Embodiments of the present invention relate to discharge lamps, in particular electrodeless discharge lamps in which a luminous plasma is generated by RF or microwave energy.
High intensity discharge lamps (HID lamps) are widely employed in lighting thanks to their excellent luminous efficiency and colour rendition. They consist, in many instances, of a transparent envelope containing a gas that is brought in a luminous state by an electric discharge flowing across two electrodes. An electrodeless lamp is a form of discharge lamp in which a transparent bulb, filled with an appropriate composition is heated by Radiofrequency or microwave energy.
Electrodeless lamps tend to exhibit a longer lifetime and maintain better their spectral characteristics along their life than electrode discharge lamps. While requiring a radiofrequency power supply, they use bulbs of very simple structure, without costly glass-metal interfaces. Moreover, the absence of electrodes allows for a much greater variety of light-generating substances to be used than in traditional discharge lamps. Sulphur, Selenium, Tellurium, among others, are a popular fills whose use is limited to electrodeless lamps, because they are not chemically compatible with metal electrodes.
Electrodeless lamps are interesting alternative to conventional HID lamps in general lighting application, and in all fields in which high efficiency and excellent spectral characteristics are called for like photography, movie recording, agriculture, and testing of photovoltaic equipment, among others.
A drawback of conventional electrodeless lamps and of Sulphur lamps in particular, is that the bulb must be kept in rotation to avoid the formation of hot spots that may exceed the maximum operating temperature of the quartz. This increases the cost and size of the lamp and, because the lamp has moving parts, is regarded as a reliability issue.
Several published document describe plasma lamps with special features to suppress the rotation of the bulb. The devices known by U.S. Pat. No. 5,227,698, U.S. Pat. No. 6,476,557, U.S. Pat. No. 6,476,557, U.S. Pat. No. 6,873,119, U.S. Pat. No. 5,367,226, for example, employ special microwaves polarization schemes in order to spin the plasma discharge, or limit the heat of the plasma in proximity of the envelope walls, instead than spinning the bulb. Such schemes are at least partly effective, but require a more complex microwave system. Other documents, like U.S. Pat. No. 6,157,141 propose to address this shortcoming by adding special chemical additives to the fill, but these pose other problems of cost and toxicity. The patent EP1876633 in the name of the applicant relates to a plasma lamp in which the temperature distribution of the plasma is equalized by a resonant ultrasound wave, which is also effective, but needs additional means to generate and maintain this ultrasound wave in the plasma.
In known plasma lamps the microwave energy source is often a magnetron emitting in the open 2.45 GHz band, because such generators are readily available at attractive market prices. The bulb is generally placed in a resonant cavity, connected with the magnetron by a waveguide or another transmission line. The purpose of the cavity is to improve the energy transfer to the plasma without transmitting too much power to the bulb's walls and limit the emission of radiofrequency to the outside. The waveguide separates the very hot bulb from the magnetron and avoid that this may overheat. This introduces however additional costs, and the boundaries of the cavity may interfere with light transmission.
It is an object of the present invention to propose an electrodeless plasma lamp with a stationary bulb in which the temperature of the bulb is managed in a simpler manner than in the know devices.
According to the invention, these aims are achieved by means of the object of the appended claims.
The invention will be better understood with the aid of the description of an embodiment given by way of example and illustrated by the figures, in which:
With reference to the
The bulb is realized in a transparent material capable to withstand the high temperatures and internal pressures that are reached during the functioning of the lamp, and chemically compatible with the fill composition. In a typical realization of the invention the operating temperature of the bulb 21 will be comprised between 600° C. and 900° C., and the internal pressure at operation is comprised between 0.1 MPa and 2 MPa. Fused quartz (also fused silica, SiO2) is a preferred material for the bulb.
According to the desired power, the size of the bulb 21 may vary between 0.5 cm3 and 100 cm3 typically around 10-30 cm3. The shape of the bulb can vary, but the spherical shape is preferred because it offers the best resistance to internal pressure.
The bulb 21 is placed in a light concentrator 51 and in an electromagnetic enclosure of metallic mesh 53. The concentrator 51 has preferably reflective walls, in order to concentrate the light generated in the bulb 22 into a beam of the desired aperture, and is electrically conductive, in order to avoid transmission of the microwaves out of the lamp assembly. The metallic mesh enclosure 53 has the function of confining the radiofrequency field inside lamp and is connected mechanically and electrically to the lamp by any suitable means, for example by the collar 52 visible in
The radiofrequency source is for instance a magnetron tube 41 generating a radiofrequency signal of appropriate intensity, and having a terminal 43 that is provided by the manufacturer to couple the magnetron to a standardised waveguide. Such terminals consist typically in a coaxial transmission line having a central conductor 46 that is closed by a cap with an aperture 44, or in a hollow ¼ wavelength waveguide. The cooling fins 42 are cooled preferably by a flow of forced air from a fan (not shown).
In the lamp of the present invention the bulb 21 is mounted atop a dielectric rod 22 that is in turn welded axially to a quartz socket 25 whose inner dimension correspond to the outer dimension of the microwave terminal 43, so that the latter can fit into the socket 25. Preferably, bulb 21, rod 22, and socket 25 are integrally fabricated in a single piece of fused quartz, but the invention contemplates also variant in which these elements are realized separately, and then assembled together, and are made of any suitable material.
It has been verified that the dimensions of the dielectric rod 22 affect the transfer of energy to the bulb 21. Bulbs in which the rod 22 has a diameter up to 20 mm and a length up to 50 mm have provided satisfactory luminous efficiency and reliability. Preferably, the length of the rod 22 will be between 5 and 50 mm, more preferably between 10 and 25 mm. As to the diameter, it is preferably comprised between 2 mm and 20 mm, more preferably between 4 mm and 15 mm. The invention is not however limited to such dimensions.
The lamp of the invention provides strong light flux, starts up easily, and operates reliably without the need of spinning the bulb to cool it. Without willing to be limited by theory, it is believed that the dielectric rod 22 acts as a dielectric waveguide and channels the microwave energy directly into the inner volume of the bulb 21, thus obviating the absence of a resonant cavity. Electromagnetic losses in the dielectric are rather low, and so is the thermal transmission coefficient of quartz, thus the thermal load on the magnetron is well manageable. It has been found that it is preferable to have a socket slightly longer than the terminal so that an air gap 19 remains between the inner wall of the socket 25 and the terminal 43.
The bulb 21 of
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/059983 | 6/15/2011 | WO | 00 | 1/15/2014 |