The present invention relates generally to wireless communication systems, and more particularly relates to techniques for managing resources among a plurality of electronic devices in a wireless connection arrangement.
Recent advancements in mobile computing technology, coupled with increasing demands for “transparent mobility” (i.e., mobility with a minimum amount of preplanning), have led to a proliferation of mobile computing devices and applications. Some of these devices, such as, for example, notebook computers, micro notebooks, etc., can be used for a variety of applications and may thus be considered general purpose devices. Because of the generality of these devices, however, they are not well-suited for immediate use for any dedicated application. Accordingly, classes of task-specific electronic devices, such as, for example, personal data assistants (PDAs), mobile cell phones, digital music players (e.g., MP3 devices), etc., have arisen. Each of these specialized devices is typically optimized for immediate use, although for a limited set of applications. Mobile users often own and regularly use both general purpose mobile computing devices and task-specific mobile devices. Many of these devices are capable of independent communication with other electronic devices, for example, using wide area networks (WANs), local area networks (LANs), short-range personal area networks (PANs), etc.
With few exceptions, today these mobile devices are designed for independent use. However, as PANs such as, for example, Bluetooth® (a registered trademark of Bluetooth SIG, Inc.) become more widespread, it is contemplated that mobile users may employ their electronic devices in a more coordinated fashion. For instance, a mobile user may watch a music video clip on his or her cell phone while listening to a streaming download of associated music on his or her digital music player. This style of communication is often referred to as “multi-channel” communication, since a single logical message (e.g., the music video) may include multiple media types delivered over multiple communication links to multiple end-user devices. Multi-channel communication is different from multimedia messaging (e.g., Motion Pictures Experts Group 4 (MPEG-4)) in that multimedia messaging generally standardizes messages carried on the same communication channel and delivered to a single device capable of reproducing at least one of its components, while multi-channel communication involves coordinating activity on multiple communication channels and/or devices simultaneously.
One of the disadvantages associated with a conventional multi-channel communication environment is that one or more of the communication links needed to access a given message may not be available. Moreover, message latency associated with each of the communication links, which can vary independently of one another at any given time, are typically not matched to one another. When two or more components of a multi-channel message experience different latencies, they will be presented to the user out of synchronism, which is perceptually undesirable.
There exists a need, therefore, in the field of mobile communication technology for an improved method of coordinating resources among a plurality of electronic devices and/or communication links, especially in a multi-channel communication environment.
The present invention provides techniques for providing connection resource management among two or more electronic devices and/or communication links in a wireless connection arrangement. The techniques of the invention substantially eliminate the need to manually choose at least how components of a multi-channel message are received, which communication links these components traverse from their respective source(s) to their respective destination(s), and how reconfiguration is to be performed when changes and/or failures in the configuration of the wireless communication system occur.
The invention disclosed herein implements methods for the automatic and dynamic evaluation and/or selection of communication paths for packets currently carrying multi-channel messages, typically received from multiple communications links and destined to multiple presentation sources on multiple electronic devices, for presenting these multi-channel messages.
In accordance with one embodiment of the invention, in a connection arrangement including two or more electronic devices, wherein information can be exchanged among the electronic devices through a plurality of communication links between the electronic devices, at least one of the electronic devices being configurable for communicating with a data source, a method for presenting a multi-channel message originating from the data source, the multi-channel message including a two or more components, includes the steps of allocating each of at least a portion of the components in the multi-channel message to at least one electronic device and, for each allocated component, determining possible communication paths between the data source and the at least one electronic device allocated to the corresponding component. The method further includes the steps of selecting, based at least in part on one or more selection criteria, at least one of the possible communication paths for the allocated components, each of the selected communication paths representing an optimal route between the data source and the at least one electronic device allocated to the corresponding component, and routing each of the allocated components in the multi-channel message according to the selected communication paths for presentation of the allocated components by the corresponding electronic device(s).
These and other objects, features and advantages of the present invention will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.
The present invention will be described herein in the context of an illustrative electronic device connection arrangement including a plurality of electronic devices associated with a particular user or users. It should be appreciated, however, that the present invention is not limited to this or any particular connection arrangement. Rather, the invention is more generally applicable to techniques for optimally routing components of a multi-channel message among a plurality of electronic devices in a device connection arrangement.
