This invention relates generally to the field of optics, and in particular to optical and electro-optical beam shaping systems and methods based on diffractive waveplates.
One of the ways to control the spatial distribution of an optical beam, such as a laser beam or a beam of light from one or more light emitting diodes (LEDs), is to use a diffractive diffuser. Unlike conventional optical components such as refractive lenses and prisms, which control the spatial distribution of light primarily by means of refraction of light at the surfaces of dielectric media, diffractive diffusers control the spatial distribution of light by means of diffraction.
While there are many applications in which diffractive diffusers have been found to be useful, limitations of the existing technology prevent the expansion of the uses of diffractive diffusers into additional areas of application. Among these limitations are (1) the lack of the ability to electronically switch the characteristics of diffractive diffusers, (2) an upper limit on the angular range through which light can be diffracted using available types of diffusers, and (3) excessive fabrication time and cost.
The limitation of currently available diffractive diffusers on the capability to allow electronic switching of optical properties is inherent in the material structure of these diffractive diffusers. Currently, diffractive diffusers are static dielectric structures that are only minimally affected by the application of an electric field. Therefore, the optical properties of diffractive diffusers based on prior art cannot be electronically switched to any meaningful extent.
The limitation of currently available diffractive diffusers on the angular range through which light can be diffracted is due to the inability to achieve sufficiently fine feature sizes. The range of diffraction angles of which a diffractive diffuser is capable is inversely proportional to the minimum feature size of said diffractive diffuser. More specifically, the maximum angle in radians through which a diffractive diffuser is capable of diffracting a light beam is approximately the wavelength of the light divided by the minimum feature size.
An additional limitation of the existing technology is that the processes for fabricating a custom diffractive diffuser are time-consuming and expensive. Typically, the processes required to produce a diffractive diffuser include multi-step photolithography and various types of etching, such as reactive ion etching or acid etching.
The technology of diffractive waveplates, including electronically switchable diffractive waveplates, has been applied to several areas of optics, allowing, for example, lenses whose focal lengths are electrically switchable, and beam deflectors that can be switched on and off. However, diffractive waveplate technology has not been applied to design and fabrication of diffractive diffusers, and in particular, it has not been applied to fabrication of electronically switchable diffractive diffusers, i.e. diffusers whose diffractive properties can be electronically switched on and off.
Thus, there is a need for beam shaping systems with electronically switchable characteristics, with feature sizes smaller than are readily attainable with existing technology, and for which the associated fabrication technology does not involve time-consuming or expensive processes.
A primary object of the present invention to provide an optical beam shaping system comprising an illumination source and one or more diffractive diffusers based on diffractive waveplate technology. Such diffusers will be referred to herein as diffractive waveplate diffusers.
A secondary object of the present invention is to provide an electro-optical beam shaping system comprising an illumination source and one or more diffractive waveplate diffusers whose optical properties can be electronically switched.
A third object of the present invention is to provide a method for fabricating a diffractive waveplate diffuser. The method to be provided allows diffractive waveplate diffusers to be fabricated such that they provide any desired illumination pattern, limited only by the quality of the input beam collimation and the lower limit on feature size imposed by available fabrication methods.
In one embodiment of the invention, a system comprising at least one illumination source and a diffractive waveplate diffuser is disclosed. The illumination source may be an optical source such as at least one laser, or at least one light emitting diode, used in conjunction with suitable collimating optics. The diffractive waveplate diffuser consists of a patterned layer of optically anisotropic material with a retardance of one-half of the intended operational wavelength. The meaning of “patterned” in this context is that the spatial dependence of the angle describing the optical axis orientation has been set to a pattern that has been determined to produce the desired spatial distribution of optical power density in a target plane. In some embodiments, the patterned layer of optically anisotropic material is static and cannot be switched by electronic means. In other embodiments, the patterned layer of optically anisotropic material can be switched between a diffracting state and a state producing negligible diffraction.
