Electrode with redundant impedance reduction

Information

  • Patent Grant
  • 12226213
  • Patent Number
    12,226,213
  • Date Filed
    Tuesday, August 9, 2022
    2 years ago
  • Date Issued
    Tuesday, February 18, 2025
    3 months ago
Abstract
An electrode assembly that includes an electrically conductive layer, a first impedance reduction system, and a second impedance reduction system. The electrically conductive layer forms an electrode portion of the electrode assembly and a first surface to be placed adjacent a person's skin. The first impedance reduction system is configured to dispense a first amount of an electrically conductive gel onto the first surface of the electrically conductive layer in response to a first activation signal. The second impedance reduction system is configured to dispense a second amount of the electrically conductive gel onto the first surface of the electrically conductive layer in response to a second activation signal.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention is directed to medical electrodes, and more particularly, to a medical electrode with redundant impedance reduction systems that may be used with a wearable medical device, such as a defibrillator.


2. Discussion of Related Art

Cardiac arrest and other cardiac health ailments are a major cause of death worldwide. Various resuscitation efforts aim to maintain the body's circulatory and respiratory systems during cardiac arrest in an attempt to save the life of the victim. The sooner these resuscitation efforts begin, the better the victim's chances of survival. These efforts are expensive and have a limited success rate, and cardiac arrest, among other conditions, continues to claim the lives of victims.


To protect against cardiac arrest and other cardiac health ailments, some at-risk patients may use a wearable defibrillator, such as the LifeVest® wearable cardioverter defibrillator available from Zoll Medical Corporation of Chelmsford, Massachusetts. To remain protected, the patient wears the device nearly continuously while going about their normal daily activities, while awake, and while asleep.


SUMMARY OF THE INVENTION

In accordance with one aspect of the present invention, an electrode assembly is provided. The electrode assembly comprises an electrically conductive layer that forms an electrode portion of the electrode assembly, a first impedance reduction system, and a second impedance reduction system. The electrically conductive layer has a first surface to be placed adjacent a person's skin. The first impedance reduction system is configured to dispense a first amount of a first electrically conductive gel onto the first surface of the electrically conductive layer in response to a first activation signal, and the second impedance reduction system is configured to dispense a second amount of a second electrically conductive gel onto the first surface of the electrically conductive layer in response to a second activation signal.


In accordance with one embodiment, the first activation signal and the second activation signal are based upon the same signal. In accordance with another embodiment, the first activation signal is distinct from the second activation signal.


In accordance with an aspect of the present invention, the second impedance reduction system is configured to dispense the second amount of the second electrically conductive gel onto the first surface of the electrically conductive layer in response to the second activation signal and independent of whether the first impedance reduction system dispenses the first amount of the first electrically conductive gel on the first surface of the electrically conductive layer in response to the first activation signal.


In accordance with one embodiment, the first impedance reduction system is similar in construction to the second impedance reduction system.


In accordance with one embodiment, the electrically conductive layer has a plurality of apertures formed there through, the plurality of apertures including a first plurality of apertures and a second plurality of apertures. In accordance with this embodiment, the first impedance reduction system is configured to dispense the first amount of the first electrically conductive gel through the first plurality of apertures and onto the first surface of the electrically conductive layer in response to the first activation signal, and the second impedance reduction system is configured to dispense the second amount of the second electrically conductive gel through the second plurality of apertures and onto the first surface of the electrically conductive layer in response to the second activation signal. In one embodiment, the first electrically conducting gel and the second electrically conducting gel are the same type of electrically conducting gel.


In accordance with another aspect of the present invention, an electrode assembly is provided. The electrode assembly comprises an electrically conductive layer, a first plurality of gel reservoirs, a second plurality of gel reservoirs, a first fluid channel, a second fluid channel, a first fluid pressure source, and a second fluid pressure source. The electrically conductive layer has a plurality of apertures formed therein, the plurality of apertures including a first plurality of apertures and a second plurality of apertures. The first plurality of gel reservoirs each contain a first electrically conductive gel, each respective gel reservoir of the first plurality of gel reservoirs having an outlet to fluidly communicate with a respective aperture of the first plurality of apertures. The second plurality of gel reservoirs each contain a second electrically conductive gel, each respective gel reservoir of the second plurality of gel reservoirs having an outlet to fluidly communicate with a respective aperture of the second plurality of apertures. The first fluid channel is in fluid communication with each of the first plurality of gel reservoirs, and the second fluid channel is in fluid communication with each of the second plurality of gel reservoirs. The first fluid pressure source is in fluid communication with the first fluid channel and configured to receive a first activation signal and force a first fluid under pressure into the first fluid channel in response to the first activation signal, and the second fluid pressure source is in fluid communication with the second fluid channel and configured to receive a second activation signal and force a second fluid under pressure into the second fluid channel in response to the second activation signal.


In accordance with one embodiment, the outlet of each of the first plurality of gel reservoirs and the outlet of each of the second plurality of gel reservoirs is sealed by a membrane that is constructed to rupture in response to the pressure of the first fluid and the second fluid, respectively.


