1. Field of the Invention
The present invention relates generally to devices that produce an electro-kinetic flow of air from which particulate matter is substantially removed.
2. Description of the Related Art
The use of an electric motor to rotate a fan blade to create an airflow has long been known in the art. Unfortunately, such fans produce substantial noise, and can present a hazard to children who may be tempted to poke a finger or a pencil into the moving fan blade. Although such fans can produce substantial airflow (e.g., 1,000 ft3/minute or more), substantial electrical power is required to operate the motor, and essentially no conditioning of the flowing air occurs.
It is known to provide such fans with a HEPA-compliant filter element to remove particulate matter larger than perhaps 0.3 μm. Unfortunately, the resistance to airflow presented by the filter element may require doubling the electric motor size to maintain a desired level of airflow. Further, HEPA-compliant filter elements are expensive, and can represent a substantial portion of the sale price of a HEPA-compliant filter-fan unit. While such filter-fan units can condition the air by removing large particles, particulate matter small enough to pass through the filter element is not removed, including bacteria, for example.
It is also known in the art to produce an airflow using electro-kinetic techniques, by which electrical power is converted into a flow of air without mechanically moving components. One such system is described in U.S. Pat. No. 4,789,801 to Lee (1988), depicted herein in simplified form as
The high voltage pulses ionize the air between the arrays, and create an airflow 50 from the first array toward the second array, without requiring any moving parts. Particulate matter 60 in the air is entrained within the airflow 50 and also moves towards the second electrodes 30. Much of the particulate matter is electrostatically attracted to the surfaces of the second electrodes, where it remains, thus conditioning the flow of air exiting system 10. Further, the high voltage field present between the electrode arrays can release ozone into the ambient environment, which can eliminate odors that are entrained in the airflow.
In the particular embodiment of
In another particular embodiment shown herein as
While the electrostatic techniques disclosed by the '801 patent are advantageous over conventional electric fan-filter units, further increased air transport-conditioning efficiency would be advantageous.
The present invention provides such an apparatus.
One aspect of the present invention is to provide an electro-kinetic air transporter-conditioner that produces an enhanced airflow velocity, enhanced particle collection, and an appropriate amount of ozone production.
An embodiment includes one or more focus or leading electrodes. Each focus or leading electrode may be located upstream to, or even with, each first electrode. The focus or leading electrodes assists in controlling the flow of ionized particles within the airflow. The focus or leading electrode shapes the electrostatic field generated by each first electrode within the electrode assembly.
Another embodiment includes one or more trailing electrodes. Each trailing electrode can be located downstream of a second electrode. The trailing electrode can assist in neutralizing the amount of ions exiting this embodiment of the invention, and can further assist in collecting ionized particles. The trailing electrode can alternatively enhance the flow of negative ions from the transporter-conditioner. Additionally, the trailing electrodes can improve the laminar flow properties of the airflow exiting the air transporter-conditioner.
Another embodiment of the invention includes at least one interstitial electrode located between two second electrodes. The interstitial electrode can also assist in the collection of particulate matter by the second electrodes.
In yet another embodiment of the invention, one or more of the second electrodes are formed to have an enhanced protective end or trailing surface which assists in the operation and cleaning of the embodiment.
In still a further embodiment of the invention, one or more first electrode are of enhanced length in order to increase the emissivity of the first electrode.
Other objects, aspects, features and advantages of the invention will appear from the following description in which the preferred embodiments have been set forth in detail, in conjunction with the accompanying drawings and also from the following claim.
Overall Air-Transporter Conditioner System Configuration:
The upper surface of housing 102 includes a user-liftable handle member 112 to which is affixed a second array 240 of collector electrodes 242 within an electrode assembly 220. Electrode assembly 220 also comprises a first array of emitter electrodes 230, or a single first electrode shown here as a single wire or wire-shaped electrode 232. (The terms “wire” and “wire-shaped” shall be used interchangeably herein to mean an electrode either made from a wire or, if thicker or stiffer than a wire, having the appearance of a wire.) In the embodiment shown, lifting member 112 lifts second array electrodes 240 upward, causing the second electrode to telescope out of the top of the housing and, if desired, out of unit 100 for cleaning, while the first electrode way 230 remains within unit 100. As is evident from the figure, the second array of electrode can be lifted vertically out from the top 103 of unit 100 along the longitudinal axis or direction of the elongated housing 102. This arrangement with the second electrodes removable from the top 103 of the unit 100, makes it easy for the user to pull the second electrodes out for cleaning. In
The first and second arrays of electrodes are coupled to the output terminals of ion generating unit 160, as best seen in
The general shape of the embodiment of the invention shown in
As will be described, when unit 100 is energized with S1, high voltage or high potential output by ion generator 160 produces ions at the first electrode, which ions are attracted to the second electrodes. The movement of the ions in an “IN” to “OUT” direction carries with the ions air molecules, thus electro-kinetically producing an outflow of ionized air. The “IN” notation in
The housing preferably has a substantially oval-shaped or -elliptically shaped cross-section with dimpled side grooves. Thus, as indicated above, the cross-section looks somewhat like a figure eight. It is within the scope of the present invention for the housing to have a different shaped cross-section such as, but not limited to, a rectangular shape, an egg shape, a tear-drop shape, or circular shape. The housing preferably has a tall, thin configuration. As will become apparent later, the housing is preferably functionally shaped to contain the electrode assembly.
As mentioned above, the housing has an inlet and an outlet. Both the inlet and the outlet are covered by fins or louvers. Each fin is a thin ridge spaced-apart from the next fin, so that each fin creates minimal resistance as air flows through the housing. The fins are horizontal and are directed across the elongated vertical upstanding housing of the unit. Thus, the fins are substantially perpendicular in this preferred embodiment to the electrodes. The inlet and outlet fins are aligned to give the unit a “see through” appearance. Thus, a user can “see through” the unit from the inlet to the outlet. The user will see no moving parts within the housing, but just a quiet unit that cleans the air passing therethrough. Alternatively the fins can be parallel with the electrodes in another preferred embodiment. Other orientations of fins and electrodes are possible in other embodiments.
As best seen in
The high voltage generator unit 170 preferably comprises a low voltage oscillator circuit 190 of perhaps 20 KHz frequency, that outputs low voltage pulses to an electronic switch 200, e.g., a thyristor or the like. Switch 200 switchably couples the low voltage pulses to the input winding of a step-up transformer T1. The secondary winding of T1 is coupled to a high voltage multiplier circuit 210 that outputs high voltage pulses. Preferably the circuitry and components comprising high voltage pulse generator 170 and circuit 180 are fabricated on a printed circuit board that is mounted within housing 102. If desired, external audio input (e.g., from a stereo tuner) could be suitably coupled to oscillator 190 to acoustically modulate the kinetic airflow produced by unit 160. The result would be an electrostatic loudspeaker, whose output airflow is audible to the human ear in accordance with the audio input signal. Further, the output air stream would still include ions and ozone.
Output pulses from high voltage generator 170 preferably are at least 10 KV peak-to-peak with an effective DC offset of, for example, half the peak-to-peak voltage, and have a frequency of, for example, 20 KHz. Frequency of oscillation can include other values, but frequency of at least about 20 KHz is preferred as being inaudible to humans. If pets will be in the same room as the unit 100, it may be desired to utilize and even higher operating frequency, to prevent pet discomfort and/or howling by the pet. The pulse train output preferably has a duty cycle of for example 10%, which will promote battery lifetime if live current is not used. Of course, different peak-peak amplitudes, DC offsets, pulse train waveshapes, duty cycle, and/or repetition frequencies can be used instead. Indeed, a 100% pulse train (e.g., an essentially DC high voltage) may be used, albeit with shorter battery lifetime. Thus, generator unit 170 for this embodiment can be referred to as a high voltage pulse generator. Unit 170 functions as a DC:DC high voltage generator, and could be implemented using other circuitry and/or techniques to output high voltage pulses that are input to electrode assembly 220.
