Not Applicable
Not Applicable
Not Applicable
1. Field of the Invention
The present disclosure relates to discharging a fluid from a spray device, and more particularly, to a method and apparatus for discharging a fluid through a nozzle using a piezoelectric pump assembly.
2. Description of the Background of the Invention
Manually-operated hand-held spray devices comprise pump-type sprayers that require repeated manual activation of a pump assembly to emit a fluid. Such spray devices are of limited usefulness because single action continuous spraying of a fluid cannot be accomplished. Instead, a user must repeatedly pump the assembly in order to emit a substantial quantity of product. In other hand-held spray devices, such as aerosol containers, single action continuous spraying is achieved by opening a valve assembly to allow a pressurized propellant to emit a fluid stored within the container. However, aerosol containers utilize propellants to achieve this continuous spraying functionality. While such devices are more useful in those occasions when a substantial quantity of product is to be released, some consumers find the force necessary to hold the valve assembly in an open condition to result in hand fatigue. Also, the need for propellants and/or devices (such as a piston to contain the propellant in an application where the propellant is to remain isolated from the atmosphere) undesirably adds to the complexity and cost of the device.
According to one embodiment of the present invention, a device for dispensing a fluid comprises a housing having an internal power source and a mounting assembly adapted for receiving a replaceable fluid reservoir. The fluid reservoir includes a capillary element for movement of the fluid to a discharge end thereof. A mechanism is disposed within the housing and is energized by the internal power source for vibrating a perforated discharge plate disposed adjacent the discharge end of the capillary element. The mechanism provides sufficient vibratory movement in a dispensing state to pump the fluid from the discharge end through the discharge plate and into the atmosphere. A control is carried by the housing and is disposed beneath the mounting assembly. The control provides an interface for a user to select at least one of a timed mode of operation, an automatic mode of operation dependent upon a sensor output developed by a sensor, and a manual mode of operation. The mounting assembly is further adapted to receive the replaceable fluid reservoir in a manner that allows same to be visually inspected during an in-use condition.
According to another embodiment of the present invention, a volatile liquid spraying device comprises a housing having an internal power source and a mounting assembly for receiving a replaceable fluid reservoir for holding a fluid. The fluid reservoir includes a capillary element for movement of the fluid to a discharge end thereof. A piezoelectric element is disposed within the housing and is energized by the internal power source for vibrating a perforated discharge plate disposed adjacent the discharge end of the capillary element. The piezoelectric element provides sufficient vibratory movement in a dispensing state to pump the fluid through the discharge plate and into the atmosphere. A control panel is disposed on the housing having an instant activation button and a switch for permitting the selection of a timed mode of operation and a sensor-based mode of operation for automatically operating the mechanism in response to a sensed parameter.
In yet another embodiment of the present invention, a hand-held spraying device comprises a housing having a body, a bottom end, and a top end. A first chassis is slidingly retained within the body and movable between first and second positions. The housing is adapted to receive a battery therein. At least one activation device is disposed on the housing. A second chassis is disposed within the housing and retains a piezoelectric actuator and orifice plate assembly. The second chassis is further adapted to retain a removable liquid reservoir having a discharge end. The piezoelectric actuator and the orifice plate assembly are adapted to provide sufficient vibratory movement in a dispensing state to pump the liquid from the discharge end through the orifice plate. Movement of the first chassis to the first position allows the device to be placed in an operational state and movement of the first chassis into the second position allows at least one of the liquid reservoir and the battery to be inserted into the housing.
In a further embodiment of the present invention, a method for dispensing a fluid from a dispenser includes the step of providing a housing having an internal power source, a mounting assembly for receiving a replaceable fluid reservoir, a mechanism for vibrating a perforated discharge plate, and a control panel for activating the dispenser. The replaceable fluid reservoir is retained within the mounting assembly and the fluid reservoir includes a capillary element for movement of a fluid to a discharge end thereof. A fluid is provided within the replaceable fluid reservoir. The method further includes the steps of orienting the replaceable fluid reservoir within the mounting assembly to allow a user to determine a level of the fluid within the fluid reservoir and activating the mechanism in at least one of a timed mode of operation, an automatic mode of operation dependent upon an output of a sensor, and a manual mode of operation. Activation causes the perforated discharge plate to vibrate adjacent the discharge end of the capillary element and pump the fluid from the discharge plate and into the atmosphere. The method includes the further step of energizing the mechanism by the internal power source.