In accordance with one embodiment, the first activation signal and the second activation signal are based upon the same signal. In another embodiment, the first activation signal is distinct from the second activation signal.


In accordance with another aspect of the present invention, an electrode assembly is provided that comprises at least one ECG sensing electrode, a therapy electrode, a first impedance reduction system and a second impedance reduction system. The at least one ECG sensing electrode is configured to monitor an ECG signal of a patient and the therapy electrode is configured to deliver a defibrillating shock to the patient. The first impedance reduction system is configured to reduce an impedance between the therapy electrode and the patient in response to a first activation signal, and the second impedance reduction system is configured to reduce the impedance between the therapy electrode and the patient in response to a second activation signal. In accordance with one embodiment, the at least one ECG sensing electrode is electrically insulated from the therapy electrode.


In accordance with one embodiment, the at least one ECG sensing electrode includes a plurality of ECG sensing electrodes. In accordance with a further aspect of this embodiment, each of the plurality of ECG sensing electrodes is electrically insulated from the therapy electrode.


In accordance with one embodiment, the electrode assembly further comprises at least one additional sensor configured to monitor a physiological parameter of the patient that is other than the ECG signal of the patient.


In accordance with one embodiment, the first activation signal and the second activation signal are based upon the same signal, and the first impedance reduction system is similar in construction to the second impedance reduction system.


In accordance with one embodiment, the therapy electrode includes an electrically conductive layer having a first surface to be placed adjacent a person's skin and a plurality of apertures formed through the electrically conductive layer. The plurality of apertures includes a first plurality of apertures and a second plurality of apertures. The first impedance reduction system is configured to dispense a first amount of a first electrically conductive gel through the first plurality of apertures and onto the first surface of the electrically conductive layer in response to the first activation signal, and the second impedance reduction system is configured to dispense a second amount of a second electrically conductive gel through the second plurality of apertures and onto the first surface of the electrically conductive layer in response to the second activation signal.


In accordance with another aspect of the present invention, a method of reducing impedance between an electrode and a patient's skin is provided. The method comprises acts of sending a first activation signal to a first impedance reduction system configured to dispense a first amount of a first electrically conducting gel onto a surface of the electrode that is configured to be disposed adjacent the patient's skin, and sending a second activation signal to a second impedance reduction system configured to dispense a second amount of a second electrically conducting gel onto the surface of the electrode that is configured to be disposed adjacent the patient's skin, the second impedance reduction system being distinct from the first impedance reduction system.


In accordance with one embodiment, the method further comprises an act of determining whether the first impedance reduction system dispensed the first amount of the first electrically conducting gel onto the surface of the electrode, wherein the act of sending the second activation signal to the second impedance reduction system is performed in response to a determination that the first impedance reduction system did not dispense the first amount of the first electrically conducting gel onto the surface of the electrode. In accordance with one embodiment, the act of sending the second activation signal is performed subsequent to the act of sending the first activation signal. In an alternative embodiment, the act of sending the second activation signal is performed substantially simultaneously with the act sending the first activation signal.


Still other aspects, embodiment, and advantages of these exemplary aspects and embodiments are discussed in detail below. Moreover, it is to be understood that both the foregoing information and the following detailed description are merely illustrative examples of various aspects and embodiments of the present invention, and are intended to provide an overview or framework for understanding the nature and character of the claimed aspects and embodiments. Any embodiment disclosed herein may be combined with any other embodiment in any manner consistent with aspects of the present invention disclosed herein, and references to “an embodiment,” “some embodiments,” “an alternate embodiment,” “various embodiments,” “one embodiment,” “at least one embodiment,” “this and other embodiments” or the like are not necessarily mutually exclusive and are intended to indicate that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment. The appearance of such terms herein is not necessarily all referring to the same embodiment.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:



FIG. 1 illustrates a wearable medical device, such as a wearable defibrillator;



FIG. 2a is a plan view of an electrode portion of a therapy electrode assembly that may be used with the wearable medical device illustrated in FIG. 1;



FIG. 2b is a functional block diagram of an impedance reduction system that may be included in the electrode portion of FIG. 2a;



FIG. 3 is a functional block diagram of a redundant impedance reduction system in accordance with an aspect of the present invention;



FIG. 4 is a schematic diagram of an electrode assembly that includes ECG sensing electrodes, a therapy electrode, and redundant impedance reduction systems in accordance with another aspect of the present invention; and



FIG. 5 illustrates the manner in which the electrode assembly of FIG. 4 may be worn on the body of a patient.





DETAILED DESCRIPTION

This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.



FIG. 1 illustrates a wearable medical device, such as a LifeVest® wearable cardioverter defibrillator available from Zoll Medical Corporation of Chelmsford, Massachusetts. As shown, the wearable medical device 100 includes a harness 110 having a pair of shoulder straps and a belt that is worn about the torso of a patient. The harness 110 is typically made from a material, such as cotton, that is breathable, and unlikely to cause skin irritation, even when worn for prolonged periods of time. The wearable medical device 100 includes a plurality of ECG sensing electrodes 112 that are attached to the harness 110 at various positions about the patient's body and electrically coupled to a control unit 120 via a connection pod 130. The plurality of ECG sensing electrodes 112, which may be dry-sensing capacitance electrodes, are used by the control unit 120 to monitor the cardiac function of the patient and generally include a front/back pair of ECG sensing electrodes and a side/side pair of ECG sensing electrodes. Additional ECG sensing electrodes may be provided, and the plurality of ECG sensing electrodes 112 may be disposed at varying locations about the patient's body.


