D. H. Johnston et al.; Electrochemical Measurement of the Solvent Accessbility of Nucleobases Using Electron Transfer between DNA and Metal Complexes, J. Am. Chem. Soc. 117:8933-8938 (1995). |
K. M. Millan et al.; Sequence-Selective Biosensor for DNA Based on Electroactive Hybridization Indicators, Anal. Chem. 65:2317-2323 (1983). |
W. Bains; The Chip of the 90s, Chem. in Britain 122-125 (Feb. 1995). |
T. J. Meade et al.; Electron Transfer through DNA: Site-Specific Modification of Duplex DNA with Ruthenium Donors and Acceptors, Angew. Chem. Int. Ed. Engl. 34 No. 3:352-354 (1995). |
S. P. A. Fodor et al.; Multiplexed biochemical assays with biological chips, Product Review 364:555-556 (1993). |
S.P.A. Fodor et al.; Light-Directed, Spatially Addressable Parallel Chemical Synthesis, Science 251:767-773 (1991). |
Z. Du et al.; Automated Fluorescent DNA Sequencing of Polymerase Chain Reaction Products, Methods in Enzymology 218:104-121 (1993). |
J. M. Hall et al.; An Electrochemical Method for Detection of Nucleic Acid Hybridisation, Biochem. and Molecular Bio. Int'l. 32: No. 1, 21-28 (1994). |
D. Noble; DNA Sequencing on a Chip, Anal. Chem. 67, No. 5:201-204 (1995). |
Y. Jenkins et al.; A Sequence-Specific Molecular Light Switch: Tetherin of an Oligonucleotide to a Dipyridophenazine Complex of Ruthenium(II), J. Am. Chem. Soc. 114:8736-8738 (1992). |
K. M. Millan et al.; Voltammetric DNA Biosensor for Cystic Fibrosis Based on a Modified Carbon Paste Electrode, Anal. Chem. 66:2943-2948 (1994). |
M. T. Carter et al.; Voltammetric Studies of the Interaction of Metal Chelates with DNA. 2. Tris-Chelated Complexes of Colbalt(III) and Iron(II) with 1,10-Phenanthroline and 2,2′-Bipyridine, J. Am. Chem. Soc. 111:8901-8911 (1989). |
S. A. Strobel et al.; Minor Groove Recognition of the Conserved G□U Pair at the Tetrahymena Ribozyme Reaction Site, Science 267:675-679 (1995). |
T. Reid et al.; Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy, Proc. Natl. Acad. Sci. USA 89:1388-1392 (1992). |
R. Tizard et al.; Imaging of DNA sequences with chemiluminescence, Proc. Natl. Acad. Sci. USA 87:4514-4518 (1990). |
A. Lishanski et al.; Mutation detection by mismatch binding protein, MutS, in amplified DNA: Application to the cystic fibrosis gene, Proc. Natl. Acad. Sci. USA 91:2674-2678 (1994). |
C. J. Murphy et al; Fast photoinduced electron transfer through DNA intercalation, Proc. Natl. Acad. Sci. USA 91:5315-5319 (1994). |
S. A. Strobel et al; Site-Specific Cleavage of a Yeast Chromosome by Oligonucleotide-Directed Triple-Helix Formation, Science 249:73-75 (1990). |
C. J. Murphy et al; Long-Range Photoinduced Electron Transfer Through a DNA Helix, Science 262:1025-1029 (1993). |
D. H. Johnston et al; Trans-Dioxorhenium(V)-Mediated Electrocatalytic Oxidation of DNA at Indium Tin-Oxide Electrodes: Voltammetric Detection of DNA Cleavage in Solution, Imorg. Chem. 33: 6388-6390 (1994). |
M. Maeder et al; Nonlinear Least-Squares Fitting of Multivariate Absorption Data, Anal. Chem. 62: 2220-2224 (1990). |
M. Rudolph et al; A Simulator for Cyclic Voltammetric Responses, Analytical Chemistry 66:589-600 (1994). |
J. Osterryoung; Voltammetry for the Future, Acc. Chem. Res. 26 No. 3: 77-83 (1993). |
M. A. Tracy et al; Dynamics of Rigid and Semirigid Rodlike Polymers, Annu. Rev. Phys. Chem. 43: 525-527 (1992). |
A. M. Pyle et al; Mixed-Ligand Complexes of Ruthenium(II): Factors Governing Binding to DNA, J. Am. Chem. Soc. 111:3051-3058 (1989). |
O. S. Fedorova et al, Application of Tris (2,2′-bipyridyl) ruthenium(III) for the Investigation of DNA Spatial Structure by a Chemical Modification Method, Journal of Inorganic Biochemistry 34:149-155 (1988). |
S. Satyanarayana, et al; Neither Δ- nor Λ-Tris(phenanthroline)ruthenium(II) Binds to DNA by Classical Intercalation; Biochemistry 31 No. 39:9319-9324 (1992). |
J. A. Saleeba et al; [19]Chemical Cleavage of Mismatch of Detect Mutations, Methods in Enzymology 217: 286-295 (1993). |
S. Steeken et al; One-Electron-Reduction Potentials of Pyrimidine Bases, Nucleosides, and Nucleotides in Aqueous Solution. Consequences for DNA Redox Chemistry, J. Am. Chem. Soc. 114: 4701-4709 (1992). |
K.R. Khrapko et al; Hybridization of DNA with oligonucleotides immobolized in gel: convenient method for detection of single base changes, Mol. Biol. 25(3): 718 (1991). |
L. J. Maher III; Inhibition of T7 RNA Polymerase Initiation by Triple-Helical DNA Complexes: A Model for Artificial Gene Repression, Biochemistry 31 No. 33; 7587-7594 (1992). |
Adams et al.; editors The Biochemistry of Nucleic Acids, Chapman & Hall, New York, pp 519-524 (1992). |
Evans, et al., a New Generation of DNA Chip Devices: Electronically Controlled DNA Hybridization on Semiconductors, 1995 AAAS Annual Meeting and Science Innovation Exposition: The 161st National Meeting of the American Association for the Advancement of Science (Feb., 1995). |
Millan, et al., Sequence-Selective Biosensor for DNA Based on Electroactive Hybridization Indicators, Analytical Chemistry, vol. 65, pp. 2317-2323 (Mar. 1993). |