2013 | B2 |
8576470 | Paolini, Jr. et al. | Nov 2013 | B2 |
8576476 | Telfer et al. | Nov 2013 | B2 |
8605032 | Liu et al. | Dec 2013 | B2 |
8610988 | Zehner et al. | Dec 2013 | B2 |
8624834 | Kim | Jan 2014 | B2 |
8665206 | Lin et al. | Mar 2014 | B2 |
8681191 | Yang et al. | Mar 2014 | B2 |
8692752 | Chang et al. | Apr 2014 | B2 |
8714780 | Ho et al. | May 2014 | B2 |
8728266 | Danner et al. | May 2014 | B2 |
8743077 | Sprague | Jun 2014 | B1 |
8754859 | Gates et al. | Jun 2014 | B2 |
8773398 | Funo et al. | Jul 2014 | B2 |
8797258 | Sprague | Aug 2014 | B2 |
8797633 | Sprague et al. | Aug 2014 | B1 |
8797634 | Paolini, Jr. et al. | Aug 2014 | B2 |
8797636 | Yang et al. | Aug 2014 | B2 |
8810525 | Sprague | Aug 2014 | B2 |
8873129 | Paolini, Jr. et al. | Oct 2014 | B2 |
8902153 | Bouchard et al. | Dec 2014 | B2 |
8928562 | Gates et al. | Jan 2015 | B2 |
8928575 | Moriya et al. | Jan 2015 | B2 |
8928641 | Chiu et al. | Jan 2015 | B2 |
8957887 | Kim et al. | Feb 2015 | B2 |
8976444 | Zhang et al. | Mar 2015 | B2 |
8982115 | Sung et al. | Mar 2015 | B2 |
9001026 | Hsu | Apr 2015 | B2 |
9013394 | Lin | Apr 2015 | B2 |
9019197 | Lin | Apr 2015 | B2 |
9019198 | Lin et al. | Apr 2015 | B2 |
9019318 | Sprague et al. | Apr 2015 | B2 |
9025234 | Lin | May 2015 | B2 |
9025238 | Chan et al. | May 2015 | B2 |
9030374 | Sprague et al. | May 2015 | B2 |
9082352 | Cheng et al. | Jul 2015 | B2 |
9140952 | Sprague et al. | Sep 2015 | B2 |
9147364 | Wu et al. | Sep 2015 | B2 |
9152004 | Paolini, Jr. et al. | Oct 2015 | B2 |
9185329 | Kim | Nov 2015 | B2 |
9199441 | Danner | Dec 2015 | B2 |
9201279 | Wu et al. | Dec 2015 | B2 |
9218773 | Sun et al. | Dec 2015 | B2 |
9223164 | Lai et al. | Dec 2015 | B2 |
9224338 | Chan et al. | Dec 2015 | B2 |
9224342 | Sprague et al. | Dec 2015 | B2 |
9224344 | Chung et al. | Dec 2015 | B2 |
9230492 | Harrington et al. | Jan 2016 | B2 |
9251736 | Lin et al. | Feb 2016 | B2 |
9262973 | Wu et al. | Feb 2016 | B2 |
9279906 | Kang | Mar 2016 | B2 |
9285648 | Liu et al. | Mar 2016 | B2 |
9293511 | Jacobson et al. | Mar 2016 | B2 |
9299294 | Lin et al. | Mar 2016 | B2 |
9310661 | Wu et al. | Apr 2016 | B2 |
9390066 | Smith | Jul 2016 | B2 |
9390661 | Chiu et al. | Jul 2016 | B2 |
9454057 | Wu et al. | Sep 2016 | B2 |
9460666 | Sprague et al. | Oct 2016 | B2 |
9495918 | Harrington et al. | Nov 2016 | B2 |
9501981 | Lin et al. | Nov 2016 | B2 |
9513743 | Sjodin et al. | Dec 2016 | B2 |
9514667 | Lin | Dec 2016 | B2 |
9529240 | Paolini, Jr. et al. | Dec 2016 | B2 |
9541813 | Sakamoto | Jan 2017 | B2 |
9548035 | Chen et al. | Jan 2017 | B2 |
9582041 | Cheng et al. | Feb 2017 | B2 |
9607580 | Kim et al. | Mar 2017 | B2 |
9620048 | Sim et al. | Apr 2017 | B2 |
9620066 | Bishop | Apr 2017 | B2 |
9632373 | Huang et al. | Apr 2017 | B2 |
9666142 | Hung | May 2017 | B2 |
9671635 | Paolini, Jr. | Jun 2017 | B2 |
9672766 | Sjodin | Jun 2017 | B2 |
9691333 | Cheng et al. | Jun 2017 | B2 |
9721495 | Harrington et al. | Aug 2017 | B2 |
9792861 | Chang et al. | Oct 2017 | B2 |
9792862 | Hung et al. | Oct 2017 | B2 |
10037735 | Amundson | Jul 2018 | B2 |
10048563 | Paolini, Jr. et al. | Aug 2018 | B2 |
10163406 | Sim et al. | Dec 2018 | B2 |
10190743 | Hertel et al. | Jan 2019 | B2 |
10229641 | Yang et al. | Mar 2019 | B2 |
10319313 | Harris et al. | Jun 2019 | B2 |
10324577 | Sainis et al. | Jun 2019 | B2 |
10339876 | Lin et al. | Jul 2019 | B2 |
10372008 | Telfer et al. | Aug 2019 | B2 |
10446585 | Harris et al. | Oct 2019 | B2 |
10466564 | Kayal et al. | Nov 2019 | B2 |
10475396 | Sim et al. | Nov 2019 | B2 |
10573257 | Emelie et al. | Feb 2020 | B2 |
10613407 | Lin et al. | Apr 2020 | B2 |
10672350 | Amundson et al. | Jun 2020 | B2 |
20020060321 | Kazlas et al. | May 2002 | A1 |
20030102858 | Jacobson et al. | Jun 2003 | A1 |
20040085619 | Wu et al. | May 2004 | A1 |