In another embodiment of the invention, a method is provided for determining the pattern of optical axis orientation angle that will produce the desired spatial distribution of optical power. In some embodiments, the target plane is at a specific finite distance from the diffractive waveplate diffuser, the desired spatial distribution of optical power is described by a spatially-dependent optical power density in the target plane, and the desired distribution of optical power density is described as a function of coordinates along two orthogonal Cartesian coordinate axes in the target plane. In other embodiments, the target plane is in the far field of the diffractive waveplate diffuser, and the desired spatial distribution of optical power is described by a radiant intensity distribution that is a function of two orthogonal angular coordinates.
Further objects and advantages of this invention will be apparent from the following detailed description of the presently preferred embodiments which are illustrated schematically in the accompanying drawings.
Before explaining the disclosed embodiments of the present invention in detail it is to be understood that the invention is not limited in its applications to the details of the particular arrangements shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.
In the Summary of the Invention above and in the accompanying drawings, reference is made to particular features (including method steps) of the invention. It is to be understood that the disclosure of the invention in this specification does not include all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, that feature can also be used, to the extent possible, in combination with and/or in the context of other particular aspects and embodiments of the invention, and in the invention generally.
In this section, some embodiments of the invention will be described more fully with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention can, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout, and prime notation is used to indicate similar elements in alternative embodiments.
The present invention relates to the design and fabrication of optical and electro-optical beam shaping systems based on diffractive waveplates. Methods of design and fabrication are provided that allow the creation of such beam shaping systems that produce a wide variety of spatial distributions of optical power. The design and fabrication methods disclosed herein apply both to diffusers that produce specific optical power distributions in planes at a finite distance from the diffusers, and to diffusers that produce specific optical power distributions in the far field of the diffusers.
A list of components from the figures will now be provided.
The explanation of diffraction by a cycloidal diffractive waveplate, as illustrated in
The prior art of
The embodiment of the present invention illustrated in
A method illustrated in
The first step 401 is to select a desired output beam profile, which can either be expressed as a function of angle in the far field of the diffractive waveplate diffuser, or as a function of transverse position in a target plane parallel the plane of the diffractive waveplate diffuser. For purposes of illustration, the desired output beam profile will be defined as follows:
From Eqn. (I), the desired output beam profile is uniform radiant intensity within an angular cone with a diameter of 20 degrees, and zero radiant intensity outside this cone of angles. Although in the example described by Eqn. (I) the desired output beam profile is a simple cone, the method described herein is compatible with a desired output beam profile represented by any grayscale image. The example using a fixed cone of angles is illustrated at 501 in
The next step of the procedure is step 402 in which an amplitude model is created from the desired output beam profile. In this step, a digital representation of the desired output beam profile is created. For the exemplary case illustrated in
The next steps of the procedure of
The next steps of the procedure of
The next step of the procedure is step 407 in which the amplitude of the input beam is replaced with the known profile of the collimated input beam that will illuminate the diffractive waveplate diffuser.
The next steps of the procedure of
As is well known in the art, iterative techniques such as the Gerchberg-Saxton algorithm may improve the accuracy with which the output beam profile represented by the output amplitude and phase at step 409 of
Once the selected condition is met that precludes another iteration of steps 405 through 409 of
Step 412 of
The result of implementing all of the steps of
Two ways of quantitatively measuring the success of the method of diffractive waveplate design illustrated in
Configurations such as shown in
While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.