The wearable medical device 100 also includes a plurality of therapy electrodes 114 that are electrically coupled to the control unit 120 via the connection pod 130 and which are capable of delivering one or more therapeutic defibrillating shocks to the body of the patient, if it is determined that such treatment is warranted. As shown, the plurality of therapy electrodes 114 includes a first therapy electrode 114a that is disposed on the front of the patient's torso and a second therapy electrode 114b that is disposed on the back of the patient's torso. The second therapy electrode 114b includes a pair of therapy electrodes that are electrically coupled together and act as the second therapy electrode 114b. The use of two therapy electrodes 114a, 114b permits a biphasic shock to be delivered to the body of the patient, such that a first of the two therapy electrodes can deliver a first phase of the biphasic shock with the other therapy electrode acting as a return, and the other therapy electrode can deliver the second phase of the biphasic shock with the first therapy electrode acting as the return. The connection pod 130 electrically couples the plurality of ECG sensing electrodes 112 and the plurality of therapy electrodes 114 to the control unit 120, and may include electronic circuitry. For example, in one implementation the connection pod 130 includes signal acquisition circuitry, such as a plurality of differential amplifiers to receive ECG signals from different ones of the plurality of ECG sensing electrodes 112 and to provide a differential ECG signal to the control unit 120 based on the difference therebetween. The connection pod 130 may also include other electronic circuitry, such as a motion sensor or accelerometer by which patient activity may be monitored.


As shown in FIG. 1, the wearable medical device 100 also includes a user interface pod 140 that is electrically coupled to the control unit 120. The user interface pod 140 can be attached to the patient's clothing or to the harness 110, for example, via a clip (not shown) that is attached to a portion of the interface pod 140. Alternatively, the user interface pod 140 may simply be held in a person's hand. In some embodiments, the user interface pod 140 may communicate wirelessly with the control unit 120, for example, using a Bluetooth®, Wireless USB, ZigBee, Wireless Ethernet, GSM, or other type of communication interface. The user interface pod 140 typically includes a number a number of buttons by which the patient, or a bystander can communicate with the control unit 120, and a speaker by which the control unit 120 may communicate with the patient or the bystander. For example, where the control unit 120 determines that the patient is experiencing cardiac arrhythmia, the control unit 120 may issue an audible alarm via a loudspeaker (not shown) on the control unit 120 and/or the user interface pod 140 alerting the patient and any bystanders to the patient's medical condition. The control unit 120 may also instruct the patient to press and hold one or more buttons on the control unit 120 or on the user interface pod 140 to indicate that the patient is conscious, thereby instructing the control unit 120 to withhold the delivery of one or more therapeutic defibrillating shocks. If the patient does not respond, the device may presume that the patient is unconscious, and proceed with the treatment sequence, culminating in the delivery of one or more defibrillating shocks to the body of the patient. In some embodiments, the functionality of the user interface pod 140 may be integrated into the control unit 120.


The control unit 120 generally includes at least one processor, microprocessor, or controller, such as a processor commercially available from companies such as Texas Instruments, Intel, AMD, Sun, IBM, Motorola, Freescale and ARM Holdings. In one implementation, the at least one processor includes a power conserving processor arrangement that comprises a general purpose processor, such as an Intel® PXA270 processor and a special purpose processor, such as a Freescale™ DSP56311 Digital Signal Processor. Such a power conserving processor arrangement is described in co-pending application Ser. No. 12/833,096, entitled SYSTEM AND METHOD FOR CONSERVING POWER IN A MEDICAL DEVICE, filed Jul. 9, 2010 (hereinafter the “'096 application”) which is incorporated by reference herein in its entirety. The at least one processor of the control unit 120 is configured to monitor the patient's medical condition, to perform medical data logging and storage, and to provide medical treatment to the patient in response to a detected medical condition, such as cardiac arrhythmia. Although not shown, the wearable medical device 100 may include additional sensors, other than the ECG sensing electrodes 112, capable of monitoring the physiological condition or activity of the patient. For example, sensors capable of measuring blood pressure, heart rate, thoracic impedance, pulse oxygen level, respiration rate, heart sounds, and the activity level of the patient may also be provided.


As discussed above, to provide protection against cardiac arrest, patients that use a wearable medical device, such as a wearable defibrillator, generally wear the device nearly continuously while they are awake and while they are asleep. Because the wearable medical device is worn nearly continuously, dry electrodes are typically used for both the plurality of ECG sensing electrodes 112 and the plurality of therapy electrodes 114 for comfort and to prevent irritation of the patient's skin. Where it is determined that one or more defibrillating shocks are to be delivered to the body of the patient and the patient is non-responsive, the control unit 120 sends a signal to the plurality of therapy electrodes 114 causing them to release an impedance reducing gel prior to delivery of one or more defibrillating shocks. The impedance reducing gel reduces the impedance between the conductive surface of the therapy electrodes and the patient's skin, thereby improving the efficiency of the energy delivered to the patient and reducing the chance of damage (e.g., in the form of burning, reddening, or other types of irritation) to the patient's skin.