By way of example only, information may be exchanged between notebook computer 1 and micro notebook computer 3 via an infrared link 6 (e.g., infrared data association (IrDA) link). Alternatively, information may be exchanged between notebook computer 1 and micro notebook computer 3, between micro notebook computer 3 and PDA 2, and between PDA 2 and notebook computer 1, via a wireless local area network (WLAN) link 7, 8 and 9, respectively, using, for example, a standard communication protocol such as an Institute of Electrical and Electronics Engineers (IEEE) 802.11b standard. Alternative standard WLAN communication protocols (e.g., IEEE 802.11a, IEEE 802.11g, etc.), as well as nonstandard communication protocols, may also be employed by the present invention, as will be understood by those skilled in the art. Likewise, information may be exchanged between PDA 2 and pager 4, between PDA 2 and cell phone 5, and between cell phone 5 and pager 4, via a Bluetooth® radio link 10, 11 and 12, respectively.
The exemplary connection arrangement 100 may comprise a plurality of WAN communication links 13, 14, 15 and 16, as apparent from the figure. These communication links 13, 14, 15, 16 are preferably configurable for carrying data bidirectionally, for example, between a data source, which may comprise the Internet (not shown), via an Internet service provider (ISP) or alternative gateway, and a corresponding electronic device 5, 4, 1, 3, respectively. Communication link 13 may comprise, for example, a cellular radio link, communication link 14 may comprise, for example, a paging radio link, communication link 15 may comprise, for example, a digital subscriber line (DSL) link, and communication link 16 may comprise, for example, a modem link. The term “communication link” as used herein is intended to refer to a wireless communication channel, such as, but not limited to, radio frequency (RF), infrared (IR), microwave, etc., or a wired communication channel, such as, but not limited to, telephone, cable, etc., although alternative communication media may be used.
Messages between the Internet and the various electronic devices in the exemplary connection arrangement 100 can be carried in a variety of ways, as will be understood by those skilled in the art. For example, a message comprising text information can be transmitted from the Internet over paging radio link 14 and received by pager 4, relayed to PDA 2 via Bluetooth® radio link 10, and subsequently relayed to notebook computer 1 via IEEE 802.11b WLAN link 9. This is asserted to be an optimal communication route between pager 4 and notebook computer 1, since any other communication route traverses more links and includes additional electronic devices each serving as a relay point, thus adding latency and increasing the overall power consumption in the overall connection arrangement 100.
It is to be appreciated that one or more of the communication links and/or relay points (devices) comprising a given path may be deemed unreliable, and therefore a preferred communication path may not necessarily be the shortest path. For example, Bluetooth® radio link 10 may have been found to be unreliable, and in this instance a better path may include Bluetooth® radio links 11 and 12 instead of link 10. In this path, cell phone 5 serves as an additional relay point.
By way of example only, an application of the exemplary connection arrangement 100 will now be described, in accordance with one aspect of the present invention. Consider a multi-channel message comprising a video component and an audio component, with both components originating from the Internet. Also, assume that it has been determined (e.g., using the methodologies set forth in the related application entitled “Techniques for Providing a Virtual Workspace Comprised of a Multiplicity of Electronic Devices”) that an optimal allocation of multi-channel message components among the electronic devices is for the video component of the message to be presented on PDA 2 and the audio component to be presented on cell phone 5.
An optimal routing for the video component, assuming all devices and links are reliable, is from the Internet via DSL link 15 to notebook computer 1, and subsequently to PDA 2 via IEEE 802.11b WLAN link 9. The audio component of the message could also traverse this same path, and then be relayed by PDA 2 to cell phone 5 via Bluetooth® radio link 11. However, this would add an additional delay between the video and audio components resulting, at least in part, from the added latency associated with the relaying process, between PDA 2 and cell phone 5, and the communication link 11. Rather, an optimal routing for the audio component of the message may be from the Internet via cellular radio link 13, directly to cell phone 5. The actual latency difference between this path and an alternate communication path is preferably evaluated and a path is preferably chosen for the audio component having a latency that is substantially matched to the latency associated with the video component. In this manner, presentation of the audio and video components of the multi-channel message can be advantageously synchronized with respect to one another.
