This application claims benefit of priority to Japanese Patent Application 2017-222499 filed Nov. 20, 2017, the entire content of which is incorporated herein by reference.
The present disclosure relates to an electronic component and a method of manufacturing an electronic component.
A conventional coil component is described in Japanese Laid-Open Patent Publication No. 2015-216338. This coil component has an element body containing ceramic, a coil disposed in the element body, and an external electrode disposed on the element body and electrically connected to the coil.
It was found that the following problem exists when an external electrode of a conventional coil component as described above is fixed to a mounting substrate via solder to mount the coil component on the mounting substrate.
The element body of the coil component contains ceramic and therefore has rigidity. Thus, even if deflection occurs in the mounting substrate due to an external force, heat, etc., the element body is hardy deflected, so that a deflection stress directly acts on the external electrode. As a result, the external electrode may peel from the element body or the mounting substrate, or the external electrode may be disconnected.
Therefore, the present disclosure provides an electronic component and a method of manufacturing an electronic component capable of suppressing peeling of an external electrode and disconnection of an external electrode.
In particular, an aspect of the present disclosure provides an electronic component comprising a coil component having an element body containing ceramic, a coil disposed in the element body, and an external electrode disposed in the element body and electrically connected to the coil; a mold resin sealing the coil component; an electrode film in contact with an outer surface of the mold resin; and a connection conductor disposed in the mold resin and electrically connecting the external electrode and the electrode film.
According to the electronic component of the present disclosure, since the coil component is sealed with the mold resin, even when the electronic component is mounted on a mounting substrate and deflection occurs in the mounting substrate, the mold resin absorbs the deflection of the mounting substrate, and a stress hardly acts on the coil component. Therefore, peeling of the external electrode and disconnection of the external electrode can be suppressed.
In one embodiment of the electronic component, one principal surface of the coil component and one principal surface of the mold resin face in the same direction. Also, the electrode film is in contact with the one principal surface of the mold resin, and the connection conductor extends from the one principal surface of the mold resin toward the one principal surface of the coil component. According to the embodiment, after the hole is made in the mold resin from the one principal surface of the mold resin toward the one principal surface of the coil component, the connection conductor can be disposed in this hole, so that the connection conductor can easily be manufactured.
In an embodiment of the electronic component, the electronic component further comprises a substrate, and the connection conductor is disposed on the one principal surface of the substrate with the coil component placed on the connection conductor so that the external electrode and the connection conductor are electrically connected, while the mold resin seals the coil component on the one principal surface side of the substrate. Also, the connection conductor extends along the one principal surface of the substrate and is exposed from an end surface of the mold resin, while the electrode film is in contact with the end surface of the mold resin and in contact with the connection conductor. According to the embodiment, the coil component can be sealed with the mold resin after disposing the coil component on the substrate, so that the electronic component can easily be manufactured.
An embodiment of a method of manufacturing an electronic component provides a method of manufacturing an electronic component comprising the steps of sealing a coil component having an element body containing ceramic, a coil disposed in the element body, and an external electrode disposed in the element body and electrically connected to the coil, with a mold resin; and disposing an electrode film in contact with one principal surface of the mold resin, making a hole from the one principal surface of the mold resin toward one principal surface of the coil component, and disposing a connection conductor in the hole to electrically connect the external electrode and the electrode film. According to the embodiment, the electronic component capable of suppressing peeling of the external electrode and disconnection of the external electrode can be manufactured.
An embodiment of a method of manufacturing an electronic component provides a method of manufacturing an electronic component comprising the steps of placing a coil component having an element body containing ceramic, a coil disposed in the element body, and an external electrode disposed in the element body and electrically connected to the coil, on a connection conductor disposed on one principal surface of a substrate to electrically connect the external electrode and the connection conductor; sealing the coil component with a mold resin on the one principal surface side of the substrate; and exposing the connection conductor from an end surface of the mold resin and disposing an electrode film in contact with the mold resin and in contact with the connection conductor. According to the embodiment, the electronic component capable of suppressing peeling of the external electrode and disconnection of the external electrode can be manufactured.
The electronic component and the method for manufacturing an electronic component according to an aspect of the present disclosure can suppress peeling of the external electrode and disconnection of the external electrode.
An aspect of the present disclosure will now be described in detail with shown embodiments.
The element body 10 is formed by laminating multiple insulating layers. The insulating layer are made of a ceramic material such as ferrite and alumina, for example. An interface between the adjacent insulating layers may not be clear due to firing etc. The element body 10 is formed in a flat plate shape. The outer surface of the element body 10 includes a first principal surface 11 and a second principal surface 12 opposite to each other and a first end surface 13 and a second end surface 14 opposite to each other. The first principal surface 11 and the second principal surface 12 are connected between the first end surface 13 and the second end surface 14.