Other aspects and advantages will become apparent upon consideration of the following detailed description and the attached drawings, in which like elements are assigned like reference numerals.
The telescoping housing 4 is typically made from a molded plastic, such as polypropylene. The housing 4 comprises a cylindrical body 10, a truncated hemispherical top portion 12, and a planar bottom end 14 (seen in
Referring specifically to
Referring next to
The housing 4 further comprises first and second body portions 46, 48, respectively. The first body portion 46, as shown in
Referring to
A first chamber 102 is disposed in the rear wall 86 of the block 78. An electrical circuit (not shown), which may comprise a programmable controller, an application specific integrated circuit (ASIC), or the like and the function of which is described in detail hereinafter, is disposed within the first chamber 102. A second, slightly smaller chamber 106 is disposed behind the front wall 84 of the block 78. A pair of battery contact holders 108 are provided within the second chamber 106. The battery contact holders 108 are configured to press conductive leads 110 against ends of standard AA batteries (not shown). The leads 110 extend from ends of the batteries to the circuit, thereby providing power to same.
Referring next to
If desired, one could use the circuit shown in Nakane et al. U.S. Pat. No. 4,632,311 to drive the piezoelectric element 124 at the resonant frequency, the disclosure of such patent being specifically incorporated by reference herein.
The chassis 76 further includes a rectangular portion 136 (
A support chassis 150 useful in the present embodiment includes those described in, e.g., U.S. Pat. No. 6,896,193, which is herein incorporated by reference. In an embodiment depicted in
The assembly 178 further includes the piezoelectric element 124 having an orifice plate 200 extending thereacross. The present piezoelectric element 124 is annular shaped and is disposed within the assembly housing 186 so that it rests upon the frame 180 adjacent the bottom end 188 of the assembly housing 186. The piezoelectric element 124 is held against the frame 180 by a spring 202 that is fitted into the assembly housing 186 between the piezoelectric element 124 and a truncated annular portion 204 that extends inwardly from a top end 206 of the assembly housing 186. Two wires 207 extend from the piezoelectric element 124 through the groove 196 and to the circuit. The wires 207 are provided to supply alternating electrical fields or voltages produced by the circuit to opposite sides of the piezoelectric element 124. When high frequency alternating electric fields are applied to the piezoelectric element 124 same undergoes changes to some of its physical dimensions. In the present embodiment, supplying alternating electric fields to the piezoelectric element 124 causes the diameter of the element 124 to alternatively decrease and increase, thereby causing the orifice plate 200 to vibrate up and down, respectively. Various piezoelectric mechanisms known to those skilled in the art may be utilized to produce a similar effect.