Number | Name | Date | Kind |
---|---|---|---|
2435616 | Vittum | Feb 1948 | A |
3721486 | Bramley | Mar 1973 | A |
3897136 | Bryngdahl | Jul 1975 | A |
4160598 | Firester et al. | Jul 1979 | A |
4301023 | Schuberth | Nov 1981 | A |
4698816 | Chun | Oct 1987 | A |
4956141 | Allen | Sep 1990 | A |
4983332 | Hahn | Jan 1991 | A |
5032009 | Gibbons | Jul 1991 | A |
5042950 | Salmon, Jr. | Aug 1991 | A |
5047847 | Toda | Sep 1991 | A |
5100231 | Sasnett et al. | Mar 1992 | A |
5142411 | Fiala | Aug 1992 | A |
5150234 | Takahashi | Sep 1992 | A |
5218610 | Dixon | Jun 1993 | A |
5321539 | Hirabayashi | Jun 1994 | A |
5325218 | Willett | Jun 1994 | A |
5446596 | Mostrorocco | Aug 1995 | A |
5621525 | Vogeler et al. | Apr 1997 | A |
5712721 | Large | Jan 1998 | A |
5895422 | Hauber | Apr 1999 | A |
5903330 | Funschilling | May 1999 | A |
5989758 | Komatsu | Nov 1999 | A |
6091471 | Kim et al. | Jul 2000 | A |
6107617 | Love et al. | Aug 2000 | A |
6139147 | Zhang | Oct 2000 | A |
6170952 | La Haye et al. | Jan 2001 | B1 |
6191880 | Schuster | Feb 2001 | B1 |
6219185 | Hyde | Apr 2001 | B1 |
6320663 | Ershov | Nov 2001 | B1 |
6373549 | Tombling et al. | Apr 2002 | B1 |
6452145 | Graves et al. | Sep 2002 | B1 |
6551531 | Ford | Apr 2003 | B1 |
6678042 | Tabirian et al. | Jan 2004 | B2 |
6728049 | Tabirian et al. | Apr 2004 | B1 |
6792028 | Cook | Sep 2004 | B2 |
6911637 | Vorontsov et al. | Jun 2005 | B1 |
7048619 | Park | May 2006 | B2 |
7094304 | Nystrom | Aug 2006 | B2 |
7095772 | Delfyett et al. | Aug 2006 | B1 |
7196758 | Crawford | Mar 2007 | B2 |
7319566 | Prince | Jan 2008 | B2 |
7324286 | Glebov | Jan 2008 | B1 |
7450213 | Kim et al. | Nov 2008 | B2 |
7482188 | Moon | Jan 2009 | B2 |
7764426 | Lipson | Jul 2010 | B2 |
8045130 | Son | Oct 2011 | B2 |
8077388 | Gerton | Dec 2011 | B2 |
8264623 | Marrucci | Sep 2012 | B2 |
8520170 | Escuti | Aug 2013 | B2 |
8582094 | Shortt | Nov 2013 | B1 |
8643822 | Tan et al. | Feb 2014 | B2 |
8937701 | Rossini | Jan 2015 | B2 |
8982313 | Escuti et al. | Mar 2015 | B2 |
9541772 | De Sio et al. | Jan 2017 | B2 |
9557456 | Tabirian et al. | Jan 2017 | B2 |
9592116 | De Sio et al. | Mar 2017 | B2 |
9617205 | Tabirian et al. | Apr 2017 | B2 |
9658512 | Tabirian et al. | May 2017 | B2 |
9715048 | Tabirian et al. | Jul 2017 | B2 |
9753193 | Tabirian et al. | Sep 2017 | B2 |
9976911 | Tabirian et al. | May 2018 | B1 |
9983479 | Tabirian et al. | May 2018 | B2 |
10031424 | Tabirian et al. | Jul 2018 | B2 |
10036886 | Tabirian et al. | Jul 2018 | B2 |
10075625 | Tabirian et al. | Sep 2018 | B2 |
10107945 | Tabirian et al. | Oct 2018 | B2 |
10114239 | Tabirian et al. | Oct 2018 | B2 |
10120112 | Tabirian et al. | Nov 2018 | B2 |
10185182 | Tabirian | Jan 2019 | B2 |
10191191 | Tabirian et al. | Jan 2019 | B2 |
10191296 | Tabirian et al. | Jan 2019 | B1 |
10197715 | Tabirian et al. | Feb 2019 | B1 |
20010002895 | Kawano | Jun 2001 | A1 |
20010018612 | Carson et al. | Aug 2001 | A1 |
20010030720 | Ichihashi | Oct 2001 | A1 |
20020027624 | Seiberle | Mar 2002 | A1 |
20020097361 | Ham | Jul 2002 | A1 |
20020167639 | Coates | Nov 2002 | A1 |
20030021526 | Bouevitch | Jan 2003 | A1 |
20030072896 | Kwok | Apr 2003 | A1 |
20030137620 | Wang | Jul 2003 | A1 |