The first external electrode 31 and the second external electrode 32 are made of a conductive material such as Ag, Cu, Au, and an alloy mainly composed thereof, for example. The first external electrode 31 and the second external electrode 32 may contain a component such as resin or glass other than the conductive material. The first external electrode 31 is disposed to extend from the first end surface 13 onto the first principal surface 11 and the second principal surface 12. The second external electrode 32 is disposed to extend from the second end surface 14 onto the first principal surface 11 and the second principal surface 12.
The coil 20 is made of the same conductive material as the first and second external electrodes 31, 32, for example. The coil 20 is helically wound along a direction orthogonal to the principal surfaces 11, 12 of the element body 10. One end of the coil 20 is in contact with the first external electrode 31, and the other end of the coil 20 is in contact with the second external electrode 32.
The coil 20 includes multiple coil conductor layers 21 each wound on a plane on an insulating layer of the element body. Therefore, the multiple coil conductor layers 21 are laminated via the insulating layer. The coil conductor layers 21 adjacent to each other in the lamination direction are electrically connected in series through a via conductor penetrating the insulating layer in the thickness direction. The multiple coil conductor layers 21 are electrically connected to each other in series in this way to constitute a helix. Specifically, the coil 20 has a laminated configuration of the multiple coil conductor layers 21 electrically connected to each other in series and having the number of turns less than one, and the coil 20 has a helical shape. However, the coil 20 is not limited to this configuration and may have a laminated configuration of the multiple spiral-shaped coil conductor layers 21 having the number of turns equal to or greater than one.
The mold resin 40 is made of, for example, an imide resin such as bismaleimide or a thermosetting resin such as an epoxy resin. The mold resin 40 has elasticity as compared to the element body 10. The outer surface of the mold resin 40 includes a first principal surface 41 and a second principal surface 42 opposite to each other and a first end surface 43 and a second end surface 44 opposite to each other. The first principal surface 41 and the second principal surface 42 are connected between the first end surface 43 and the second end surface 44.
The first principal surface 11 of the element body 10 of the coil component 2 and the first principal surface 41 of the mold resin 40 face in the same direction. The first end surface 13 of the element body 10 of the coil component 2 and the first end surface 43 of the mold resin 40 face in the same direction.
The first electrode film 51 and the second electrode film 52 are film-like metal members made of the same conductive material as the first and second external electrodes 31, 32, for example. The first and second electrode films 51, 52 are in contact with the first principal surface 41 of the mold resin 40. The first and second electrode films 51, 52 are brought into close contact with the first principal surface 41 in a planar manner by plating or sputtering, for example.
The first connection conductor 61 and the second connection conductor 62 are made of the same conductive material as the first and second electrode films 51, 52, for example. The first connection conductor 61 electrically connects the first external electrode 31 and the first electrode film 51. The second connection conductor 62 electrically connects the second external electrode 32 and the second electrode film 52. The first and second connection conductors 61, 62 extend from the first principal surface 41 of the mold resin 40 toward the first principal surface 11 of the coil component 2. Therefore, after holes are made in the mold resin 40 from the first principal surface 41 of the mold resin 40 toward the first principal surface 11 of the coil component 2, the first and second connection conductors 61, 62 can be disposed in this hole, so that the first and second connection conductors 61, 62 can easily be manufactured. Although integrally and continuously formed in a two-layer structure in
According to the electronic component 1, when the electronic component 1 is mounted on a mounting substrate (not shown), the electrode films 51, 52 of the electronic component 1 are fixed to the mounting substrate via solder. In this case, since the coil component 2 is sealed with the mold resin 40, even if deflection occurs in the mounting substrate due to an external force or heat, the elastic mold resin 40 absorbs the deflection of the mounting substrate, and a stress hardly acts on the coil component 2. Therefore, the external electrodes 31, 32 can be restrained from peeling from the element body 10 or the mounting substrate, and disconnection of the external electrodes 31, 32 can be suppressed. For example, the component is suitably used on a vehicle with large temperature changes.
Since the coil component 2 can be used alone, the existing coil component 2 can be applied. Additionally, since the electrode films 51, 52 used are film-like metal members, the need for a forming process can be eliminated as compared to a metal frame terminal, so that the electronic component 1 can be reduced in thickness, and the flatness of the electrode films 51, 52 can be maintained. In contrast, when the metal frame terminal is used, a dimensional variation is relatively increased due to the forming process, which prevents a reduction in thickness, and this also makes it difficult to maintain the flatness of the bottom surface of the metal frame terminal
A method of manufacturing the electronic component 1 will be described.
