1. Field
Example embodiments relate to an electron beam focusing electrode and an electron gun using the same. Particularly, example embodiments relate to an electron beam focusing electrode that reduces a spreading phenomenon of electron beams by passing electron beams radiated from a cathode electrode of the electron gun through a through-hole having a desired and/or predetermined sectional shape, as well as an electron gun including the electron beam focusing electrode.
2. Discussion of the Related Art
In manufacturing a vacuum device for oscillation of microwaves and terahertz waves, an electron gun is used for allowing electron beams to be irradiated onto the device. A conventional electron gun generates an electron beam having a solid or annular section. In order to utilize an electron beam having a solid or annular section, the electron beam should be incident into a pattern formed on a surface of a substrate, or the like. However, as the size of a device becomes smaller and smaller, it is more and more difficult to allow an electron beam to be incident into a fine pattern. Another conventional electron gun generates an electron beam having a rectangular section. However, the electron beam having a rectangular section generated by the conventional electron gun has less laminarity than a solid or annular beam.
The above information disclosed in this Background section is only for enhancement of understanding of the background of the present application. Therefore, it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
Example embodiments are provided at least in part to address issues, which may prevent conventional devices from outputting a predetermined and/or desired beam. For example, there is provided device and a method to address an issue relating to less laminarity than a solid or annular beam.
An example embodiment provides an electron beam focusing electrode, which may be included in an electron gun. The electron beam focusing electrode may include a plate having a polygonal through-hole and a projecting portion formed on at least one side of the through-hole.
According to an example embodiment, the projecting portion may be spaced apart from both ends of the side on which the projecting portion is formed. A length of the projecting portion may be smaller than the distance from a center of the through-hole to the side on which the projecting portion is formed.
According to an example embodiment, an inner surface of the through-hole is inclined with respect to a traveling direction of an electron beam passing through the through-hole. The through-hole may have a first area and a second area. The first area may be smaller than the second area. Further, the first area may be an incident area of an electron beam, and the second area may be an emission area of the electron beam.
According to an example embodiment, the polygonal through-hole may include four sides, and four projecting portions respectively arranged on the four sides. Each projecting portion may protrude from a center of the respective side. Each projecting portion may have a rectangular cross section.
Another example embodiment provides an electron gun. The electron gun may include an electron beam focusing electrode such as the electron beam focusing electron described above in this summary. The electron gun may also include a cathode electrode radiating electrons and an anode electrode spaced apart from the cathode electrode and on which the electrons radiated from the cathode electrode are focused.
According to an example embodiment, the electron beam focusing electrode of the electron gun may be electrically isolated from the cathode electrode of the electrode gun. Alternatively, the electron beam focusing electrode of the electron gun may be connected to the cathode electrode of the electron gun.
According to an example embodiment, the electron gun may include a gate electrode positioned between the electron beam focusing electrode and the anode electrode to adjust a current quantity of an electron beam.
According to an example embodiment, the cathode electrode of the electron gun may be one of a cold emission cathode, a photocathode and a plasma source. The electron gun may also include a heat shield mounted around the cathode electrode to shield heat radiated from the cathode electrode.
Still another example embodiment provides a method of reducing a spreading phenomenon of an electron beam with rectangular cross section. The method may include forming an electric field in a polygonal through-hole having a projection portion arranged on at least one side of the through-hole, passing an electron beam through the through-hole, and forming a predetermined cross section for the electron beam by the electric field. The method may also include using a gate electrode to adjust a current quantity of the electron beam.
The above and other objects, features and other advantages of example embodiments will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
It should be understood that the appended drawings are not necessarily to scale, present a somewhat simplified representation of various preferred features illustrative of the basic principles of this disclosure. The specific design features disclosed herein, including, for example, specific dimensions, orientations, locations and shapes will be determined in part by the particular intended application and use environment.
In the figures, like reference numerals refer to the same or equivalent parts of example embodiments throughout the following detailed description.
Example embodiments are described more fully hereinafter with reference to the accompanying drawings, in which example embodiments are shown. Example embodiments may, however, be embodied in many different forms and should not be construed as limited to the example embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of example embodiments to those skilled in the art. In the drawings, the size and relative sizes of regions may be exaggerated for clarity.
It will be understood that when an element is referred to as being “on,” “connected to” or “coupled to” another element and the like, it can be directly on, connected or coupled to the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled to” another element or layer, there are no intervening elements present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, and/or sections, these elements, components, regions and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region or section from another region or section. Thus, a first element, component, region or section discussed below could be termed a second element, component, region or section without departing from the teachings of example embodiments.
Spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Referring to
The cathode electrode 10 may be a device to radiate electrons. For example, the cathode electrode 10 may be a device using thermionic emission, or may be a cold emission cathode, a photocathode or a plasma source.
Referring to
The anode electrode 20 may be spaced apart from the cathode electrode 10 at a desired and/or predetermined distance. A voltage may be applied between the cathode electrode 10 and the anode electrode 20. Electrons radiated from the cathode electrode 10 may be accelerated by the applied voltage, so that electron beams may be formed in a direction towards the anode electrode 20.
Further, the anode electrode 20 may have a hole 21 at the center thereof, according to an example embodiment. Electrons radiated from the cathode electrode 10 may pass the anode electrode 20 through the hole 21 to be emitted from the electron gun and may reach a collector (not shown) thereafter. The collector may be an anode electrode positioned outside the electron gun.