20030152712 | Motomura | Aug 2003 | A1 |
20030206288 | Tabirian et al. | Nov 2003 | A1 |
20030214700 | Sidorin | Nov 2003 | A1 |
20030218801 | Korniski et al. | Nov 2003 | A1 |
20040051846 | Blum et al. | Mar 2004 | A1 |
20040081392 | Li | Apr 2004 | A1 |
20040105059 | Ohyama | Jun 2004 | A1 |
20040165126 | Ooi et al. | Aug 2004 | A1 |
20050030457 | Kuan et al. | Feb 2005 | A1 |
20050110942 | Ide | May 2005 | A1 |
20050219696 | Albert et al. | Oct 2005 | A1 |
20050271325 | Anderson et al. | Dec 2005 | A1 |
20050276537 | Frisken | Dec 2005 | A1 |
20050280717 | Chen | Dec 2005 | A1 |
20060008649 | Shinichiro | Jan 2006 | A1 |
20060055883 | Morris et al. | Mar 2006 | A1 |
20060109532 | Savas | May 2006 | A1 |
20060221449 | Glebov et al. | Oct 2006 | A1 |
20060222783 | Hayashi | Oct 2006 | A1 |
20070032866 | Portney | Feb 2007 | A1 |
20070040469 | Yacoubian | Feb 2007 | A1 |
20070115551 | Spilman | May 2007 | A1 |
20070122573 | Yasuike | May 2007 | A1 |
20070132930 | Ryu et al. | Jun 2007 | A1 |
20070247586 | Tabirian | Oct 2007 | A1 |
20070258677 | Chigrinov | Nov 2007 | A1 |
20080226844 | Shemo | Sep 2008 | A1 |
20080278675 | Escuti | Nov 2008 | A1 |
20090002588 | Lee et al. | Jan 2009 | A1 |
20090052838 | McDowall | Feb 2009 | A1 |
20090073331 | Shi | Mar 2009 | A1 |
20090122402 | Shemo | May 2009 | A1 |
20090141216 | Marrucci | Jun 2009 | A1 |
20090201572 | Yonak | Aug 2009 | A1 |
20090256977 | Haddock | Oct 2009 | A1 |
20090257106 | Tan | Oct 2009 | A1 |
20090264707 | Hendricks | Oct 2009 | A1 |
20100003605 | Gil | Jan 2010 | A1 |
20100066929 | Shemo | Mar 2010 | A1 |
20100245954 | Ahling | Sep 2010 | A1 |
20110069377 | Wu et al. | Mar 2011 | A1 |
20110075073 | Oiwa | Mar 2011 | A1 |
20110085117 | Moon et al. | Apr 2011 | A1 |
20110097557 | May | Apr 2011 | A1 |
20110109874 | Piers et al. | May 2011 | A1 |
20110135850 | Saha et al. | Jun 2011 | A1 |
20110188120 | Tabirian et al. | Aug 2011 | A1 |
20110234944 | Powers | Sep 2011 | A1 |
20110262844 | Tabirian | Oct 2011 | A1 |
20120075168 | Osterhout et al. | Mar 2012 | A1 |
20120140167 | Blum | Jun 2012 | A1 |
20120162433 | Fuentes Gonzalez | Jun 2012 | A1 |
20120188467 | Escuti | Jul 2012 | A1 |
20130057814 | Prushinskiy et al. | Mar 2013 | A1 |
20130202246 | Meade | Aug 2013 | A1 |
20140055740 | Spaulding | Feb 2014 | A1 |
20140211145 | Tabirian | Jul 2014 | A1 |
20140252666 | Tabirian | Sep 2014 | A1 |
20150049487 | Connor | Feb 2015 | A1 |
20150081016 | De Sio et al. | Mar 2015 | A1 |
20150276997 | Tabirian et al. | Oct 2015 | A1 |
20160011564 | Tanabe et al. | Jan 2016 | A1 |
20160023993 | Tabirian | Jan 2016 | A1 |
20160047955 | Tabirian et al. | Feb 2016 | A1 |
20160047956 | Tabirian et al. | Feb 2016 | A1 |
20160209560 | Tabirian et al. | Jul 2016 | A1 |
20160231592 | Beaton et al. | Aug 2016 | A9 |
20160363484 | Barak et al. | Dec 2016 | A1 |
20160363783 | Blum | Dec 2016 | A1 |
20170010397 | Tabirian et al. | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
1970734 | Sep 2008 | EP |
2088456 | Dec 2009 | EP |
2209751 | May 1989 | GB |
2001142033 | May 2001 | JP |
2004226752 | Aug 2004 | JP |
2007122573 | Nov 2007 | WO |
2008130555 | Oct 2008 | WO |
2008130559 | Oct 2008 | WO |
Entry |
---|