As noted, outflow (OUT) preferably includes appropriate amounts of ozone that can remove odors and preferably destroy or at least substantially alter bacteria, germs, and other living (or quasi-living) matter subjected to the outflow. Thus, when switch S2 is closed and the generator 170 has sufficient operating potential, pulses from high voltage pulse generator unit 170 create an outflow (OUT) of ionized air and ozone. When S1 is closed, LED will visually signal when ionization is occurring.
Preferably operating parameters of unit 100 are set during manufacture and are generally not user-adjustable. For example, with respect to operating parameters, increasing the peak-to-peak output voltage and/or duty cycle in the high voltage pulses generated by unit 170 can increase the airflow rate, ion content, and ozone content. These parameters can be set by the user by adjusting switch S2 as disclosed below. In the preferred embodiment, output flowrate is about 200 feet/minute, ion content is about 2,000,000/cc and ozone content is about 40 ppb (over ambient) to perhaps 2,000 ppb (over ambient). Decreasing the ratio of the radius of the nose of the second electrodes to the radius of the first electrode or decreasing the ratio of the cross-sectioned area of the second electrode to the first electrode below about 20:1 will decrease flow rate, as will decreasing the peak-to-peak voltage and/or duty cycle of the high voltage pulses coupled between the first and second electrode arrays.
In practice, unit 100 is placed in a room and connected to an appropriate source of operating potential, typically 117 VAC. With S1 energizing ionization unit 160, systems 100 emits ionized air and preferably some ozone via outlet vents 106. The airflow, coupled with the ions and ozone freshens the air in the room, and the ozone can beneficially destroy or at least diminish the undesired effects of certain odors, bacteria, germs, and the like. The airflow is indeed electro-kinetically produced, in that there are no intentionally moving parts within unit 100. (Some mechanical vibration may occur within the electrodes).
Having described various aspects of this embodiment of the invention in general, preferred embodiments of electrode assembly 220 are now described. In the various embodiments, electrode assembly 220 comprises a first array 230 of at least one electrode or conductive surface 232, and further comprises a second array 240 of preferably at least one electrode or conductive surface 242. Understandably material(s) for electrodes 232 and 242 should conduct electricity, be resistant to corrosive effects from the application of high voltage, yet be strong enough to be cleaned.
In the various electrode assemblies to be described herein, electrode(s) 232 in the first electrode array 230 are preferably fabricated from tungsten. Tungsten is sufficiently robust in order to withstand cleaning, has a high melting point to retard breakdown due to ionization, and has a rough exterior surface that seems to promote efficient ionization. On the other hand, electrode(s) 242 preferably have a highly polished exterior surface to minimize unwanted point-to-point radiation. As such, electrode(s) 242 preferably are fabricated from stainless steel and/or brass, among other materials. The polished surface of electrode(s) 232 also promotes ease of electrode cleaning.
In contrast to the prior art electrodes disclosed by the '801 patent, electrodes 232 and 242, are light weight, easy to fabricate, and lend themselves to mass production. Further, electrodes 232 and 242 described herein promote more efficient generation of ionized air, and appropriate amounts of ozone, (indicated in several of the figures as O3).
Electrode Assembly with First and Second Electrodes:
The positive output terminal of unit 170 is coupled to first electrode array 230, and the negative output terminal is coupled to second electrode array 240. It is believed that with this arrangement the net polarity of the emitted ions is positive, e.g., more positive ions than negative ions are emitted. This coupling polarity has been found to work well, including minimizing unwanted audible electrode vibration or hum. However, while generation of positive ions is conducive to a relatively silent airflow, from a health standpoint, it is desired that the output airflow be richer in negative ions, not positive ions. It is noted that in some embodiments, one port (preferably the negative port) of the high voltage pulse generator can in fact be the ambient air. Thus, electrodes in the second array need not be connected to the high voltage pulse generator using a wire. Nonetheless, there will be an “effective connection” between the second array electrodes and one output port of the high voltage pulse generator, in this instance, via ambient air. Alternatively the negative output terminal of unit 170 can be connected to the first electrode array 230 and the positive output terminal can be connected to the second electrode array 240.
With this arrangement an electrostatic flow of air is created, going from the first electrode array towards the second electrode array. (This flow is denoted “OUT” in the figures.) Accordingly electrode assembly 220 is mounted within transporter system 100 such that second electrode array 240 is closer to the OUT vents and first electrode array 230 is closer to the IN vents.
When voltage or pulses from high voltage pulse generator 170 are coupled across first and second electrode arrays 230 and 240, a plasma-like field is created surrounding electrodes 232 in first array 230. This electric field ionizes the ambient air between the first and second electrode arrays and establishes an “OUT” airflow that moves towards the second array. It is understood that the IN flow enters via vent(s) 104, and that the OUT flow exits via vent(s) 106.
Ozone and ions are generated simultaneously by the first array electrodes 232, essentially as a function of the potential from generator 170 coupled to the first array of electrodes or conductive surfaces. Ozone generation can be increased or decreased by increasing or decreasing the potential at the first array. Coupling an opposite polarity potential to the second array electrodes 242 essentially accelerates the motion of ions generated at the first array, producing the airflow denoted as “OUT” in the figures. As the ions and ionized particulates move toward the second array, the ions and ionized particles push or move air molecules toward the second array. The relative velocity of this motion may be increased, by way of example, by decreasing the potential at the second array relative to the potential at the first array.
For example, if +10 KV were applied to the first array electrode(s), and no potential were applied to the second array electrode(s), a cloud of ions (whose net charge is positive) would form adjacent the first electrode array. Further, the relatively high 10 KV potential would generate substantial ozone. By coupling a relatively negative potential to the second array electrode(s), the velocity of the air mass moved by the net emitted ions increases.
On the other hand, if it were desired to maintain the same effective outflow (OUT) velocity, but to generate less ozone, the exemplary 10 KV potential could be divided between the electrode arrays. For example, generator 170 could provide +4 KV (or some other fraction) to the first array electrodes and −6 KV (or some other fraction) to the second array electrodes. In this example, it is understood that the +4 KV and the −6 KV are measured relative to ground. Understandably it is desired that the unit 100 operates to output appropriate amounts of ozone. Accordingly, the high voltage is preferably fractionalized with about +4 KV applied to the first array electrodes and about −6 KV applied to the second array electrodes.
In the embodiments of
As previously indicated first or emitter electrodes 232 are preferably lengths of tungsten wire, whereas electrodes 242 are formed from sheet metal, preferably stainless steel, although brass or other sheet metal could be used. The sheet metal is readily configured to define side regions 244 and bulbous nose region 246, forming the hollow, elongated “U”-shaped electrodes 242. While
In the embodiment of
Electrodes 232 in first array 230 are coupled by a conductor 234 to a first (preferably positive) output port of high voltage pulse generator 170. Electrodes 242 in second array 240 are coupled by a conductor 249 to a second (preferably negative) output port of high voltage generator 170. The electrodes may be electrically connected to the conductors 234 or 249 at various locations. By way of example only,
In this and the other embodiments to be described herein, ionization appears to occur at the electrodes 232 in the first electrode array 230, with ozone production occurring as a function of high voltage arcing. For example, increasing the peak-to-peak voltage amplitude and/or duty cycle of the pulses from the high voltage pulse generator 170 can increase ozone content in the output flow of ionized air. If desired, user-control S2 can be used to somewhat vary ozone content by varying amplitude and/or duty cycle. Specific circuitry for achieving such control is known in the art and need not be described in detail herein.