As shown in
As shown in
As shown in
The copper foil 113 and the conductor portion 114 constitute the electrode films 51, 52 and the connection conductors 61, 62 shown in
As shown in
As shown in
Therefore, the electronic component 1 capable of suppressing the peeling of the external electrodes 31, 32 and the disconnection of the external electrodes 31, 32 can be manufactured. Additionally, since the electrode films 51, 52 and the connection conductors 61, 62 are disposed after the coil component 2 is molded, burrs are hardly generated in the mold resin 40. In contrast, if a metal frame terminal is attached to a coil component before molding, the component is sandwiched between dies for molding such that the terminal is exposed from the mold resin, and therefore, burrs of the mold resin are likely to be generated from a gap of the mold dies.
As shown in
A first connection conductor 61A and a second connection conductor 62A are disposed on the first principal surface 71 of the substrate 70. The first and second connection conductors 61A, 62A are electrode patterns disposed on the substrate 70, for example.
The coil component 2 is placed on the first and second connection conductors 61A, 62A. Specifically, the first external electrode 31 is placed on the first connection conductor 61A so that the first external electrode 31 is electrically connected to the first connection conductor 61A. The second external electrode 32 is placed on the second connection conductor 62A so that the second external electrode 32 is electrically connected to the second connection conductor 62A.
The mold resin 40 seals the coil component 2 on the first principal surface 71 side of the substrate 70. Therefore, the first principal surface 41 of the mold resin 40 is in contact with the first principal surface 71 of the substrate 70.
The first connection conductor 61A extends along the first principal surface 71 of the substrate 70 and is exposed from the first end surface 43 of the mold resin 40. The second connection conductor 62A extends along the first principal surface 71 of the substrate 70 and is exposed from the second end surface 44 of the mold resin 40.
A first electrode film 51A is in contact with the first end surface 43 of the mold resin 40 and in contact with the first connection conductor 61A. Specifically, the first electrode film 51A covers the first end surface 43 of the mold resin 40 and the first end surface 73 of the substrate 70 and is disposed also on the second principal surface 42 of the mold resin 40 and the second principal surface 72 of the substrate 70.
The second electrode film 52A is in contact with the second end surface 44 of the mold resin 40 and in contact with the second connection conductor 62A. Specifically, the second electrode film 52A covers the second end surface 44 of the mold resin 40 and the second end surface 74 of the substrate 70 and is disposed also on the second principal surface 42 of the mold resin 40 and the second principal surface 72 of the substrate 70.
According to the electronic component 1A, the coil component 2 can be sealed with the mold resin 40 after disposing the coil component 2 on the substrate 70, so that the electronic component 1A can easily be manufactured.
A method of manufacturing the electronic component 1A will be described.
As shown in
As shown in
As shown in
As shown in
Therefore, the electronic component 1A capable of suppressing peeling of the external electrodes 31, 32 and disconnection of the external electrodes 31, 32 can be manufactured.
The present disclosure is not limited to the embodiments described above and may be changed in design without departing from the spirit of the present disclosure. For example, respective feature points of the first and second embodiments may variously be combined.
Although the electrode films are disposed only on the principal surface of the mold resin in the first embodiment, the electrode films may be disposed on the principal surface and the end surfaces of the mold resin or may be disposed on other surfaces. Although the electrode films are disposed in a U shape in the second embodiment, the electrode films may be disposed at least on the end surfaces of the mold resin and may be disposed in an L shape from the end surfaces to the second principal surface of the substrate or may be disposed in an L shape from the end surfaces to the second principal surface of the mold resin.
Number | Date | Country | Kind |
---|---|---|---|
JP2017-222499 | Nov 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
10219380 | Yoo | Feb 2019 | B2 |
20030085058 | Komatsu | May 2003 | A1 |
20090160595 | Feng | Jun 2009 | A1 |
20100101836 | Sekimoto | Apr 2010 | A1 |
20100236698 | Sekimoto | Sep 2010 | A1 |
20120145445 | Arai et al. | Jun 2012 | A1 |
20160020032 | Shin et al. | Jan 2016 | A1 |
20160181003 | Li | Jun 2016 | A1 |
20220139611 | Takubo | May 2022 | A1 |
Number | Date | Country |
---|---|---|
102484950 | May 2012 | CN |
H10-233322 | Sep 1998 | JP |
2002-313601 | Oct 2002 | JP |
2015-216338 | Dec 2015 | JP |
2017119249 | Jul 2017 | WO |
Entry |
---|
An Office Action; “Notification of Reasons for Refusal,” Mailed by the Japanese Patent Office dated Jan. 28, 2020, which corresponds to Japanese Patent Application No. 2017-222499 and is related to U.S. Appl. No. 16/175,564; with English language translation. |
An Office Action mailed by the China National Intellectual Property Administration dated Jul. 1, 2020, which corresponds to Chinese Patent Application No. 201811365058.0 and is related to U.S. Appl. No. 16/175,564 with English language translation. |
Number | Date | Country | |
---|---|---|---|
20190156991 A1 | May 2019 | US |