Vernon, J., et al., Recording Polarization Gratings with a Standing Spiral Wave, Applied Physics Letters, Oct. 2013, vol. 103, 4 pages. |
Tabiryan, et al., The Promise of Diffractive Waveplates, OPN Optics and Photonics News, Mar. 2010, 6 pages. |
Tabiryan, et al., Fabricating Vector Vortex Waveplates for Coronagraphy; Aerospace Conference, 2012, EEE; publicly available Apr. 19, 2012, 12 pages. |
Tabirian, et al., PCT Application No. PCT/US15/26186 filed Apr. 16, 2015, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority dated Jul. 14, 2015, 17 pages. |
Nersisyan, et al, Study of azo dye surface command photoalignment material for photonics applications, Applied Optics, vol. 49, No. 10, Apr. 1, 2010, 8 pages. |
Nersisyan, et al., Characterization of optically imprinted polarization gratings, Applied Optics, vol. 48, No. 21, Jul. 20, 2009, 6 pages. |
Nersisyan, et al., Fabrication of Liquid Crystal Polymer Axial Waveplates for UV-IR Wavelengths, Optics Express, vol. 17, No. 14, Jul. 2009, 9 pages. |
Tabirian, N., U.S. Appl. No. 15/189,551, filed Jun. 22, 2016, Office Action Summary dated Feb. 27, 2018, 16 pages. |
Nersisyan, et al., Polarization insensitive imaging through polarization gratings, Optics Express, vol. 17, No. 3, Feb. 2, 2009, 14 pages. |
Sarkissian, et al., Longitudinally modulated nematic bandgap structure, Optical Society of America, vol. 23, No. 8, Aug. 2008, 6 pages. |
Sarkissian, et al., Polarization-universal bandgap in periodically twisted nematics, Optics Letters, vol. 31, No. 11, Jun. 1, 2006, abstract, 4 pages. |
Sarkissian, et al., Periodically Aligned Liquid Crystal: Potential Application for Projection Displays, Mol. Cryst. Liq. Cryst., vol. 451, 2006, 19 pages. |
Sarkissian, et al., Potential application of Periodically Aligned Liquid Crystal cell for projection displays, JThE12, 2005, 3 pages. |
Sarkissian, et al., Polarization-Controlled Switching Between Diffraction Orders in Transverse-Periodically Aligned Nematic Liquid Crystals, Optics Letters, Aug. 2006, abstract, 4 pages. |
Schadt, et al., Photo-Induced Alignment and Patterning of Hybrid Liquid Crystalline Polymer Films on Single Substrates, Jpn. J. Appl. Phys., vol. 34, Part 2, No. 6B, Jun. 15, 1995, 4 pages. |
Schadt , et al., Photo-Generation of Linearly Polymerized Liquid Crystal Aligning Layers Comprising Novel, Integrated Optically Patterned Retarders and Color Filters, Jpn. J. Appl. Phys., vol. 34, Part 1, No. 6A, Jun. 1995, 10 pages. |
Schadt, et al., Optical patterning of multi-domain liquid-crystal displays with wide viewing angles, Nature, vol. 381, May 16, 1996, 4 pages. |
Escuti, et al., A Polarization-Independent Liquid Crystal Saptial-Light-Modulator, Liquid Crystals X, Proc. of SPIE, vol. 6332, 2006, 9 pages. |
Escuti, et al., Polarization-Independent LC Microdisplays Using Liquid Crystal Polarization Gratings: A Viable Solution (?), Dept of Electrical & Computer Engineering @ ILCC, Jul. 1, 2008, 30 pages. |
Escuti, et al., Simplified Spectropolarimetry Using Reactive Mesogen Polarization Gratings, Imaging Spectrometry XI, Proc. of SPIE, vol. 6302, 2006, 11 pages. |
Gibbons, et al., Surface-mediated alignment of nematic liquid crystals with polarized laser light, Nature, vol. 351, May 2, 1991, 1 page. |