As noted above, the fluid reservoir 6 is removably inserted into the device 2 and may be fashioned in any manner known to those skilled in the art. The present embodiment, as depicted in
A wick 218 is held within the combination plug and wick holder 214. An upper end 220 of the wick 218 extends beyond the neck and a lower end 222 of the wick 218 depends into the container 210 toward a bottom surface 224 thereof. The wick 218 transfers liquid by capillary action from within the reservoir 208 to the upper end 220 of the wick 218. The upper end 220 of the wick 218 is disposed adjacent a bottom of the orifice plate 200. During operation of the device 2 the orifice plate 200 vibrates up and down adjacent the upper end 220 of the wick 218. The up and down vibrations of the orifice plate 200 cause the liquid to be pumped through minute orifices in the orifice plate 200. Each orifice has a diameter within a range of about four microns to about ten microns. Alternatively, a discharge plate may be provided with a varying number of orifices and/or orifices having a different diameter. The support chassis 150 and the liquid reservoir 208 are adequately configured to ensure that the upper end 220 of the wick 218 does not apply an appreciable force to the orifice plate 200, thereby allowing liquid to be supplied to the orifice plate 200 without damping the vibrations of the plate 200 and reducing the effectiveness in atomizing the liquid. The pumping of the fluid through the orifice plate 200 causes the fluid to be ejected from a top of the orifice plate 200 in the form of aerosolized or atomized liquid particles. The atomized liquid particles thereafter traverse an unobstructed interior of the assembly housing 186 and pass through the liquid outlet 16 in the top end 16 of the housing 4. Thus, the liquid from the liquid reservoir 208 is discharged upwardly through the liquid outlet 16 and into the atmosphere. If desired, the liquid outlet 16 may instead be L-shaped or have any other nonlinear shape to direct the contents of the liquid reservoir 208 in a direction other than upwards. Still further, the cross-sectional shape and/or diameter of the liquid outlet 16 may be modified to obtain any desired spray pattern, or to alter the swirling and/or mechanical breakup of the discharged liquid, as should be evident to one of ordinary skill in the art.
The circuitry of the device 2 is activated by manipulation of the dial 28 and activation button 30 on the control panel 8. When the dial 28 is fully rotated to the left (clockwise) the device 2 is in an off state. Rotating the dial 28 to the right (counter-clockwise) away from the off position to an active position causes the device 2 to be in an activated state. When the dial 28 is in an active position, the device 2 operates in an automatic timed mode of operation as noted in greater detail below. Depression of the activation button 30 causes a manual spraying operation to be undertaken. The manual spraying option allows the user to override and/or supplement the automatic operation of the device 2 when so desired. Numerous other interfaces that have similar functional characteristics as described above may be provided on the control panel 8 or elsewhere on the device 2 and are intended to be within the scope of the present disclosure.
The dial 28 provides for an infinite number of duty cycles. Rotating the dial 28 slightly to the right from the off position causes the device to have a sleep period of several hours. Rotating the dial 28 farther to the right reduces the sleep period, such as to an hour or a half hour. Additional rotation to the right further reduces the sleep periods to a couple of minutes or even a couple of seconds or less. If the dial 28 is completely rotated to the right, the sleep period is reduced to zero and the device 2 continuously sprays. The user may adjust the dial 28 to change future or current sleep periods at any time. The device 2 therefore allows for the piezoelectric element 124 to atomize the fluid during spray periods separated in time by sleep periods of adjustable durations.
In one embodiment, the dial 28 is provided with visible numeric indicators associated with a zero position, a first position, a second position, a third position, a fourth position, and a fifth position. When the dial 28 is in the zero position the device 2 is in an off state. Rotating the dial 28 to the left (as seen in
In any of the embodiments disclosed herein, the sleep periods may all be of the same duration, whether the spray operation is initiated manually or automatically. Also, in other embodiments the lengths of the automatic spray periods are all equal. If desired, one or more of the sleep periods may be longer or shorter than other sleep periods and/or one or more of the automatic spray periods may be longer or shorter than other spray periods. The lengths of the automatic spray periods may last anywhere from a fraction of a second to a couple of seconds or longer. The automatic spray periods may be modified to last even longer, such as until the complete exhaustion of the fluid in the device 2, or to comprise several sequenced discharges of the fluid. Still further, the control methodology can be modified to cause spraying operations to be periodically undertaken at equal or unequal intervals without regard to whether a manual spraying operation has been undertaken.
