The present invention relates to a cathode for a gas discharge tube such as a gas laser or a ring laser gyroscope.
Ring laser gyroscopes are frequently used to sense angular rates in order to guide and navigate a variety of vehicles such as airplanes, rockets, tanks, ships, submarines, drilling rigs, etc. As shown in
A cathode 22 and anodes 24 and 26 engage corresponding surfaces of the block 12 at openings there through. The cathode 22 and the anodes 24 and 26 are coupled to an electrical source 28 so as to energize gas in order to form a laser plasma in the interior passage 14.
The cathode 22 as shown in
Gas ions bombard the cathode 22 during the running of the discharge in the ring laser gyroscope 10. This ion bombardment sputters metal off of the cathode 22. Also, the gas ions are initially held temporarily on the surface of the cathode 22 due to the biasing from the electrical source 28. The metal sputtered from the cathode 22 redeposits on cooler areas of the cathode 22 and on the block 12 next to the cathode 22. As the metal sputtered from the cathode 22 redeposits on the cathode 22, it over coats the gas ions held on the surface of the cathode 22. This trapping of the gas tends to decrease the life of the ring laser gyroscope 10 because it depletes the gas that is available to maintain lasing and the discharge.
The present invention is directed to a cathode design which decreases the current density over the cathode of a gas discharge tube and, therefore, decreases the sputter rate in order to increase the sputter life of a gas discharge tube.
In accordance with one aspect of the present invention, a gas discharge tube comprises a block and a cathode. The cathode has an inwardly extending foot, and the inwardly extended foot has a sole that engages the block.
In accordance with another aspect of the present invention, a ring laser gyroscope comprises a block, an anode, and a cathode. The block has a plasma supporting passage. The anode and cathode are coupled to the passage. The cathode comprises an inwardly extending foot having a sole, and the sole engages the block.
In accordance with still another aspect of the present invention, a gas discharge tube comprises a block, an anode, and a cathode. The block has a plasma cavity. The anode and cathode are coupled to the plasma cavity. The cathode comprises a foot having a sole and an inwardly extending toe, and the sole engages the block.
These and other features and advantages will become more apparent from a detailed consideration of the invention when taken in conjunction with the drawings in which:
A cathode 40 according to the present invention is shown in FIG. 3. The cathode 40, which may be used on the ring laser gyroscope 10, has a dome 42 and a cylindrical wall 44. The dome 42 and the cylindrical wall 44 form a recess 46 that is part of a plasma discharge of a ring laser gyroscope.
The cylindrical wall 44 is provided with a foot 50 having an inwardly directed toe 52 and a sole 54. The sole 54 of the foot 50 abuts the block 12 through a seal 56, which may be an indium seal. The foot 50 with the inwardly directed toe 52 permits the inside diameter of the cylindrical wall 44 to be larger than the inside diameter of the cylindrical wall 32 of the cathode 22 shown in
At the same time, the foot 50 with the inwardly directed toe 52 allows the cathode 40 to have substantially the same seal area as the cathode 22, thus maintaining the life of the seal 56. Furthermore, the outside diameter around the cylindrical wall 44 of the cathode 40 may be substantially the same as the outside diameter around the cylindrical wall 32 of the cathode 22. Accordingly, the cathode 40 may be used in restricted spaces while still benefiting from the advantages discussed herein.
Additionally or alternatively, an insulator 58 extending from the block 12 into the recess 46 may be provided as shown in FIG. 5. The insulator 58 reduces shorting between the plasma in the discharge of the ring laser gyroscope 10 and the inwardly directed toe 52 of the foot 50. As shown in
Alternatively, a recess 60 may be formed in the block 12 of the ring laser gyroscope 10 as shown in FIG. 6. This recess 60 receives the foot 50 at the end of the cylindrical wall 44 of the cathode 40 so that a portion 62 of the block 12, encircled by the recess 60, sufficiently extends into the recess 46 in order to reduce or inhibit shorting between the plasma and the inwardly directed toe 52 of the foot 50.
The cathode 40 as described above decreases the sputter rate thereby increasing the sputter life of the ring laser gyroscope 10 by decreasing the current density of the gas ions on the surface of the cathode 40. Accordingly, the sputter rate decreases which traps less gas and thereby increases sputter life.
Certain modifications of the present invention have been discussed above. Other modifications will occur to those practicing in the art of the present invention. For example, the block 12 need not have a triangular shape as shown in
Also, the present invention has been described above particularly in the context of a ring laser gyroscope. However, the present invention may be practiced in the context of other gas discharge tubes such as gas lasers.
Moreover, the present invention has been described above in terms of a cylindrical cathode. However, the present invention also applies to other cathodes such as spherical cathodes, oval cathodes, etc.
Accordingly, the description of the present invention is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details may be varied substantially without departing from the spirit of the invention, and the exclusive use of all modifications which are within the scope of the appended claims is reserved.
Number | Name | Date | Kind |
---|---|---|---|
4158821 | Bresman | Jun 1979 | A |
4320321 | Alexandrov et al. | Mar 1982 | A |
4672624 | Ford | Jun 1987 | A |
4894023 | Hall | Jan 1990 | A |
4896816 | Lascar et al. | Jan 1990 | A |
5248636 | Davis et al. | Sep 1993 | A |
5308575 | Ford | May 1994 | A |
5422272 | Papp et al. | Jun 1995 | A |
5885280 | Nettekoven et al. | Mar 1999 | A |
5960025 | Thorland et al. | Sep 1999 | A |
6072580 | Barnes et al. | Jun 2000 | A |
6089885 | Nickel | Jul 2000 | A |
6232863 | Skinner et al. | May 2001 | B1 |
6305071 | Van Zeeland | Oct 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20020186740 A1 | Dec 2002 | US |