Gibbons, et al., Optically Controlled Alignment of Liquid Crystals: Devices and Applications, Molecular Crystals and Liquid Crystals, vol. 251, 1994, 19 pages. |
Gibbons, et al., Optically generated liquid crystal gratings, Appl. Phys. Lett., 65, Nov. 14, 1994, 3 pages. |
University of Central Florida, School of Optics CREOL PPCE, Optics in the Southeast, Technical Conference and Tabletop Exhibit, Nov. 12-13, 2003, 9 pages. |
Ichimura, et al., Surface assisted photoalignment control of lyotropic liquid crystals, Part 1, Characterization and photoalignment of aqueous solutions of a water soluble dyes as lyotropic liquid crystals, J. Materials. Chem., vol. 12, 2002, abstract, 2 pages. |
Ichimura, et al., Reversible Change in Alignment Mode of Nematic Liquid Crystals Regulated Photochemically by “Command Surfaces” Modified with an Azobenzene Monolayer, American Chemical Society, Langmuir, vol. 4, No. 5, 1988, 3 pages. |
Zel'Dovich, et al., Devices for displaying visual information, Disclosure, School of Optics/CREOL, University of Central Florida, Jul. 2000, 10 pages. |
Provenzano, et al., Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces, Applied Physics Letter 89, 2006, 4 pages. |
Titus, et al., Efficient polarization-independent, re ective liquid crystal phase grating, Applied Physics Letter 71, Oct. 20, 1197, 3 pages. |
Chen, et al. An Electrooptically Controlled Liquid-Crystal Diffraction Grating, Applied Physics Letter 67, Oct. 30, 1995, 4 pages. |
Kim, et al., Unusual Characteristics of Diffraction Gratings in a Liquid Crystal Cell, Advanced Materials, vol. 14, No. 13-14, Jul. 4, 2002, 7 pages. |
Pan, et al., Surface Topography and Alignment Effects in UV-Modified Polyimide Films with Micron Size Patterns, Chinese Journal of Physics, vol. 41, No. 2, Apr. 2003, 8 pages. |
Fuh, et al., Dynamic studies of holographic gratings in dye-doped liquid-crystal films, Optics Letter, vol. 26, No. 22, Nov. 15, 2001, 3 pages. |
Yu, et al., Polarization Grating of Photoaligned Liquid Crystals with Oppositely Twisted Domain Structures, Molecular Crystals Liquid Crystals, vol. 433, 2005, 7 pages. |
Crawford, et al., Liquid-crystal diffraction gratings using polarization holography alignment techniques, Journal of Applied Physics 98, 2005, 10 pages. |
Seiberle, et al., 38.1 Invited Paper: Photo-Aligned Anisotropic Optical Thin Films, SID 03 Digest, 2003, 4 pages. |
Wen, et al., Nematic liquid-crystal polarization gratings by modification of surface alignment, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, 5 pages. |
Anagnostis, et al., Replication produces holographic optics in volume, Laser Focus World, vol. 36, Issue 3, Mar. 1, 2000, 6 pages. |
Gale, Replicated Diffractive Optics and Micro-Optics, Optics and Photonics News, Aug. 2003, 6 pages. |
McEldowney, et al., Creating vortex retarders using photoaligned LC polymers, Optics Letter, vol. 33, No. 2, Jan. 15, 2008, 3 pages. |
Stalder, et al., Lineraly polarized light with axial symmetry generated by liquid-crystal polarization converters, Optics Letters vol. 21, No., 1996, 3 pages. |
Kakichashvili, et al., Method for phase polarization recording of holograms, Sov. J. Quantum. Electron, vol. 4, No. 6, Dec. 1974, 5 pages. |