The present device 2 may be combined with the sensor 9 for activating the piezoelectric element 124. The device 2 may operate in a sensor mode and only activate the piezoelectric element 124 in response to output from the sensor 9. The device 2 could also operate in a combined timed and sensing mode of operation, wherein the piezoelectric element 124 is activated after completion of a sleep period or in response to output from the sensor 9. Following actuation of the piezoelectric element 124 by an output signal developed by the sensor 9, a new sleep period lasting the predetermined time interval may be initiated. In any of these embodiments the activation button 30 may be used to interrupt a sleep period with a manually activated spray period. The sensor 9 may be a motion sensor, a sound activated sensor, a light sensor, a temperature sensor, a vibration sensor, a malodorous compound detecting sensor, etc. In a particular embodiment, the sensor 9 comprises a photocell motion sensor that collects ambient light and allows a controller to detect any changes in the intensity thereof. It should be noted that numerous other motion sensors such as passive infrared or pyroelectric motion sensors, infrared reflective motion sensors, ultrasonic motion sensors, or radar or microwave radio motion sensors may be used with the present embodiment. In one embodiment only a single one of these sensors is utilized, while in other embodiments a combination of sensors is used. Further, the present listing of potential sensors is not exhaustive but is merely illustrative of the different types of sensors that can be used with the device 2 described herein. Still further, the placement of the device 2 is not confined to any of the specific examples described above. It is intended that the device 2 be placed in any area where the dispensing of an atomized fluid is required or desired and/or where the sensor 9 is effective.
A block 252 then initiates a start-up burst mode upon activation of the device 2. The start-up burst mode provides an initial burst of fluid from the device 2 upon expiration of a dwell period or interval following energization of the device 2. The start-up burst mode provides for a dwell interval of about 1 second to about 2 minutes following movement of the dial 28 from the zero position to any of the remaining positions. In a preferred embodiment the dwell interval elapses after about a minute. After the dwell interval has elapsed, fluid is emitted during a start-up spray period of about one second to about ten seconds, and more preferably for about three seconds. The piezoelectric element 124 is operated during this start up spray period by alternatively energizing and deenergizing the element 124 in 12 ms 50% duty cycles.
A block 253 initializes and starts a post-activation timer and a sensor delay period timer. The post-activation timer starts running upon activation of the device 2 and is activated only once immediately following each energization of the device 2. The post-activation timer indicates when a post-activation delay period has elapsed. The post-activation delay period lasts for a specified interval, such as 15 minutes. The sensor delay period timer is utilized to determine when a sensor delay period has elapsed.
Thereafter, a block 254 executes a continuous action air freshener (hereinafter “CAAF”) mode of operation. The CAAF mode provides for timed bursts of fluid dependent on the position of the dial 28. In the present example, a 12 ms burst of fluid is dispensed every 22 seconds. The timing of the CAAF mode may be modified by adjusting the dial 28 to increase or decrease the time between bursts of the fluid.
A query is undertaken during the CAAF mode at a block 256, which determines whether the post activation delay period has elapsed. If the 15 minute post activation delay period has not elapsed the CAAF mode continues uninterrupted. Once the 15 minute post activation period has elapsed a second query is undertaken by a block 257 that determines whether the sensor delay period has elapsed. In the preferred embodiment, the sensor delay period timer senses a 15 minute period of time during which the signal developed by the sensor 9 is ignored. If the 15 minute sensor delay period has not elapsed the CAAF mode continues uninterrupted; however, if the sensor delay period has elapsed the device 2 enters an active sensor mode implemented by a block 258.
In the illustrated embodiment, the sensor 9 comprises a photocell motion sensor that collects ambient light and allows a controller to detect any changes in the intensity thereof. The active sensor mode causes the device 2 to register the signal developed by the sensor 9. A block 260 undertakes a query to determine whether the registered signal indicates that motion has been detected by the sensor 9. If motion is detected by the sensor 9 a block 261 executes a first extended burst mode. The first extended burst mode causes the device 2 to emit an extended burst of fluid for a specified duration independent of the dial 28. In the present example, the first extended burst of fluid lasts for a period of three seconds and is emitted by alternatively energizing and deenergizing the element 124 in 12 ms 50% duty cycles. Thereafter, a block 262 re-initializes and restarts the sensor delay period timer and the CAAF mode is resumed. If motion is not detected by the sensor 9 a block 264 executes a ghost mode of operation. The ghost mode conserves fluid by providing timed bursts of fluid independent of the position of the dial 28. In one embodiment, the ghost mode emits timed bursts of fluid separated by a dwell period or interval greater than the user-selectable dwell periods or intervals of the CAAF mode. Alternatively or in addition, the device 2 may emit shorter bursts of fluid during operation in the ghost mode than are emitted during operation of the CAAF mode. In the present example, a 12 ms burst of fluid is dispensed every three minutes regardless of the position of the dial 28 during operation in the ghost mode. The active life span of the fluid in the reservoir 6 is therefore extended by decreasing the frequency and/or duration of bursts of fluid during periods of little or no activity.