Note the inclusion in
In the embodiments of
In
As discussed above and as depicted by
It is noted that the embodiments of
In the embodiment of
Electrode Assembly with an Upstream Focus Electrode:
The embodiments illustrated in
As shown in
The third focus electrode 224 illustrated in
In a preferred embodiment, each third focus electrodes 224a, 224b, 224c are electrically connected with the first array 230 and the high voltage generator 170 by the conductor 234. As shown in
The particles within the airflow are positively charged by the ions generated by the first electrode 232. As previously mentioned, the positively charged particles are collected by the negatively charged second electrodes 242. The third focus electrode 224 also directs the airflow towards the second electrodes 242 by guiding the charged particles towards the trailing sides 244 of each second electrode 242. It is believed that the airflow will travel around the third focus electrode 224, partially focusing the airflow towards the trailing sides 244, improving the collection rate of the electrode assembly 220.
The third focus electrode 224 may be located at various positions upstream of each first electrode 232. By way of example only, a third focus electrode 224b is located directly upstream of the first electrode 232-2 so that the center of the third focus electrode 224b is in-line and symmetrically aligned with the first electrode 232-2, as shown by extension line B. Extension line B is located midway between the second electrode 242-2 and the second electrode 242-3.
Alternatively, a third focus electrode 224 can also be located at an angle relative to the first electrode 232. For example, a third focus electrode 224a can be located upstream of the first electrode 232-1 along a line extending from the middle of the nose 246 of the second electrode 242-2 through the center of the first electrode 232-1, as shown by extension line A. The third focus electrode 224a is in-line and symmetrically aligned with the first electrode 232-1 along extension line A. Similarly, the third electrode 224c is located upstream to the first electrode 232-3 along a line extending from the middle of the nose 246 of the second electrode 242-3 through the first electrode 232-3, as shown by extension line C. The third focus electrode 224c is in-line and symmetrically aligned with the first electrode 232-3 along extension line C. It is within the scope of the present invention for the electrode assembly 220 to include third focus electrodes 224 that are both directly upstream and at an angle to the first electrodes 232, as depicted in
In a preferred embodiment, the protective end 241 is created by shaping, or rolling, the trailing sides or side walls 244 inward and pressing them together, forming a rounded trailing end with no gap between the trailing sides or side walls of each second electrode 242. Accordingly, the side walls have outer surfaces, and the outer surface of the end of side walls are bent back adjacent to the trailing ends of the side walls so that the outer surface of the side walls are adjacent to, or face, or touch each other. Accordingly a smooth trailing edge is integrally formed on the second electrode. If desired, it is within the scope of the invention to spot weld the rounded ends together along the length of the second electrode 242. It is also within the scope of the present invention to form the protective end 241 by other methods such as, but not limited to, placing a strap of plastic across each end of the trailing sides 244 for the full length of the second electrode 242. The rounded or capped end is an improvement over the previous electrodes 242 without a protective end 241. Eliminating the gap between the trailing sides 244 also reduces or eliminates the eddy currents typically generated by the second electrode 242. The rounded protective end also provides a smooth surface for the purpose of cleaning the second electrode. Accordingly in this embodiment the collector electrode is a one-piece, integrally formed, electrode with a protection end.
The second electrode 242 in
A third leading or focus electrode 224 is located upstream of each first electrode 232. The innermost third focus electrode 224b is located directly upstream of the first electrode 232-2, as shown by extension line B. Extension line B is located midway between the second electrodes 242-2, 242-3. The third focus electrodes 224a, 224c are at an angle with respect to the first electrodes 232-1, 232-3. For example, the third focus electrode 224a is upstream to the first electrode 232-1 along a line extending from the middle of the nose 246 of the second electrode 242-2 extending through the center of the first electrode 232-1, as shown by extension line A. The third electrode 224c is located upstream of the first electrode 232-3 along a line extending from the center of the nose 246 of the second electrode 242-3 through the center of the first electrode 232-3, as shown by extension line C. Accordingly and preferably the focus electrodes fan out relative to the first electrodes as an aid for directing the flow of ions and charged particles.
The previously described embodiments of the electrode assembly 220 disclose a rod-shaped third focus electrode 224 upstream of each first electrode 232.
In a preferred embodiment, the third focus electrode 224 is electrically connected to the high voltage generator 170 by conductor 234. The third focus electrode 224 in
The electrical properties and characteristics of the third focus electrode 250 is similar to the third focus electrode 224 described in previous embodiments. In contrast to the rod-shaped physical characteristic of the previous embodiments, the shape the third focus electrode 250 is a concave disc, with the concave surface preferably facing toward the second electrodes 242. The third focus electrode 250 preferably has holes extending therethrough to minimize the disruption in airflow. It is within the scope of the present invention for the third focus electrode 250 to comprise other shapes such as, but not limited to, a convex disc a parabolic disc, a spherical disc, or other convex or concave shapes or a rectangle, or other planar surface and be within the spirit and scope of the invention. The diameter of the third focus electrode 250 is preferably at least fifteen times greater than the diameter of the first electrode 232. The focus electrode 250 can also be made of a screen or a mesh.
The second electrode 242 has an opening 246. The opening 246 is preferably circular in this embodiment. It is within the scope of the present invention that the opening 246 can comprise other shapes such as, but not limited to, rectangular, hexagonal or octagonal. The second electrode 242 has a collar 247 (see
Other similar pin-ring embodiments are shown in
In
Electrode Assembly with a Downstream Trailing Electrode:
When the trailing electrodes 245 are electrically connected to the high voltage generator 170, the positively charged particles within the airflow are also attracted to and collect on, the trailing electrodes. In a typical electrode assembly with no trailing electrode 245, most of the particles will collect on the surface area of the second electrodes 242. However, some particles will pass through the unit 200 without being collected by the second electrodes 242. Thus, the trailing electrodes 245 serve as a second surface area to collect the positively charged particles. The trailing electrodes 245 also can deflect charged particles toward the second electrodes.
The trailing electrodes 245 preferably also emit a small amount of negative ions into the airflow. These negative ions will neutralize the positive ions emitted by the first electrodes 232. If the positive ions emitted by the first electrodes 232 are not neutralized before the airflow reaches the outlet 260, the outlet fins 212 can become electrically charged and particles within the airflow may tend to stick to the fins 212. If this occurs, eventually the amount of particles collected by the fins 212 will block or minimize the airflow exiting the unit 200.
Electrode Assemblies with Various Combinations of Focus Electrodes, Trailing Electrodes and Enhanced Second Electrodes with Protective Ends:
Upstream from each first electrode 232, at a distance X2, is a third focus electrode 224. Each third focus electrode 224a, 224b is at an angle with respect to a first electrode 232. For example, the third focus electrode 224a is preferably along a line extending from the middle of the nose 246 of the second electrode 242-2 through the center of the first electrode 232-1, as shown by extension line A. The third focus electrode 224a is in-line and symmetrically aligned with the first electrode 232-1 along extension line A. Similarly, the third focus electrode 224b is located along a line extending from middle of the nose 246 of the second electrode 242-2 through the center of the first electrode 232-2, as shown by extension line B. The third focus electrode 224b is in-line and symmetrically aligned with the first electrode 232-2 along extension line B. As previously described, the diameter of each third focus electrode 224 is preferably at least fifteen times greater than the diameter of the first electrode 232.