FIG. 2a is a plan view of an electrode portion of a therapy electrode assembly that includes an impedance reduction system and which may be used with a wearable medical device, such as the wearable defibrillator described above with respect to FIG. 1. FIG. 2b is a functional block diagram of the impedance reduction system that is included in the electrode portion of the therapy electrode assembly shown in FIG. 2a. The impedance reduction system, when activated, dispenses an impedance reducing (i.e., electrically conductive) gel onto the exposed surface of the electrode portion of the therapy electrode assembly that, in use, is placed most proximate to the patient's body. The electrode portion 200 is a multiple layer laminated structure that includes an electrically conductive layer (not visible in FIG. 2a, but disposed adjacent the bottom surface of the electrode portion 200 shown in FIG. 2a) that forms the electrode and an impedance reduction system 201. In use, the electrically conductive layer is disposed adjacent the patient's skin, although the conductive layer need not make direct contact with the patient, as portions of the harness 110 (FIG. 1) and/or portions of the patient's clothing may be present between the electrically conductive layer and the patient's skin. As shown in FIG. 2a, the impedance reduction system 201 is disposed on a side of the electrode portion 200 (i.e., the top-side shown in FIG. 2a) that is opposite the side on which the conductive layer is formed.


The impedance reduction system 201 includes a plurality of conductive gel reservoirs 210, each of which has a respective gel delivery outlet 220, that are fluidly coupled to a fluid channel 230, and a fluid pressure source 240. The fluid pressure source 240 is fluidly coupled to the fluid channel 230, and when activated by an activation signal, forces a fluid, such as Nitrogen gas, into the channel 230. The hydraulic pressure of the fluid from the activated fluid pressure source 240 in the fluid channel 230 forces the conductive gel stored in each of the plurality of gel reservoirs out of the plurality of gel delivery outlets 220 through apertures formed in the electrically conductive layer and onto the exposed surface of the electrically conductive layer that, in use, is placed most proximate to the patient's body. The apertures in the electrically conductive layer are generally aligned with the plurality of gel delivery outlets 220 so that when activated, the electrically conductive gel is dispensed onto the exposed surface of the electrode portion that is disposed most proximate to the patient's body. Further details regarding the construction of the electrode portion 200 are described in U.S. Pat. No. 5,078,134 (hereinafter “the '134 patent”) which is incorporated herein by reference.


Applicants have appreciated that there may be instances where it would be desirable to have redundancy in the impedance reduction system described above. An electrode that incorporates redundant impedance reduction systems is now described with respect to FIGS. 3-5 below.



FIG. 3 is a functional block diagram of a redundant impedance reduction system that may be incorporated in an electrode assembly in accordance with an aspect of the present invention. As shown, the redundant impedance reduction system 300 includes at least two independent impedance reduction systems 301, 302 similar in construction and operation to that described previously with respect to FIGS. 2a and 2b. Although only two impedance reduction systems 301, 302 are shown in FIG. 3, it should be appreciated that additional impedance reduction systems may be provided.


As shown, a first impedance reduction system 301 of the at least two impedance reduction systems 301, 302 includes a first plurality of gel reservoirs 310a, each containing an electrically conductive gel, with each respective gel reservoir including a gel delivery outlet 320a. Each of the first plurality of gel reservoirs 310a is fluidly coupled to a first fluid channel 330a that is, in turn, fluidly coupled to a first fluid pressure source 340a. The first fluid pressure source 340a has an input 341a to receive a first electrical activation signal and a fluid outlet 342a that is fluidly coupled to the first fluid channel 330a. A rupturable membrane and/or a filter (not shown) may be positioned between the fluid outlet 342a and the first fluid channel 330a as described in the '134 patent. As described in the '134 patent, the first fluid pressure source 340a may include a gas generating cartridge that ignites a chemical pellet (such as a Lead Styphnate igniter and a gas generating mixture of Ammonium Dichromate and Nitroguanidine) that rapidly decomposes and generates quantities of a gas, such as Nitrogen. It should be appreciated that other types of fluid pressure sources may be used, as the present invention is not limited to any particular type of fluid pressure source.


In response to the first activation signal received at the input 341a of the first fluid pressure source 340a, a fluid, such as Nitrogen gas, is forced into the first fluid channel 330a and then into each of the first plurality of gel reservoirs 310a. The hydraulic pressure of the fluid flowing into each of the first plurality of gel reservoirs 310a forces the electrically conductive gel contained in each gel reservoir toward its respective gel delivery outlet 320a, thereby fracturing a membrane separating the gel delivery outlet from a respective aperture formed in the electrically conductive layer of the electrode portion.