Referring to
According to an example embodiment, the electron gun may further include a gate electrode (not shown) positioned between the electron beam focusing electrode 30 and the anode electrode 20 for adjusting the current quantity of an electron beam.
Referring to
Referring to
According to an example embodiment, the cathode electrode 10 and the electron beam focusing electrode 30 may have the same electric potential or may have different electric potentials to control a trace of the electron beam. When different electric potentials are applied to the cathode electrode 10 and the electron beam focusing electrode 30, a potential difference between the cathode electrode 10 and the electron beam focusing electrode 30 may be determined that does not breakdown the isolation between the cathode electrode 10 and the electron beam focusing electrode 30.
According to another example embodiment, the electron beam focusing electrode 30 and the cathode electrode 10 may be connected to each other. For example, the electron beam focusing electrode 30 and the cathode electrode 10 may be connected through the cathode sleeve 12 by connecting the electron beam focusing electrode 30 to the cathode sleeve 12.
Electrons radiated from a cathode electrode may be incident onto the first surface 31 of the electron beam focusing electrode 30. Because the through-hole 33 may be formed to pass through the first surface 31 and the second surface 32, the electrons may incident to the through-hole 33 from the first surface 31, pass through the through-hole 33, and then may be emitted from the through-hole 33 from the second surface 32.
Referring to
As shown in
At least one projecting portion 34 may be formed on at least one side of the through-hole 33. Each of the projecting portions 34 may be spaced apart with desired and/or predetermined distances from both ends of the respective side, on which the projecting portion 34 is formed. Each of the projecting portions 34 may be protruded by a desired and/or predetermined height towards a central direction of the through-hole 33. For example, as shown in
Accordingly, the rectangular shaped through-hole 33 may be modified into a dumbbell shaped polygon by the projecting portions 34 protruded from each side of the rectangular through-hole 33. Consequently, the electric field in the through-hole 33 may be modified by the dumbbell shape of the through-hole 33, so that a spreading phenomenon of an electron beam at corners of the through-hole 33 may be reduced compared to a through-hole having a rectangular shape or a rectangular shape with curved corners.
When an electron beam passes through a rectangular or curved-corner rectangular through-hole of an electron beam focusing electrode, symmetry of electron distribution may be disrupted as a traveling distance of the electron beam increases. This may be because the electron beam is influenced by the distribution of electric field depending on the shape of the electron beam focusing electrode. This may also be because the initial velocity of the spread and initial electron speed due to the non-uniformity of a distribution of heat and electric field at the earlier stage of the electron beam generation.
If the aforementioned electron beam focusing electrode 30 with the dumbbell shape through-hole 33 is used, the trace of an electron beam passing through the through-hole may be controlled by the projecting portions 34. Consequently, a uniformity of the electron beam may be improved and/or a more uniform electron beam may be obtained.
The through-hole 33 formed in the plate 30′ may have a lengths L3 and H3 in the lateral and longitudinal directions of the first surface 31, respectively. For example, a through-hole may have L3=2.2 mm and H3=1.16 mm.
At least one projecting portion 34 may be formed on at least one side of the through-hole 33. Each of the projecting portions 34 may be spaced apart with desired and/or predetermined distances from both ends of the respective side, on which the projecting portion 34 is formed. For example, each side of the through-hole 33 may have a projecting portions 34 formed at a center of the side, protruding to a center of the through-hole 33. The projecting portions 34 may have widths L2 and H2, and lengths D1 and D2, in the lateral and longitudinal directions, respectively.
Referring to
Referring back to
As shown in
Although example embodiments have been particularly shown and described with reference to
Number | Date | Country | Kind |
---|---|---|---|
10-2008-0046748 | May 2008 | KR | national |
This application is a continuation of U.S. patent application Ser. No. 12/285,671, filed on Oct. 10, 2008, which claims priority to Korean Patent Application No. 10-2008-46748 filed on May 20, 2008, under 35 U.S.C. §119, the entire contents of both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4683366 | Harte et al. | Jul 1987 | A |
4873468 | Miram et al. | Oct 1989 | A |
5097138 | Wakabayashi et al. | Mar 1992 | A |
6512235 | Eitan et al. | Jan 2003 | B1 |
8304743 | Baik et al. | Nov 2012 | B2 |
20070170372 | Horsky | Jul 2007 | A1 |
20100227200 | Miyata et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
1369104 | Sep 2002 | CN |
1753010 | Feb 2007 | EP |
1985-074336 | Apr 1985 | JP |
1986-114449 | Jun 1986 | JP |
1987-206754 | Sep 1987 | JP |
2003-242904 | Aug 2003 | JP |
10-2000-0038623 | Jul 2000 | KR |
10-2001-0037658 | May 2001 | KR |
100351802 | Aug 2002 | KR |
10-0719533 | May 2007 | KR |
WO 2007129376 | Nov 2007 | WO |
Entry |
---|
Korean Office Action dated May 31, 2013 issued in corresponding Korean Application No. 10-2008-0046748. |
Korean Office Action dated Nov. 15, 2013 issued in corresponding Korean Application No. 10-2008-0046748. |
Chinese Office Action dated May 8, 2013 issued in corresponding Chinese Application No. 200910007066.2. |
Number | Date | Country | |
---|---|---|---|
20130193340 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12285671 | Oct 2008 | US |
Child | 13644890 | US |