During the ghost mode of operation a block 265 continuously registers the signal developed by the sensor 9 and a block 266 continuously queries whether the signal developed by the sensor 9 indicates that motion has occurred. If the block 266 determines that no motion has occurred the ghost mode continues uninterrupted. However, if the block 266 determines that motion has occurred a block 268 executes a second extended burst mode.
The second extended burst mode causes the device 2 to emit an extended burst of fluid for a specified duration independent of the dial 28. In the present example, the extended burst of fluid lasts for a period of three seconds and is emitted by alternatively energizing and deenergizing the element 124 in 12 ms 50% duty cycles. Thereafter, a block 270 re-initializes and restarts the sensor delay period timer and the block 254 thereafter resumes the CAAF mode of operation.
At any time during the active state of the device 2 the activation button 30 may be depressed to initiate a manual burst mode. The manual burst mode allows the user to emit fluid from the device 2 regardless of the position of the dial 28 or what mode the device 2 is currently in. In the present example, when the activation button 30 is depressed for less than a second the fluid is emitted for a pre-set period of time of about three seconds. Alternatively, if the activation button 30 is depressed for more than a second the fluid is emitted continuously for a user determined period time that ceases when the user releases the activation button 30. The piezoelectric element 124 is operated during the manual burst mode by alternatively energizing and deenergizing the element 124 in 12 ms 50% duty cycles for the pre-set period of time or the user determined period. The duration that the activation button 30 must be pressed to activate the user determined period may be modified. Similarly, the duration that the pre-set period lasts or the timing interval used to alternatively energize and deenergize the element 124 may be modified as well. Further, it is anticipated that any of the spray periods or delay periods discussed in connection with the present embodiment may be likewise modified.
The present device 2 may also be used in a manner consistent with the use of commercially marketed hand-held aerosol containers. Rather than activating the device 2 by way of a timer or sensor, the device 2 may be kept in an inactive state until a user requires the fluid to be dispensed. The user picks up the device 2 by gripping the container body 10 with his or her hand. The device 2 is activated by the user depressing the activation button 30 with a thumb or finger. A single depression and release of the activation button 30 causes the piezoelectric element 124 to dispense atomized fluid from the device 2 for a limited spray period. In some embodiments the spray period will last for the same duration the button 30 is held down while in other embodiments the spray period may last for a fixed spray interval, such as several seconds.
The housing 304 is typically made from a molded plastic, such as polypropylene. The housing 304 comprises an elliptical body 310 with a bottom surface 312, a central portion 314, and a top portion 316. In one particular embodiment, the body 310 has an overall height of about 109 mm (4.29 in.), an overall width of about 91 mm (3.58 in.), and an overall depth of about 54 mm (2.13 in.). The top portion 316 of the body 310 includes first and second elliptical recesses 318, 320, respectively, that taper inwardly toward a central circular outlet opening 322. The outlet opening 322 in one embodiment has a diameter of at least about 8 mm (0.32 in.). The bottom surface 312 of the body 310 is planar and includes three equidistantly placed cylindrical feet 324a, 324b, 324c disposed thereon. A door 326 is hingedly secured to the bottom surface 312 for movement between open and closed positions. When the door 326 is in an open position (not shown) battery terminals similar to those described in connection with the device 2 are accessible, thereby allowing a user to insert one or more batteries to power the device 302.