In order to more clearly describe the methodologies of the invention, links to the Internet are denoted as Lik, where i is the number of an electronic device and k enumerates all of the links between the Internet and the electronic device. For example, DSL link 15 may be denoted as L11, the first (and only) link between notebook computer 1 and the Internet. Moreover, links between electronic devices can be denoted as Mijk, where i is the number of a first electronic device, j is the number of a second electronic device, and k enumerates all of the links between the two devices. For example, the IEEE 802.11b WLAN link 8 between the PDA 2 and the micro notebook computer 3 may be denoted as M231, the first (and only) link between the two devices. Arbitrarily, we may denote the IrDA link 6 between notebook computer 1 and micro notebook computer 3 as M132, the second link between the two devices. The values Lik and Mijk may be assigned as attributes of a given link. Other attributes may also be assigned to a link including, for example, latency, bandwidth, cost, record of reliability, etc.
An enumeration of all paths between the Internet and a given electronic device p in the exemplary connection arrangement 100 can be formed as the following sequence:
LiaMabcMbde . . . Mdpf
In the case where only one link exists between each pair of devices, the following simpler sequence can be formed:
LiaMab1Mbc1 . . . Mcp1
In either case, no circular paths are allowed. This requires that for a given sequence of Mijk, the actual values of i and j do not appear more than twice. Paths that contain other paths as a subset are also eliminated from further consideration.
In the general case comprising an arbitrary number of electronic devices, the enumeration of all paths can be time-consuming and storage-intensive. However, in practice the number of electronic devices in a given personal workspace is typically small (e.g., less than about 10), and the number of possible communication links is typically small as well (e.g., less than about 20). In the exemplary connection arrangement 100, for example, there are 15 possible communication paths between the Internet and pager 4. Specifically, there are six paths involving L11, six paths involving L31, two paths involving L51, and one path involving L41. One of the six paths involving L11, for instance, is L11M132M321M251M541. It is likely that, at least from a latency perspective, this path is inferior to another one of the six paths involving L11, namely, the path L11M121M241.
With reference to
When a path Mij is found directly between electronic device i and electronic device j, process flow branch 23 is taken to block 27. Block 27 determines all communication paths from device j to the destination device p, excluding device i. An exemplary methodology 300 for determining the communication paths between two electronic devices is illustrated in
Referring now to
After performing the initialization procedure in block 30, the methodology 300 continues to block 40, which determines whether or not the input device i and destination device p are the same. When i is equal to p, process control branch 41 is taken and the exemplary path determination methodology 300 is complete. Process control may then return to the calling procedure, which may reside in block 27 of the exemplary methodology 200 of
When block 32 determines that a communication path does exist directly between devices i and j, control process branch 33 is taken and the methodology 300 continues by entering block 37. Block 37 determines all paths from device j to device p excluding device i, again subject to the constraint that j is not in the exclusion list e, to which device i is added. Note, that the exemplary path determination methodology 300 depicted in
The process of allocating the components Cj of the multi-channel message to the appropriate electronic devices pj may be performed once, for instance, upon receiving the multi-channel message. However, in a preferred embodiment of the invention, the allocation procedure may be performed periodically (e.g., once per minute) to determine whether or not the condition(s) upon which the allocation decision was initially based are still valid, and to dynamically update the allocation resources when conditions in the connection arrangement have changed. In this manner, if an electronic device to which a particular component of the multi-channel message has been assigned fails or is otherwise unreliable, a new electronic device may be substituted therefor. Also, as devices are added or removed from the connection arrangement (e.g., as a user's mobile communication network is expanded or contracted), allocation of the components of the multi-channel message can be dynamically changed accordingly. The methodologies described in related application entitled “Techniques for Providing a Virtual Workspace Comprised of a Multiplicity of Electronic Devices,” noted above, may be utilized for locating one or more electronic devices pj for the presentation of components Cj in the multi-channel message.
After each of the components Cj in the received multi-channel message has been allocated in block 51 to a corresponding electronic device pj for presentation to a user, block 52 is entered. In block 52, for each component Cj of the multi-channel message, all communication paths between the Internet (or alternative data source) and the electronic device pj corresponding to the component Cj are located. Block 52 preferably utilizes the exemplary methodologies 200, 300 described above in conjunction with
Once the set of communication paths and policy has been input at block 60, the path selection methodology 500 continues to block 61, wherein an initialization procedure is performed. Block 61 preferably initializes at least two indices, namely, an index i, where i corresponds to a current communication path being evaluated, and an index variable best which retains the index number i of the best path found so far. The phrase “best path” as used herein preferably refers to the communication path that more closely matches the selection criteria associated with the policy. Once initialization has been performed, block 62 is entered. Block 62 determines whether or not the index i exceeds the number of paths input to block 60. When the index i exceeds the number of paths, control process branch 63 is taken and the path selection methodology 500 is completed. Process control may then be returned to the calling routine, which may be block 53 in the exemplary decision methodology 400 shown in FIG. 4.