As shown in
One aspect of the trailing electrode 245 is to direct the air trailing off the second electrode 242 and provide a more laminar flow of air exiting the outlet 260. Another aspect of the trailing electrode 245 is to neutralize the positive ions generated by the first array 230 and collect particles within the airflow. As shown in
Electrode Assemblies with Second Collector Electrodes Having Interstitial Electrodes:
It is to be understood that interstitial electrodes 246a, 246b may also be closer to one second collector electrode than to the other. Also, the interstitial electrodes 246a, 246b are preferably located substantially near or at the protective end 241 or ends of the trailing sides 244, as depicted in
Still further, the interstitial electrodes 246a, 246b can be located upstream along the trailing side 244 of the second collector electrodes 244. However, the closer the interstitial electrodes 246a, 246b get to the nose 246 of the second electrode 242, generally the less effective interstitial electrodes 246a, 246b are in urging positively charged particles toward the entire length the second electrodes 242. Preferably, the interstitial electrodes 246a, 246b are wire-shaped and smaller or substantially smaller in diameter than the width “W” of the second collector electrodes 242. For example, the interstitial electrodes can have a diameter of, the same as, or on the order, of the diameter of the first electrodes. For example, the interstitial electrodes can have a diameter of one-sixteenth of an inch. Also, the diameter of the interstitial electrodes 246a, 246b is substantially less than the distance between second collector electrodes, as indicated by Y2. Further the interstitial electrode can have a length or diameter in the downstream direction that is substantially less than the length of the second electrode in the downstream direction. The reason for this size of the interstitial electrodes 246a, 246b is so that the interstitial electrodes 246a, 246b have a minimal effect on the airflow rate exiting the device 100 or 200.
Electrode Assembly with an Enhanced First Emitter Electrode being Slack:
The previously described embodiments of the electrode assembly 220 include a first array of electrodes 230 having at least one wire-shaped electrode 232. It is within the scope of the present invention for the first array of electrodes 230 to contain electrodes consisting of other shapes and configurations.
As shown in
The electrodes 252, 254 and 256 shown in
Turning now to
The configuration of material 500 and slots 510 is such that each wire or wire-like electrode 232 in the first electrode array 230 fits snugly and frictionally within a corresponding slot 510. As indicated by
A user hearing that excess noise or humming emanates from unit 100 might simply turn the unit off, and slide array 240 (and thus sheet 500 or sheets 515) up and down (as indicated by the up/down arrows in
As noted earlier, a user may remove second electrode array 240 for cleaning (thus also removing sheet 500, which will have scraped electrodes 232 on its upward vertical path). If the user cleans electrodes 242 with water and returns array 240 to unit 100 without first completely drying 240, moisture might form on the upper surface of a horizontally disposed member 550 within unit 100. Thus, as shown in
The inclusion of a projecting vane 560 in the configuration of
In
As best seen in
Assume that a user had removed second electrode array 240 completely from the transporter-conditioner unit for cleaning, and that
In
In
Thus, the embodiments shown in
Turning now to
As indicated by
Friction between debris 612 on electrode 232 and the mouth of channel 630 will tend to remove the debris from the electrode as bead 620 slides up and down the length of the electrode, e.g., when a user inverts transporter-conditioner unit 100, to clean electrodes 232. It is understood that each electrode 232 will include its own bead or beads, and some of the beads may have symmetrically disposed channels, while other beads may have asymmetrically disposed channels. An advantage of the configuration shown in
The foregoing description of the preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. Modifications and variations may be made to the disclosed embodiments without departing from the subject and spirit of the invention as defined by the following claims. Embodiments were chosen and described in order to best describe the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention, the various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
This application is a continuation of application Ser. No. 12/723,102, filed Mar. 12, 2010, now U.S. Pat. No. 7,976,615, which in turn is a continuation of application Ser. No. 10/074,209, filed Feb. 12, 2002, now U.S. Pat. No. 7,695,690 which in turn claims benefit of provisional Application No. 60/341,090, filed Dec. 13, 2001 and provisional Application No. 60/306,479, filed Jul. 18, 2001. application Ser. No. 10/074,209, now U.S. Pat. No. 7,695,690 is also a continuation-in part of application Ser. No. 09/730,499, filed Dec. 5, 2000, now U.S. Pat. No. 6,713,026, which itself is a continuation of application Ser. No. 09/186,471, filed Nov. 5, 1998, now U.S. Pat. No. 6,176,977. application Ser. No. 10/074,209, now U.S. Pat. No. 7,695,690 is also a continuation-in-part of application Ser. No. 09/924,624, filed Aug. 8, 2001, now abandoned, which itself is a continuation of application Ser. No. 09/564,960, filed May 4, 2000, now U.S. Pat. No. 6,350,417 which itself is a continuation-in-part of application Ser. No. 