The second impedance reduction system 302 of the at least two impedance reduction systems 301, 302 is similar to the first impedance reduction system 301 and includes a second plurality of gel reservoirs 310b, each containing an electrically conductive gel, with each respective gel reservoir including a gel delivery outlet 320b. The electrically conductive gel contained in the second plurality of gel reservoirs 310b may, but need not, be the same type of gel as that contained in the first plurality of gel reservoirs 310a. For example, the electrically conductive gel contained in the second plurality of gel reservoirs 310b may have a different color, or have a longer drying time than the gel contained in the first plurality of gel reservoirs 310a. Each of the plurality of gel reservoirs 310b is fluidly coupled to a second fluid channel 330b that is, in turn, fluidly coupled to a second fluid pressure source 340b. The second fluid pressure source 340b has an input 341b to receive a second electrical activation signal and a fluid outlet 342b that is fluidly coupled to the second fluid channel 330b. The second fluid pressure source 340b may similar in construction to the first fluid source 340a described above.


As shown in FIG. 3, the input 341a of the first fluid pressure source 340a may be electrically connected to the input 341b of the second fluid pressure source, such that a single activation signal activates each of the at least two impedance reduction systems 301, 302 substantially simultaneously. Should one of the redundant impedance reduction systems 301, 302 fail to operate (either partially or completely), the other can still operate to dispense conductive gel onto the exposed surface of the electrode. The activation signal provided to the input 341a of the first fluid pressure source 340a may be provided by the control unit 120 (FIG. 1) to the first fluid pressure source 340a using an electrical conductor that is physically distinct from that which provides the activation signal to the input 341b of the second fluid pressure source 340b to permit further redundancy, for example, should one of the electrical conductors be damaged. Alternatively, a single electrical conductor may be provided between the control unit 120 and the electrode assembly, with the single electrical conductor being connected to both the input 341a of the first fluid pressure source 340a and the input 341b of the second fluid pressure source 340b.


It should be appreciated that each of the first and second pressure sources 340a, 340b may alternatively receive separate activation signals, as the present invention is not limited to receiving a single activation signal. The separate activation signals may be sent, for example by the control unit 120, to each of the first fluid pressure source 340a and the second fluid pressure source 340b at substantially the same time, or at different times. For example, a first activation signal may be provided to the input 341a of the first fluid pressure source 340a at a first time, and a second activation signal may be provided to the input 341b of the second fluid pressure source 340b at a second time that is subsequent to the first time. In accordance with one embodiment, the control unit 120 (FIG. 1) may send the first activation signal to the first fluid pressure source 340a at a first time, and send the second activation signal to the second fluid pressure source 340b at a second and subsequent time where it is determined that the first impedance reduction system 301 failed to operate. Alternatively, the second activation signal may be sent to the second fluid pressure source 340b at a second and subsequent time even where activation of the first fluid pressure source 340a is successful. Such a subsequent activation of the second fluid pressure source 340b would permit a second deployment of conductive gel onto the exposed surface of the electrode and permit the electrode to maintain a high conductivity with the patient for a longer period of time than if both impedance reduction systems 301, 302 were activated at substantially the same time.



FIG. 4 illustrates an electrode assembly that combines one or more ECG sensing electrodes, a therapy electrode, and redundant impedance reduction systems in a single integrated electrode assembly in accordance with a further aspect of the present invention. As shown, the electrode assembly 400 includes a pair of ECG sensing electrodes 412a, 412b for monitoring the cardiac function of a patient. The electrode assembly 400 further includes a therapy electrode 414, and at least two impedance reduction systems 301, 302, similar to those described previously with respect to FIG. 3. The pair of ECG sensing electrodes 412a, 412b may be electrically separated from the therapy electrode 414, for example, by an insulator. It should be appreciated that in other embodiments, the electrode assembly 400 may include only a single ECG sensing electrode, while in other embodiments, more than two ECG sensing electrodes may be provided. In such alternative embodiments, the number and placement of ECG sensing electrodes and may vary from that shown in FIG. 4. In yet a further embodiment, the integrated electrode assembly can include additional sensors 416, other than the one or more ECG sensing electrodes and the therapy electrode, that are capable of monitoring other physiological parameters of a patient, such as blood pressure, heart rate, thoracic impedance, pulse oxygen level, respiration rate, heart sounds, etc.


The electrode assembly 400 may be worn on the patient's body such that one of the pair of ECG sensing electrodes 412a, 412b is disposed approximately in the center of the patient's torso, and the other of the pair of ECG sensing electrodes 412a, 412b is disposed on the side of the patient's torso. For example, as shown in FIG. 5, the electrode assembly 400 may be worn on the front of the patient's torso, so that the ECG sensing electrode 412a is disposed approximately in the center of the patient's chest, and the other ECG sensing electrode 412b is disposed on the patient's side. A second electrode assembly 400′ may be worn on the back of the patient's torso to provide a second pair of ECG sensing electrodes 412a′, 412b′, so that one of the ECG sensing electrodes (e.g., ECG sensing electrode 412a′) of the second pair of ECG sensing electrodes 400′ is disposed approximately in the center of the patient's back, and the other ECG sensing electrode (e.g., ECG sensing electrode 412b′) of the second pair of ECG sensing electrodes 400′ is disposed on the patient's side opposite the other ECG sensing electrode (e.g., ECG sensing electrode 412b) of the first pair of ECG sensing electrodes 412a, 412b, as shown in FIG. 5. Such an arrangement provides a front-to-back pairing of ECG sensing electrodes (e.g., 412a, 412a′) and a side-to-side pairing of ECG sensing electrodes (e.g., 412b, 412b′). It should be appreciated that other placements for the first electrode assembly 400 and the second electrode assembly 400′ may alternatively be used. For example, the first electrode assembly 400 may be placed on one side of the patient's torso, and the second electrode assembly 400′ placed on the other side of the patient's torso to provide side-to-side pairings of ECG sensing electrodes.


Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.

Claims
  • 1. A medical device for reducing impedance prior to cardiac shock treatment, comprising: an electrode assembly including an electrically conductive layer that forms an electrode portion of the electrode assembly and has a first surface to be placed adjacent a person's skin; anda control unit configured to send a first signal to the electrode assembly at a first time to cause the electrode assembly to dispense a first amount of an electrically conductive gel onto a surface of the electrically conductive layer in response to a determination that cardiac shock treatment comprising one or more defibrillating shocks are to be delivered to the person, andto send a second signal to the electrode assembly to cause the electrode assembly to dispense an additional amount of the electrically conductive gel onto the surface of the electrically conductive layer;wherein the second signal is sent at a second time subsequent to the first time, andwherein the additional amount of the electrically conductive gel is dispensed subsequent to dispensing the first amount of the electrically conducting gel.
  • 2. The device of claim 1, wherein dispensing the additional amount of the electrically conductive gel maintains conductivity between the first surface and the person for a longer period of time than if only the first amount of electrically conductive gel was dispensed.
  • 3. The device of claim 1, wherein the electrically conductive layer includes a plurality of apertures, and wherein the first amount of electrically conducting gel and the additional amount of the electrically conducting gel are dispensed onto the surface of the electrically conductive layer through the plurality of apertures.
  • 4. The device of claim 1, further comprising a first plurality of gel reservoirs from which the first amount of electrically conducting gel is dispensed, and a second plurality of gel reservoirs from which the additional amount of electrically conducting gel is dispensed.
  • 5. The device of claim 1, further comprising one or more pressure sources configured to deliver a pressurized fluid to cause a plurality of gel reservoirs to dispense the first amount and/or the additional amount of the electrically conducting gel.
  • 6. The device of claim 1, further comprising an electrical conductor configured to provide the first and second signals from the control unit to one or more pressure sources.
  • 7. The device of claim 6, wherein the electrically conductive layer includes a plurality of apertures, and wherein the first amount of electrically conducting gel and the additional amount of the electrically conducting gel are dispensed onto the surface of the electrically conductive layer through the plurality of apertures.
  • 8. The device of claim 6, further comprising a first plurality of gel reservoirs from which the first amount of electrically conducting gel is dispensed, and a second plurality of gel reservoirs from which the additional amount of electrically conducting gel is dispensed.
  • 9. The device of claim 6, wherein the one or more pressure sources are configured to deliver a pressurized fluid to cause a plurality of gel reservoirs to dispense the first amount and/or the additional amount of the electrically conducting gel.
  • 10. The device of claim 6, configured to be disposed within a wearable medical device to be worn on the person's torso.
  • 11. The device of claim 6, wherein the electrode assembly further includes an ECG sensor.
  • 12. The device of claim 6, wherein the electrode assembly further includes a sensor configured to measure a physiological parameter of the patient other than ECG.
  • 13. A medical device for reducing impedance prior to cardiac shock treatment, comprising: an electrode assembly including an electrically conductive layer that forms an electrode portion of the electrode assembly and has a first surface to be placed adjacent a person's skin; anda control unit configured to send a first signal to the electrode assembly at a first time causing the electrode assembly to dispense a first amount of an electrically conductive gel onto the first surface of the electrically conductive layer when it is determined that cardiac shock treatment comprising one or more defibrillating shocks are to be delivered to the person and to send a second signal at a second time subsequent to the first time to the electrode assembly to cause the electrode assembly to dispense a second amount of the electrically conductive gel onto the first surface of the electrically conductive layer responsive to a failure of the first amount of electrically conductive gel to be dispensed.
  • 14. The device of claim 13, wherein the electrically conductive layer includes a plurality of apertures, and wherein the first amount of electrically conducting gel and the second amount of the electrically conducting gel are dispensed onto the first surface of the electrically conductive layer through the plurality of apertures.
  • 15. The device of claim 13, further comprising a first plurality of gel reservoirs from which the first amount of electrically conducting gel is dispensed, and a second plurality of gel reservoirs from which the second amount of electrically conducting gel is dispensed.
  • 16. The device of claim 13, further comprising one or more pressure sources configured to deliver a pressurized fluid to cause a plurality of gel reservoirs to dispense the first amount and/or the second amount of the electrically conducting gel.
  • 17. The device of claim 16, further comprising an electrical conductor configured to provide the first and second signals from the control unit to the one or more pressure sources.
  • 18. The device of claim 13, configured to be disposed within a wearable medical device to be worn on the person's torso.
  • 19. The device of claim 13, wherein the electrode assembly further includes an ECG sensor.
  • 20. The device of claim 19, wherein the electrode assembly further includes a sensor configured to measure a physiological parameter of the patient other than ECG.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 120 as a continuation of U.S. application Ser. No. 15/967,697 titled “ELECTRODE WITH REDUNDANT IMPEDANCE REDUCTION” filed May 1, 2018, now U.S. Pat. No. 11,439,335, which claims the benefit of 35 U.S.C. § 120 as a continuation of U.S. application Ser. No. 14/690,116 titled “ELECTRODE WITH REDUNDANT IMPEDANCE REDUCTION” filed Apr. 17, 2015, now U.S. Pat. No. 9,987,481, which claims the benefit under 35 U.S.C. § 120 as a continuation of U.S. application Ser. No. 13/849,751 titled “ELECTRODE WITH REDUNDANT IMPEDANCE REDUCTION” filed Mar. 25, 2013, now U.S. Pat. No. 9,037,271, which claims the benefit under 35 U.S.C. § 120 as a continuation of U.S. application Ser. No. 13/315,937 titled “ELECTRODE WITH REDUNDANT IMPEDANCE REDUCTION” filed Dec. 9, 2011, now U.S. Pat. No. 8,406,842, which claims priority under 35 U.S.C. § 120 as a continuation of International Patent Application Serial No. PCT/US2011/063931, titled “ELECTRODE WITH REDUNDANT IMPEDANCE REDUCTION” filed Dec. 8, 2011, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 61/421,283 titled “ELECTRODE WITH REDUNDANT IMPEDANCE REDUCTION” filed Dec. 9, 2010. U.S. application Ser. No. 13/315,937 titled “ELECTRODE WITH REDUNDANT IMPEDANCE REDUCTION” filed Dec. 9, 2011, also claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 61/421,283 titled “ELECTRODE WITH REDUNDANT IMPEDANCE REDUCTION” filed Dec. 9, 2010.