The body 310 of the device 302 includes varying cross-sectional dimensions so that dimensions along the major and minor axes adjacent the central portion 314 are greater than those adjacent the bottom surface 312 and the top portion 316. The body 310 also includes an ovoid recess 328a, 328b on both front and rear sides 330, 332, respectively, of the body 310 adjacent the central portion 314 of same. Each recess 328a, 328b tapers inwardly toward a circular-shaped edge 334a, 334b, respectively, offset toward an upper side 336 of both elongate recesses 328a, 328b. The circular edges 334a, 334b define opposite ends of a cylindrical hollow portion 338 that extends from the front side 330 to the rear side 332 of the body 310. An opening 340 is provided within an upper wall 342 defining the cylindrical hollow portion 338. The opening 338 provides access to a support chassis 344 mounted within an interior of the device 2 adjacent the top portion 316. A piezoelectric actuator and orifice plate assembly (not shown) is disposed on the support chassis 344. The structure and functionality of the support chassis 344 and the piezoelectric actuator and orifice plate assembly are identical to the support chassis 150 and assembly 178 described in connection with the device 2, including any contemplated variations thereof. Further, the fluid reservoir 306, which is identical to the fluid reservoir 6 of the device 2, depends from the support chassis 344 in a similar manner as fluid reservoir 6 depends from the support chassis 150. In the present embodiment, however, the fluid reservoir 306 extends through the opening 340 and into the cylindrical hollow portion 338. A bottom surface 346 of the fluid reservoir 306 is substantially planar and parallel with respect to the bottom surface 312 of the body 310.
The control panel 308 includes a sliding switch 348 on the front side 330 of the body 310. The switch 348 is disposed within a lower side 350 of the elongate rounded recess 328a. The switch 348 is a five position slide switch operable to be manipulated by a finger of a user between one of the five positions. Each of the five switch positions corresponds to a different fluid intensity level. For example, the user inserts batteries into the device 302 or otherwise provides power thereto by an on/off switch (not shown) to activate the device 302. The device 302 thereafter operates in an automatic timed mode with alternating sleep and spraying periods of operation similar to those described herein with respect to device 2 and depicted in
The device 302 also includes an instant action button 362 disposed on a lower wall 364 defining the cylindrical hollow portion 338. The button 362 is centered beneath the bottom surface 346 of the fluid reservoir 306. Depression of the button 362 causes a manual spraying operation to be undertaken. The manual spraying option allows the user to override and/or supplement the automatic operation of the device 302 when so desired. The present button 362 acts in a similar manner as the activation button 30 described in connection with the device 2 and depicted in
The structure and functionality described in connection with the device 302 is also intended to be used in connection with the device 2 in alternative embodiments thereof. Similarly, the embodiments described in connection with the device 2 may be alternatively used or modified with respect to the device 302. For example, the timing and duration of automatic or manual sleep and spray periods for the devices 2 and 302 may be utilized or adjusted in any manner described herein for either device. Other modifications contemplated with the present embodiments include supplying the device 302 with a sensor described in connection with the device 2 or providing the device 2 with a slide switch as opposed to the dial 28. Further, numerous other interfaces that have similar functional characteristics as described above may be provided on either of the devices 2 and 302 and are intended to be within the scope of the present disclosure. Still further, the present application contemplates variations to the structure of either of the devices 2, 302. For instance, the aerosolized liquid outlet 16 of the device 2 may be modified to direct or break up fluid passing therethrough in a desired manner known by those skilled in the art or the body 10 may be fashioned to comprise a different shape such as a rectangle, triangle, or oval. Those skilled in the art will realize the numerous manners in which the present disclosure may be modified to provide similar functionality to that already disclosed herein.
One advantage of the present invention is the ability to remove the user's hand from an area adjacent the fluid being pumped from the device, thereby preventing residual fluid from settling onto the user's hand. This advantage is possible because the control panel that includes the activation button is disposed beneath the support chassis and the reservoir. Further, a user can readily determine the current quantity of the fluid in the reservoir without having to disassemble components. The device can be held in any orientation during spraying, and the sizes of the aerosolized droplets are significantly smaller than droplets emitted from conventional aerosol containers. This latter feature promotes dispersal of emitted fluid and minimizes undesirable fallout.