09/186,471, filed Nov. 5, 1998, now U.S. Pat. No. 6,176,977. Each of the aforementioned applications (including the provisional applications) is incorporated herein by reference. This application is related to the following patent applications: U.S. patentapplication No.FiledU.S. Pat. No.90/007,276Oct. 29, 20046,504,308 C111/041,926Jan. 21, 2005RE41,81211/091,243Mar. 28, 20057,285,15511/062,057Feb. 18, 200511/071,779Mar. 3, 20057,767,16510/994,869Nov. 22, 20047,767,16911/007,556Dec. 8, 20047,291,20710/074,209Feb. 12, 20027,695,69010/685,182Oct. 14, 20037,404,93510/944,016Sep. 17, 200410/795,934Mar. 8, 20047,517,50410/435,289May 9, 200311/064,797Feb. 24, 200511/003,671Dec. 3, 200411/003,035Dec. 3, 20047,318,85611/007,395Dec. 8, 20047,897,11810/876,495Jun. 25, 200410/809,923Mar. 25, 20047,405,67211/004,397Dec. 3, 200410/895,799Jul. 21, 200410/642,927Aug. 18, 200311/823,346Apr. 12, 200410/662,591Sep. 15, 20037,371,35411/061,967Feb. 18, 200511/150,046Jun. 10, 20057,662,34811/188,448Jul. 25, 200511/188,478Jul. 25, 20057,311,76211/293,538Dec. 2, 20057,892,50111/457,396Jul. 13, 200611/464,139Aug. 11, 200611/694,281Mar. 30, 2007 The following applications are incorporated by reference: U.S. patentapplication No.FiledU.S. Pat. No.60/341,518Dec. 13, 200160/341,433Dec. 13, 200160/341,592Dec. 13, 200160/341,320Dec. 13, 200160/341,179Dec. 13, 200160/340,702Dec. 13, 200160/341,377Dec. 13, 200110/023,197Dec. 13, 200110/023,460Dec. 13, 200160/340,288Dec. 13, 200160/341,176Dec. 13, 200160/340,462Dec. 13, 200110/074,082Feb. 12, 20026,958,13410/074,207Feb. 12, 200210/074,208Feb. 12, 200210/074,339Feb. 12, 200210/074,827Feb. 12, 200210/074,096Feb. 12, 20026,974,56010/074,347Feb. 12, 20026,911,18610/074,379Feb. 12, 200210/074,549Feb. 12, 200210/074,103Feb. 12, 2002
Number | Name | Date | Kind |
---|---|---|---|
653421 | Lorey | Jul 1900 | A |
895729 | Carlborg | Aug 1908 | A |
995958 | Goldberg | Jun 1911 | A |
1469275 | Moller et al. | Oct 1923 | A |
1791338 | Wintermute | Feb 1931 | A |
1869335 | Day | Jul 1932 | A |
1882949 | Ruder | Oct 1932 | A |
2129783 | Penney | Sep 1938 | A |
2247409 | Roper | Jul 1941 | A |
2327588 | Bennett | Aug 1943 | A |
2359057 | Skinner | Sep 1944 | A |
2509548 | White | May 1950 | A |
2590447 | Nord et al. | Mar 1952 | A |
2826262 | Byerly | Mar 1958 | A |
2949550 | Brown | Aug 1960 | A |
2978006 | Nodolf | Apr 1961 | A |
3018394 | Brown | Jan 1962 | A |
3026964 | Penney | Mar 1962 | A |
3374941 | Okress | Mar 1968 | A |
3412530 | Cardiff | Nov 1968 | A |
3518462 | Brown | Jun 1970 | A |
3540191 | Herman | Nov 1970 | A |
3581470 | Aitkenhead et al. | Jun 1971 | A |
3638058 | Fritzius | Jan 1972 | A |
3744216 | Halloran | Jul 1973 | A |
3806763 | Masuda | Apr 1974 | A |
3892927 | Lindenberg | Jul 1975 | A |
3945813 | Iinoya et al. | Mar 1976 | A |
3958960 | Bakke | May 1976 | A |
3958961 | Bakke | May 1976 | A |
3958962 | Hayashi | May 1976 | A |
3981695 | Fuchs | Sep 1976 | A |
3984215 | Zucker | Oct 1976 | A |
3988131 | Kanazawa et al. | Oct 1976 | A |
4007024 | Sallee et al. | Feb 1977 | A |
4052177 | Kide | Oct 1977 | A |
4056372 | Hayashi | Nov 1977 | A |
4070163 | Kolb et al. | Jan 1978 | A |
4074983 | Bakke | Feb 1978 | A |
4092134 | Kikuchi | May 1978 | A |
4097252 | Kirchhoff et al. | Jun 1978 | A |
4102654 | Pellin | Jul 1978 | A |
4104042 | Brozenick | Aug 1978 | A |
4110086 | Schwab et al. | Aug 1978 | A |
4119415 | Hayashi et al. | Oct 1978 | A |
4126434 | Keiichi | Nov 1978 | A |
4138233 | Masuda | Feb 1979 | A |
4147522 | Gonas et al. | Apr 1979 | A |
4155792 | Gelhaar et al. | May 1979 | A |
4171975 | Kato et al. | Oct 1979 | A |
4185971 | Isahaya | Jan 1980 | A |
4189308 | Feldman | Feb 1980 | A |
4205969 | Matsumoto | Jun 1980 | A |
4209306 | Feldman et al. | Jun 1980 | A |
4218225 | Kirchhoff et al. | Aug 1980 | A |
4225323 | Zarchy et al. | Sep 1980 | A |
4227894 | Proynoff | Oct 1980 | A |
4231766 | Spurgin | Nov 1980 | A |
4232355 | Finger et al. | Nov 1980 | A |
4244710 | Burger | Jan 1981 | A |
4244712 | Tongret | Jan 1981 | A |
4251234 | Chang | Feb 1981 | A |
4253852 | Adams | Mar 1981 | A |
4259093 | Vlastos et al. | Mar 1981 | A |
4259452 | Yukuta et al. | Mar 1981 | A |
4259707 | Penney | Mar 1981 | A |
4264343 | Natarajan et al. | Apr 1981 | A |
4266948 | Teague et al. | May 1981 | A |
4282014 | Winkler et al. | Aug 1981 | A |
4284420 | Borysiak | Aug 1981 | A |
4289504 | Scholes | Sep 1981 | A |
4293319 | Claassen, Jr. | Oct 1981 | A |
4308036 | Zahedi et al. | Dec 1981 | A |
4315188 | Cerny et al. | Feb 1982 | A |
4318718 | Utsumi et al. | Mar 1982 | A |
4342571 | Hayashi | Aug 1982 | A |
4357150 | Masuda et al. | Nov 1982 | A |
4386395 | Francis, Jr. | May 1983 | A |
4413225 | Donig et al. | Nov 1983 | A |
4414603 | Masuda | Nov 1983 | A |
4445911 | Lind | May 1984 | A |
4477263 | Shaver et al. | Oct 1984 | A |
4496375 | Le Vantine | Jan 1985 | A |
4502002 | Ando | Feb 1985 | A |
4509958 | Masuda et al. | Apr 1985 | A |
4514780 | Brussee et al. | Apr 1985 | A |
4515982 | Lechtken et al. | May 1985 | A |
4516991 | Kawashima | May 1985 | A |
4521229 | Baker et al. | Jun 1985 | A |
4522634 | Frank | Jun 1985 | A |
4534776 | Mammel et al. | Aug 1985 | A |
4536698 | Shevalenko et al. | Aug 1985 | A |
4544382 | Taillet et al. | Oct 1985 | A |
4555252 | Eckstein | Nov 1985 | A |
4569684 | Ibbott | Feb 1986 | A |
4582961 | Frederiksen | Apr 1986 | A |
4587475 | Finney, Jr. et al. | May 1986 | A |
4588423 | Gillingham et al. | May 1986 | A |
4590042 | Drage | May 1986 | A |
4597780 | Reif | Jul 1986 | A |
4597781 | Spector | Jul 1986 | A |
4600411 | Santamaria | Jul 1986 | A |