US Referenced Citations (123)
Number Name Date Kind
3467863 Karsh Sep 1969 A
4058127 Buchalter Nov 1977 A
4094310 McEachern et al. Jun 1978 A
4464412 Washburn Aug 1984 A
4632122 Johansson et al. Dec 1986 A
4928690 Heilman et al. May 1990 A
4978926 Zerod et al. Dec 1990 A
5062834 Gross et al. Nov 1991 A
5078134 Heilman et al. Jan 1992 A
5080097 Eisenberg Jan 1992 A
5348008 Bomn et al. Sep 1994 A
5365932 Greenhut Nov 1994 A
5472453 Alt Dec 1995 A
5662689 Elsberry et al. Sep 1997 A
5718242 McClure et al. Feb 1998 A
5738102 Lemelson Apr 1998 A
5741306 Glegyak et al. Apr 1998 A
5758443 Pedrazzini Jun 1998 A
5792190 Olson et al. Aug 1998 A
5929601 Kaib et al. Jul 1999 A
5944669 Kaib Aug 1999 A
6016445 Baura Jan 2000 A
6065154 Hulings et al. May 2000 A
6097982 Glegyak et al. Aug 2000 A
6097987 Milani Aug 2000 A
6169397 Steinbach et al. Jan 2001 B1
6253099 Oskin et al. Jun 2001 B1
6280461 Glegyak et al. Aug 2001 B1
6390996 Halperin et al. May 2002 B1
6681003 Linder et al. Jan 2004 B2
6690969 Bystrom et al. Feb 2004 B2
6804554 Ujhelyi et al. Oct 2004 B2
6827695 Palazzolo et al. Dec 2004 B2
6908437 Bardy Jun 2005 B2
6990373 Jayne et al. Jan 2006 B2
7149579 Koh et al. Dec 2006 B1
7206630 Tarler Apr 2007 B1
7220235 Geheb et al. May 2007 B2
7340296 Stahmann et al. Mar 2008 B2
7453354 Reiter et al. Nov 2008 B2
7488293 Marcovecchio et al. Feb 2009 B2
7831303 Rueter et al. Nov 2010 B2
7970451 Hassonjee et al. Jun 2011 B2
7974689 Volpe et al. Jul 2011 B2
8121683 Bucher et al. Feb 2012 B2
8140154 Donnelly et al. Mar 2012 B2
8271082 Donnelly et al. Sep 2012 B2
8406842 Kaib et al. Mar 2013 B2
8880196 Kaib Nov 2014 B2
9008801 Kaib et al. Apr 2015 B2
9037271 Kaib et al. May 2015 B2
9132267 Kaib Sep 2015 B2
9272131 Kaib Mar 2016 B2
9987481 Kaib et al. Jun 2018 B2
20030004547 Owen et al. Jan 2003 A1
20030095648 Kaib et al. May 2003 A1
20030158593 Heilman et al. Aug 2003 A1
20030174049 Beigel et al. Sep 2003 A1
20030195567 Jayne et al. Oct 2003 A1
20030212311 Nova et al. Nov 2003 A1
20030212319 Magill Nov 2003 A1
20050049515 Misczynski et al. Mar 2005 A1
20050131465 Freeman et al. Jun 2005 A1
20050136077 Yahiaoui et al. Jun 2005 A1
20060036292 Smith et al. Feb 2006 A1
20060085049 Cory et al. Apr 2006 A1
20060270952 Freeman et al. Nov 2006 A1
20070118056 Wang et al. May 2007 A1
20070161913 Farrell et al. Jul 2007 A1
20070169364 Townsend et al. Jul 2007 A1
20070239220 Greenhut et al. Oct 2007 A1
20070265671 Roberts et al. Nov 2007 A1
20080000006 Ochoa et al. Jan 2008 A1
20080004536 Baxi et al. Jan 2008 A1
20080030656 Watson et al. Feb 2008 A1
20080033495 Kumar Feb 2008 A1
20080045815 Derchak et al. Feb 2008 A1
20080046015 Freeman et al. Feb 2008 A1
20080058884 Matos Mar 2008 A1
20080249591 Gaw et al. Oct 2008 A1
20080306560 Macho et al. Dec 2008 A1
20090073991 Landrum et al. Mar 2009 A1
20090076336 Mazar et al. Mar 2009 A1
20090076340 Libbus et al. Mar 2009 A1
20090076341 James et al. Mar 2009 A1