Todorov, et al., High-Sensitivity Material With Reversible Photo-Induced Anisotropy, Optics Communications, vol. 47, No. 2, Aug. 15, 1983, 4 pages. |
Attia, et al., Anisoptropic Gratings Recorded From Two Circularly Polarized Coherent Waves, Optics Communications, vol. 47, No. 2, Aug. 15, 1983, 6 pages. |
Cipparrone, et al., Permanent polarization gratings in photosensitive langmuir blodget films, Applied Physics Letter, vol. 77, No. 14, Oct. 2, 2000, 4 pages. |
Nikolova, et al., Diffraction Efficiency and Selectivity of Polarization Holographic Recording, Optica Acta: International Journal of Optics, vol. 31, No. 5, 1984, 11 pages. |
Lee et al., “Generation of pretilt angles of liquid crystals on cinnamte-based photoalignment . . . ”, Opt., Expr., vol. 17 (26) (Dec. 2009), abstract, 4 pages. |
Yaroshchuk et al. “Azodyes as photoalignment agents for polymerizable liquid crystals”, IDW'06 Digest vol. 1-3, 2006, 4 pages. |
Chigrinov et al. “Anchoring properties of photoaligned azo-dye materials” Phys. Rev., E vol. 68, (Dec. 2003), 5 pages. |
Pagliusi et al. Surface-induced photorefractivity in twistable nematics: toward the all-optical control of gain, Opt. Expr. vol. 16, Oct. 2008, 9 pages. |
M. Honma, T. Nose, Polarization-independent liquid crystal grating fabricated by microrubbing process,Jpn. J. Appl. Phys., Part 1, vol. 42, 2003, 3 pages. |
Beam Engineering for Advaced Measurements Co., et al., PCT Application No. PCT/US2016/038666 filed Jun. 22, 2016, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Oct. 10, 2016, 16 pages. |
Marrucci, et al., Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain, Appl. Phys. Lett. 88, 2006, 3 pages. |
Sobolewska et al., “On the inscription of period and half period surface relief gratings in azobenzene-functionalized polymers”, J. Phys. Chem., vol. 112 (15) Jan. 3, 2008, 10 pages. |
Barrett et al., Model of laser driven mass transport in thin films of dye-functionalized polymers, J. Chem. Phys., vol. 109 (4), Jul. 22, 1998, 13 pages. |
Tabirian, U.S. Appl. No. 14/214,375, filed Mar. 14, 2014, Office Action Summary dated Jun. 27, 2017, 10 pages. |
Tabirian, et al., U.S. Appl. No. 14/688,425, filed Apr. 16, 2015, Office Action Summary dated Oct. 5, 2017, 10 pages. |
Serak, et al. Diffractive Waveplate Arrays [Invited], Journal of the Optical Society of America B, May 2017, pp. B56-B63, vol. 34, No. 5, 8 pages. |
Emoto, Optical and Physical Applications of Photocontrollable Materials: Azobenzene-Containing and Liquid Crystalline Polymers, Polymers,Jan. 2012, 150-186, vol. 4, 38 pages. |
Pepper, M. et al, Nonlinear Optical Phase Conjugation, IEEE, Sep. 1991, pp. 21-34, 14 pages. |
Tabirian, N., U.S. Appl. No. 14/194,808, filed Mar. 2, 2014, Office Action Summary dated Feb. 9, 2018, 10 pages. |
Tabiryan, et al., Broadband waveplate lenses, Optics Express 7091, vol. 24, No. 7, Mar. 24, 2016, 12 pages. |
Tabirian, N., U.S. Appl. No. 14/324,126, filed Jul. 4, 2014, Office Action Summary dated Feb. 8, 2018, 13 pages. |
Tabiryan, et al. Superlens in the skies: liquid-crystal-polymer technology for telescopes, Newsroom, 2016, 2 pages. |