4601733 | Ordines et al. | Jul 1986 | A |
4604174 | Bollinger et al. | Aug 1986 | A |
4614573 | Masuda | Sep 1986 | A |
4623365 | Bergman | Nov 1986 | A |
4626261 | Jorgensen | Dec 1986 | A |
4632135 | Lenting et al. | Dec 1986 | A |
4632746 | Bergman | Dec 1986 | A |
4636981 | Ogura | Jan 1987 | A |
4643744 | Brooks | Feb 1987 | A |
4643745 | Sakakibara et al. | Feb 1987 | A |
4647836 | Olsen | Mar 1987 | A |
4650648 | Beer et al. | Mar 1987 | A |
4656010 | Leitzke et al. | Apr 1987 | A |
4657738 | Kanter et al. | Apr 1987 | A |
4659342 | Lind | Apr 1987 | A |
4662903 | Yanagawa | May 1987 | A |
4666474 | Cook | May 1987 | A |
4668479 | Manabe et al. | May 1987 | A |
4670026 | Hoenig | Jun 1987 | A |
4673416 | Sakakibara et al. | Jun 1987 | A |
4674003 | Zylka | Jun 1987 | A |
4680496 | Letournel et al. | Jul 1987 | A |
4686370 | Blach | Aug 1987 | A |
4689056 | Noguchi et al. | Aug 1987 | A |
4691829 | Auer | Sep 1987 | A |
4692174 | Gelfand et al. | Sep 1987 | A |
4693869 | Pfaff | Sep 1987 | A |
4694376 | Gesslauer | Sep 1987 | A |
4702752 | Yanagawa | Oct 1987 | A |
4713092 | Kikuchi et al. | Dec 1987 | A |
4713093 | Hansson | Dec 1987 | A |
4713724 | Voelkel | Dec 1987 | A |
4715870 | Masuda et al. | Dec 1987 | A |
4725289 | Quintilian | Feb 1988 | A |
4726812 | Hirth | Feb 1988 | A |
4726814 | Weitman | Feb 1988 | A |
4736127 | Jacobsen | Apr 1988 | A |
4743275 | Flanagan | May 1988 | A |
4749390 | Burnett et al. | Jun 1988 | A |
4750921 | Sugita et al. | Jun 1988 | A |
4760302 | Jacobsen | Jul 1988 | A |
4760303 | Miyake | Jul 1988 | A |
4765802 | Gombos et al. | Aug 1988 | A |
4771361 | Varga | Sep 1988 | A |
4772297 | Anzai | Sep 1988 | A |
4779182 | Mickal et al. | Oct 1988 | A |
4781736 | Cheney et al. | Nov 1988 | A |
4786844 | Farrell et al. | Nov 1988 | A |
4789801 | Lee | Dec 1988 | A |
4808200 | Dallhammer et al. | Feb 1989 | A |
4811159 | Foster, Jr. | Mar 1989 | A |
4822381 | Mosley et al. | Apr 1989 | A |
4853005 | Jaisinghani et al. | Aug 1989 | A |
4869736 | Ivester et al. | Sep 1989 | A |
4892713 | Newman | Jan 1990 | A |
4929139 | Vorreiter et al. | May 1990 | A |
4940470 | Jaisinghani et al. | Jul 1990 | A |
4940894 | Morters | Jul 1990 | A |
4941068 | Hofmann | Jul 1990 | A |
4941224 | Saeki et al. | Jul 1990 | A |
4944778 | Yanagawa | Jul 1990 | A |
4954320 | Birmingham et al. | Sep 1990 | A |
4955991 | Torok et al. | Sep 1990 | A |
4966666 | Waltonen | Oct 1990 | A |
4967119 | Torok et al. | Oct 1990 | A |
4976752 | Torok et al. | Dec 1990 | A |
4978372 | Pick | Dec 1990 | A |
D315598 | Yamamoto et al. | Mar 1991 | S |
5003774 | Leonard | Apr 1991 | A |
5006761 | Torok et al. | Apr 1991 | A |
5010869 | Lee | Apr 1991 | A |
5012093 | Shimizu | Apr 1991 | A |
5012094 | Hamade | Apr 1991 | A |
5012159 | Torok et al. | Apr 1991 | A |
5022979 | Hijikata et al. | Jun 1991 | A |
5024685 | Torok et al. | Jun 1991 | A |
5030254 | Heyen et al. | Jul 1991 | A |
5037456 | Yu | Aug 1991 | A |
5043033 | Fyfe | Aug 1991 | A |
5045095 | You | Sep 1991 | A |
5053912 | Loreth et al. | Oct 1991 | A |
5059219 | Plaks et al. | Oct 1991 | A |
5061462 | Suzuki | Oct 1991 | A |
5066313 | Mallory, Sr. | Nov 1991 | A |
5072746 | Kantor | Dec 1991 | A |
5076820 | Gurvitz | Dec 1991 | A |
5077468 | Hamade | Dec 1991 | A |
5077500 | Torok et al. | Dec 1991 | A |
5100440 | Stahel et al. | Mar 1992 | A |
RE33927 | Fuzimura | May 1992 | E |
D326514 | Alsup et al. | May 1992 | S |
5118942 | Hamade | Jun 1992 | A |
5125936 | Johansson | Jun 1992 | A |
5136461 | Zellweger | Aug 1992 | A |
5137546 | Steinbacher et al. | Aug 1992 | A |
5141529 | Oakley et al. | Aug 1992 | A |
5141715 | Sackinger et al. | Aug 1992 | A |
D329284 | Patton | Sep 1992 | S |
5147429 | Bartholomew et al. | Sep 1992 | A |
5154733 | Fujii et al. | Oct 1992 | A |
5158580 | Chang | Oct 1992 | A |
D332655 | Lytle | Jan 1993 | S |
5180404 | Loreth et al. | Jan 1993 | A |
5183480 | Raterman et al. | Feb 1993 | A |
5196171 | Peltier | Mar 1993 | A |
5198003 | Haynes | Mar 1993 | A |
5199257 | Colletta et al. | Apr 1993 | A |
5210678 | Lain et al. | May 1993 | A |
5215558 | Moon | Jun 1993 | A |
5217504 | Johansson | Jun 1993 | A |
5217511 | Plaks et al. | Jun 1993 | A |
5234555 | Ibbott | Aug 1993 | A |
5248324 | Hara | Sep 1993 | A |
5250267 | Johnson et al. | Oct 1993 | A |
5254155 | Mensi | Oct 1993 | A |
5266004 | Tsumurai et al. | Nov 1993 | A |
5271763 | Jang | Dec 1993 | A |
5282891 | Durham | Feb 1994 | A |
5290343 | Morita et al. | Mar 1994 | A |
5296019 | Oakley et al. | Mar 1994 | A |
5302190 | Williams | Apr 1994 | A |
5308586 | Fritsche et al. | May 1994 | A |
5315838 | Thompson | May 1994 | A |
5316741 | Sewell et al. | May 1994 | A |
5330559 | Cheney et al. | Jul 1994 | A |
5348571 | Weber | Sep 1994 | A |
5376168 | Inculet | Dec 1994 | A |
5378978 | Gallo et al. | Jan 1995 | A |
5386839 | Chen | Feb 1995 | A |
5395430 | Lundgren et al. | Mar 1995 | A |
5401301 | Schulmerich et al. | Mar 1995 | A |
5401302 | Schulmerich et al. | Mar 1995 | A |
5403383 | Jaisinghani | Apr 1995 | A |
5405434 | Inculet | Apr 1995 | A |
5407469 | Sun | Apr 1995 | A |
5407639 | Watanabe et al. | Apr 1995 | A |
5417936 | Suzuki et al. | May 1995 | A |
5419953 | Chapman | May 1995 | A |
5433772 | Sikora | Jul 1995 | A |
5435817 | Davis et al. | Jul 1995 | A |
5435978 | Yokomi | Jul 1995 | A |
5437713 | Chang | Aug 1995 | A |
5437843 | Kuan | Aug 1995 | A |
5466279 | Hattori et al. | Nov 1995 | A |
5468454 | Kim | Nov 1995 | A |
5474599 | Cheney et al. | Dec 1995 | A |
5484472 | Weinberg | Jan 1996 | A |
5484473 | Bontempi | Jan 1996 | A |
5492678 | Ota et al. | Feb 1996 | A |