When the index i evaluated in block 62 has not exceeded the number of communication paths input to block 60, process control continues at block 65 via control process branch 64. Block 65 computes what may be referred to as aggregate attributes of a communication path. Specifically, each link in a given path is preferably characterized by a set of attributes. These attributes can be stored, at least temporarily, in some electronic computing device or determined at the time a path is to be determined. Typically, one or more electronic computing devices on which the link terminates maintain attributes corresponding to the link. The attributes may be, for example, an estimate of the link latency, a distribution of link latencies, an estimate of the bandwidth of the link, the number of dropped packets on the link as a proportion of the number of packets sent, or various other attributes that may be helpful in characterizing the link. One attribute of some importance is the power necessary to send a packet of a given length on the link.
Block 65 preferably uses the attributes of the links comprising a given communication path i to compute a single set of aggregate attributes for the path. The methodology used for computing the set of aggregate attributes may depend upon the type of attribute. For example, if the attribute is power, the aggregate attribute may be computed as a sum of the powers expended on the constituent links comprising the path i. Likewise, if the attribute is bandwidth, the aggregate attribute may be computed as a minimum of the bandwidths available on the constituent links. Moreover, if the attribute is latency, the aggregate attribute may be computed as a sum of the respective latencies on the constituent links, unless the latency is known as distributions of a common type. In such case, the aggregate latency can be estimated as a square root of the sum of the squares of the average latency on each constituent link. Techniques for computing the aggregate attributes will be known by those skilled in the art.
After computing the aggregate attributes corresponding to a path i, the exemplary path selection methodology 500 continues at block 66. Block 66 determines whether one path is better than another. This can be accomplished by comparing the aggregate attributes of two communication paths, in accordance with the criteria set forth in the policy. The policy may be represented using a standard information model, such as, for example, the Internet Engineering Task Force (IETF) RFCs 3060 entitled “Policy Core Information Model—Version 1” (February 2001), and extensions thereto, including IETF RFC 3460 entitled “Policy Core Information Model (PCIM) Extensions” (proposed January 2003), which are incorporated herein by reference. By way of example only, the user may have a priori set a policy that requires best fidelity of reproduction. In this instance, the attributes of the two paths to be compared may include characteristics such as, for example, latency, latency variability, dropped packets, and/or bandwidth. In the case where the user has set a policy requiring minimization of power, the attributes of the two paths to be compared may comprise, for example, an estimate of the total power per packet required to communicate over the two paths.
When block 66 determines that the communication path currently under consideration is better than the path whose index is currently stored in the index variable best, process control branch 67 is taken to block 68, wherein the index variable best is set to the index of the current path and the index i is incremented by one in block 69. When block 66 determines that the path currently under consideration is not better in comparison to the path whose index is stored in index variable best, the index variable best is left unchanged and the procedure continues to block 69, which increments index i by one to evaluate the next path. Process control then continues at block 62 which checks to determine whether index i has exceeded the number of paths input to block 60, as previously explained. This methodology continues until the index i exceeds the number of paths input at block 60. When the methodology has completed, the number of the optimal communication path will be stored in index variable best.
It may be the case that the criteria (i.e., policy) for selection of a path is not necessarily whether some aggregate attribute is better than the aggregate attributes of all other paths, but rather whether an aggregate attribute is equal to that of another path. An important example of this scenario is when it is desired to substantially match the latencies of two or more paths. For example, as previously stated, in a multi-channel communication environment which involves coordinating activity on multiple communication paths simultaneously, it is beneficial that the latencies of each of the paths are substantially matched to one another so as to ensure proper synchronization among the various electronic devices used to present the respective components. In this case, it is not necessary that the latency of a given path be minimal.