Nersisyan, et al., The principles of laser beam control with polarization gratings introduced as diffractive waveplates, Proc. of SPIE, vol. 7775, 2010, 10 pages. |
Heller, A Giant Leap for Space Telescopes, Foldable Optics, S&TR, Mar. 2003, 7 pages. |
Beam Engineering for Advanced Measurements Co., PCT Application No. PCT/US2015026186, The Extended European Search Report, filed on Mar. 8, 2017, 13 pages. |
Blinov, et al., Electrooptic Effects in Liquid Crystal MAterials, Springer-Verlag New York, 1994, 17 pages. |
Crawford, et al., Liquid Crystals in Complex Geometries; Formed by Polymer and Porous Networks, Taylor and Francis, 1996, 4 pages. |
Honma, et al., Liquid-Crystal Fresnel Zone Plate Fabricated by Microorubbing, Japanese Journal of Applied Phsyics, vol. 44, No. 1A, 2005, 4 pages. |
Tabirian, N., et al., U.S. Appl. No. 61/757,259, filed Jan. 28, 2013, 29 pages. |
Anderson, G., et al., Broadband Antihole Photon Sieve Telescope, Applied Optics, vol. 16, No. 18., Jun. 2007, 3 pages. |
Early, J. et al., Twenty Meter Space Telescope Based on Diffractive Fresnel Lens, SPIE, U.S. Department of Energy, Lawrence Livermore National Laboratory, Jun. 2003, 11 pages. |
Martinez-Cuenca, et al., Reconfigurable Shack-Hartmann Sensor Without Moving Elements,Optical Society of America, vol. 35, No. 9, May 2010, 3 pages. |
Serak, S., et al., High-efficiency 1.5 mm Thick Optical Axis Grating and its Use for Laser Beam Combining, Optical Society of America, vol. 32, no., Jan. 2007, 4 pages. |
Ono et al., Effects of phase shift between two photoalignment substances on diffration properties in liquid crystalline grating cells, Appl. Opt. vol. 48, Jan. 2009, 7 pgs. |
Naydenova et al., “Diffraction form polarization holographic gratings with surface relief in side chain azobenzene polyesters” J. Opt. Soc. Am. B, vol. 15, (1998), 14 pages. |
Oh et al., Achromatic polarization gratings as highly efficent thin-film polarizing beamsplitters for broadband light Proc. SPIE vol. 6682, (2007), 4 pages. |
Nersisyan, S., et al., Polarization insensitive imaging through polarization gratins, Optics Express, vol. 17, No. 3, Feb. 2 ,2009, 14 pages. |
Oise, Optics in the Southeast, Technical Conference and Tabletop Exhibit, Optical Society of America, Orlando, FL., Nov. 12-13, 2003, 9 pages. |
Dierking, Polymer Network-Stabilized Liquid Crystals, Advanced Materials, vol. 12, No. 3, 2000, 15 pages. |
Nersisyan, S., et al., “Optical Axis Gratings in Liquid Crystals and Their Use for Polarization Insensitive Optical Switching,” 2009, Journal of Nonlinear Optical Physics & Materials, vol. 18, pp. 1-47. |
De Sio, L., et al., “Digital Polarization Holography Advancing Geometrical Phase Optics,” 2016, Optics Express, vol. 24, Issue 16, pp. 18297-18306. |
Tabiryan, N., et al., “Thin Waveplate Lenses of Switchable Focal Length—New Generation in Optics,” 2015, Optics Express, vol. 23, Issue 20, pp. 25783-25794. |
Borek, G. and D. Brown, “High-performance diffractive optics for beam shaping,” 1999, Proceeding of SPIE, vol. 3633, pp. 51-60. |
Gerchberg, R. and W Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” 1972, Optik, vol. 35, Issue 2, pp. 237-246. |
Number | Date | Country | |
---|---|---|---|
20180136535 A1 | May 2018 | US |