5501844 | Kasting, Jr. et al. | Mar 1996 | A |
5503808 | Garbutt et al. | Apr 1996 | A |
5503809 | Coate et al. | Apr 1996 | A |
5505914 | Tona-Serra | Apr 1996 | A |
5508008 | Wasser | Apr 1996 | A |
5514345 | Garbutt et al. | May 1996 | A |
5516493 | Bell et al. | May 1996 | A |
5518531 | Joannu | May 1996 | A |
5520887 | Shimizu et al. | May 1996 | A |
5525310 | Decker et al. | Jun 1996 | A |
5529613 | Yavnieli | Jun 1996 | A |
5529760 | Burris | Jun 1996 | A |
5532798 | Nakagami et al. | Jul 1996 | A |
5535089 | Ford et al. | Jul 1996 | A |
5536477 | Cha et al. | Jul 1996 | A |
5538695 | Shinjo et al. | Jul 1996 | A |
5540761 | Yamamoto | Jul 1996 | A |
5542967 | Ponizovsky et al. | Aug 1996 | A |
5545379 | Gray | Aug 1996 | A |
5545380 | Gray | Aug 1996 | A |
5547643 | Nomoto et al. | Aug 1996 | A |
5549874 | Kamiya et al. | Aug 1996 | A |
5554344 | Duarte | Sep 1996 | A |
5554345 | Kitchenman | Sep 1996 | A |
5565685 | Czako et al. | Oct 1996 | A |
5569368 | Larsky et al. | Oct 1996 | A |
5569437 | Stiehl et al. | Oct 1996 | A |
D375546 | Lee | Nov 1996 | S |
5571483 | Pfingstl et al. | Nov 1996 | A |
5573577 | Joannou | Nov 1996 | A |
5573730 | Gillum | Nov 1996 | A |
5578112 | Krause | Nov 1996 | A |
5578280 | Kazi et al. | Nov 1996 | A |
5582632 | Nohr et al. | Dec 1996 | A |
5587131 | Malkin et al. | Dec 1996 | A |
D377523 | Marvin et al. | Jan 1997 | S |
5591253 | Altman et al. | Jan 1997 | A |
5591334 | Shimizu et al. | Jan 1997 | A |
5591412 | Jones et al. | Jan 1997 | A |
5593476 | Coppom | Jan 1997 | A |
5601636 | Glucksman | Feb 1997 | A |
5603752 | Hara | Feb 1997 | A |
5603893 | Gundersen et al. | Feb 1997 | A |
5614002 | Chen | Mar 1997 | A |
5624476 | Eyraud | Apr 1997 | A |
5630866 | Gregg | May 1997 | A |
5630990 | Conrad et al. | May 1997 | A |
5637198 | Breault | Jun 1997 | A |
5637279 | Besen et al. | Jun 1997 | A |
5641342 | Smith et al. | Jun 1997 | A |
5641461 | Ferone | Jun 1997 | A |
5647890 | Yamamoto | Jul 1997 | A |
5648049 | Jones et al. | Jul 1997 | A |
5655210 | Gregoire et al. | Aug 1997 | A |
5656063 | Hsu | Aug 1997 | A |
5665147 | Taylor et al. | Sep 1997 | A |
5667563 | Silva, Jr. | Sep 1997 | A |
5667564 | Weinberg | Sep 1997 | A |
5667565 | Gondar | Sep 1997 | A |
5667756 | Ho | Sep 1997 | A |
5669963 | Horton et al. | Sep 1997 | A |
5678237 | Powell et al. | Oct 1997 | A |
5681434 | Eastlund | Oct 1997 | A |
5681533 | Hiromi | Oct 1997 | A |
5698164 | Kishioka et al. | Dec 1997 | A |
5702507 | Wang | Dec 1997 | A |
D389567 | Gudefin | Jan 1998 | S |
5766318 | Loreth et al. | Jun 1998 | A |
5779769 | Jiang | Jul 1998 | A |
5785631 | Heidecke | Jul 1998 | A |
5814135 | Weinberg | Sep 1998 | A |
5879435 | Satyapal et al. | Mar 1999 | A |
5893977 | Pucci | Apr 1999 | A |
5911957 | Khatchatrian et al. | Jun 1999 | A |
5972076 | Nichols et al. | Oct 1999 | A |
5975090 | Taylor et al. | Nov 1999 | A |
5980614 | Loreth et al. | Nov 1999 | A |
5993521 | Loreth et al. | Nov 1999 | A |
5993738 | Goswani | Nov 1999 | A |
5997619 | Knuth et al. | Dec 1999 | A |
6019815 | Satyapal et al. | Feb 2000 | A |
6042637 | Weinberg | Mar 2000 | A |
6063168 | Nichols et al. | May 2000 | A |
6086657 | Freije | Jul 2000 | A |
6090189 | Wikstrom et al. | Jul 2000 | A |
6117216 | Loreth | Sep 2000 | A |
6118645 | Partridge | Sep 2000 | A |
6126722 | Mitchell et al. | Oct 2000 | A |
6126727 | Lo | Oct 2000 | A |
6149717 | Satyapal et al. | Nov 2000 | A |
6149815 | Sauter | Nov 2000 | A |
6152146 | Taylor et al. | Nov 2000 | A |
6163098 | Taylor et al. | Dec 2000 | A |
6176977 | Taylor et al. | Jan 2001 | B1 |
6182461 | Washburn et al. | Feb 2001 | B1 |
6182671 | Taylor et al. | Feb 2001 | B1 |
6187271 | Lee et al. | Feb 2001 | B1 |
6193852 | Caracciolo et al. | Feb 2001 | B1 |
6203600 | Loreth | Mar 2001 | B1 |
6212883 | Kang | Apr 2001 | B1 |
6228149 | Alenichev et al. | May 2001 | B1 |
6251171 | Marra et al. | Jun 2001 | B1 |
6252012 | Egitto et al. | Jun 2001 | B1 |
6270733 | Rodden | Aug 2001 | B1 |
6277248 | Ishioka et al. | Aug 2001 | B1 |
6282106 | Grass | Aug 2001 | B2 |
D449097 | Smith et al. | Oct 2001 | S |
D449679 | Smith et al. | Oct 2001 | S |
6296692 | Gutmann | Oct 2001 | B1 |
6302944 | Hoenig | Oct 2001 | B1 |
6309514 | Conrad et al. | Oct 2001 | B1 |
6312507 | Taylor et al. | Nov 2001 | B1 |
6315821 | Pillion et al. | Nov 2001 | B1 |
6328791 | Pillion et al. | Dec 2001 | B1 |
6348103 | Ahlborn et al. | Feb 2002 | B1 |
6350417 | Lau et al. | Feb 2002 | B1 |
6362604 | Cravey | Mar 2002 | B1 |
6372097 | Chen | Apr 2002 | B1 |
6373723 | Wallgren et al. | Apr 2002 | B1 |
6379427 | Siess | Apr 2002 | B1 |
6391259 | Malkin et al. | May 2002 | B1 |
6398852 | Loreth | Jun 2002 | B1 |
6447587 | Pillion et al. | Sep 2002 | B1 |
6451266 | Lau et al. | Sep 2002 | B1 |
6464754 | Ford | Oct 2002 | B1 |
6471753 | Ahn et al. | Oct 2002 | B1 |
6494940 | Hak | Dec 2002 | B1 |
6497754 | Joannou | Dec 2002 | B2 |
6504308 | Krichtafovitch et al. | Jan 2003 | B1 |
6506238 | Endo | Jan 2003 | B1 |
6508982 | Shoji | Jan 2003 | B1 |
6544485 | Taylor | Apr 2003 | B1 |
6576046 | Pruette et al. | Jun 2003 | B2 |
6585935 | Taylor et al. | Jul 2003 | B1 |
6588434 | Taylor et al. | Jul 2003 | B2 |
6603268 | Lee | Aug 2003 | B2 |
6613277 | Monagan | Sep 2003 | B1 |
6632407 | Lau et al. | Oct 2003 | B1 |
6635105 | Ahlborn et al. | Oct 2003 | B2 |
6635106 | Katou et al. | Oct 2003 | B2 |
6672315 | Taylor et al. | Jan 2004 | B2 |
6680028 | Harris | Jan 2004 | B1 |
6709484 | Lau et al. | Mar 2004 | B2 |
6713026 | Taylor et al. | Mar 2004 | B2 |
6735830 | Merciel | May 2004 | B1 |
6749667 | Reeves et al. | Jun 2004 | B2 |
6753652 | Kim | Jun 2004 | B2 |