20090076342 Amurthur et al. Mar 2009 A1
20090076343 James et al. Mar 2009 A1
20090076344 Libbus et al. Mar 2009 A1
20090076345 Manicka et al. Mar 2009 A1
20090076346 James et al. Mar 2009 A1
20090076348 Manicka et al. Mar 2009 A1
20090076349 Libbus et al. Mar 2009 A1
20090076350 Bly et al. Mar 2009 A1
20090076363 Bly et al. Mar 2009 A1
20090076364 Libbus et al. Mar 2009 A1
20090076397 Libbus et al. Mar 2009 A1
20090076405 Amurthur et al. Mar 2009 A1
20090076410 Libbus et al. Mar 2009 A1
20090076559 Libbus et al. Mar 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090138059 Ouwerkerk May 2009 A1
20090234410 Libbus et al. Sep 2009 A1
20090264792 Mazar Oct 2009 A1
20090275848 Brockway et al. Nov 2009 A1
20090287120 Ferren et al. Nov 2009 A1
20090292194 Libbus et al. Nov 2009 A1
20100056881 Libbus et al. Mar 2010 A1
20100069735 Berkner Mar 2010 A1
20100076513 Warren et al. Mar 2010 A1
20100234716 Engel Sep 2010 A1
20100298899 Donnelly et al. Nov 2010 A1
20110028822 Beck Feb 2011 A1
20110288604 Kaib et al. Nov 2011 A1
20110288605 Kaib et al. Nov 2011 A1
20110312644 Silverbrook et al. Dec 2011 A1
20120011382 Volpe et al. Jan 2012 A1
20120112903 Kaib et al. May 2012 A1
20120146797 Oskin et al. Jun 2012 A1
20120150008 Kaib et al. Jun 2012 A1
20120158075 Kaib et al. Jun 2012 A1
20130144357 Forward Jun 2013 A1
20140213875 Freeman et al. Jul 2014 A1
20180256889 Kaib et al. Sep 2018 A1
Foreign Referenced Citations (10)
Number Date Country
2644236 Apr 1978 DE
00339471 Nov 1989 EP
0295497 Sep 1993 EP
0335356 Mar 1996 EP
1455640 Jan 2008 EP
1720446 Jul 2010 EP
5115450 May 1993 JP
200002484 Jan 2000 WO
2004054656 Jul 2004 WO
2008116822 Oct 2008 WO
Non-Patent Literature Citations (6)
Entry
American Journal of Respiratory and Critical Care Medicine, vol. 166, pp. 111-117 (2002), American Thoracic Society, ATS Statement: Guidelines for the Six-Minute Walk Test, available at http://ajrccm.atsjournals.org/cgi/content/full/166/1/111.
DeBock, et al., “Captopril treatment of chronic heart failure in the very old,” J. Gerontol. (1994) 49: M148-M152.
Extended European Search Report from corresponding European Application No. 14760986.1 dated Nov. 8, 2016.
International Search Report issued for PCT/US2011/063931 dated Aug. 23, 2012, pp. 1-3.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority from corresponding PCT/US2014/01730 dated May 15, 2014.
O'Keeffe et al., “Reproducability and responsiveness of quality of life assessment and six minute walk test in elderly heart failure patients,” Heart (1998) 80: 377-382.
Related Publications (1)
Number Date Country
20220379107 A1 Dec 2022 US
Provisional Applications (1)
Number Date Country
61421283 Dec 2010 US
Continuations (5)
Number Date Country
Parent 15967697 May 2018 US
Child 17818465 US
Parent 14690116 Apr 2015 US
Child 15967697 US
Parent 13849751 Mar 2013 US
Child 14690116 US
Parent 13315937 Dec 2011 US
Child 13849751 US
Parent PCT/US2011/063931 Dec 2011 WO
Child 13315937 US