20040105036 | Danner et al. | Jun 2004 | A1 |
20040246562 | Chung et al. | Dec 2004 | A1 |
20050122306 | Wilcox et al. | Jun 2005 | A1 |
20050122563 | Honeyman et al. | Jun 2005 | A1 |
20050253777 | Zehner et al. | Nov 2005 | A1 |
20060255322 | Wu et al. | Nov 2006 | A1 |
20070103427 | Zhou et al. | May 2007 | A1 |
20070176912 | Beames et al. | Aug 2007 | A1 |
20070195252 | Tsai | Aug 2007 | A1 |
20080024429 | Zehner | Jan 2008 | A1 |
20080024482 | Gates et al. | Jan 2008 | A1 |
20080043318 | Whitesides et al. | Feb 2008 | A1 |
20080136774 | Harris et al. | Jun 2008 | A1 |
20080273132 | Hsu | Nov 2008 | A1 |
20080303780 | Sprague et al. | Dec 2008 | A1 |
20090122389 | Whitesides et al. | May 2009 | A1 |
20090295710 | Shimodaira | Dec 2009 | A1 |
20100073282 | Murayama | Mar 2010 | A1 |
20100156780 | Jacobson et al. | Jun 2010 | A1 |
20100177396 | Lin | Jul 2010 | A1 |
20100194733 | Lin et al. | Aug 2010 | A1 |
20100194789 | Lin et al. | Aug 2010 | A1 |
20100220121 | Zehner et al. | Sep 2010 | A1 |
20100265561 | Gates et al. | Oct 2010 | A1 |
20110063314 | Chiu et al. | Mar 2011 | A1 |
20110175875 | Lin et al. | Jul 2011 | A1 |
20110221740 | Yang et al. | Sep 2011 | A1 |
20110292319 | Cole | Dec 2011 | A1 |
20120001957 | Liu et al. | Jan 2012 | A1 |
20120098740 | Chiu et al. | Apr 2012 | A1 |
20120170104 | Lin | Jul 2012 | A1 |
20130063333 | Arango et al. | Mar 2013 | A1 |
20130096486 | Schroeder | Apr 2013 | A1 |
20130176613 | Yamada | Jul 2013 | A1 |
20130249782 | Wu et al. | Sep 2013 | A1 |
20140078024 | Paolini, Jr. et al. | Mar 2014 | A1 |
20140192000 | Hung et al. | Jul 2014 | A1 |
20140204012 | Wu et al. | Jul 2014 | A1 |
20140210701 | Wu et al. | Jul 2014 | A1 |
20140240210 | Wu et al. | Aug 2014 | A1 |
20140253425 | Zalesky et al. | Sep 2014 | A1 |
20140293398 | Wang et al. | Oct 2014 | A1 |
20150262255 | Khajehnouri | Sep 2015 | A1 |
20160077375 | Lin | Mar 2016 | A1 |
20160180777 | Lin et al. | Jun 2016 | A1 |
20170076672 | Crounse et al. | Mar 2017 | A1 |
20170092183 | Pappas et al. | Mar 2017 | A1 |
20200363669 | Lo | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
2007011127 | Jan 2007 | JP |
2009175628 | Aug 2009 | JP |
2011014068 | Jan 2011 | JP |
1999067678 | Dec 1999 | WO |
2000005704 | Feb 2000 | WO |
2000038000 | Jun 2000 | WO |
Entry |
---|
Wood, D., “An Electrochromic Renaissance?” Information Display, 18(3), 24 (Mar. 2002). |
O'Regan, B. et al., “A Low Cost, High-efficiency Solar Cell Based on Dye-sensitized colloidal TiO2 Films”, Nature, vol. 353, pp. 737-740 (Oct. 24, 1991). |
Bach, Udo. et al., “Nanomaterials-Based Electrochromics for Paper-Quality Displays”, Adv. Mater, vol. 14, No. 11, pp. 845-848, (Jun. 5, 2002). |
Hayes, R.A. et al., “Video-Speed Electronic Paper Based on Electrowetting”, Nature, vol. 425, No. 25, pp. 383-385 (Sep. 2003). |
Kitamura, T. et al., “Electrical toner movement for electronic paper-like display”, Asia Display/IDW '01, pp. 1517-1520, Paper HCS1-1 (2001). |
Yamaguchi, Y. et al., “Toner display using insulative particles charged triboelectrically”, Asia Display/IDW '01, pp. 1729-1730, Paper AMD4-4 (2001). |
Powell, M.J., “The physics of amorphous-silicon thin-film transistors”, IEEE Tran. Elec. Dev., 36, 2753 (1989). Dec. 1, 1989. |
Korean Intellectual Property Office, PCT/US2018/035005, International Search Report and Written Opinion, dated Sep. 27, 2018. |
European Patent Office, EP Appl. No. 18810712.2, Extended European Search Report, dated Dec. 14, 2020. |
Number | Date | Country | |
---|---|---|---|
20210358424 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
62512212 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16745473 | Jan 2020 | US |
Child | 17032189 | US | |
Parent | 15992363 | May 2018 | US |
Child | 16745473 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17032189 | Sep 2020 | US |
Child | 17388417 | US |