Thus, in accordance with a preferred embodiment of the invention, the exemplary overall routing decision methodology 400 of
In accordance with another aspect of the present invention, there are several optimizations that can be utilized with the methodologies described above in connection with
Hints can be used as well as policies to reduce the number of communication paths to be compared. By way of example only, when a particular electronic device, e.g., pager 4 (see FIG. 1), is known to have a low battery capacity, then any path traversing that device should be eliminated from consideration during the path enumeration and selection methodologies 200, 300 (see FIGS. 2 and 3). When there are multiple links between two electronic devices (e.g., links 6 and 7 between devices 1 and 3 in FIG. 1), the path evaluation and selection methodologies may also be simplified when it is known that all of the attributes associated with one link are superior to the attributes associated with the other link(s). For example, consider a serial cable link and high-speed infrared link. Assuming the infrared link is superior to the cable link in substantially every respect, the cable link can be eliminated from inclusion in any communication path evaluation.
For the successive receipt of multi-channel messages using the same device configuration, when the multi-channel messages have substantially the same components, the same communication paths may be employed. Optionally, the exemplary electronic device arrangement may be configurable for maintaining a history of device allocations and/or communication paths corresponding to a given set of message components. In this manner, when the configuration for the receipt of a new multi-channel message matches a past configuration and the components of the multi-channel message are the same as a previously received message, an optimal communication path/electronic device allocation can be selected from the history list rather than by using the methodologies previously described, thereby significantly speeding the overall routing decision methodology.
During normal operation of the exemplary device connection arrangement 100 shown in
In accordance with one embodiment of the invention, considering the first case, namely, where there is a failure or removal of a device and/or link from the connection arrangement, the connection arrangement preferably first determines whether any route(s) currently involved in the communication of a multi-channel message has been affected, and, if so, provide an alternative route for that component of the message. This may be facilitated by retention of the information (e.g., stored in a table in memory) derived during the path enumeration and characterization methodologies previously described in conjunction with FIG. 2.
Some of the communication paths determined as a result of the path enumeration and characterization methodologies may already be used for conveying other components of the multi-channel message. Furthermore, one or more paths are assumed to be no longer available as a result of the failure or removal of a device. Among the paths still available, the path selection methodology depicted in block 53 shown in
Considering the second case, namely, where a device and/or communication link is added to the connection arrangement, the connection arrangement preferably first determines whether the currently selected set of communication paths is functioning adequately. It may be that the original path allocation methodology of
In accordance with a preferred embodiment of the invention, a database is employed for retaining at least a portion of the information derived from the exemplary path enumeration methodology shown in FIG. 2. Preferably, each allocated communication path whose aggregate attributes do not satisfactorily meet the criteria for the conveyance of the multi-channel message component to which it is allocated is marked. Then, when performing the exemplary path selection methodology shown in
In accordance with another aspect of the invention, the routing decision methodology of the present invention may be implemented, in whole or in part, in a circuit (not shown). The circuit may include a controller 102, as shown in
The term controller as used herein is intended to include any processing device, such as, for example, one that includes a central processing unit (CPU) and/or other processing circuitry (e.g., microprocessor). The controller and/or processing blocks can also be implemented as dedicated circuitry in hardware. Additionally, it is to be understood that the term “controller” may refer to more than one controller device, and that various elements associated with a controller device may be shared by other controller devices. Moreover, the circuit for performing the methodologies of the present invention as described herein may be implemented, at least in part, in a semiconductor device, which may comprise more than one such circuits, as will be understood by those skilled in the art.
It is to be understood that, in accordance with the present invention, the exemplary connection arrangement is preferably configured such that routing is performed in each of the electronic devices comprised in the connection arrangement. Alternatively, routing may be performed by a subset of one or more of the devices which, for example, routes data traffic to and from the Internet on behalf of all of the other devices in the connection arrangement. The decision-making as to which route(s) to select may be implemented in hardware, software, or a combination of hardware and software, associated with one or more of the electronic devices, or alternatively associated with a dedicated apparatus (e.g., a gateway to the Internet, router, etc.). But since the links between electronic devices are often point-to-point (e.g., infrared), the actual routing is preferably performed in each device, as previously stated.
Although illustrative embodiments of the present invention have been described herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments, and that various other changes and modifications may be made therein by one skilled in the art without departing from the scope of the appended claims.
This application relates to commonly assigned U.S. application Ser. No. 10/442,218 entitled “Techniques for Providing a Virtual Workspace Comprised of a Multiplicity of Electronic Devices” filed on May 20, 2003, the disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4802220 | Marker, Jr. | Jan 1989 | A |
20040219951 | Holder | Nov 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20050018623 A1 | Jan 2005 | US |