6761796 | Srivastava et al. | Jul 2004 | B2 |
6768108 | Hirano et al. | Jul 2004 | B2 |
6768110 | Alani | Jul 2004 | B2 |
6768120 | Leung et al. | Jul 2004 | B2 |
6768121 | Horsky | Jul 2004 | B2 |
6770878 | Uhlemann et al. | Aug 2004 | B2 |
6774359 | Hirabayashi et al. | Aug 2004 | B1 |
6777686 | Olson et al. | Aug 2004 | B2 |
6777699 | Miley et al. | Aug 2004 | B1 |
6777882 | Goldberg et al. | Aug 2004 | B2 |
6781136 | Kato | Aug 2004 | B1 |
6785912 | Julio | Sep 2004 | B1 |
6791814 | Adachi et al. | Sep 2004 | B2 |
6794661 | Tsukihara et al. | Sep 2004 | B2 |
6797339 | Akizuki et al. | Sep 2004 | B2 |
6797964 | Yamashita | Sep 2004 | B2 |
6799068 | Hartmann et al. | Sep 2004 | B1 |
6800862 | Matsumoto et al. | Oct 2004 | B2 |
6803585 | Glukhoy | Oct 2004 | B2 |
6805916 | Cadieu | Oct 2004 | B2 |
6806035 | Atireklapvarodom et al. | Oct 2004 | B1 |
6806163 | Wu et al. | Oct 2004 | B2 |
6806468 | Laiko et al. | Oct 2004 | B2 |
6808606 | Thomsen et al. | Oct 2004 | B2 |
6809310 | Chen | Oct 2004 | B2 |
6809312 | Park et al. | Oct 2004 | B1 |
6809325 | Dahl et al. | Oct 2004 | B2 |
6812647 | Cornelius | Nov 2004 | B2 |
6815690 | Veerasamy et al. | Nov 2004 | B2 |
6818461 | Amami et al. | Nov 2004 | B2 |
6818909 | Murrell et al. | Nov 2004 | B2 |
6819053 | Johnson | Nov 2004 | B2 |
6855190 | Nikkhah | Feb 2005 | B1 |
6863869 | Lau et al. | Mar 2005 | B2 |
6893618 | Kotlyar et al. | May 2005 | B2 |
6897617 | Lee | May 2005 | B2 |
6899745 | Gatchell et al. | May 2005 | B2 |
6908501 | Reeves et al. | Jun 2005 | B2 |
6911186 | Taylor et al. | Jun 2005 | B2 |
6958134 | Taylor et al. | Oct 2005 | B2 |
6974560 | Taylor et al. | Dec 2005 | B2 |
6984987 | Taylor et al. | Jan 2006 | B2 |
7056370 | Reeves et al. | Jun 2006 | B2 |
7097695 | Lau et al. | Aug 2006 | B2 |
7220295 | Lau et al. | May 2007 | B2 |
7244289 | Su | Jul 2007 | B2 |
7404935 | Lau et al. | Jul 2008 | B2 |
20010004046 | Taylor et al. | Jun 2001 | A1 |
20010048906 | Lau et al. | Dec 2001 | A1 |
20020069760 | Pruette et al. | Jun 2002 | A1 |
20020079212 | Taylor et al. | Jun 2002 | A1 |
20020098131 | Taylor et al. | Jul 2002 | A1 |
20020100488 | Taylor et al. | Aug 2002 | A1 |
20020122751 | Sinaiko et al. | Sep 2002 | A1 |
20020122752 | Taylor et al. | Sep 2002 | A1 |
20020127156 | Taylor | Sep 2002 | A1 |
20020134664 | Taylor et al. | Sep 2002 | A1 |
20020134665 | Taylor et al. | Sep 2002 | A1 |
20020141914 | Lau et al. | Oct 2002 | A1 |
20020144601 | Palestro et al. | Oct 2002 | A1 |
20020146356 | Sinaiko et al. | Oct 2002 | A1 |
20020150520 | Taylor et al. | Oct 2002 | A1 |
20020152890 | Leiser | Oct 2002 | A1 |
20020155041 | McKinney, Jr. et al. | Oct 2002 | A1 |
20020170435 | Joannou | Nov 2002 | A1 |
20020190658 | Lee | Dec 2002 | A1 |
20020195951 | Lee | Dec 2002 | A1 |
20030005824 | Katou et al. | Jan 2003 | A1 |
20030170150 | Lau et al. | Sep 2003 | A1 |
20030196887 | Lau et al. | Oct 2003 | A1 |
20030206837 | Taylor et al. | Nov 2003 | A1 |
20030206839 | Taylor et al. | Nov 2003 | A1 |
20030206840 | Taylor et al. | Nov 2003 | A1 |
20030233935 | Reeves et al. | Dec 2003 | A1 |
20040033176 | Lee et al. | Feb 2004 | A1 |
20040047775 | Lau et al. | Mar 2004 | A1 |
20040052700 | Kotlyar et al. | Mar 2004 | A1 |
20040065202 | Gatchell | Apr 2004 | A1 |
20040096376 | Taylor et al. | May 2004 | A1 |
20040136863 | Yates et al. | Jul 2004 | A1 |
20040166037 | Youdell et al. | Aug 2004 | A1 |
20040226447 | Lau et al. | Nov 2004 | A1 |
20040234431 | Taylor et al. | Nov 2004 | A1 |
20040251124 | Lau | Dec 2004 | A1 |
20050000793 | Taylor et al. | Jan 2005 | A1 |
20050223898 | Nikkhah | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
87210843 | Jul 1988 | CN |
2111112 | Jul 1992 | CN |
2138764 | Jun 1993 | CN |
2153231 | Dec 1993 | CN |
2174002 | Aug 1994 | CN |
2206057 | Aug 1973 | DE |
19741621 | Jun 1999 | DE |
0433152 | Jun 1991 | EP |
2690509 | Oct 1993 | FR |
643363 | Sep 1950 | GB |
S 63164948 | Aug 1988 | JP |
S 5190077 | Jul 1993 | JP |
S 6220653 | Aug 1994 | JP |
10137007 | May 1998 | JP |
11104223 | Apr 1999 | JP |
2000236914 | Sep 2000 | JP |
WO 8803057 | May 1988 | WO |
WO 9205875 | Apr 1992 | WO |
WO 9604703 | Feb 1996 | WO |
WO 9907474 | Feb 1999 | WO |
WO 0010713 | Mar 2000 | WO |
WO 0147803 | Jul 2001 | WO |
WO 0148781 | Jul 2001 | WO |
WO 0164349 | Sep 2001 | WO |
WO 0185348 | Nov 2001 | WO |
WO 0220162 | Mar 2002 | WO |
WO 0220163 | Mar 2002 | WO |
WO 0230574 | Apr 2002 | WO |
WO 0232578 | Apr 2002 | WO |
WO 0242003 | May 2002 | WO |
WO 02066167 | Aug 2002 | WO |
WO 03009944 | Feb 2003 | WO |
WO 03013620 | Feb 2003 | WO |
WO 03013734 | Feb 2003 | WO |
Entry |
---|
Lentek Sila™ Plug-In Air Purifier/Deodorizer product box copyrighted 1999. |
“Zenion Elf Device,” drawings, prior art, 1 page. |
Electrical Schematic and promotional material available from Zenion Industries, 7 pages, Aug. 1990. |
Promotional material available from Zenion Industries for the Plasma-Tron, 2 pages, Aug. 1990. |
Number | Date | Country | |
---|---|---|---|
20120097028 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
60341090 | Dec 2001 | US | |
60306479 | Jul 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12723102 | Mar 2010 | US |
Child | 13112873 | US | |
Parent | 10074209 | Feb 2002 | US |
Child | 12723102 | US | |
Parent | 09186471 | Nov 1998 | US |
Child | 09730499 | US | |
Parent | 09564960 | May 2000 | US |
Child | 09924624 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09730499 | Dec 2000 | US |
Child | 10074209 | US | |
Parent | 09924624 | Aug 2001 | US |
Child | 10074209 | Feb 2002 | US |
Parent | 09186471 | Nov 1998 | US |
Child | 09564960 | US |